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Fast scoring of Full Posterior PLDA models
Sandro Cumani

Abstract—A low–dimensional representation of a speech seg-
ment, the so–called i–vector, in combination with Probabilistic
Linear Discriminant Analysis (PLDA) models, is the current
state–of–the–art in speaker recognition. An i–vector is a compact
representation of a Gaussian Mixture Model (GMM) supervector,
which captures most of the GMM supervectors variability. It is
usually obtained by a MAP estimate of the mean of a posterior
distribution. A new PLDA model has been recently presented
that, unlike the standard one, exploits the intrinsic i–vector
uncertainty. This approach, referred to in this paper as Full
Posterior Distribution PLDA (FP–PLDA), is particularly effective
for speaker detection of short and variable duration speech
segments. It is, however, computationally far more expensive than
standard PLDA, making it unattractive for real applications.
This paper presents three simplifications of FP–PLDA based
on approximate diagonalizations of matrices involved in FP–
PLDA scoring. Using in sequence these approximations allows
obtaining computational costs comparable to PLDA models, with
only a small performance degradation with respect to the more
accurate, but less efficient, FP–PLDA models. In particular, up
to 10% better performance than PLDA is obtained, with similar
computational complexity, on short speech segments of variable
duration, randomly extracted from the interviews and telephone
conversations included in the NIST SRE 2010 extended dataset.
The benefits of the proposed diagonalization approaches have also
been confirmed on a short utterance text–independent verification
task, where approximately 43% and 34% improvement of the
EER and minimum DCF08, respectively, has been obtained with
respect to PLDA.

Index Terms—Speaker Recognition, I-vectors, I-vector extrac-
tion, Probabilistic Linear Discriminant Analysis.

I. INTRODUCTION

Probabilistic Linear Discriminant Analysis (PLDA) [1] clas-

sifiers based on i–vectors [2] are among the best models for

speaker recognition [3], [4], [5], [6], [7], [8], [9]. Some PLDA

systems for the last NIST 2012 Speaker Recognition Evalu-

ation and for the DARPA RATS project have been described

in [10], [11], [12], [13], [14], [15]. Standard PLDA, however,

does not exploit the covariance of the i–vector distribution,

which accounts for the ”uncertainty” of the i–vector extraction

process. This uncertainty is affected by the length of the speech

segments that are used for characterizing a speaker. Shorter

utterances tend to produce larger covariances, so that i–vector

estimates become less reliable.

A new PLDA model has been recently proposed [16], [17],

[18], which incorporates the intrinsic uncertainty of the i–

vector extraction process. In this model, referred to as Full

Posterior Distribution PLDA (FP–PLDA), the inter–speaker

variability has an utterance dependent distribution. Similar

approaches have shown to outperform PLDA on short variable

Sandro Cumani is with the Dipartimento di Automatica e Informatica,
Politecnico di Torino, 10143 Torino, Italy (e-mail: cumani@polito.it .

duration segments [18], [17], [19]. The main drawback of all

these models is their computational complexity.

In [18], the complexity of the PLDA and FP–PLDA imple-

mentations has been analyzed, and an Asymmetric FP–PLDA

(AFP–PLDA) approach has been proposed, which allows

obtaining a substantial complexity reduction in a practical

detection scenario where test utterances are short but the target

utterances have long duration. FP–PLDA and AFP–PLDA are

more accurate than standard PLDA, but they are far more

expensive, and the AFP–PLDA is only useful in presence of

long target utterances. Thus, in this work we present three

different techniques for the simplification of FP–PLDA, based

on the diagonalization of some matrices that are appear both

in i–vector extraction and in scoring, suitable for scenarios

involving short target and test utterances. The advantage of

the proposed Diagonalized FP–PLDA approach is that better

performance than PLDA can be obtained with comparable

scoring complexity, while memory requirements for storing

the target speaker representations are greatly reduced with

respect to FP-PLDA. These techniques have been tested using

two different datasets. The first set includes cuts of variable

duration, extracted from conversations recorded from different

channels included NIST SRE 2010 extended core tests [20].

This dataset is the same used for assessing the performance of

the FP–PLDA approach in [18]. The second set of experiments

has been performed on a short utterance text–independent veri-

fication task. The application of the diagonalization operations

presented in this work dramatically speeds–up test segment

scoring with respect to FP–PLDA, and allows obtaining a

system that is almost as fast as a PLDA system, but sensibly

more accurate for short utterances.

The paper is organized as follows: in order to make the pa-

per self–contained, the i-vector extraction process, and the FP–

PLDA model are recalled in Sections II and III, respectively.

A detailed analysis of the FP–PLDA and standard PLDA

complexity is given in Section IV, Section V illustrates the

proposed methods to simplify FP–PLDA, and compares the

computational complexity of these approaches, showing that

scoring costs can be dramatically reduced allowing the approx-

imate FP–PLDA to be almost computationally inexpensive as

PLDA. The experimental results are given in Section VI, and

conclusions are drawn in Section VII.

II. I–VECTOR MODEL

The i–vector model constrains the GMM supervector s,

representing both the speaker and inter–session characteristics

of a given speech segment, to live in a single sub–space

according to:

s = u+Tw , (1)
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where u is the Universal Background Model (UBM), a GMM

mean supervector, composed of C GMM components of

dimension F . T is a low-rank rectangular matrix spanning

the sub–space including important inter and intra–speaker vari-

ability in the supervector space, and w is an M -dimensional

realization of a latent variable W, having a standard normal

prior distribution.

A Maximum-Likelihood estimate of matrix T is usually

obtained by minor modifications of the Joint Factor Analysis

approach [21]. Given T, and the set of τ feature vectors

X = {x1x2 . . .xτ} extracted from a speech segment, it is

possible to compute the likelihood of X given the model

(1), and a value for the latent variable W. The i-vector

which represents the segment, is computed as the Maximum

a Posteriori (MAP) point estimate of the variable W, i.e., as

the mean µX of the posterior distribution PW|X (w). It has

been shown in [21] that assuming a standard normal prior for

W, the posterior probability of W given the acoustic feature

vectors X is Gaussian:

W|X ∼ N (µX ,Γ−1
X ), (2)

with precision matrix and mean vector:

ΓX = I+

C∑

c=1

N
(c)
X T(c)TΣ(c)−1

T(c)

µX = Γ−1
X TTΣ−1fX , (3)

respectively. In these equations, N
(c)
X are the zero–order statis-

tics estimated on the c-th Gaussian component of the UBM

for the set of feature vectors in X , T(c) is the F ×M sub-

matrix of T corresponding to the c–th mixture component such

that T =
(
T(1)T , . . . ,T(C)T

)T
, and fX is the supervector

stacking the first–order statistics f
(c)
X , centered around the

corresponding UBM means:

f
(c)
X =

∑

t

(
γ
(c)
t xt

)
−N

(c)
X m(c) , (4)

Σ(c) is the UBM c–th covariance matrix, Σ is a block

diagonal matrix with matrices Σ(c) as its entries, and γ
(c)
t

is the occupation probability of feature vector xt for the c-th

Gaussian component.

III. GAUSSIAN FULL POSTERIOR DISTRIBUTION PLDA

MODEL

An utterance u is represented in the standard Gaussian

PLDA model by the i–vector posterior mean µ, which is

assumed to be the combination of three terms:

µ = m+Uy + e , (5)

where m is the i–vector mean, y is a speaker factor sampled

from a normal prior distribution, matrix U typically constrains

the speaker factor to be of lower dimension than the i-vectors,

and the residual noise term e is the realization of a Gaussian

distributed random variable E with full precision matrix Λ,

i.e.:

Y ∼ N (0, I) , E ∼ N (0,Λ−1) . (6)

Since the uncertainty associated with the extraction process of

the i–vector, which is represented by its posterior covariance,

is not taken into account by the usual PLDA models, in [16],

[17], [18] the PLDA model has been extended to exploit this

additional information. This new model, referred to as PLDA

based on the ”Full Posterior Distribution” of W|X , assumes

that an i–vector can be described as:

µi = m+Uy + ei , (7)

where the difference with equation (5) is that the residual

noise e has been replaced by the utterance–dependent term

ei, sampled from the utterance–dependent distribution Ei. The

prior distributions for the residual noise and speaker factor are

given by:

Ei ∼ N (0,Λ−1 + Γ−1
i ) ∼ N (0,Λ−1

eq,i) , (8)

Y ∼ N (0, I) , (9)

respectively, where Γi is the precision matrix produced by the

i–vector extractor, and the equivalent precision matrix Λeq,i

is:

Λeq,i =
(
Λ−1 + Γ−1

i

)−1
. (10)

In [16], [18] it has been shown that the likelihood that a set

of n utterances u1 . . . un, i.e., of i–vectors µ1 . . .µn, belongs

to the same speaker, can be computed according to the FP–

PLDA model as:

logP (µ1 . . .µn|Hs) =
∑

i

[
1

2
log |Λeq,i| −

M

2
log 2π −

1

2
(µi −m)TΛeq,i(µi −m)

]

−
1

2
log |Λy|+

1

2
µ

T
y Λyµy −

S

2
log 2π , (11)

where M is the i–vector dimension, S is the speaker factor

dimension, and

Λy = I+
∑

i

UTΛeq,iU

µy = Λ−1
y UT

∑

i

Λeq,i (µi −m) . (12)

This equation is exactly the same required by the PLDA

model, just replacing in FP–PLDA precision matrix Λ ap-

pearing in PLDA by Λeq,i, which accounts for an utterance–

dependent i–vector precision matrix.

IV. COMPLEXITY ANALYSIS

Given a set of n enrollment utterances ue1 . . . uen for a

target speaker, and a set of m test utterances ut1 . . . utm

of a single unknown speaker, the speaker verification log–

likelihood ratio s is:

s = log
l (ue1 . . . uen , ut1 . . . utm |Hs)

l (ue1 . . . uen |Hs) l (ut1 . . . utm |Hs)
, (13)

where Hs is the hypothesis that the two set of utterances

belong to the same speaker.

The complexity of the log–likelihood computation accounts

for three separate contributions. The first contribution is given

by the operations that can be independently performed on
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each utterance, which will be referred as per–utterance costs

(excluding i–vector extraction costs). The second contribution

involves all operations that can be independently performed

on the set of utterances for a speaker (either the target

or the test speaker), but do not depend on the number of

utterances in the set. These operations will be referred to as

per–speaker operations, or per–target and per–test operations

wherever the distinction is relevant. The final contribution,

the per–trial complexity, is given by the operations which

jointly involve the target and test sets. This distinction is not

relevant for naı̈ve scoring implementations, but is relevant,

instead, in scenarios with a fixed set of target speakers, because

the per–target terms can be precomputed, and per–test terms

need to be computed only once regardless of the number

of target speakers. It is worth noting that the per–utterance

complexity should also account for the complexity of the i–

vector extraction. The computation of the i–vector covariance

matrix, for each utterance, has complexity O(M3) [22], where

M is the i–vector dimension. This complexity dominates the

per–set costs, because, as shown in Section IV-A and IV-B,

and summarized in Table I, both PLDA and FP–PLDA have

lower per–set costs.

Replacing (11) in (13), the speaker verification log–

likelihood ratio for a target set E and a test set T can be

computed as:

llr(E, T ) = log
l(E, T |Hs)

l(E|Hs)l(T |Hs)

= σ(E, T )− σ(E) − σ(T ) +
S

2
log 2π , (14)

where the scoring function σ is defined as:

σ(G) = −
1

2
log
∣∣Λy|G

∣∣ + 1

2
µ

T
y|GΛy|Gµy|G . (15)

and

Λy|G = I+
∑

i∈G

UTΛeq,iU (16a)

µy|G = Λ−1
y UT

∑

i∈G

Λeq,i (µi −m) (16b)

are the posterior parameters of Y conditioned on the i–vectors

in the set G. Since the computation of σ(E) and σ(T ) cannot

be more expensive than the computation of σ(E, T ), we

restrict our analysis to this term of the log–likelihood ratio.

A. Complexity of the standard Gaussian PLDA

As shown in Section III, standard PLDA corresponds to

FP–PLDA with Γ−1
i = 0 for all i–vectors. Thus, Λeq,i = Λ

for all i–vectors, and the speaker variable posterior parameters

become:

Λy|(E,T ) = I+ (nE + nT )U
TΛU (17a)

µy|(E,T ) = Λ−1
y|(E,T )U

TΛ

(
∑

i∈E

(µi −m) +
∑

i∈T

(µi −m)

)

= Λ−1
y|(E,T ) (FE + FT ) , (17b)

where nE and nT are the number of target and test segments

respectively, FE and FT are the projected first order statistics

defined as:

FE = M
∑

i∈E

(µi −m) , FT = M
∑

i∈T

(µi −m) , (18)

and M = UTΛ is an S ×M matrix, where S is the PLDA

speaker sub–space dimension. Using these definitions, the

scoring function σ(E, T ) can be rewritten as:

σ(E, T ) =−
1

2
log
∣∣Λy|(E,T )

∣∣+ FT
EΛ

−1
y|(E,T )FT

+
1

2
FT

TΛ
−1
y|(E,T )FT +

1

2
FT

EΛ
−1
y|(E,T )FE . (19)

Computing the projected statistics (18) has per–utterance com-

plexity O(NM), where N is the number of utterances in the

set, and a per–set complexity O(MS).

TABLE I
COMPARISON OF THE COMPLEXITY OF TWO IMPLEMENTATIONS

OF PLDA AND OF FPD–PLDA. PER–UTTERANCE COSTS SHOULD

BE MULTIPLIED BY THE NUMBER OF UTTERANCES N OF A GIVEN

SPEAKER. PER–TEST AND PER–TRIAL COSTS DO NOT DEPEND ON

THE NUMBER OF SPEAKER UTTERANCES. THE COSTS IN THIS

TABLE ARE RELATED ONLY TO PLDA, I.E., EXCLUDING THE

CONTRIBUTION OF I–VECTOR EXTRACTION.

System
Complexity

Per–utterance Per–test Per–trial

PLDA Naı̈ve M MS S
3

PLDA Optmized M MS S

FPD–PLDA M
3

M
2
S S

3

1) Naı̈ve scoring implementation: The computation of the

score function σ(E, T ), given the FG statistics, requires

computing Λ−1
y|(E,T ) and its log–determinant. For standard

PLDA, these computations have a per–trial complexity of

O(S3) because the term UTΛU can be precomputed. Given

Λ−1
y|(E,T ), computing σ(E, T ) has per–trial complexity O(S2).

The same considerations apply to the less expensive computa-

tion of σ(E) and σ(T ). Thus, the overall per–trial complexity

is O(S3).

2) Speaker detection with known, fixed, target sets: In

the naı̈ve implementation, the computation and inversion of

Λy|(E,T ) dominates the scoring costs. However, (17a) shows

that in standard PLDA this factor depends only on the number

of the target and test utterances. Since each set of target

utterances Ek , and the number of test utterances nT are

known, the corresponding Λ−1
y|(Ek,T ) and its log–determinant

can be precomputed. Moreover, since the statistics FEk
are

also known in advance, also the terms of the scoring func-

tion 1
2F

T
Ek

Λ−1
y|(Ek,T ) can be precomputed. It is worth noting

that these terms are small S–sized vectors. Since the term

depending only on the test statistics FT can be evaluated just

once for the whole set of K targets, its computation has a

per–test, rather than a per–trial, cost. Every function σ(Ek, T )
can be computed in O(S), and each term σ(Ek) can be easily

precomputed. Given the statistics, the term σ(T ) has a per–set

complexity of O(S2). The overall per–utterance and per–set

cost, including statistics computations, are then O(NM) and

O(MS), respectively, whereas the per–trial cost is O(S).
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B. Full–Posterior PLDA

The main difference between standard PLDA and FP–PLDA

is that in PLDA Λy|(E,T ) depends just on the number of i–

vectors in the two sets, whereas in FP–PLDA it also depends

on the covariance of each i–vector in the target and test sets

E and T (see (16a) and 10). This does not allow applying to

FP–PLDA the optimizations for speaker detection with known

targets, illustrated in the previous sub–section.

The speaker variable posterior parameters can still be writ-

ten as:

Λy|(E,T ) = I+ (Λeq,E +Λeq,T ) (20a)

µy|(E,T ) = Λ−1
y (Feq,E + Feq,T ) , (20b)

where

Feq,G = UT
∑

i∈G

Λeq,i (µi −m) (21)

Λeq,G = UT

(
∑

i∈G

Λeq,i

)
U , (22)

and the scoring function σ(E, T ) can be rewritten as:

σ(E, T ) =−
1

2
log
∣∣∣Λ−1

y|(E,T )

∣∣∣+ 1

2
FT

eq,EΛ
−1
y|(E,T )Feq,E

+
1

2
FT

eq,TΛ
−1
y|(E,T )Feq,T + FT

eq,EΛ
−1
y|(E,T )Feq,T .

(23)

Computing the posterior parameters (20a) has a complexity

O(NM3)+O(M2S), mainly due to the computation of Λeq,i,

which is much higher than the O(NM)+O(MS) complexity

of the standard PLDA approach. However, these computations

are required only for a new target or a new test speaker. These

per–utterance and per–set costs are comparable to the costs

O(NM3) of the i–vector extraction [22]. Given the statistics,

Λy|(E,T ) can be computed with complexity O(S2) and its

inversion has a O(S3) complexity. The computation of the

remaining terms requires O(S2), thus the overall per–trial

complexity is O(S3). Since the posterior parameter Λy|(E,T )

cannot be precomputed as in standard PLDA, the per–trial

complexity does not reduce for the fixed set of target speakers

scenario.

V. APPROXIMATED FULL–POSTERIOR PLDA

The FP–PLDA model allows improving the recognition

performance [16], [17], [18], however, we have shown that the

per–trial score computation complexity of FP–PLDA greatly

increases compared to the standard PLDA approach. In this

section we introduce three simplifications of FP–PLDA for fast

scoring trying to keep small the impact on the its accuracy.

A. Diagonalized i–vector posterior

The first simplification consists in approximating the i–

vector posterior covariance by the diagonal matrix:

Γ−1
i ← (Γi ◦ I)

−1
, (24)

where ◦ is the element-wise product operator, and I is an

identity matrix of the same dimension of Γi. However, a much

better approximation can be obtained by an approximated

simultaneous diagonalization of the terms composing the i–

vector posterior covariance matrix as proposed in [22]. In

particular, let’s define an approximate Γ̂X as:

Γ̂X =
∑

c

ωcT
(c)TΣ(c)−1

T(c) (25)

where each zero–order statistics N
(c)
X in (3) is replaced by

ωc, the weight of the c–th component of the UBM. Let also

UTΣTU
T
T

be the eigen–decomposition of Γ̂X . By applying

the following linear transformations to the i–vector model:

ŵ = UT
Tw

T̂ = TUT , (26)

it can be easily verified that the corresponding i–vector pos-

terior parameters are given by:

Γ̂X = UT
TΓXUT

µ̂X = UT
TµX , (27)

i.e., that the i–vector posterior distribution corresponds to a

linear transformation of the original i–vector distribution. It

is worth noting that, since both PLDA and FP–PLDA results

are invariant to linear transformations of the i–vector space

(provided that the parameters are estimated in the transformed

space as well), the use of i–vectors computed as in (27) has

no impact on standard PLDA and on FP–PLDA. Moreover,

as long as the utterance zero–order statistics have the same

distribution of the UBM weights, Γ̂X is a diagonal matrix. In

general, Γ̂X is not diagonal, but, as shown in [22], zeroing its

off–diagonal elements provides an acceptable approximation

of the original i–vector covariace. An even better diago-

nalization could be obtained through Heteroscedastic Linear

Discriminant Analysis (HLDA) [22], but in our experience

the simpler eigen–decomposition approach already provides

accurate enough results.

Using a diagonal i–vector posterior covariance allows sig-

nificant memory savings for storing the target models (O(M)
rather than O(M2)). However, although the i–vector posterior

covariance is diagonal, matrix Λeq,i of (10) remains a full

matrix. This approach alone, thus, does not give any compu-

tational advantage with respect to the standard FP–PLDA, it

only saves the memory necessary for storing the FP–PLDA

parameters of a set of target speakers.

B. Diagonalized Residual Covariance

The second term that can be diagonalized in order to

speedup scoring is the covariance Λeq,i of the residual term

Ei (8). Diagonalization allows avoiding an expensive ma-

trix inversion. In particular, the precision matrix Λ of the

PLDA residual term E can be eigen–decomposed as Λ =
VΛDΛV

T
Λ, where VΛ is an orthogonal matrix, and DΛ is

a diagonal matrix. The precision matrix of Ei can be written

as:

Λeq,i =
(
Λ−1 + Γ−1

i

)−1

=
(
VΛD

−1
Λ

VT
Λ
+ Γ−1

i

)−1
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= VΛ

(
D−1

Λ
+VT

Λ
Γ−1
i VΛ

)−1

VT
Λ

. (28)

The proposed approximation consists in replacing the term

VT
Λ
Γ−1
i VΛ by a diagonal matrix VT

Λ
Γ−1
i VΛ ◦ I.

In order to analyze the scoring complexity using this ap-

proximation, let’s define:

ΛD
eq,i =

(
D−1

Λ
+VT

ΛΓ
−1
i VΛ ◦ I

)−1

, (29)

so that the approximated Λeq,i can be rewritten as:

Λeq,i = VΛΛ
D
eq,iV

T
Λ . (30)

The statistics Feq,E and Feq,T can be computed by simply

replacing (30) in (21). The approximated speaker identity

posterior covariance (20a) can thus be rewritten, from (20a),

(22), and (30), as:

Λy|(E,T ) = I+UTVΛ

(
ΛD

eq,E +ΛD
eq,T

)
VT

Λ
U , (31)

where

ΛD
eq,E =

∑

i∈E

ΛD
eq,i , ΛD

eq,T =
∑

i∈T

ΛD
eq,i . (32)

Thus, Λy|(E,T ) depends on the covariance of the i–vectors

only through the diagonal statistics ΛD
eq,E and ΛD

eq,T .

It is worth noting that, since the i–vector posterior covari-

ance becomes smaller for longer utterances, the effects of

this approximation become negligible, and the exact PLDA

solution is recovered, whenever the test utterances are long

enough.

C. Diagonalized Speaker Identity Posterior

A third approximation, which further decreases the scoring

complexity, consists in the diagonalization of the speaker

identity posterior covariances.

Let’s eigen–decompose the term UTΛU in (17a) as:

UTΛU = VYDYVT
Y , (33)

where VY and DY are an orthogonal and a diagonal matrix,

respectively. The speaker identity posterior covariance is then

given by:

Λ−1
y|(E,T ) =

(
I+ (nE + nT )VYDYVT

Y

)−1

= VY(I+ (nE + nT )DY)
−1

VT
Y

, (34)

where factor I+ (nE + nT )DY is diagonal.

A similar decomposition of UTΛU can be applied to the

approximated speaker identity posterior covariance of (31)

obtaining:

Λ−1
y|(E,T ) =

(
I+VY

(
D̂eq,E + D̂eq,T

)
VT

Y

)−1

= VY

(
I+

(
D̂eq,E + D̂eq,T

))−1

VT
Y

, (35)

where

D̂eq,E = VT
Y
UTΛeq,EUVY

D̂eq,T = VT
Y
UTΛeq,TUVY . (36)

Since, in contrast with standard PLDA, the matrices D̂eq,E and

D̂eq,T are not diagonal, the proposed simplification consists in

replacing these terms by the corresponding diagonal matrices:

Deq,E = D̂eq,E ◦ I , Deq,T = D̂eq,T ◦ I . (37)

Similarly to the diagonalized residual covariance approach,

the impact of this approximation becomes irrelevant with the

increase of the utterance duration, because the contribution of

the i–vector posterior covariance becomes negligible compared

to the PLDA residual noise covariance.

D. Diagonalized FP–PLDA

The three diagonalization approaches illustrated in the pre-

vious sub–sections can be efficiently combined in order to

sensibly speed–up the computation of the FP–PLDA log–

likelihood ratios. This section illustrates the sequence of steps

for an efficient computation of the scoring function σ(E, T )
of a fully Diagonalized FP–PLDA. A comparison of the

complexity of different diagonalization approaches is also

provided in Table II. The details of the derivation of these

complexities are given in the Appendix.

The standard FP–PLDA solution is obtained by replacing

in all the presented approximations the diagonalizing operator

◦ I by the operator ◦ 1, where 1 is a matrix of ones. We

define, for each possible diagonalization, a matrix operator

Q such that Q = I if the diagonalization is applied, and

Q = 1 otherwise. We will denote by Q
Γ
,Q

Λ
,Q

Y
the

operators associated to i–vector covariance diagonalization,

residual covariance diagonalization, and speaker identity pos-

terior covariance diagonalization, respectively.

In order to derive a computational efficient formulation of

the scoring function σ(E, T ) (23), it is worth expanding one of

its terms involving the first–order statistics (21), for example

the second term FT
eq,EΛ

−1
y|(E,T )Feq,T , as shown at the top of

next page.

By defining the i–vector covariance as:
(
ΓD
i

)−1

= (Γi ◦QΓ
)−1

, (44)

and setting

W = VT
YUTVΛ , (45)

as in (43), the steps for a fast computation of the scoring

function σ(E, T ) can be summarized as follows:

1) For each utterance compute the term:

Γ−1
Λ,i = VT

Λ

(
ΓD
i

)−1

VΛ ◦QΛ (46)

in (28), and the diagonalized approximation of the

equivalent precision matrix:

ΛD
eq,i =

(
D−1

Λ
+ Γ−1

Λ,i

)−1

(47)

2) For each set G compute the projected statistics (42):

F̂eq,G = W
∑

i∈G

ΛD
eq,iV

T
Λ (µi −m) , (48)

and the diagonalized approximation of the cumulative
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FT
eq,EΛ

−1
y|(E,T )Feq,T = (38)

from (21)

(
UT

∑

i∈E

Λeq,i (µi −m)

)T

Λ−1
y|(E,T )

(
UT

∑

i∈T

Λeq,i (µi −m)

)
= (39)

from (35)

(
UT

∑

i∈E

Λeq,i (µi −m)

)T

VY

(
I+

(
D̂eq,E + D̂eq,T

))−1

VT
Y

(
UT

∑

i∈T

Λeq,i (µi −m)

)
= (40)

from (30)

(
VT

YUT
∑

i∈E

VΛΛ
D
eq,iV

T
Λ (µi −m)

)T (
I+

(
D̂eq,E + D̂eq,T

))−1
(
VT

YUT
∑

i∈T

VΛΛ
D
eq,iV

T
Λ (µi −m)

)
=

(41)
(
∑

i∈E

ΛD
eq,iV

T
Λ
(µi −m)

)T

WT
(
I+

(
D̂eq,E + D̂eq,T

))−1

W
∑

i∈E

ΛD
eq,iV

T
Λ
(µi −m) , (42)

where W = VT
Y
UTVΛ (43)

TABLE II
COMPARISON OF THE COMPLEXITY OF APPROXIMATED FULL–POSTERIOR–PLDA DIAGONALIZATION APPROACHES.

Diagonalization Complexity

QΓ = I QΛ = I QY = I Per–utterance Per–set Per–trial

no no no NM3 M2S S3

yes no no NM3 M2S S3

no yes no NM3 MS2 S3

yes yes no NM2 MS2 S3

no no yes NM3 M2S S

yes yes yes NM2 MS S

equivalent precision matrix:

ΛD
eq,G =

∑

i∈G

ΛD
eq,i (49)

Deq,G = WΛD
eq,GW

T ◦Q
Y

(50)

3) For each trial compute the diagonalized speaker identity

posterior covariance:
(
ΛD

y|(E,T )

)−1

= (I+ (Deq,E +Deq,T ))
−1

, (51)

and finally the scoring function σ(E, T ) as:

σ(E, T ) =−
1

2
log

∣∣∣∣
(
ΛD

y|(E,T )

)−1
∣∣∣∣

+
1

2
F̂

T

eq,E

(
ΛD

y|(E,T )

)−1

F̂eq,E

+
1

2
F̂

T

eq,T

(
ΛD

y|(E,T )

)−1

F̂eq,T

+ F̂
T

eq,E

(
ΛD

y|(E,T )

)−1

F̂eq,T (52)

It is worth noting that equation (44) can be considered part

of the i–vector extractor, and has direct implications on the

complexity of the extractor. If QΓ = 1, the full covariance of

the i–vector has to be computed with complexity O(NM3),
whereas only the diagonal of the i–vector posterior is needed

if QΓ = I. In the latter case, approximated i–vector extractors

can be used [23], [24], which allow i–vector extraction to be

performed in O(NM), and approximated diagonal i–vector

posterior precisions to be computed in O(NM).
Table II summarizes the complexity of different diagonal

FP–PLDA approximations, according to the different settings

of the diagonalizing operators Q
Γ

, Q
Λ

and Q
Y

. Combining

different approximations notably reduces the computational

complexity with respect to the individual contribution of

each diagonalization. Applying the sequence of the proposed

approaches reduces both the per–set and per–trial scoring

computations, thus shrinking the computational gap between

standard PLDA and FP–PLDA.

VI. EXPERIMENTAL RESULTS

Two set of experiments were performed for assessing the

performance and speedup tradeoff of the proposed diagonal-

ization techniques. The first one uses the same cuts of variable

duration that were used for assessing the performance of the

FP–PLDA approach in [18]. The cuts were extracted from

conversations recorded from different channels included in

the NIST SRE 2010 extended core tests [20]. These exper-

iments were devoted to the assessment of the diagonalization

techniques on a task including test utterances of variable

duration (from 3 to 60 seconds). The Diagonalized FP–PLDA

has also been tested on a short utterance text–independent
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TABLE III
NIST SRE 2010 ENROLLMENT AND TEST CONDITIONS.

Condition
Female targets Male targets

Enrollment Test Channel
/ non-target trials / non-target trials

1 2326 / 449138 1978 / 346857 interview interview same microphone

2 8152 / 157394 6932 / 121558 interview interview different microphones

3 1958 / 334438 2031 / 303412 interview telephone

4 1751 / 392467 1886 / 364308 interview microphone

5 3704 / 233077 3465 / 175873 telephone telephone different numbers

TABLE IV
RESULTS FOR THE CORE EXTENDED NIST SRE2010 FEMALE TESTS IN TERMS OF % EER, MINDCF08×1000 AND MINDCF10×1000

USING DIFFERENT MODELS. “STD” AND “FP” LABELS REFER TO STANDARD PLDA AND FP–PLDA, RESPECTIVELY.

Train Test
cond2 cond3 cond4 cond1 cond5

EER
DCF DCF

EER
DCF DCF

EER
DCF DCF

EER
DCF DCF

EER
DCF DCF

08 10 08 10 08 10 08 10 08 10

Std Std 2.6 124 460 2.2 103 405 1.1 65 303 1.8 68 258 1.9 105 335

Std FPD 2.3 114 455 2.1 103 402 1.0 60 296 1.7 63 254 2.0 103 347

FPD FPD 2.3 112 455 2.0 100 396 1.0 59 288 1.6 60 253 2.0 101 344

verification task including very short test utterances from a

dataset completely different with respect to the NIST data

that have been used for training the models. In particular,

the dataset for the first set of experiments consists of speech

segments from NIST SRE10 extended core condition, which

were cut, after Voice Activity Detection, to obtain segments of

variable duration in the range 3–30, 10–30, 3-60, and 10–60

seconds, respectively. These sets of segments have been scored

according to the official NIST SRE 2010 conditions 1–5 [20],

which are summarized in Table III. Cepstral features, extracted

using a 25 ms Hamming window, have been used. 19 Mel

frequency cepstral coefficients together with log-energy were

calculated every 10 ms. These 20-dimensional feature vectors

were subjected to short time mean and variance normalization

using a 3s sliding window. Delta and double delta coefficients

were then computed using a 5-frame window giving 60-

dimensional feature vectors.

The i–vector extractor is based on a 2048–component full

covariance gender–independent UBM, trained using NIST

SRE 2004–2006 data. Gender–dependent i–vector extractors

for the reference system were trained using the data of NIST

SRE 2004–2006, Switchboard II Phases 2 and 3, Switchboard

Cellular Parts 1 and 2, Fisher English Parts 1 and 2.

The dimension of the i–vector subspace was set to M =
400, and the i–vector posteriors were normalized according to

the Projected Length Normalization:

W ∼ N

(
µX

‖µX ‖
,

Γ−1
X

‖µX ‖
2

)
. (53)

introduced in [16]. The PLDA was trained with a speaker

variability sub–space of dimension S = 120, and full channel

variability sub–space.

Although both female and male speaker tests were per-

formed, we report detailed results on the female datasets only,

because the NIST SRE 2010 core test on female speakers

is known to be more difficult, thus more often compared

in the literature. Table IV summarizes the results of the

tests performed on the NIST SRE 2010 female extended

conditions, including the core condition (cond5), in terms of

percent Equal Error Rate and normalized minimum Detection

Cost Function (DCF) as defined by NIST for SRE08 and

SRE10 evaluations [20]. In this table, the PLDA and FPD–

PLDA systems are compared using the original interview or

telephone data without any cut. Labels “Std” and “FPD” refer

to the standard and the Full Posterior Distribution PLDA,

respectively.

The first row gives the baseline results using standard i–

vectors for the five NIST 2010 conditions. It can be observed

that the matched conditions cond5 and cond1, tel–tel and

int–int, respectively, achieve the best results, whereas the

difficulty of the task decreases from cond2 to cond4. The same

behavior is confirmed for the other experimental conditions,

shown in the remaining lines, and for the other tests using

variable duration segments. The second row gives the baseline

results using the Full Posterior Distribution PLDA model. The

FPD–PLDA model not only keeps the accuracy of the standard

model for long segments, as expected, but also shows an

approximately 7% relative improvement in three conditions.

The third row describes the effect of using the i–vector

covariance also in training the FP–PLDA models. Training

was done using the EM algorithm, as presented in [17] for

a model equivalent to FP–PLDA (a proof of equivalence is

given in Section VI of [18]). As expected, since the training

utterances have long durations, the results are similar to the

ones reported in the second row, thus, there is little advantage

in using the full i–vector posterior in training the FP–PLDA

models when long training utterances are available.

The results of the tests on variable duration cuts, randomly

chosen from the extended NIST SRE2010 female set, are

shown in Table V. The minimum DCF10 results, given for

core extended tests, have not been reported for these and the

remaining short duration experiments because their value is

often too large to be meaningful [18]. Excluding the matched
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TABLE V
RESULTS IN TERMS OF % EER AND MINDCF08×1000 OF STANDARD PLDA, FULL POSTERIOR PLDA, AND TWO DIAGONALIZATION

APPROACHES FOR TEST DATA OF VARIABLE DURATION, RANDOMLY CHOSEN FROM CUTS OF THE EXTENDED NIST SRE2010 FEMALE

TESTS. THE PLDA PARAMETERS ARE TRAINED USING BOTH MICROPHONE AND TELEPHONE DATA.

Model
Duration cond2 cond3 cond4 cond1 cond5 average %
(seconds) EER DCF 08 EER DCF 08 EER DCF 08 EER DCF 08 EER DCF 08 improvement

Standard 3–30 12.4 531 11.3 521 11.1 441 9.8 405 10.6 493

Diagonal QY 3–30 10.0 482 9.5 504 8.5 388 7.7 331 9.6 481 13.5

Diagonal QΓ,QΛ,QY 3–30 10.5 511 10.3 544 8.9 406 8.1 366 10.2 503 8.0

FP–PLDA 3–30 9.8 474 9.3 498 8.3 382 7.6 327 9.7 475 14.6

Standard 10–30 9.0 431 8.6 429 6.6 318 7.0 317 7.6 390

Diagonal QY 10–30 7.8 394 7.5 416 5.7 288 5.8 277 7.3 377 9.8

Diagonal QΓ,QΛ,QY 10–30 8.4 423 8.1 438 6.0 311 6.5 305 7.4 386 3.8

FP–PLDA 10–30 7.7 388 7.5 417 5.7 285 5.5 278 7.2 373 10.7

Standard 3–60 9.1 384 7.8 368 7.3 312 7.0 273 6.7 337

Diagonal QY 3–60 6.8 330 6.1 346 5.3 256 4.7 232 6.2 324 17.2

Diagonal QΓ,QΛ,QY 3–60 6.9 352 6.9 375 5.4 271 5.0 244 6.5 333 12.5

FP–PLDA 3–60 6.7 328 6.2 343 5.2 259 4.7 232 6.2 323 17.3

Standard 10–60 7.0 318 5.0 283 4.7 227 4.9 211 4.9 265

Diagonal QY 10–60 5.8 286 4.9 274 3.8 203 4.2 176 4.8 263 9.6

Diagonal QΓ,QΛ,QY 10–60 6.0 299 4.9 285 4.0 211 4.2 188 4.8 266 7.0

FP–PLDA 10–60 5.7 283 4.8 271 3.9 200 4.1 176 4.7 260 10.6

Standard Full 2.6 124 2.2 103 1.1 65 1.8 68 1.9 105

Diagonal QY Full 2.4 115 2.2 103 1.0 61 1.7 64 2.1 104 3.2

Diagonal QΓ,QΛ,QY Full 2.3 116 2.0 101 1.0 61 1.6 66 2.0 102 5.6

FPD Full 2.3 114 2.1 103 1.0 60 1.7 63 2.0 103 5.0

TABLE VI
COMPARISON OF THE PERFORMANCE AND RELATIVE

COMPUTATIONAL COST OF PLDA, FP–PLDA, AND

DIAGONALIZED FP–PLDA, WITH Q
Γ
= Q

Λ
= Q

Y
= I , ON A

SHORT UTTERANCE TEXT–INDEPENDENT VERIFICATION TASK.

Model % EER minDCF8
Model size Scoring time

(Kb) wrt PLDA

PLDA 13.6 612 3.5 1

FP–PLDA 8.2 421 81 22

Diagonalized
7.7 401 5.1 1.05

PLDA

tel–tel condition 5, the FPD–PLDA always shows a relative

improvement, quite small for long enough segments, but up

to 20% depending on the average duration of the small cuts,

and on the condition. Table V shows also the results for

the two settings of the Diagonalized FPD–PLDA approach

that are more relevant from an application viewpoint. The

first setting approximates only the speaker identity posteri-

ors, which allows reducing the per-trial cost in a speaker

identification scenario where the target speakers are known

in advance, so that their per–set and per–utterance costs are

independent from the number of trials. The second setting,

instead, is convenient in a speaker verification scenario, where

the three proposed approximations are applied in sequence

in order to minimize the memory and computation costs.

The accuracy of the Diagonalized FP–PLDA decreases as a

function of the number of the applied diagonalizing operators,

but in the conditions in which the FP–PLDA technique shows

most improvement, also the Diagonalized FP–PLDA performs

very well, as indicated by the average percent improvement

obtained by the EER and minimum DCF08 in all condition

with respect to PLDA, reported in the last column.

A second set of experiments was conducted on a text–

independent verification task. The dataset for these experi-

ments was provided by NUANCE. It includes 308 female

and 218 male speakers, contributing a total of 1177 and

849 utterances, respectively. The test consists in a single

utterance selected between two short sentences only. The

average duration of the test utterances for the two sentences,

excluding silences, is 1.3 and 2.3 seconds, respectively. The

number of true speaker and impostor trials is 4052 and 20494,

respectively. Since this dataset did not include a specific

development set for these tests, a gender–independent i–vector

extractor was trained based on a 1024–component diagonal

covariance gender–independent UBM. Both the i–vector ex-

tractor and the UBM have been trained using data from NIST

SRE 2004–2010 and, additionally, the Switchboard II, Phases

2 and 3, and Switchboard Cellular, Parts 1 and 2 datasets, for

a total of 66140 utterances. Every utterance was processed

after Voice Activity Detection, extracting every 10 ms, 19

Perceptual Linear Predictive (PLP) coefficients, and the frame

log-energy, on a 25 ms sliding Hamming window. This 20–

dimensional feature vector was subjected to short time mean

and variance normalization using a 3 s sliding window, and

a 45-dimensional feature vector was obtained by stacking 18

PLP coefficients (c1-c18), 19 delta (∆c0-∆c18) and 8 double–

delta (∆∆c0-∆∆c7) parameters. The i-vector dimension was

fixed to d = 400. The PLDA model was trained with full–

rank channel factors, and 200 dimensions for the speaker

factors, using the NIST SRE 2004–2010 datasets, for a total

of 48568 utterances of 3271 speakers. Also in this case length

normalization was applied to the i–vectors.

Table VI shows the results obtained on this task, in terms of
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percent Equal Error Rate, minimum Decision Cost Function

DCF08 ×1000, model size in KB, and the scoring times

relative to PLDA scoring time. Although the test includes

a small number of speakers and utterances, one can clearly

appreciate comparing the plain PLDA and the FP–PLDA re-

sults in Table VI how valuable is the ”uncertainty” information

exploited by the FP–PLDA approach. FP–PLDA reduces the

EER and the minimum DCF08 by approximately 40% and

31%, respectively. The Diagonalized FPD–PLDA approach

not only improves the PLDA performance but, surprisingly,

it gives better EER and DCF08 values with respect to FP–

PLDA (43% and 34% better than PLDA, respectively). We

should note, however, that the small changes between the FP–

PLDA and the Diagonalized FP–PLDA have limited statistical

significance. Particularly interesting is the comparison of the

relative processing times of the three approaches. The scoring

time of FP–PLDA is 22 times greater than PLDA, whereas the

overhead of the Diagonalized FP–PLDA is just 5%. Although

the scoring time is a small fraction of the processing time

devoted to the i–vector extraction, fast scoring is important

both for score normalization and for identification applications

that require the same test segment to be compared with a large

number of target speakers.

VII. CONCLUSIONS

The complexity of the PLDA and FPD–PLDA implemen-

tations have been analyzed, and a set of diagonalizing ap-

proximations has been proposed, which allows obtaining a

substantial complexity reduction for trial scoring. In particular,

by applying a sequence of diagonalization operators that

approximate the matrices needed for i-vector scoring, it is

possible to greatly enhance the scoring time for the FPD–

PLDA approach while keeping most of the improvement of

the FP–PLDA model in terms of recognition accuracy with

respect to the standard PLDA approach. Other advantages of

this approach are its reduced memory costs with respect to FP–

PLDA. The proposed techniques also benefit from optimized

i–vector extraction approaches, which avoid the computation

of the i–vector covariance matrices [23], [24], further reducing

the overall complexity of the system, and making the FPD

approach suitable for embedded devices.
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APPENDIX

The contributions to the scoring complexity of each step

of the algorithm presented in Section V-D, and the effects

obtained by combining different approximations are detailed

in the following sub–sections.

A. Standard FP–PLDA

Most of the steps detailed in V-D are redundant for standard

FP–PLDA. However, the since the resulting asymptotic com-

plexity does not change, we can use those steps as a reference

for describing the contribution of the different approximations

on the overall scoring complexity.

• Equation (46) has a complexity O(NM3).
• Since Γ−1

Λ,i is a full matrix, equation (47) has a complexity

O(NM3), and produces full ΛD
eq,i matrices.

• The computation of the statistics in (48) and (49) have

an overall complexity O(NM2)+O(MS), and ΛD
eq,G is

again a full matrix.

• The computation of Deq,G in (50) has a complexity of

O(M2S) and, again, results in a non–diagonal matrix.

• The per–trial term in equation (51) has a complexity

O(S3).
• Finally, equation (52) can be computed in O(S2).

Combining all these steps gives an overall O(NM3) per–

utterance complexity, O(M2S) per–set complexity, and O(S3)
per–trial complexity.

B. Diagonalized i–vector covariance

Diagonalization of the i–vector posterior covariance corre-

sponds to setting QΓ = I.

• Although
(
ΓD
i

)−1

is diagonal equation (46) still requires

O(NM3) operations.

• Since Γ−1
Λ,i is full, all the remaining steps have the same

complexity of the standard FP–PLDA.

The overall complexity is, therefore, the one given in previous

sub–section.

C. Diagonalized residual covariance

The complexity of the diagonalized residual covariance

approximation is related to the use the diagonalized i–vector

covariance approximation. In particular:

• Equation (46) has complexity O(NM3). However, if(
ΓD
i

)−1

is diagonal, Γ−1
Λ,i can be evaluated in O(NM2)

operations because only the diagonal of the right hand

side of the equation is needed.

• Since Γ−1
Λ,i is diagonal, (47) has a complexity O(NM).

• The computations of the statistics in (48) requires

O(NM2) +O(MS) operations.

• The terms in (49) can be computed in O(NM) opera-

tions.

• Equation (50) has a per–set complexity O(MS2).
• Equation (51) has a per–trial complexity O(S3).
• Finally, equation (52) can be computed in O(S2).

Overall, the per–utterance and per–set complexity are

O(NM3) and O(MS2), respectively, and the per–trial com-

plexity is O(S3). However, if this approximation is preceded

by the diagonalization of the i–vector posterior covariance, the

per–utterance complexity decreases to O(NM2).
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D. Diagonalized speaker identity posterior

Again, the complexity of this approximation depends on

the sequential application of the first two diagonalizations. In

particular:

• The complexity of equations (46) to (49) depends only

on the previous approximations, and is not affected by

the diagonalization of the speaker posterior covariance.

• Equation (50) has complexity O(M2S). However, it can

be computed in O(MS) if ΛD
eq,G is diagonal, because

only the diagonal of the right hand side of the equation

is needed.

• Since Deq,G is diagonal, equation (51) has a per–trial

complexity O(S).
• Finally, equation (52) can be computed in O(S).

This approximation allows the per–trial complexity to be

reduced from O(S3) of standard FP–PLDA to O(S). The

per–set complexity is also heavily dependent on the use of

the previous approximations: it can be reduced to O(MS) by

using in sequence the three approximations.
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