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Abstract: A major shift in flood management strategies is currently underway in many countries throughout the world. 

After the approval of the 2007/60 directive on floods, Italian government empowered the Po Basin District Authority  to 

carry out certain activities that correspond to the actions required by the 2007/60 EU directive on flood risk 

management. The quantitative flood IRP risk assessment methodology has been proposed by Regional Piedmont 

Administration, in collaboration with the Politecnico of Turin, with the aim of developing a system to quantify flood 

risks throughout the entire Piedmont region. The IRP methodology is described in the chapter. Some study cases on 

quantitative risk assessment regarding the Po basin territory, in the Turin, Susa and Arona Municipalities, and in the 

Orco watershed basin are dealt with. The proposed IRP methodology can be considered a first step towards a 

quantitative analysis of risk and a valuable means of supporting decision making. It is currently being developed to help 

decision makers to compare different political strategy options and to improve risk mapping in preparation of the next 

review foreseen by the EU directive. 

 

1. Introduction 

 

A major shift in flood management strategies is currently underway in many countries throughout 

the world. The notion of flood risk management (FRM) is well established, as: 

 

“The systematic application of management policies, procedures and practices to the tasks of 

identifying, analysing, assessing, mitigating and monitoring risk” (WMO, 2009). 

 



The notion involves many elements, from integration with the management of water to emergency 

flood management, from local hazard assessment to the adoption of the best mix of strategies at a 

basin scale (Klinke et a. 2002). 

The effective implementation of FRM requires an “enabling environment”, in terms of policy, 

legislation and information.  

From an organizational point of view, the definition of clear institutional roles and functions is a 

central point in taking the necessary steps for FRM implementation. As is well known by regional 

and local administrations, the nature of floods and the definition of FRM strategies generally create 

a complex situation of competing requests, and, particularly after major floods, poses some difficult 

questions about the kinds and the hierarchy of interventions necessary for risk management, 

pertaining to the choice of the most appropriate strategy, the targets and priorities, as well as the 

balancing costs and benefits.  

In this frame the Po Basin District Authority (PBDA), in collaboration with governmental agencies 

(AIPO Agency) and the regional authorities, plays the most important role in decision making in the 

Po basin.  

The legal framework consists of legislation act no.183/1989 (Italian Parliament, 1989), which 

enables the basin district authorities to implement PAI – the Hydro-geological Asset Plan- 

throughout the entire Italian territory. After the approval of the 2007/60 directive on floods, Italian 

government act no.49/2010 (Italian Government, 2010) empowered the PBDA to carry out certain 

activities that correspond to the actions required by the 2007/60 EU directive on flood risk 

management. 

The first activity is related to the preliminary assessment of flood hazards and risks. The assessment 

includes maps of river basin districts, a description of the floods that had occurred in the past and an 

assessment of the potential adverse consequences of future floods on health, economy and culture. 

The second activity consists of the identification of the high-risk flood-prone areas. This activity 

has concluded recently, in December 2013, with the publication of flood risk maps. The third 

activity is focused on the implementation of risk management maps, and will conclude in 2015.  

Some issues related to the second activity are discussed in detail in the following sections.  

The Piedmont Region Administration (RPA) has already published qualitative risk assessment maps 

pertaining to the entire territory. The dissemination and confrontation phase, according to the flood 

directive roadmap, is underway, with the local administrations and the general public. 

A quantitative flood risk assessment methodology has been proposed by RPA, in collaboration with 

the Politecnico of Turin, with the aim of developing a system to quantify flood risks throughout the 

entire Piedmont region (which covers about 25400 km
2
), on the basis of the available knowledge 



and resources and within the frame of the aims and purposes of the 2007/60EU directive, according 

to which  

 

“In order to have an effective tool for information available, as well as a valuable basis for priority 

setting and further technical, financial and political decisions regarding flood risk management, it 

is necessary to provide for the establishing of flood hazard maps and flood risk maps” 

 

Quantitative risk assessment is of particular interest, considering that the total number of people 

living in flood prone areas (about 900km
2
 for the 500 return period inundation) is about 700 

thousand, that is, about the 16% of the total population. The most recent relevant floodings in 1993, 

1994 and 2000 have consequently drawn the attention of administrations to soil use and 

consumption, and have led to the revision of municipality territorial regulator plans throughout the 

region.  

The research results proved to be useful for practical application by technical practitioners (mainly 

engineers and geologists) and by public administrations, as a “valuable basis” for decision making. 

The different roles played by the factors that influence risk assessment, including climate changes, 

will be discussed thereafter. Some study cases on quantitative risk assessment regarding the Po 

basin territory, in the Turin, Susa and Arona Municipalities, and in the Orco watershed basin will be 

dealt with (fig.1). 
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Figure 1. Map of the Piedmont region, showing the study case areas discussed in the chapter, i.e. the 

Turin, Susa and Arona municipalities and the Orco watershed basin.  

 

2. Risk assessment quantification  

 

From a technical viewpoint, the following definition is here assumed (WMO, 2009; Franzi, 2012) 

for flood risk: 

“potential losses associated with a hazard or an extreme event in a given place within a given 

period of time, which can be defined in terms of the adverse consequences (damage/losses) and the 

probability of occurrence” . 

Therefore, the concept of risk necessarily implies the concept of loss, of the probability of flood 

occurrence, the intensity of the phenomena, the produced damage and the vulnerability of the 

anthropogenic context. Risk can be considered the superposition of three factors, which are 

generally indicated as Hazard (H), Exposure (E) and Vulnerability (V) (figure 2).  

 



 

 

Figure 2. Risk considered as the superposition of three constitutive factors, H (hazard), E (exposure), V 

(vulnerability) (Franzi, 2012). 

 

As shown in figure 2, risk assessment should entail the assessment of each constitutive factor, its 

variability in time and space, the complexity of natural/social/organizational factors and the social 

resilience against floods and natural disasters.  

On one hand, this would allow a wide and comprehensive risk assessment to be made and thus 

provide a good framework for territorial planning and civil protection countermeasures, and this 

would also allow the best management strategies to be detected. 

On the other hand, in risk assessment quantification and mapping, each national/regional/local 

Administration, including the District Authorities, faces the problem of constraints that substantially 

condition the decision makers in their choice of the most appropriate methodologies, as well as of 

the scale and of the extension of the territories where the flood risk is assessed, mapped and 

evaluated. The main constraints that condition public administration depend on the context 

(geographic, administrative) in which the directive is implemented, that is: 

- the available time to fulfil legislation deadlines: the 2007/60 EU directive imposed the 

members to produce flood risk maps by December 2013;  

- the available information and datasets, such as the total amount of information and data 

available at the time the administration starts to work; when planning its own activities, a 

public administration generally assumes that the discovery of new relevant resources (or 

deposits of known resources) should be excluded or is improbable; 

- the available resources, i.e. at the time the work starts; resources should be intended from an 

extensive point of view from human resources (i.e. the number of workers that can work in 

the implementation of the directive, their technical abilities and formation, such as 

engineers, geologists etc.) to software resources (availability of free software, time 



computing, CPU computing capacity, total number of personal computers) and to economic 

resources (possibility of outsourcing some work). 

Therefore, the context extension (i.e. the total extension of the areas where the risk should be 

assessed and mapped) and the detail at which it can be mapped or assessed is a consequence of a 

careful balance of requirements. Several scientific aspects can result to have different relevance as 

far as organizational and time factors are concerned (figure 3). Rough estimations over a short time 

can sometimes prove to be preferable to detailed investigations, especially when they are time and 

resource consuming. 

As will be shown in the following sections, scenarios concerning the impact of climate changes on 

precipitations, water runoffs, flood frequency and flood intensity are probably affected the most by 

great uncertainties and often the results obtained by means of climatic simulation models should be 

confirmed by more investigations over time (STRADA, 2013; ARPA, 2007).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The so-called Lane balance (Lane, 1955), revised according to risk assessment mapping  

 

An example of the necessity of simplification in order to fulfil the requirements of the 2007/60EU 

Directive is that of the complexity of concepts, in particular the concept of damage and losses. 

Theoretically, as far as damage is concerned, it should be pointed out that direct and indirect losses 

should be considered equally. Direct losses concern human life, structural losses and the loss of 

functionality of the anthropogenic structures, such as houses, bridges, levees, roads, dams, etc.. 

Equally, indirect losses such as: 

1. the psycho-social impact, that is, the psychological effects on people affected directly or 

indirectly by the flood due to the loss of property or of livelihoods, the displacement from 

one’s home, the disruption of economic, family and social affairs;  
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2. the functioning disruption, that is, the interruption of interconnections between people, 

services and webs, so that people and economic activities that are far from the place where 

the flood event occurs also suffered from the effects of the break in interconnections; this is 

the case, for example, of oil pipelines, water pipelines, railways;  

3. the economic impact, that is, the hindering of economic growth and development, due to the 

high cost of relief and recovery, which may have an adverse impact on investments in 

infrastructures and the development activities in the area; both private and public sectors are 

generally discouraged from investing in recurrent high flooding conditions; 

4.  the economic cost of the emergency countermeasures taken for civil protection purposes  

and other actions taken to prevent flood damage and other losses; 

should all be considered, but their evaluation and quantification may take time and this may not be 

compatible with the deadlines given in the 2007/60EU directive.  

Therefore, a robust (Marijolein et a., 2011) risk assessment would be preferable for public 

administrations in charge of complex and long-term projects. 

The research, in collaboration with the Politecnico of Turin, started with the definition of the 

constitutive elements of the risk concept. A discussion about the definitions of the H,E,V terms is 

provided in the following sections. 

 

2.1 Hazard  

Hazard (H) can be defined as: “the probability of the occurrence, within a specific period of time in 

a given area, of a potentially damaging natural process” (UNDRO, 1980), of a specific intensity. 

The regional public administration in Piedmont has extensively debated flood hazards with local 

administrations, at a provincial and municipality scale since 2001, with the implementation of PAI 

(PBDA, 2001), basing the hydraulic and hydrological analysis on the different available data. 

By applying hydraulic and geomorphologic models, the PBDA has proposed a classification of 

hazards that is mainly based on river corridor concept (fig.4), a concept that has been implemented 

since 2001 with the PAI and which was modified after the implementation of the 2007/60 flood 

directive; the river corridors are the following:  

 corridors with a low flooding probability (L): this corresponds to areas that can be flooded by a 

design discharge of 500 years, Q500; 

 corridors with medium flooding probability (M): this corresponds to areas that can be flooded by 

a design discharge of 200 years, Q200; 

 corridors with high flooding probability (H): this corresponds to areas that can be flooded by a 

design discharge of 50 years, Q50. 



 

According to the most recent evaluations, published on line by RPA (hazard maps) and available for 

public confrontation , the H, M, L corridors extend over an area of about 400 km
2
, 580 km

2
 and 900 

km
2
 respectively.  

 

Figure 4. River corridor approach, developed by the PBDA, referring to the Susa municipality. Legend for 

hazard: (High)=dark blue; (Medium)=blue; (Low)=light blue (free on line at 

http://osgis2.csi.it/webgisAtlante/qgiswebclient.html?map=qgis_cloud/direttiva_alluvioni) 

 

According to (Maione et a. 1976), the mean occurrence probability per year of a given QRP flood is 

given by: 

 

P= 1/RP         (1) 

 

All the information available on the corridor mapping (available on line at Regione Piemonte 

website), have been taken into account, especially that already contained in PAI, which has been in 

force since 2001. In this way the hazard maps, in the implementation of 2007/60 EU directive, are 

based on the hydrological evaluations and hydraulic modellings that are already available at a basin 

and local scale, and which are currently in force, amended in time  and shared between public 

administrations.  

An example of a hazard mapping methodology has been proposed by Franzi and Rinaldi who work 

at RPA (PBDA, 2012). This methodology is based on the interpolation of 1D hydraulic simulation 

results, in order to obtain flooding inundation maps in a reasonable time and on the optimization of 

the information available on flood inundations (PBDA, 2012). The approach is similar to those 



proposed in FEMA and IACWD (IACWD 1982; Noman et al. 2001; FEMA 2003, Merwade 2008 ) 

for flood inundation mapping. It involves the following procedure: 

a. the design flow Q200 (i.e. the 200 year return period – RP -flow) is estimated using a 

calibrated hydrologic model and precipitation  input, or through statistical analysis; as fas as 

Piedmont rivers are concerned, this means the estimates proposed by ABDPO in the Design Flood 

Directive (PBDA, 2001) (currently in force with amendments); 

b. a water surface elevation from the hydraulic model is mapped on a digital terrain model, and 

a water surface (usually a triangulated irregular network - TIN format) is created;  

d. the digital terrain model (DTM) is subtracted from  the water surface to obtain a water-depth 

map
1
; 

e. the area with positive values in the water-depth map leads to the flood inundation map. 

 

Flooding results are compared to an available dataset and maps and checked by means of (1) aerial 

picture photo-interpretation and (2) geomorphologic river assessments, based on recent and past 

river channel changes. 

 

 

Figure 5. Flooding map methodology pertaining to the Orco river. A water surface elevation  (middle) is 

superposed onto a DTM (below). Subtraction of the two layers allows the water-depths to be obtained.  

 

The methodology allows flooding maps to be obtained in a reasonable time and optimizes the 

“best” resources available at present. Applications have shown that the results are basically affected 

by uncertainties on the ground elevation data, which are generally obtained by means of LIDAR and 

the semi-automatic procedures that allow a DTM to be obtained, starting from raw DSM data (see 

e.g. Gerstenecker et al., 2005). 

                                                 
1
 In this paper, the digital terrain model is intended as the representation of the bare ground surface without any 

objects, such as plants or buildings.  



Other flooding mapping uncertainties arise from uncertainties in hydrology and hydraulics, which 

are, in turn, affected by the effects of climate changes on rainfall (Merz et a., 2009; Todini, 2007; 

Klinke et a. 2002).  

The results from hydrological studies conducted according to the analysis adopted by the 

Environmental Regional Protection Agency (ARPA, 2007), on climate changes, have so far been 

inconclusive regarding the impact of climate change on rainfall and runoff. Different studies have 

been performed by ARPA to draw up scenarios on the effects of possible climate changes on 

rainfalls, runoffs, temperature, sea level, glaciers extension and snow coverage, based on simulation 

models (Tebaldi et al. 2006). These scenarios can be useful to suggest and implement strategies that 

can be used to cope with climate changes, to adapt to meteorological variations and to climate 

variability, and therefore can be considered a useful tool for decision makers to visualize the 

possible effects of climate.  

ARPA’s conclusions have been confirmed from the results of the recent STRADA project (FESR 

project; STRADA, 2013), which was focused on regional hydrology and hydro-meteorological 

models of Piedmont and Lombardy; the project did not led to the definition of “robust” 

conclusions: 

“The study of the temporal rainfall distributions has actually highlighted elements of 

non-stationarity, due to either an increase in observational data, or to variations in 

climate, although it is difficult to discriminate between stable trends and fluctuations in 

the medium term (multidecadal)”.  

Recent hydrological research in France (Dumas et a. 2013) on alpine watershed basins contiguous 

to the Piemonte Region, has shown that the effects of climatic changes on the estimates of the 100-

yr return period discharge (1) depend to a great extent on the downscaling techniques that are used, 

and, for a given technique, (2) vary remarkably from region to region. In particular, the return 

period (RP) under climate change associated with the present 100-yr RP level, under the WT 

downscaling assumption (fig. 4 in the Dumas et al. paper) can be much higher than 100-yr, 

implying that climate changes could cause 100-yr floods to be less frequent in the near future.  

Similar conclusion have also been shown by Kundzewicz et a. (2010); the recurrence interval 

(return period) of today’s 100-yr floods in most of Piedmont’s watershed basins might be less than 

100-yr, when the Hirabayashi et al. (2008) results are considered as a basis of investigation, or 

higher that 100-yr if the Dankers and Feyen (2008) emission scenario is considered.  

Robustness of evaluation is a crucial requirement for institutions and public bodies in charge of 

formulating flood risk management strategies for the river Po. Robustness can be defined 

(Marjoleine et a. 2011)  as the ability of a system to remain functioning under disturbances, where 



the magnitude of the disturbance is variable and uncertain. The proliferation of methods for 

uncertainty analysis should be placed within a coherent framework (Merz, 2009). As well as 

estimating the amount of uncertainty associated with key decision variables, aids to the decision 

making should identify the most influential sources of uncertainty, and the implications of 

uncertainty on the ordering of preference between options. Moreover, even without considering the 

uncertainties due to climate changes, it is has been documented in literature that hydrological 

models suffer from uncertainties due to data incompleteness, etc..  

Moreover, the uncertainties in climate changes should be compared with those due to hydrological 

modelling obtained in steady climatic conditions. 

A simple analysis of the management due to uncertainties due to the use of hydrological models  

has been proposed by Franzi and Rinaldi and implemented in act no.2-11830 (RPA, 2009). The 

analysis is based on hydrological estimates obtained by means of the VAPI model, which was 

developed by CNR-CUGRI (Villani, 2001) and is based on the geospatial statistical approach. The 

VAPI model, which computes regional estimates of discharges Q200, is free and available for 

practitioners and public administrations to compare the local hydrological Q200 estimations 

(obtained by means of an arbitrarily chosen hydrological model) with those of VAPI regional 

estimations. Two sets of estimations were considered in the analysis, for a dataset of 71 

instrumented or not-instrumented watershed basins in the Piedmont region: 

 

- the Q200VAPI set of estimations obtained by means of the VAPI model; 

- the Q200PBDA set of estimations used by PBDA for flood mapping 
2
.  

 

The Q200PBDAi  and  Q200VAPIi rates were compared for each basin in the dataset, in the following 

way: 

 

i

iPBDA

VAPI Areaf
Q

Q

200

200       (3) 

 

where: A is the area of the ith watershed, i=1,2,….71, Q200 is the computed flood discharge, the PBDA 

index refers to the vales used for the implementation of the directive and the VAPI index refers to the 

VAPI model. As shown in figure 6, the rate given by (3) ranges over a wide interval, from a 

minimum value of 0.65 to a maximum value of 2.05.  

                                                 
2
 The Q200 values were published in 2001 and have been updated over time. 



By looking at fig.6 and considering the deviance between the different estimates, different questions 

can arise: “is  the Q200 estimation uncertainty, associated with  climate changes, higher than that 

associated with modelling? Under which hypothesis? For which watersheds?”. No conclusive 

answers have formally been given for the watershed basin in the Piedmont region. The method 

given in (3) shows that, heuristically, for the dataset regarding 71 basins and for a given 

hydrological model (VAPI), the official Q200 estimates can vary over wide range.  
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Figure 6. Comparison of the Q200 estimates, by means of two hydrological models. 

 

Nevertheless, a research activity conducted within the PBDA is underway to detect the most 

appropriate strategies to adapt flood risk management to possible climate changes (PBDA, 2014). 

The activity has the aim of collecting recent hydrological data, evaluating possible trends in 

hydrology and possibly revising the 200-yr return discharge.  

Evidence on soil use has induced decision makers to focus on the most relevant causes that have 

substantially and unquestionably increased risks in the Po watershed basin, i.e. the increasing 

number of receptors in the flood-prone areas, a process that started after the IIWW and is presently 

ongoing. Quantification of the exposure (E) and of the vulnerability (V) of receptors is therefore a 

crucial task, as will be shown in the next section.  

 

2.2 Exposure 

 



The definition of exposure in literature generally converges to “elements at risk, or receptors, that 

is, people, properties and goods that can be lost, injured or damaged during an event” (UNDRO, 

1980). According to this definition, exposure varies according to the hazard level.  

The RPA activities, which have been carried out in collaboration with the Politecnico of Turin, have 

focused on the exposure of structural elements at risk, which  are generally referred to as receptors. 

At present, the total number of receptors in the Piedmont region is systematically updated  through 

an analysis of aerial pictures (photo-interpretation). Identification of the use of receptors, such as 

commercial/industrial/residential ones, is not straightforward, as the same receptor can refer to 

different uses with different economic relevance. The analysis has shown an increase in the total 

number of receptors over the last few decades (fig. 7) in their economic value. The latter is 

constantly updated by the Agenzia delle entrate (AdE).  

The AdE website (OMI, observatory of the housing market) allows the available information of the 

economic values ei of residential/commercial/industrial categories of receptors, expressed per 

square meter (m
2
) to be downloaded free of charge. Each Italian municipality has been divided into 

zones, which are considered to be homogeneous from an economic point of view. Subcategories 

have been created for a given zone and for a given category (residential/commercial/industrial), 

with minimum and maximum economic ei values. The OMI  ei values are constantly updated and 

can obviously be used to estimate a medium housing market value. Therefore the available data 

should obviously be used in a proper manner. Moreover, the OMI datasets may only be 

representative of the property values, and disregard the content value. Other damage (indirect or 

direct as described above) need to be estimated by means of other parameters.  

 

 

 



Figure 7. The figure shows Arona (lake Maggiore) in 1945 (left) and at present (right). The OMI zones have 

been highlighted with different colours (right). The present receptors at present time are shown in a dark 

colour (right). The inundation area is about 50 ha for TR=500 years. A comparison of the figures shows a 

clear increase in the receptors. 

 

Assuming that the total exposure of the i-th receptor is proportional to its area, disregarding indirect 

damage and considering the OMI zone datasets, a robust assessment of exposure Ei can be 

computed as follows: 

 

iii SeE           (4) 

 

where ei is the mean economic value given by the AdE per unit area (m
2
) in the corresponding  OMI 

zone and Si is the total surface of the element at risk. The minimum and maximum values can vary 

over a wide range for the same homogeneous OMI zone, and the ei values can vary from zone to 

zone. For example, ei  values vary significantly for civil housing in Arona in B2 OMI zone, from a 

minimum of 1300 €/m
2 

to a maximum of 1850 €/m
2
, while, in the B1 zone, they vary from a 

minimum of 1850 €/m
2 

to a maximum of 2750 €/m
2
 . In spite of this variability, the methodology 

described above, which refers to the mean value in a given OMI zone,  allows a homogeneous 

evaluation to be made all over the entire region.  

 

2.3Vulnerability 

From a technical viewpoint vulnerability is defined as:  

“the degree of a loss to a given element at risk, or set of such elements resulting from the 

occurrence of a flood with a given intensity” (UNDRO, 1980).  

 

Vulnerability is a function of the hazard level. As mentioned for the risk concept, vulnerability 

shows the same conceptual complexity (Franzi, 2012) as risk, because structural, organizational and 

community vulnerability should all be considered and taken into account. Moreover, as far as 

structural vulnerability is concerned, no vulnerability curves have been proposed in literature for the 

Italian situation or derived from the data regarding the documented property losses after floods. 

Therefore, vulnerability quantification is affected by heavy uncertainties. 

As established in the STRADA project (STRADA, 2013) a simplified formula for vulnerability, 

derived from those available in literature (USACE, 1992) has been implemented by RPA, according 

to which the vulnerability of the i-th element at risk is a function of the water depth h, i.e.: 



 

Vi=Vi(h)             (5) 

 

The water depth h is calculated at the barycentre of the receptor. For those receptors that are only 

partially enclosed within the flooding area, h is calculated by referring to the barycentre of the 

flooded area of the receptor. 

The adopted vulnerability curve is that proposed by USACE (1992) (fig.8), that refers to FIA (1970) 

“Two or more stories, with basement” depth-damage curve (USACE, 1992, p.89).  

 

Figure 8. “Two or more stories, with basement” depth-damage curves (USACE, 1992, p.89). In the 

application that are shown in the chapter, the FIA (1970) curve has been used.  

 

 

3. Application cases  

The described methodology, developed by RPA in collaboration with the Politecnico of Turin, has 

been systematically applied to some study cases, which were chosen from different study cases in 

the Piedmont region territory. Selection of the application cases was influenced by the relevance of 

the situation, with respect to risk, and by the availability of consistent data. 

Risk has been mapped by superimposing the three risk components, described in the previous 

sections, which allowed an Index of Proportional Risk – IRP -  to be defined in the following way: 

 



iiiiiii hVSe
RP

VEHIRP )(
1

         (6) 

 

where, together with the variables already defined and IRP is the proportional risk index, computed 

for the i-th receptor and for a flooding event which has a QRP flood discharge with return period RP.  

The total risk due to the presence of N receptors can be computed, for a given watershed basin, or 

for a given geographic area, as: 

 

N

i iii

N

i iii hVSe
RP

VEHIRP )(
1

        (7) 

 

where N is the total number of receptors in the considered geographic area and IRP is expressed in 

€/year. A similar approach can be found in Hall et al. (2008).  

The following will be shown hereafter: 

- IRP quantification  at the confluence of the Po river and Dora Riparia, in Turin (Bruno, 

2013); 

- IRP quantification  at the Dora Riparia river, in Susa (Foglino, 2013);  

- IRP quantification  at lake Maggiore. 

All the study cases have been conducted according to the procedure described above to obtain 

hazard maps and risk maps. 

The risk assessment in Turin has been conducted with the aim of evaluating the total risk for a low 

(L) probability of occurrence due to flooding of the Dora Riparia at the confluence with the Po 

river, where houses, properties and even a University building are prone to flooding and at present 

are not protected from inundation. The study is a good example of how risk assessment can be used 

as an effective tool for information and a “valuable basis for priority setting and further technical, 

financial and political decisions regarding flood risk management”.  

The risk analysis refers to the 500-yr RP Dora Riparia flood discharge (catastrophic discharge), as 

evaluated by the PDBA and published in the Directive on design discharge. Downstream levels in 

the Dora Riparia exclude contemporaneous of inundation by the Po river in the surrounding area.  

The inundation map has been obtained (figure 9), at the confluence with the Po river, by applying 

the same procedure described in §2.1, t. The inundation map only refers to the inundation due to the 

flooding of the Dora Riparia river, and does not take into account the simultaneous flooding of Po 

river. 

The study has proved to be useful to calibrate and modify the inundation maps obtained in 1991 and 

mapped in PAI (red lines in figure 9), which refers to the state-of-knowledge at that time. 



The inundation maps of the Dora Riparia and Po river, which have been updated and published by 

the PBDA in 2013, are free on line.  

 
Figure 9. Inundation map  due to Dora Riparia Q500 flooding. The depths are expressed in meters (Bruno, 

2013). 

 

IRP has been calculated for each receptor according to the procedure described in § 3. The receptors 

have been divided into four risk classes (R1, R2, R3, R4) as a function of the maximum computed 

IRP value, according to the following table.  

 

IRP classes assignment criteria 

R1 0 < IRPj / IRPmax ≤ 0,25 

R2 0,25 < IRPj / IRPmax ≤ 0, 5 

R3 0,5 < IRPj / IRPmax ≤ 0,75 

R4 0,75 < IRPj / IRPmax ≤ 1 

 

Table 1. IRP classes of calculated on the basis of the IRP maximum value (taken from Foglino, 2013; Bruno, 

2013). 
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Figure 10. IRP map at the confluence of the Po and Dora Riparia rivers, RP = 500 years (Bruno, 2013).  

 

The so-called “sensitive receptors” (e.g.: museums, libraries, schools, etc.) are not included In the 

risk class list in table 1, because the analysis was only focused on economic and residential 

receptors. However some receptors did not show a direct match with the receptor typologies in 

OMI. 

The second case study deals with the Dora Riparia and in particular with the reach of the confluence 

of the Cenischia torrent that crosses the city of Susa, where some different protection alternatives 

have been considered and compared. In particular, a reduction in flooding (Foglino, 2013) has been 

evaluated for each different option, on the basis of technical feasibility. The risk, after the 

implementation of countermeasures, has been mapped and compared with the existing risk.  

Figures 11 and 12 represent the current state and the design state risk maps and the limit of the Q200 

flooded areas. The design state maps include the reconstruction of a bridge, the superelevation of 

river banks and the reconstruction of a check-dam. The effects due to the designed structural option 

have been mapped, in terms of IRP, and compared with the current state (figure 12).  

sensitive rec.sensitive rec.

 

Figure 11. Map of IRP referring to the current state of the Dora Riparia in Susa (Foglino, 2013). 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Figure 12. Map of IRP referring to the design state of the Dora Riparia in Susa (Foglino, 2013). 
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Figure 13. IRP comparison between the current and the design states. The lines represent Gaussian 

distributions (Foglino, 2013). 

 

The effects of the designed countermeasures are (figure 12):  

- a scale effect, due to the reduction in the total number of receptors affected by floods;  

- a shift in the IRP distribution mode, which demonstrates that the most exposed receptors 

will draw benefits from the proposed design projects.  

 

As far as Lake Maggiore is concerned, the study was principally motivated by the necessity of 

mapping hazards over a short period (three months). No official hazard maps were ever adopted for 

sensitive rec.sensitive rec.



that region, up to 2013, and, in order to respect the roadmap and deadlines established by PBDA, it 

was necessary to start a close collaboration between the public regional administration (Piedmont 

and Lombardy regional administrations) and Canton Ticino (Switzerland), with borders the lake. In 

this case, it was necessary to reach a political and technical agreement about the lake levels the 

hazard maps refer to, in order to publish hazard maps before the end of  December, 2013.  

Inundation simulations were made in static conditions, that is, assuming that the water gradually 

flows into the surrounding areas. Only the areas hydraulically connected to the lake were 

considered in the risk evaluation.  

The IRP results for Q500 can easily be mapped using GIS software (figure 13). The frequency 

distribution of the receptors versus IRP can be considered  is a useful tool to describe understand 

the risk of flooding.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. IRP Map and frequency distribution (expressed in log scale) referring to the receptors flooded in  

the Arona municipality. The values are expressed in €/year. The blue lines (left) indicate the inundation 

extension. Receptors partially enclosed in the inundation areas have been mapped. 
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Risk assessment and mapping is a very complex topic and activity. It involves different expertise  

and makes it necessary for regional governments to set priorities, to define the scale and details of 

the investigations and to optimize the resources. 

As far as the collaboration between RPA and the Politecnico of Turin is concerned, the studies that 

have been carried out, and completed, are a first step towards a comprehensive management of the 

risk of flooding. The proposed quantitative IRP methodology for risk assessment has proven to be 

useful for decision making and for the description of the flooding conditions, and has so far been 

extended to about 40 municipalities throughout the entire regional territory.  

Implementation of the IRP methodology requires free software, a GIS-based operative approach, 

and the availability of databases, especially as far as soil use is concerned. Some of these database 

can be found on line (e.g. the OMI database), while others are not available directly for the public, 

such as DTMs, river topography, floods depths and receptor uses. Moreover, a technical/engineering 

approach is required , especially in order to obtain consistent inundation hazard mapping. 

The results show that simplification is necessary to obtain reliable and robust estimations of hazards 

and risks. In this frame, the main uncertainties that can affect hazard, exposure and vulnerability are 

represented by the quality of the datasets that are available at the present state-of-the-art, especially 

as far as vulnerability and exposure are concerned. In particular proper vulnerability curves or 

vulnerability estimators should be proposed in scientific literature for practical use.  

Hazard mapping is influenced by several uncertainties (Hall et a. 2008), most of which depend on 

the availability of updated information as far as DTMs are concerned.  

Even without considering the effects of climate changes, the uncertainties in hydrological estimates 

result to be an important topic of discussion (Merz, 2009). It is well known that deviance of the 

hydrological models can significantly affect flood estimation and therefore risk assessment. As 

already mentioned, the hazard maps available on-line are based on hydrological estimates that are 

contained in official documents approved by the PBDA, and this topic has therefore not been 

systematically approached up to now. However, this topic could be discussed in the next updating 

of the maps (the  2007/60EU directive compels the member states to update maps every six years). 

Uncertainty analysis, including the analysis of climate change uncertainties, should also lead to a 

qualitative and quantitative treatment of the available information. In particular, a quantified 

approach is required to understand the magnitude of the uncertainties and to focus on the resources 

necessary to reduce uncertainty. In the real world, where resources are finite, the available time is 

short and the risk protection requirements are pressing, public administration need to carefully 

balance requirements and actions, in order to at least mitigate the actual and documented risks. 



At present, hazard maps and qualitative risk maps are available in the Piedmont Region and are on 

line for dissemination and confrontation with the public, politicians and local administrations.  

The proposed IRP methodology can be considered a first step towards a quantitative analysis of risk 

and a valuable means of supporting decision making. It is currently being developed to help 

decision makers to compare different political strategy options and to improve risk mapping in 

preparation of the next review foreseen by the EU directive. 
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