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Rend. Sem. Mat. Univ. Pol. Torino
Vol. xx, x (xxxx), 1 – 8

V. Chiadò Piat ∗

HOMOGENIZATION OF SPECTRAL PROBLEMS

AND LOCALIZATION EFFECTS

Abstract. We describe classical and new results concerning the limit behaviour of spectral
problems in a periodically perforated domain, with specialattention to some cases where the
eigenfunctions localize.

1. Introduction

My first step into mathematical research was the study of the theory of homogenization,
applied to linear e non linear elliptic equations. The subject was suggested to me by
professor Angelo Negro, to whom I am deeply grateful for having introduced me to
several beautiful topics in mathematical analysis.

The study of spectral problems in periodically perforated domains is developed,
since long time, by many authors (see, for example, [15], [13], [11]) and has a number
of motivations and applications. One important example is the field of optimal design
(see [4], [1], [3]). Starting from the simplest case of the Laplace operator, it is known
that the knowledge of its spectrum depends on the boundary conditions and on the ge-
ometry of the domain under consideration. An alternative point of view is to say that
the knowledge of the spectrum of a boundary value problem gives information about
the geometry of the domain. This aspect is particularly important in shape optimization
problems, where the shape of the domain is an unknown, and thegoal is to choose it
in a way to obtain, for example, certain desired modes of vibration. There are several
techniques to study the effect of variations of a domain on the corresponding solu-
tions, or eigenvalues and eigenfunctions. Classical methods date back to Hadamard
([10]), and are based on smooth variations of the boundary ofa given initial domain,
in the normal direction. This approach excludes non smooth boundary, and variations
that change the topology, as, for example, create holes. More recent topological opti-
mization methods are able to include topological variations and take into account the
knowledge of homogenization of boundary value problems andof spectral problems in
perforated domains.

In Section 2 of this paper we present some of the results obtained in collabora-
tion with I. Pankratova and A. Piatnitski. Details and proofs are contained in [6], where
we deal with a spectral problem for an elliptic operator in divergence form, comple-
mented by Fourier-type boundary conditions on the surface of the holes. The presence
of a non periodic coefficient in the boundary conditions causes a number of interest-
ing effects. First of all, under the assumption that the non periodic coefficient has a
unique minimum point, a localization phenomenon holds: namely, for anyk ∈ N the

∗Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy (valeria.chiadopiat@polito.it)

1



2 V. Chiadò Piat

k-th eigenfunction of the problem is asymptotically localized, in a small neighbour-
hood of the minimum point, as the periodicity size vanishes.In particular, the principal
eigenfunction converges to aδ-function supported at the minimum point. Moreover,
the localization process takes place in the scaleε1/4, and it is possible to construct
asymptotic expansions which are in integer powers ofε1/4. In this scale the leading
term of the asymptotic expansion for thek-th eigenfunction can be proved to be the
k-th eigenfunction of an auxiliary harmonic oscillator operator.

Different results for spectral problems of Steklov type arecontained in [5],
while a study nonlinear variational problems with Fourier boundary conditions can
be found in [7].

In Section 3 we address some related papers where other localization phenom-
ena are found out.

2. A problem with Fourier boundary conditions

GivenΩ, a bounded domain inRd with Lipschitz boundary∂Ω, the consider the setΩε
defined by

Ωε = Ω\
⋃
i∈Iε

T i
ε , Iε = {i ∈ Z

d : T i
ε ⊂ Ω},

whereT i
ε = ε(T + i), andT ⊂⊂ (0,1)d is a compact subset of the unit cube, with

non empty interior. We denote byω = (0,1)d \T the open unit cell and byΣ = ∂T
the boundary of the perforation. In the “periodically perforated” domainΩε ⊂ Rd we
consider the following spectral problem:

(1)



















−div(aε∇uε) = λεuε, in Ωε,

aε∇uε ·n=−q(x)uε, onΣε,

uε = 0, x∈ ∂Ω,

whereaε(x) = a
(

x
ε
)

. Notice thatΩε remains connected, the perforation does not inter-
sect the boundary∂Ω, and

∂Ωε = ∂Ω
⋃

Σε, Σε =
⋃
i∈Iε

Σi
ε, Σi

ε = ε(Σ+ i).

The boundary conditions are known as Fourier, or Robin conditions. We make the
following assumptions:

(H0) ∂Ωε = ∂Ω∩Σε, whereΩ ⊂ Rd is a bounded and regular open set;

(H1) a(y) is a symmetric, uniformly ellipticd×d-matrix inRd;

(H2) the coefficientsai j (y) ∈ L∞(Rd) are 1-periodic in all variables;

(H3) the functionq(x) ∈C3(Rd) is non negative;
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Σε

Ωε

Figure 1: DomainΩε

(H4) the functionq(x) attains its global minimum atx= 0∈Ω, and asx→ 0 it satisfies

q(x) = q(0)+
1
2

xT H(q)x+o(|x|2),

with positive definite Hessian matrixH(q).

One interesting feature of this problem is the presence of the ‘slow’ variablex in the
coefficientq, in the boundary condition. This fact causes a number of interesting ef-
fects, among which the localization of eigenfunctions. Theeigenvalue problem (1) has
the following weak formulation:

find (λε,uε) ∈C×H1(Ωε), uε = 0 on∂Ω anduε 6= 0, such that

(2)
∫

Ωε

aε∇uε ·∇vdx+
∫

Σε

quε vdσ = λε
∫

Ωε

uε vdx, v∈ H1
0(Ω).

Under the above assumptions(H0)-(H4), it is easy to prove the following result.

LEMMA 1. The spectrum of problem(2) is real and discrete

0< λε
1 < λε

2 ≤ ·· · ≤ λε
j ≤ ·· · →+∞.

Each eigenvalue has finite multiplicity. The correspondingnormalized eigenfunctions∫

Ωε

uε
i uε

j dx= δi j ,

form an orthonormal basis of L2(Ωε). Moreover, the following variational characteri-
zation forλε

1 holds true:

(3) λε
1 = inf

v∈H1
0 (Ωε ,∂Ω)

‖v‖
L2(Ωε)

=1

∫

Ωε

aε∇v ·∇vdx+
∫

Σε

q(v)2 dσ.
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The main object of our study is the limit behaviour of(λε,uε) asε → 0. Using
q(x)≥ 0 from below, andH1

0(Ωε)⊂ H1
0(Ωε,∂Ω) from above in the variational formula

(3) for λε
1, we immediately see that

λε
1,N ≤ λε

1 ≤ λε
1,D.

The two constantsλε
1,N, λε

1,D are, respectively, the eigenvalues of the homogeneous
Neumann problem and of the homogeneous Dirichlet problem, i.e.,

(4)



















−div(aε∇uε) = λε
Nuε, in Ωε,

aε∇uε ·n= 0 onΣε,

uε = 0, x∈ ∂Ω,

and

(5)

{ −div(aε∇uε) = λε
Duε, in Ωε,

uε = 0 on∂Ωε.

The asymptotic behaviour of both problems has been investigated long ago by Vanni-
nathan in [15], together with the closely related Steklov problem. According to [15],
in the Neumann case (4), asε → 0 we have

λε
N = λ0

N + ελ1
N +O(ε2)

and
uε = u0(x)+ εN

(x
ε

)

·Du0(x)+ . . . ,

with (λ0
N,u0(x)) solutions of the homogenized spectral problem

(6)

{ −div(aN∇u) = λu, in Ω,

u= 0, x∈ ∂Ω.

Here aN is the homogenized matrix of the boundary value problem withNeumann
condition on the boundary of the perforation studied by Cioranescu and Saint Jean
Paulin in [8]. The vector-valued functionN is the first order corrector, defined by the
auxiliary boundary-value problem in the perforated periodicity cell

(7)



















−div(a(y)(∇N j +ej)) = 0 in ω,

a(y)∇N j ·n= 0 onΣ,

N j = N j(y) periodic,
∫

ω N j (y)dy= 0,

and

(8) aN =
1
|ω|

∫
ω

a(y)(∇Ni +ei)(∇N j +ej)dy.
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In the Dirichlet case (5), instead,

λε
D = ε−2λ0

D+O(ε2),

whereλ0
D is the first eigenvalue of the Dirichlet spectral problem in the periodicity cell

ω

(9)



















−div(a(y)∇v) = λv in ω,

v= 0 onΣ,

v= v(y) periodic.

In this case, the eigenfunctions, upon extension to zero outof Ωε, tend strongly to 0 in
H1

0(Ω).

The Fourier spectral problem withperiodiccefficients has been studied by Pas-
tukhova in [13], in the case

(10)



















−div(aε∇uε) = λεuε, in Ωε,

aε∇uε ·n+b
(x

ε

)

uε = 0, onΣε,

uε = 0, x∈ ∂Ω.

Also the comparison with this problem brings useful information to the solution of our
initial spectral problem (1), where the periodically oscillating termb

(

x
ε
)

is replaced by
the functionq(x) which depends on the ‘slow’ variablex. Indeed, for our problem the
following lemma holds true.

LEMMA 2. The first eigenvalue of problem(1) satisfies the estimate

1
ε
|Σ|d−1

|ω|d
q(0)+O(1) ≤ λε

1 ≤ 1
ε
|Σ|d−1

|ω|d
q(0)+O(ε−1/2), ε → 0,

where|ω|d e |Σ|d−1 indicate, respectively, the d and(d−1) dimensional measures of
the perforated cellω and of the boundary of the perforationΣ.

To clarify the result, we note that, sinceq(x)≥ q(0), then

λε
1 ≥ inf

v∈H1
0(Ωε ,∂Ω)

‖v‖
L2(Ωε)

=1

{

∫

Ωε

aε∇v ·∇vdx+q(0)
∫

Σε

(v)2dσ
}

= νε
1.

But νε
1 coincides with the first eigenvalue of del Pastukhova’s problem (10), in the case

b( x
ε ) = q(0)











−div(aε∇wε) = νεwε, in Ωε,

aε∇wε ·n=−q(0)wε, onΣε,

wε = 0, x∈ ∂Ω.
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In [13] it is proved that

νε
1 =

1
ε
|Σ|d−1

|ω|d
q(0)+O(1), ε → 0.

Hence, the left-hand side inequality in Lemma 2 follows:

λε
1 ≥

1
ε
|Σ|d−1

|ω|d
q(0)+O(1), ε → 0.

Let us now examine the right-hand side inequality in Lemma 2.Choosing anyv ∈
C∞

0 (Ω) as test function in the variational characterizazion (3), one gets easily that

λε
1 ≤Cε−1,

with a constantC independent ofε. But to get the same constant from above and below
requires a different choice of the test function. Choosingv(x/εα) with v ∈ C∞

0 (Ω),
‖v‖L2(Rd) = 1 in the variational characterization (3) one can prove thatthe optimal
estimate is attained whenα = 1/4 and obtains that

λε
1 ≤

1
ε
|Σ|d−1

|ω|d
q(0)+O(ε−1/2), ε → 0.

One can note that the optimal test functions concentrate atx= 0, the minimum point
of q(x), asε → 0. To be more precise, we can state the following definition and propo-
sition.

DEFINITION 1. We say that a family{wε(x)}ε>0 with 0< c1 ≤‖wε‖L2(Ωε) ≤ c2

is concentrated at x0, asε → 0, if for anyγ > 0 there isε0 > 0 such that
∫

Ωε\Bγ(x0)

|wε|2dx< γ, for all ε ∈ (0,ε0).

Here Bγ(x0) is a ball of radiusγ centered at x0.

PROPOSITION1. The first eigenfunction uε1 of problem(1) is concentrated in
the sense of Definition 1 at the minimum point of q(x), that is at x= 0.

The asymptotic behaviour of the eigenpairs of problem (1) isdescribed in details
by the following theorem.

THEOREM 1. The following representation holds true

λε
j =

1
ε
|Σ|d−1

|ω|d
q(0)+

µε
j√
ε
, uε

j(x) = vε
j

( x

ε1/4

)

,

where(µε
j ,v

ε
j(z)) are such that µεj → µj , asε → 0, and µj is eigenvalue of the homoge-

nized problem

−div(aN∇v)+
1
2
|Σ|d−1

|ω|d
(zTH(q)z)v= µv, v∈ L2(Rd),
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where v= v(z), and aN is given by (8). Moreover, if µj is simple, then

‖vε
j − v j‖L2(Rd) → 0, ε → 0.

The proof of the above result is based on the following technique. Subtracting
1
ε
|Σ|
|ω|q(0) to both sides of the initial equation, and performing the change of variables

z= ε−1/4x, standard manipulations transform the original problem (1) into the follow-
ing rescaled problem























−div(aε(z)∇vε(z))− 1√
ε
|∂Y|d−1

|Y|d
q(0)vε = µε vε(x), in ε−1/4Ωε,

aε(z)∇vε(z) ·n=−ε1/4q(ε1/4z)vε(z), onε−1/4 Σε,

vε(z) = 0, onε−1/4∂Ω.

where

vε(z) = uε
(

x

ε1/4

)

, µε =
√

ε
(

λε − 1
ε
|∂Y|d−1

|Y|d
q(0)

)

.

The first step in the proof of Theorem 1 is to show an priori estimates for the
eigenvaluesµε

j

c≤ µε
1 ≤C.

Then, the proof of the convergence of eigenvalues and eigenfunctions to those of the
limit problem inRd follows, using various variational and compactness arguments, and
scaled trace and Poincaré-type inequalities.

3. Other problems with localization effects

The localization phenomenon in spectral problems should bewell-know to physicists,
since a long time, and it has been observed in several mathematical works.

In the context of singular perturbation problems, paper [14] deals with the limit
behaviour of the first eigenvalue of a singularly perturbed non self-adjoint elliptic op-
erator, with smooth coefficients, defined on a compact Riemannian manifold. Self-
adjoint operators on a bounded subset ofRd are treated as a special case. Here, in
particular, the first normalized eigenfunction localises around the mimimum point of
the given potential.

In the field of homogenization problems, [2] deals with an operator with a large
locally periodic potential has been considered. The localization appears due to the
presence of a large factor in the potential and the fact that the operator coefficients
depend on slow variable.

In a different context, in [9] the Dirichlet spectral problem for the Laplacian in
a thin 2d strip of slowly varying thickness is studied. Here the localization is observed
in the vicinity of the point of maximum thickness. The large parameter is the first
eigenvalue of 1d Laplacian in the cross-section.
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Both in [2] and [9], under natural non-degeneracy conditions, the asymptotics
of the eigenpairs are described in terms of the spectrum of anappropriate harmonic
oscillator operator. However, the localization scale is oforder

√
ε with ε being the

microscopic length scale.

Localization effect for the negative part of the spectrum are also found in [12]
where a spectral problem for locally periodic elliptic operators with sign-changing den-
sity function is considered.
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