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Rend. Sem. Mat. Univ. Pol. Torino
Vol. xx, X (xxxx), 1 —8

V. Chiado Piat *

HOMOGENIZATION OF SPECTRAL PROBLEMS
AND LOCALIZATION EFFECTS

Abstract. We describe classical and new results concerning the ligfibiour of spectral
problems in a periodically perforated domain, with speattntion to some cases where the
eigenfunctions localize.

1. Introduction

My first step into mathematical research was the study ottberly of homogenization,
applied to linear e non linear elliptic equations. The sobyeas suggested to me by
professor Angelo Negro, to whom | am deeply grateful for hgvintroduced me to
several beautiful topics in mathematical analysis.

The study of spectral problems in periodically perforatenhdins is developed,
since long time, by many authors (see, for example, [15], [13]) and has a number
of motivations and applications. One important exampléésfteld of optimal design
(see [4], [1], [3]). Starting from the simplest case of thelaze operator, it is known
that the knowledge of its spectrum depends on the boundaditbons and on the ge-
ometry of the domain under consideration. An alternativietoaf view is to say that
the knowledge of the spectrum of a boundary value problemsgiformation about
the geometry of the domain. This aspect is particularly irtgrd in shape optimization
problems, where the shape of the domain is an unknown, anglothlds to choose it
in a way to obtain, for example, certain desired modes ofatibn. There are several
techniques to study the effect of variations of a domain @ndbrresponding solu-
tions, or eigenvalues and eigenfunctions. Classical nustldate back to Hadamard
([20]), and are based on smooth variations of the boundaaygi¥en initial domain,
in the normal direction. This approach excludes non smootintary, and variations
that change the topology, as, for example, create holese kament topological opti-
mization methods are able to include topological variatiand take into account the
knowledge of homogenization of boundary value problemsadisgectral problems in
perforated domains.

In Section 2 of this paper we present some of the resultsradaian collabora-
tion with I. Pankratova and A. Piatnitski. Details and pafe contained in [6], where
we deal with a spectral problem for an elliptic operator imetigence form, comple-
mented by Fourier-type boundary conditions on the surfatiescholes. The presence
of a non periodic coefficient in the boundary conditions esus number of interest-
ing effects. First of all, under the assumption that the nenqgalic coefficient has a
unigue minimum point, a localization phenomenon holds: elgrfor anyk € N the
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k-th eigenfunction of the problem is asymptotically locatiz in a small neighbour-
hood of the minimum point, as the periodicity size vanistegarticular, the principal
eigenfunction converges todfunction supported at the minimum point. Moreover,
the localization process takes place in the se&lé and it is possible to construct
asymptotic expansions which are in integer powers'df. In this scale the leading
term of the asymptotic expansion for theh eigenfunction can be proved to be the
k-th eigenfunction of an auxiliary harmonic oscillator opter.

Different results for spectral problems of Steklov type aomtained in [5],
while a study nonlinear variational problems with Fouri@uhdary conditions can
be found in [7].

In Section 3 we address some related papers where othezbltaa phenom-
ena are found out.

2. A problem with Fourier boundary conditions

GivenQ, a bounded domain iRY with Lipschitz boundargQ, the consider the s€l,
defined by _ _
Q=0\JT, le={iez®: T ca},

iclg

whereT, = (T +i), andT cc (0,1)% is a compact subset of the unit cube, with
non empty interior. We denote iy = (0,1)9\ T the open unit cell and by = aT
the boundary of the perforation. In the “periodically pegied” domainQ, ¢ RY we
consider the following spectral problem:

—div(a®0u?) = A®U8, in Q,
(1) at0ut-n= —q(X)u¥, onZe,
ut =0, X € 0Q,

wherea®(x) = a(%). Notice thatQ. remains connected, the perforation does not inter-
sect the boundagQ, and

0Q: =00Q( JZ,, =]z, =L=g(Z+i).

iclg

The boundary conditions are known as Fourier, or Robin ¢amdi. We make the
following assumptions:

(HO) 0Q = 0Q N Z¢, whereQ c RY is a bounded and regular open set;
(H1) a(y) is a symmetric, uniformly elliptic x d-matrix in R9;
(H2) the coefficientsy; (y) € L®(RY) are 1-periodic in all variables;

(H3) the functiong(x) € C3(RY) is non negative;
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Figure 1: DomairQ)¢

(H4) the functiong(x) attains its global minimum at=0 € Q, and ax — 0 it satisfies
1
q() = d(0) + 5 x" H(a)x+o([?),

with positive definite Hessian matrkt(q).

One interesting feature of this problem is the presenceefdlow’ variablex in the
coefficientq, in the boundary condition. This fact causes a number ofestang ef-
fects, among which the localization of eigenfunctions. €lgenvalue problem (1) has
the following weak formulation:

find (A%, uf) € C x H(Qg), uf = 0 0ndQ anduf # 0, such that
(2) /aEDus-Dvdx+/qugvd0:)\s/usvd>g veHQ).
Qe b Qe

Under the above assumptioft40)-(H4), it is easy to prove the following result.

LEMMA 1. The spectrum of proble®) is real and discrete
O<Af <AS < SAF <o = oo,
Each eigenvalue has finite multiplicity. The correspondingmalized eigenfunctions
/ufuﬁdx: dij,
Qe
form an orthonormal basis oleQQs). Moreover, the following variational characteri-

zation forA§ holds true:

3) A= inf /ast-Dvder/q(v)zdcr.
veH$(Qe.00) J

IV -1 Qe

L2(Q¢)
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The main object of our study is the limit behaviour(af, u¥) ase — 0. Using
d(x) > 0 from below, andH3(Q¢) C H(Q¢,0Q) from above in the variational formula
(3) for A%, we immediately see that

€ € €
AN <A <Aip

The two constantdf \, A, are, respectively, the eigenvalues of the homogeneous
Neumann problem and of the homogeneous Dirichlet problem, i

—div(a®0uf) = AR UE, in Q,
4) a*0u -n=0 onZe,
ut =0, X € 0Q,
and
—div(atOu) = AjU®, in Q,

(5)
=0 onoQ;.

The asymptotic behaviour of both problems has been inastigong ago by Vanni-
nathan in [15], together with the closely related Stekloaigbem. According to [15],
in the Neumann case (4), as- 0 we have

=\ + Ay +O(?)

and X
Ug = Up(X) + €N (E) -Dup(x) +...,
with (A%, up(x)) solutions of the homogenized spectral problem
—div(aNdu) = Au, inQ,
(6)
u=0, X € 0Q.

Here aN is the homogenized matrix of the boundary value problem Wéumann
condition on the boundary of the perforation studied by &mscu and Saint Jean
Paulin in [8]. The vector-valued functidd is the first order corrector, defined by the
auxiliary boundary-value problem in the perforated peditg cell

—div(a(y)(ON’ +¢)) =0 inw,
7) a(y)ON).n=0 onz,
NI =Ni(y) periodic, [ ,N/(y)dy=0,

and

®) |/ )(ON' +&)(ON! + &) dy:
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In the Dirichlet case (5), instead,
b=¢& “Ap+O0(e%),
whereA{ is the first eigenvalue of the Dirichlet spectral problemtia periodicity cell
W
—div(a(y)dv) = Avin w,
(9) v=0 onz,
v=v(y) periodic.

In this case, the eigenfunctions, upon extension to zerofdQt, tend strongly to O in
HA(Q).

The Fourier spectral problem witieriodiccefficients has been studied by Pas-
tukhova in [13], in the case

—div(atOu?) = A®uf, in Q,
(10) aEDus-ner()—() Ut =0, onZe,
€

w=0 x € 0Q.

)

Also the comparison with this problem brings useful infotimiato the solution of our
initial spectral problem (1), where the periodically oktihg termb (’5‘) is replaced by
the functiong(x) which depends on the ‘slow’ variabie Indeed, for our problem the
following lemma holds true.

LEMMA 2. The first eigenvalue of proble(h) satisfies the estimate

112a-1

0)+0(e %), &0,
£ ol q(0) +0O(e~79)

a(0)+0(1) < Af < =

where|w|q € |Z|q-1 indicate, respectively, the d afd — 1) dimensional measures of
the perforated cello and of the boundary of the perforati@n

To clarify the result, we note that, singéx) > g(0), then

A> inf {/asmv-Dvderq(O)/(v)zdo} —VE
veH3(Qe.0Q)
HVH|_2<QS):1 Qe Ze

Butvj coincides with the first eigenvalue of del Pastukhova’s [ewi(10), in the case
b(%) =a(0)
—div(a®0wf) = VEWF,  in Qg,

afwf-n= —q(0)wf, onZ,
wWe =0, X € 0Q.
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In [13] it is proved that

£ _ } 1Z]d-1
Ve

gq(0)+0(1), e—0.

Hence, the left-hand side inequality in Lemma 2 follows:

iz 1- |Z]d-1
€ |olg

q(0)+0(1), e€—0.

Let us now examine the right-hand side inequality in LemmaChoosing any €
Co (Q) as test function in the variational characterizazion (8 gets easily that

A <cet

)

with a constan€ independent of. But to get the same constant from above and below
requires a different choice of the test function. Choosifiye®) with v € C3'(Q),
[VllL2rey = 1 in the variational characterization (3) one can prove thatoptimal
estimate is attained when= 1/4 and obtains that

€ < } |Z|d,1

< 0)+0(e %), e—=0.
1 € |(*)|d q() ( )

One can note that the optimal test functions concentrate-ad, the minimum point
of g(x), ase — 0. To be more precise, we can state the following definitichgmopo-
sition.
DEFINITION 1. We say that a familywg (x) }e~o with0 < ¢; < ||ws|\Lz(Q£> <c

is concentrated atgs ase — 0, if for anyy > 0 there isgp > 0 such that

|We

Qe\By(%0)

Here B/(xo) is a ball of radiusy centered at x

dx <y, for all € € (0,¢0).

ProPOSITION1. The first eigenfunctionfuof problem(1) is concentrated in
the sense of Definition 1 at the minimum point Ef)gthat is at x= 0.

The asymptotic behaviour of the eigenpairs of problem (dgscribed in details
by the following theorem.

THEOREM1. The following representation holds true

11Z[g-1 W X
M= Tag AT T 00 =VilG)

where(1,V5(2)) are such that fi— pj, ase — 0, and | is eigenvalue of the homoge-
nized problem

—div(aVOv) 4 =

N
£
o
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where v=v(z), and &' is given by (8). Moreover, if is simple, then
IV§ = Vil 2(ra) =0, €—0.

The proof of the above result is based on the following tegh@i Subtracting
%%q(O) to both sides of the initial equation, and performing thengfeaof variables

z= ¢ 1/4x, standard manipulations transform the original problejnir(tb the follow-
ing rescaled problem

(e 0¥ (2) - 7 L g0 < (0, ine V0,
a*(2)0v*(2)-n = —e'/*q(e"/2) V¥ (2), ong Y45,
VE(2) =0, one~1/49Q.

where 1 jav]
_ € i € __ e - d-1
@ = (7). = ve(e- 10 q0).

The first step in the proof of Theorem 1 is to show an priorireates for the
eigenvaluesg(;

c<pp<C.

Then, the proof of the convergence of eigenvalues and aigetibns to those of the
limit problem inRY follows, using various variational and compactness argus)and
scaled trace and Poincaré-type inequalities.

3. Other problems with localization effects

The localization phenomenon in spectral problems shoulddieknow to physicists,
since a long time, and it has been observed in several mativamaorks.

In the context of singular perturbation problems, pape} fflbéls with the limit
behaviour of the first eigenvalue of a singularly perturbed self-adjoint elliptic op-
erator, with smooth coefficients, defined on a compact Rieaanmanifold. Self-
adjoint operators on a bounded subseR8fare treated as a special case. Here, in
particular, the first normalized eigenfunction localisesuad the mimimum point of
the given potential.

In the field of homogenization problems, [2] deals with anrapa with a large
locally periodic potential has been considered. The laa#ibn appears due to the
presence of a large factor in the potential and the fact tiatoperator coefficients
depend on slow variable.

In a different context, in [9] the Dirichlet spectral probidor the Laplacian in
a thin 2d strip of slowly varying thickness is studied. Hdre kocalization is observed
in the vicinity of the point of maximum thickness. The largarameter is the first
eigenvalue of 1d Laplacian in the cross-section.
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Both in [2] and [9], under natural non-degeneracy condgjdhe asymptotics

of the eigenpairs are described in terms of the spectrum @fpgnopriate harmonic
oscillator operator. However, the localization scale isoafer /€ with € being the
microscopic length scale.

Localization effect for the negative part of the spectrumaso found in [12]

where a spectral problem for locally periodic elliptic opkers with sign-changing den-
sity function is considered.
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