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Abstract—The theory of compressed sensing has demonstrated that
sparse signals can be reconstructed from few linear measurements. In
this work, we propose a new class of iteratively reweighted least squares
(IRLS) for sparse recovery. The proposed methods use a two state
Gaussian scale mixture as a proxy for the signal model and can be
interpreted as an Expectation Maximization algorithm that attempts
to perform the constrained maximization of the log-likelihood function.
Under some conditions, standard in the compressed sensing theory, the
sequences generated by these algorithms converge to the fixed points of
the maps that rule their dynamics. A condition for exact sparse recovery,
that is verifible a posteriori, is derived and the convergence is proved to be
quadratically fast in a neighborhood of the desired solution. Numerical
experiments show that these new reconstructions schemes outperform
classical IRLS for /,-minimization with 7 € (0,1] in terms of rate of
convergence and accuracy.

I. SPARSE RECOVERY VIA IRLS FOR £,-MINIMIZATION

The basic principle of the compressed sensing theory is that a k-
sparse signal * € R™ (i.e., it has at most k nonzero entries) can
be recovered from a smaller number m << n of linear measure-
ments y = Az* € R™ than traditional sampling theory believed
necessary [2]. The estimation of the sparsest signal, consistent with
the observations, is an NP-hard problem. However, the constrained
£,-minimization with 7 € (0, 1], which is the convex or nonconvex
surrogate problem, has been proposed in [3] as an appealing alterna-
tive for sparse recovery. It consists in selecting the element which is
compatible with the observations which has minimal £;-norm with
T € (0,1]:

min ||z, s.t.y = Ax. (1)

TER™
Under certain assumptions on the sensing matrix A, it is known that
(1) has a unique solution and it provides the desired solution z*.
The minimization in (1) can be carried out by an iteratively
rewighted least squares method (IRLS, [4]). More precisely, given
an initial guess z©, at each iteration the algorithm requires to solve
a constrained weighted least-squares problem:

n
Y = arg min Z wgwxf

y=Aw =1

with w{™™ = ()24 (2{"”)?)7/?>~! and a suitable non-increasing
sequence €'*). In particular, under certain assumptions, these methods
have been proved to converge to z* globally linearly fast when 7 = 1
and locally superlinearly fast with rate 2 — 7 for 7 € (0, 1).

Although classical IRLS algorithms appear very attractive for their
simlplicity, theoretical results guarantee the superlinear convergence
only in a neighborhood of the desired solution. In fact, numerical
results point out that exact recovery is achieved when 7 is not too
small (i.e. 7 > 1/2) and tends to be trapped in local minima when
7 < 1/2 [5]. Heuristic techniques to avoid local minima are currently
object of study.

II. GSM BASED IRLS

We derive a new class of IRLS procedures for sparse recovery
which outperform the classical procedures. More precisely, we model

the elements of the signal as a two state gaussian mixture (GSM, [1])
x; = zivou; + (1 — zl)\/Bul

where u; are identically and independently distributed (i.i.d.) zero
mean Gaussians and z; are i.i.d. Bernoulli variables with probability
mass function P(z; = 1) = 1—p, p = k/n, @ = 0, and 8 >> 0. The
combination of the considered model, used as a proxy for the sparsity
assumption, with the maximum log-likelihood estimation provides a
new alternative to select the sparsest vector consistent to the data.
More precisely, we want to minimize

=~ zixf+e2/n 2 o
L($7Z,06,B7€)—;|:2a+210g1p (2)
+(1 —z)2i +/n N (1 —z) logg
2c 2 P

subject to the constraint y = Ax. We design three iterative tech-
niques: ML-based IRLS, EM-based IRLS, and K-EM based IRLS.
These strategies can be interpreted as instances of the Expectation
Maximization algorithm. After choosing some initial values for the
mixture parameters, two updates are alternated: in the E-step, we
use the current values for the parameters to estimate the signal z*
and to evaluate the posterior distribution P(z; = 1) of the signal
coefficients; in M-step we use these probabilities to re-estimate the
mixture parameters « and f.

Besides the design of the algorithms, we prove that, under suitable
conditions, the sequence of provided estimations converges to a fixed
point of the map that rules their dynamics. Moreover, we derive
conditions for exact recovery that are verifible a posteriori. Finally,
the algorithm turn out to be quadratically fast in a neighborhood of
2. Numerical simulations validate our claims and show that these
new procedures avoid local minima, outperforming classical IRLS
for sparse recovery in terms of rate of convergence and sparsity-
undersampling tradeoff.
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