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MARGINALLY OUTER TRAPPED SURFACES IN DE SITTER
SPACE BY LOW-DIMENSIONAL GEOMETRIES

EMILIO MUSSO AND LORENZO NICOLODI

Abstract. A marginally outer trapped surface (MOTS) in de Sitter spacetime
is an oriented spacelike surface whose mean curvature vector is proportional
to one of the two null sections of its normal bundle. Associated with a space-
like immersed surface there are two enveloping maps into Möbius space (the
conformal 3-sphere), which correspond to the two future-directed null direc-
tions of the surface normal planes. We give a description of MOTSs based on
the Möbius geometry of their envelopes. We distinguish three cases according
to whether both, one, or none of the fundamental forms in the normal null
directions vanish. Special attention is given to MOTSs with non-zero parallel
mean curvature vector. Any such a surface is generically the central sphere
congruence (conformal Gauss map) of a surface in Möbius space which is lo-
cally Möbius equivalent to a non-zero constant mean curvature surface in some
space form subgeometry.

1. Introduction

A marginally outer trapped surface (MOTS) in a four dimensional (oriented
and time-oriented) spacetime (N, 〈 , 〉) is a spacelike immersion γ : M → N of an
oriented surface M whose mean curvature vector field is proportional to one of the
two null sections of its normal bundle. The notion of a MOTS was introduced early
in the development of the theory of spacetime singularities and black holes [19],
[22], and has arisen in the work of Schoen and Yau in connection with their proof
of the positive mass theorem [31]. For more recent mathematical developments of
the theory we refer the reader to [3], [4], [17], and the references therein. MOTSs,
both in de Sitter and Minkowski spacetime, also occur naturally in the study of
Möbius and Laguerre surface geometry [1], [2], [30].

For a 2-dimensional manifold M and a spacelike immersion γ : M → S4
1 into de

Sitter spacetime, each normal plane of γ at a point p ∈ M is timelike and contains
two future-directed linearly independent null vectors. These depend smoothly on
p ∈ M and determine two smooth maps of M into Möbius space S3, the envelopes
of γ. In this paper, we will give a description of MOTSs in de Sitter spacetime based
on the Möbius and Euclidean geometry of their two envelopes.1 With reference to
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2 EMILIO MUSSO AND LORENZO NICOLODI

the second fundamental forms of γ associated to the null normal directions, we will
distinguish three cases according to whether: I) both forms vanish identically, II)
one of the two forms vanishes identically, or III) none of the two forms vanishes
(see Section 4). In Case I, γ is a fixed totally geodesic 2-sphere in S4

1 . In Case
II, γ is either described as the congruence of the oriented tangent planes to an
immersed surface in Euclidean space, or as the immersion in de Sitter spacetime
of the two-dimensional manifold of orthonormal frames adapted to a curve in Eu-
clidean space. In Case III, at least one of the envelopes of γ is immersed and γ can
be described as the central sphere congruence (conformal Gauss map) of such an
envelope. In Section 5, we then specify the discussion by imposing the additional
condition that the mean curvature vector field of γ be parallel with respect to the
normal connection. Accordingly, we have three cases, indicated by A, B and C,
respectively. Case A is as Case I. In Case B, we find that γ can be interpreted
as the tangent plane congruence of a parallel front of a minimal surface in R3. In
case C, special attention is given to MOTSs with non-zero parallel mean curvature
vector. We prove that any such a surface is the central sphere congruence of a con-
formal immersion in Möbius space which is locally Möbius equivalent to a non-zero
constant mean curvature surface into some 3-dimensional space form embedded in
Möbius space. The proof is based on the characterization of MOTSs with parallel
mean curvature vector in Case III by the existence of a holomorphic quartic form,
relative to the underlying complex structure of the surface. This is then used to
discuss some aspects of the Möbius geometry of the envelopes in relation to the
theory of isothermic surfaces and of their transformations. Ultimately, we find that
MOTSs with non-zero parallel mean curvature vector are governed by a second or-
der completely integrable (soliton) equation. The details of the discussion are given
in Section 6. In Section 7, a special class of examples related to elastic curves in
2-dimensional space forms is discussed. Section 2 recalls some preliminary material
about Möbius geometry. Section 3 develops the geometry of MOTSs and of their
envelopes in the framework of Möbius geometry.

2. Preliminaries

2.1. Basic material. We start by recalling some preliminary material about the
method of moving frames in Möbius geometry as developed in [9]. Let R5

1 be R5

with the Lorentz scalar product

(2.1) 〈x, y〉 = −(x0y4 + x4y0) + x1y1 + x2y2 + x3y3 =
∑

i,j

ηijx
iyj ,

where the orientation is defined by dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4 > 0 and the time-
orientation is defined by the positive light cone

L+ = {x ∈ R5
1 : 〈x, x〉 = 0, x0 + x4 > 0}.

The Möbius group is the identity component G ∼= SO0(4, 1) of the pseudo-orthogonal
group of (2.1). It consists of elements A = (Ai

j) ∈ GL(5,R) such that

detA = 1; 〈Ax, Ay〉 = 〈x, y〉; A0
j + A4

j > 0, j = 0, 4.

A Möbius frame is a basis (A0, . . . , A4) of R5
1 such that

〈Ai, Aj〉 = ηij , A0, A4 ∈ L+.
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The group G acts simply transitively on the Möbius frames and, up to the choice
of a reference frame, the manifold of all such frames may be identified with G. Let
ε0, . . . , ε4 be the standard basis of R5, and for any A ∈ G let Aj = Aεj denote the
jth column vector of A. Regarding the Aj ’s as R5-valued functions on G, there are
unique left invariant 1-forms {ωi

j}0≤i,j≤4, such that

(2.2) dAi =
∑

j

ωj
i Aj ,

where ωj
i are the components of the Maurer–Cartan form ω = A−1dA of G. Exterior

differentiation of (2.2) gives the the structure equations

(2.3) dωi
j = −

∑

k

ωi
k ∧ ωk

j ,

while differentiating 〈Ai, Aj〉 = ηij gives the symmetry relations
∑

k

ωk
i ηkj +

∑

k

ωk
j ηik = 0.

2.2. Möbius geometry. Classically, the Möbius space S3 (the conformal 3-sphere)
is realized as the projective quadric

{
[x] ∈ RP4 : 〈x, x〉 = 0

}
. The Möbius group

acts transitively on S3 via A[x] = [Ax] and the projection map πS3 : G → S3,
π(A) = [A0], makes G into a principal fiber bundle over S3 with structure group

G0 = {A ∈ G : Aε0 = r−1ε0, for some r > 0}.
The space of semibasic forms for the projection πS3 is spanned by the 1-forms

{ω1
0 , ω2

0 , ω3
0}. Moreover, the forms

ω1
0 ∧ ω2

0 ∧ ω3
0 , (ω1

0)2 + (ω2
0)2 + (ω3

0)3

are well defined on S3, up to a positive multiple, and therefore induce on S3 a
G-invariant oriented conformal structure. In particular, G acts on S3 as group of
orientation-preserving, conformal transformations.

2.2.1. Space forms in Möbius space. Let M3(ε) be the 3-dimensional space form
of constant sectional curvature ε, where ε ∈ {−1, 0, 1}. The space M3(0) is the
Euclidean space x1 = 1 in R4, the space M3(1) is the unit 3-sphere in R4, and
M3(−1) is the hyperbolic space

H3 = {x ∈ R4 : −(x0)2 + (x1)2 + (x2)2 + (x3)2 = −1, x0 ≥ 1}.
Conformal embeddings of space forms in Möbius space are given by

M3(0) 3 (
x0, x1, x2, x3

)T 7→
[(

1,
x1

√
2
,

x2

√
2
,

x3

√
2
,
‖x‖2

4

)T
]
∈ S3

M3(1) 3 (
x0, x1, x2, x3

)T 7→
[(

1 + x0

2
,

x1

√
2
,

x2

√
2
,

x3

√
2
,
1− x0

2

)T
]
∈ S3

M3(−1) 3 (
x0, x1, x2, x3

)T 7→
[(

1 + x0

2
,

x1

√
2
,

x2

√
2
,

x3

√
2
,
x0 − 1

2

)T
]
∈ S3
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In particular, Euclidean space M3(0) can be viewed as S3 minus the point at infinity
[ε4] ∈ S3, and the stereographic projection is given by

S3 3 [
(y0, y1, y2, y3, y4)T

] 7→
√

2
(

y1

y0
,
y2

y0
,
y3

y0

)T

∈ R3.

Let Kε be the group of orientation preserving isometries of M3(ε), that is, K0 =
E(3) = R3oSO(3), K1 = SO(4), and K−1 = SO(3, 1). These groups can be realized
as subgroups of G by the faithful representations:

(2.4) ρ0 : K0 3
[

1 0
p A

]
7−→




1 0 0
p√
2

A 0
pTp
4

pTA√
2

1


 ∈ G,

p = (p1, p2, p3)T ∈ R3, A = (Ai
j) ∈ SO(3);

(2.5) ρ±1 : K±1 3
[

C0
0 C0

i

Ci
0 Ci

j

]
7−→




1+C0
0

2

C0
j√
2

±(1−C0
0 )

2
Ci

0√
2

Ci
j

∓Ci
0√

2
±(1−C0

0 )
2

∓C0
j√
2

1+C0
0

2


 ∈ G,

where 1 ≤ i, j ≤ 3.

2.2.2. The space of round 2-spheres. The space of round, oriented 2-spheres in S3

can be parametrized by the points of the hyperquadric

S4
1 = {x ∈ R5

1 : 〈x, x〉 = 1}
(see, for example, [9], [21]). More precisely, the oriented sphere σ(p, r) ⊂ R3 with
center p and signed radius r ∈ R∗ is identified with

y(p, r) =

(√
2

r
,
p1

r
,
p2

r
,
p3

r
,
pTp− r2

2
√

2r

)T

∈ S4
1

and the oriented plane π(n, h) with normal n ∈ S2 and equation nTp =
√

2h is
identified with

y(n, h) =
(
0, n1, n2, n3, h

)T ∈ S4
1 .

Conversely, if y ∈ S4
1 and y⊥ = {x ∈ R5

1 : 〈x, y〉 = 0}, then the stereographic
projenction of y⊥∩S3 into R3 is an oriented sphere in R3 if y0 6= 0, and an oriented
plane if y0 = 0.

The hyperquadric S4
1 , endowed with the G-invariant Lorentzian metric induced

from R5
1, becomes a complete, simply connected, 4-dimensional Lorentz manifold of

constant curvature 1, which identifies with de Sitter spacetime. The Möbius group
G acts transitively on S4

1 . This action defines a K-principal bundle

$ : G → S4
1
∼= G/K, A ∈ G 7→ Aε3 = A3 ∈ S4

1 ,

where K, the isotropy subgroup at ε3, is isomorphic to identity component of
SO(3, 1), K ∼= SO0(3, 1).
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2.3. Surface theory in Möbius space. Let M be an oriented surface and let
f : M → S3 be a smooth conformal immersion. Let U be a open subset of M .
A Möbius frame field along f is a map B : U → G such that f(p) = [B0(p)], for
all p ∈ U . Let β = (βi

j) = B∗ω denote the pullback by B of the Maurer–Cartan
form ω = (ωi

j) of G. Any other Möbius frame field on U is given by B̃ = BX,
where X : U → G0. Under this change of frame, the pullback of ω transforms by
B̃∗ω = X−1BX + X−1dX.

A first order frame field along f is a Möbius frame field B along f for which

β3
0 = 0, β1

0 ∧ β2
0 > 0.

First order frame fields exist locally about any point of M .
Exterior differentiation of β3

0 = 0 and use of Cartan’s Lemma yield

β3
1 = `11β

1
0 + `12β

2
0 , β3

2 = `12β
1
0 + `22β

2
0 ,

for smooth functions `11, `12 and `22. The 2-form given by

Ωf =
(

1
4
(`11 − `22)2 + `212

)
β1

0 ∧ β2
0

is independent of first order frame field B along f , and hence globally defined on
M . The 2-form Ωf is called the conformal area element of f . A point p ∈ M is an
umbilic point of f if Ωf (p) = 0 (see [9]) .

A Möbius frame field B along f is a central frame field if there exist smooth
functions p1, p2, p3, q1, q2 : U → R such that β = (βi

j) = B−1dB takes the form



−2q2β
1
0 + 2q1β

2
0 p1β

1
0 + p2β

2
0 −p2β

1
0 + p3β

2
0 0 0

β1
0 0 −q1β

1
0 − q2β

2
0 −β1

0 p1β
1
0 + p2β

2
0

β2
0 q1β

1
0 + q2β

2
0 0 β2

0 −p2β
1
0 + p3β

2
0

0 β1
0 −β2

0 0 0
0 β1

0 β2
0 0 2q2β

1
0 − 2q1β

2
0




with β1
0 ∧ β2

0 > 0; (β1
0 , β2

0) is called the central coframe of f . The existence of a
central frame field along f was proved in [9], under the assumption that f is free
of umbilic points. The smooth functions q1, q2, p1, p2, p3 form a complete system
of conformal invariants for f and satisfy the following structure equations:

dβ1
0 = −q1β

1
0 ∧ β2

0 , dβ2
0 = −q2β

1
0 ∧ β2

0 ,(2.6)
dq1 ∧ β1

0 + dq2 ∧ β2
0 = (1 + p1 + p3 + q1

2 + q2
2)β1

0 ∧ β2
0 ,(2.7)

dq2 ∧ β1
0 − dq1 ∧ β2

0 = −p2β
1
0 ∧ β2

0 ,(2.8)
dp1 ∧ β1

0 + dp2 ∧ β2
0 = (4q2p2 + q1(3p1 + p3))β1

0 ∧ β2
0 ,(2.9)

dp2 ∧ β1
0 − dp3 ∧ β2

0 = (4q1p2 − q2(p1 + 3p3))β1
0 ∧ β2

0 .(2.10)

If B is a central frame field along f and U is connected, the only other central
frame field on U is given by B̃ = (B0,−B1,−B2, B3, B4). Under this frame change,
the functions p1, p2, p3, q1, q2 transform by

q̃1 = −q1, q̃2 = −q2, p̃1 = p1, p̃2 = p2, p̃3 = p3.

Thus, there are well defined global functions j, m, w : M → R such that locally

j =
1
2
(p1 + p3), m = p2, w =

1
2
(p1 − p3).
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Remark 2.1. According to [9], a conformal immersion f : M → S3 without um-
bilic points is a Willmore surface, that is, is a critical point of the conformal area
functional

W(f) =
∫

M

Ωf ,

if and only if w = 0 on M .
An umbilic free conformal immersion f : M → S3 is isothermic, i.e., admits

conformal curvature line coordinates z = x + iy, if and only if m = 0 on M (see
[24] and Remark 6.1). In this case, the central coframe (β1

0 , β2
0) takes the form

β1
0 = eudx, β2

0 = eudy,

for a smooth function u. The function Φ = eu is called the Calapso potential of f
(see, for instance, [28], [5]). Accordingly, from (2.6) and (2.7) it follows that

q1 = e−uuy, q2 = −e−uux,(2.11)

p1 + p3 = −(1 + e−2u∆u).(2.12)

Substituting into (2.9) and (2.10) yields

d
(
e2u(p1 − p3)

)
= −e2u

{(
e−2u∆u

)
x

+ 4ux

(
1 + e−2u∆u

)}
dx

+ e2u
{
(e−2u∆u)y + 4uy(1 + e−2u∆u)

}
dy.

(2.13)

The integrability condition of (2.13) is the so-called Calapso equation,

∆
(
e−u(eu)xy

)
+ 2

(
e2u

)
xy

= 0,

which has been proved to be a completely integrable (soliton) equation [14].

2.4. Euclidean and Möbius frames.

2.4.1. Frames adapted to a surface. For a smooth immersion x : M → R3 ⊂ S3 of a
two-dimensional oriented manifold M into Euclidean space, let e = (x; e1, e2, e3) :
M → E(3) be an adapted frame field along x, that is, a lift of x to E(3), defined
by the requirements that e1, e2 are tangent to x(M), e3 is orthogonal to x(M), and
(e1, e2, e3) is a positive basis of R3. There are then unique 1-forms θ’s such that

(2.14)

dx = θ1
0e1 + θ2

0e2

de1 = θ2
1e2 + θ3

1e3

de2 = −θ2
1e1 + θ3

2e3

de3 = −θ3
1e1 − θ3

2e2,

satisfying the structure equations

(2.15)
dθ1

0 = θ2
1 ∧ θ2

0, dθ2
0 = −θ2

1 ∧ θ1
0, 0 = θ3

1 ∧ θ1
0 + θ3

2 ∧ θ2
0,

dθ2
1 = −θ3

1 ∧ θ3
2, dθ3

1 = θ2
1 ∧ θ3

2, dθ3
2 = −θ2

1 ∧ θ3
1.

By (2.4), the adapted Euclidean frame field e : M → E(3) determines a well-defined
Möbius frame field along x, that is, a smooth map A(x; e1, e2, e3) = (A0, . . . , A4) :
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M → G, such that

(2.16)

dA0 =
θ1
0√
2
A1 +

θ2
0√
2
A2

dA1 = θ2
1A2 + θ3

1A3 +
θ1
0√
2
A4

dA2 = −θ2
1A1 + θ3

2A3 +
θ2
0√
2
A4

dA3 = −θ3
1A1 − θ3

2A2, dA4 = 0.

Here, the null vector A0(p) represents x(p) in S3, the spacelike vectors Ai(p), i =
1, 2, 3, represent the oriented planes through x(p) orthogonal to ei(p), while A4(p)
is the constant vector ε4, for each p ∈ M .

2.4.2. The bundle of orthonormal frames adapted to a curve. Let c : I → R3 be a
curve, i.e., an immersion of an interval I ⊂ R in R3. Let Oc(I) be the manifold of
all (t; e1, e2, e3), where t ∈ I and e1, e2, e3 is an orthonormal basis of R3 such that
e1 = c′(t)/‖c′(t)‖. Let π : O(3) → R3 be the bundle of orthonormal frames of R3.
Then the mapping ĉ : Oc(I) → O(3) given by

ĉ(t; e1, e2, e3) = (c(t); e1, e2, e3)

is an immersion of Oc(I) into O(3) and π ◦ ĉ = c ◦ πc, where πc is the projection
πc : Oc(I) → I, (t; e1, e2, e3) 7→ t. The ei and the map c ◦ πc can be regarded as
vector valued functions on the two dimensional manifold Oc(I). Thus, there are
unique 1-forms such that

(2.17)

d(c ◦ πc) = θ1
0e1

de1 = θ2
1e2 + θ3

1e3

de2 = −θ2
1e1 + θ3

2e3

de3 = −θ3
1e1 − θ3

2e2,

satisfying the structure equations

(2.18)
dθ1

0 = 0, 0 = θ2
1 ∧ θ1

0, 0 = θ3
1 ∧ θ1

0,

dθ2
1 = −θ3

1 ∧ θ3
2, dθ3

1 = θ2
1 ∧ θ3

2, dθ3
2 = −θ2

1 ∧ θ3
1.

On the corresponding space of adapted Möbius frames A = (A0, . . . , A4) we have
the equations

(2.19)

dA0 =
θ1
0√
2
A1

dA1 = θ2
1A2 + θ3

1A3 +
θ1
0√
2
A4

dA2 = −θ2
1A1 + θ3

2A3

dA3 = −θ3
1A1 − θ3

2A2, dA4 = 0.
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3. Marginally outer trapped surfaces

Given a 2-dimensional connected oriented manifold M , let γ : M → S4
1 be a

spacelike immersion of M into de Sitter spacetime and denote by gγ = γ∗〈 , 〉 the
Riemannian metric induced on M by γ. If TS4

1 denotes the tangent bundle of S4
1 ,

the bundle γ∗(TS4
1) induced by γ over M splits into the direct sum

γ∗(TS4
1) = T (γ)⊕N (γ),

where T (γ) = dγ(TM) is the tangent bundle of γ and N (γ) its normal bundle. For
each p ∈ M , the two-dimensional normal space N (γ)p is timelike and admits two
future-directed null direction orthogonal to M . Actually, by possibly passing to a
suitable covering of M , we may assume that there is a basis {L0, L4} of smooth
future-directed null sections of N (γ). Thus,

N (γ) = N0 ⊕N4,

where N0 and N4 are null subbundle, trivialized by L0 and L4, respectively.

Remark 3.1. From the viewpoint of Möbius geometry, γ : M → S4
1 can be inter-

preted as a 2-parameter family of oriented spheres in S3, known in the classical
literature as a sphere congruence.

Definition 3.2. An adapted frame field along a sphere congruence γ is a smooth
map A : U ⊂ M → G, defined on an open subset U ⊂ M , such that

(1) γ = $ ◦A = A3;
(2) dA3|p ≡ 0 mod (A1(p), A2(p)), for all p ∈ U .

In particular, A0 and A4 are local sections of N0 and N4, respectively.

Adapted frame fields can be defined about every point of M . For any adapted
frame field A : U → G, we let α = (αi

j) = A∗ω. It follows from the definition that

(3.1) α3
0 = α0

3 = 0.

Thus

(3.2) α =




α0
0 α1

4 α2
4 0 0

α1
0 0 −α2

1 −α3
1 α1

4

α2
0 α2

1 0 −α3
2 α2

4

0 α3
1 α3

2 0 0
0 α1

0 α2
0 0 −α0

0




.

For an adapted frame A, the induced metric

gγ = (α3
1)

2 + (α3
2)

2,

so that α3
1, α3

2 is an orthonormal coframe field for gγ on M . From the structure
equations, we have

dα3
1 = α2

1 ∧ α3
2, dα3

2 = −α2
1 ∧ α3

1.

Thus α2
1 is the Levi-Civita connection form of gγ with respect to α3

1, α3
2.

Any other adapted frame field along γ on U is given by

Â = AL(r, a),
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where L(r, a) : U → K1 ⊂ G0 is any smooth map into the subgroup

K1 =





L(r, a) =




r−1 0 0 0
0 a 0 0
0 0 1 0
0 0 0 r


 : r > 0, a = (ai

j) ∈ SO(2)





.

Then
α̂ = L(r−1, aT )α L(r, a) + L(r−1, aT ) dL(r, a),

so that,

(3.3)

α̂0
0 = α0

0 − r−1dr
[

α̂3
1

α̂3
2

]
= aT

[
α3

1

α3
2

]

[
α̂1

0

α̂2
0

]
=

1
r
aT

[
α1

0

α2
0

]

[
α̂1

4

α̂2
4

]
= raT

[
α1

4

α2
4

]

In particular,
α̂3

1 ∧ α̂3
2 = α3

1 ∧ α3
2.

Thus M inherits from S4
1 an orientation defined by the volume form ΩM , locally

given by α3
1 ∧ α3

2.

Definition 3.3. A smooth map f : M → S3 is an envelope of a spacelike immersion
(sphere congruence) γ : M → S4

1 if, for any lift F : M → L+ ⊂ R5
1, such that

f = [F ], we have
〈F, γ〉 = 0, 〈dF, γ〉 = 0,

at every point of M .

Remark 3.4. This amounts to saying that γ assigns to each point p ∈ M an oriented
2-sphere of S3 which has first order contact with f at f(p) (cf. [21] for more details).

If γ : M → S4
1 is a sphere congruence and A : M → G is an adapted frame field

along γ, then the two maps defined by

f : M → S3, p 7→ [A0(p)],
f̃ : M → S3, p 7→ [A4(p)],

are two envelopes of γ. In fact, A0 and A4 are lifts of f and f̃ , respectively.
Moreover, dA0 = α0

0A0+α1
0A1+α2

0A2, since α3
0 = 0, and dA4 = α1

4A1+α2
4A2−α0

0A4,
since α3

4 = α0
3 = 0, and therefore

〈A0, γ〉 = 0, 〈dA0, γ〉 = 0,

〈A4, γ〉 = 0, 〈dA4, γ〉 = 0.

The second fundamental form of the sphere congruence γ is the normal bundle
valued symmetric 2-form given by

Π = Π0 ⊗A4 + Π4 ⊗A0,

where
Πν = −〈dγ, dAν〉 = α1

να3
1 + α2

να3
2, ν = 0, 4,

is the second fundamental form of the congruence γ in the direction Aν .
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Remark 3.5. Note that Π is well-defined on M , since, according to (3.3),

Π̂0 =
1
r
Π0, Π̂4 = rΠ4.

Taking the exterior derivative of (3.1), we have

α1
0 ∧ α3

1 + α2
0 ∧ α3

2 = 0,

α1
4 ∧ α3

1 + α2
4 ∧ α3

2 = 0,

and by Cartan’s Lemma,

(3.4)
(

α1
0

α2
0

)
=

(
h0

11 h0
12

h0
12 h0

22

)(
α3

1

α3
2

)
,

(
α1

4

α2
4

)
=

(
h4

11 h4
12

h4
12 h4

22

)(
α3

1

α3
2

)
.

for smooth functions hν
ij = hν

ji, i, j = 1, 2, ν = 0, 4. Thus

Πν =
∑

i,j=1,2

hν
ijα

3
i α

3
j , ν = 0, 4

and
Π =

∑

i,j=1,2

h0
ijα

3
i α

3
j ⊗A4 +

∑

i,j=1,2

h4
ijα

3
i α

3
j ⊗A0.

The 2× 2 symmetric matrices

(3.5) h0 = (h0
ij), h4 = (h4

ij)

are the shape operator matrices of γ in the directions Aν , ν = 0, 4, relative to the
orthonormal coframe α3

1, α3
2. If Â = AL(r, a), by (3.3),

(3.6) ĥ0 = r−1aT h0a, ĥ4 = raT h4a.

The mean curvature vector of γ is half the trace of Π with respect to gγ ,

(3.7) 2H := tr Π = tr h0 A4 + tr h4 A0.

With respect to the null frame field {A0, A4}, the normal connection ∇⊥ in the
normal bundle N(γ) of γ is given by

∇⊥A0 = α0
0 ⊗A0, ∇⊥A4 = −α0

0 ⊗A4.

In particular, we have

(3.8) ∇⊥H =
[
d

(
tr h0

)− tr h0 α0
0

]
A4 +

[
d

(
trh4

)
+ trh4 α0

0

]
A0.

Definition 3.6. A spacelike immersion γ : M → S4
1 is a marginally outer trapped

surface (MOTS) if H is a section of either N0 or N4, that is, if H is proportional to
one of the elements of a basis of future-directed null sections of the normal bundle.

According to (3.7), a spacelike immersion γ is a MOTS if either tr h0|p = 0, or
trh4|p = 0. In the following, we will assume that γ is of constant type, that is,

rank hν |p = const, ν = 0, 4.

Remark 3.7. Let γ : M → S4
1 be a sphere congruence with envelopes f = [A0]

and f̃ = [A4]. Then γ can be interpreted as a spacelike normal field of the lifts
A0, A4 : M → L+ as maps into Minkowski 5-space R5

1. Let

Π3 = −〈dA0, dγ〉, Π̃3 = −〈dA4, dγ〉
denote, respectively, the second fundamental forms of A0 and A4 in the spacelike
normal direction γ = A3. If both envelopes f, f̃ are immersions, the matrices of Π3
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and Π̃3, calculated with respect to the coframes α1
0, α2

0 and α1
4, α2

4, respectively,
are given by

h3 = (h0)−1, h̃3 = (h4)−1.

Definition 3.8. (see [6], [21]) Let f = [F ] : M → S3 be a conformal immersion.
The central sphere congruence of f is the only sphere congruence (spacelike immer-
sion) ζ : M → S4

1 such that the shape operator of F in the normal direction ζ has
trace zero.

Let γ : M → S4
1 be a sphere congruence and A : M → G an adapted frame

field along γ and assume that the two envelopes f, f̃ are immersed. From the above
discussion, it follows that γ is the central sphere congruence of f = [A0] if and only
if

tr h3 = 0 ⇐⇒ tr
(
h3

)−1
= 0 ⇐⇒ trh0 = 0.

Analogously, γ is the central sphere congruence of f̃ = [A4] if and only if

tr h̃3 = 0 ⇐⇒ tr
(
h̃3

)−1

= 0 ⇐⇒ tr h4 = 0.

Moreover, γ is the central sphere congruence for both the (immersed) envelopes
f, f̃ if and only if it is minimal in S4

1 , i.e., H = 0 (see [6], [21]).

Remark 3.9. If f : M → S3 is an umbilic free conformal immersion and B =
(B0, . . . , B4) denotes a central frame field along f , it follows from the above discus-
sion that the map B3 : M → S4

1 is the central sphere congruence of f .

Example 3.10 (The central sphere congruence of surfaces in space forms). Let
f : M → M3(ε) be an umbilic free immersion and consider a principal orthonormal
frame field e : M → Kε along f with Maurer–Cartan form η = e−1de. Let a and c
be the two principal curvatures and let H = 1

2 (a + c) denote the mean curvature.
For any function g, let g1 and g2 be the functions defined by

dg = R(g1η
1
0 + g2η

2
0),

where R = 1
2 (a− c).

According to Section 2.2.1, the frame field e gives rise to a Möbius frame field
E = (E0, . . . , E4) : M → G along f : M → M3(ε) ⊂ S3. Let B = (B0, . . . , B4) be
the Möbius frame field along f defined by posing

B0 =
√

2 RE0, B1 = E1 −H1

√
2 E0,

B2 = E2 + H2

√
2 E0, B3 = E3 +

√
2 HE0,

B4 =
1
R

{
1√
2

(
H2 + H2

1 + H2
2

)
E0 −H1E1 + H2E2 + HE3 +

E4√
2

}
.

A direct calculation yields

β1
0 = Rη1

0 , β2
0 = Rη2

0 , β3
0 = 0, β3

1 = β1
0 , β3

2 = −β2
0 , β0

3 = 0

β0
0 =

1
R

[
a1β

1
0 − c2β

2
0

]
, β2

1 = − 1
2R

[
c2β

1
0 + a1β

2
0

]
,

β0
1 =

1
R

{[
1
R

(
H2

2
− aH − ε

2

)
− (H1)1 − H2a2

2R
− H2

1 −H2
2

2R

]
β1

0

+
[
H1H2

R
− (H1)2 − H2c1

2R

]
β2

0

}
,
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β0
2 =

1
R

{[
H1H2

R
+ (H2)1 − H1a2

2R

]
β1

0

+
[

1
R

(
H2

2
− cH − ε

2

)
+ (H2)2 − H1c1

2R
+

H2
1 −H2

2

2R

]
β2

0

}
,

from which follows that B is a central frame field along f : M → M3(ε) ⊂ S3;
observe, in particular, that exterior differentiation of dH = R(H1η

1
0 + H2η

2
0) gives

1
R

[
H1H2

R
− (H1)2 − H2c1

2R

]
+

1
R

[
H1H2

R
+ (H2)1 − H1a2

2R

]
= 0.

This allows to express the central sphere congruence γ = B3, as well as the set of
Möbius invariants functions q1, q2, p1, p2, p3, in terms of the metric invariants of f .

4. Classification of marginally outer trapped surfaces

Let γ : M → S4
1 be a MOTS and let f , f̃ : M → S3 be the two envelopes of

γ. As above, let h0 and h4 denote the shape operator matrices of γ. According
to whether: I) both second fundamental forms of γ vanish identically; II) one of
the two vanishes identically; or III) none of the two vanish identically and, say,
trh0 = 0, we obtain a classification of marginally outer trapped surfaces in terms
of the Möbius and the Euclidean geometry of their envelopes.

Case I: h0 = h4 = 0.
This means that γ is a fixed totally geodesic 2-sphere in S4

1 .

Case II: h0 6= 0 and h4 = 0.
There are two subcases to consider:

Subcase IIa: rankh0 = 2.
Here, from the second equation of (3.4) and the structure equations, we obtain

that dα0
0 = 0. Thus, about each p ∈ M , there is a simply connected open set

U ⊂ M and a smooth function u : U → R, so that α0
0 = du. Under a change of

adapted frame field of the form Â = AL, where L = L(eu, I2), we can make α̂0
0 = 0.

Therefore, we can always assume that there exists an adapted frame field A along
γ such that

α =




0 0 0 0 0
α1

0 0 −α2
1 −α3

1 0
α2

0 α2
1 0 −α3

2 0
0 α3

1 α3
2 0 0

0 α1
0 α2

0 0 0




.

According to the embedding (2.4) of the Euclidean group in the Möbius group, the
Maurer–Cartan equations of α amount to the structure equations of a Euclidean
frame adapted to a surface immersed in Euclidean space (see Section 2.4). The
envelope f can be seen as an immersion in Euclidean space and γ can be interpreted
as the congruence of the oriented tangent planes to f .

Subcase IIb: rankh0 = 1.
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In this case, under a change of adapted frame field as above, the connection form
can be put in the form

α =




0 0 0 0 0
α1

0 0 −α2
1 −α3

1 0
0 α2

1 0 −α3
2 0

0 α3
1 α3

2 0 0
0 α1

0 0 0 0




.

The Maurer–Cartan equations of α amount to the structure equations of the bundle
of adapted frames to a curve in Euclidean space (see Section 2.4). The envelope f
results in a space curve, that is, an immersion of an interval, I, in Euclidean 3-space.
If Of (I) denote the two-dimensional manifold of orthonormal frames adapted to
the curve f , then γ can be interpreted as the spacelike immersion of Of (I) in de
Sitter spacetime. The manifold of frames Of (I) can be visualized as a tube about
f : about each point of the curve there is a unit circle in the plane normal to the
tangent line corresponding to the possible choices of A2.

Case III: h0, h4 6= 0 and, say, tr h0 = 0, i.e. H is a section of N0.
In this case, we must have rank h0 = 2. Therefore, the envelope f is immersed

and then, according to Remark 3.7, the marginally outer trapped surface γ is the
central sphere congruence of f . Using (3.6), we can locally construct an adapted
frame field A along γ, so that

h0 =
(−1 0

0 1

)
,

that is, α3
1 = −α1

0 and α3
2 = α2

0. Moreover, there are smooth functions p1, p2, p3,
q1, q2 : U → R such that the connection form of the adapted frame becomes




−2q2α
1
0 + 2q1α

2
0 p1α

1
0 + p2α

2
0 −p2α

1
0 + p3α

2
0 0 0

α1
0 0 −q1α

1
0 − q2α

2
0 −α1

0 p1α
1
0 + p2α

2
0

α2
0 q1α

1
0 + q2α

2
0 0 α2

0 −p2α
1
0 + p3α

2
0

0 α1
0 −α2

0 0 0
0 α1

0 α2
0 0 2q2α

1
0 − 2q1α

2
0




.

If we take the viewpoint in which the envelope f is the primary object of interest,
we observe that A is a central frame field along the immersion f = [A0] : M → S3

(see Section 2.3). In particular, the volume form induced by γ can be written locally
as

ΩM = α3
1 ∧ α3

2 =
1

det(h0)
α1

0 ∧ α2
0 = −α1

0 ∧ α2
0 = −Ωf .

Moreover,

h4 =
(−p1 p2

p2 p3

)
,

from which

2H = (p3 − p1)A0.

Observe that the vanishing of H amounts to the Willmore condition p1 = p3 for
the envelope f (see Remark 2.1).
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5. MOTS with parallel mean curvature vector

In this section we give a classification of marginally outer trapped surfaces in
de Sitter spacetime under the additional condition that the mean curvature vector
field is parallel with respect to the normal connection. The corresponding cases are
indicated by A, B, and C, respectively.

Case A: h0 = h4 = 0.
As in the Case I above, γ is a fixed totally geodesic 2-sphere in S4

1 .

Case B: h0 6= 0 and h4 = 0.
There are two subcases to consider:

Subcase Ba: rankh0 = 2.
We know already that the envelope f of γ is an immersed surface in Euclidean

space and that γ is the congruence of tangent planes of such a surface. By (3.8),
the parallel condition ∇⊥H = 0 reduces to

trh0 = h0
11 + h0

22 = const.

Now, from (3.4),
(

α3
1

α3
2

)
=

1
h0

11h
0
22 − (h0

12)2

(
h0

22 −h0
12

−h0
12 h0

11

)(
α1

0

α2
0

)
,

so that the envelope f has Gauss curvature

K =
1

h0
11h

0
22 − (h0

12)2

and mean curvature

H =
h0

11 + h0
22

h0
11h

0
22 − (h0

12)2
.

This implies that
H

K
= h0

11 + h0
22 = const.

Therefore, γ can be interpreted as the tangent plane congruence of a surface im-
mersed in Euclidean space with constant ratio H/K of mean curvature to Gauss
curvature. The parallel surfaces of a minimal surface in Euclidean space are surfaces
for which H/K is constant.

Subcase Bb: rankh0 = 1.
We show that this case cannot occur. In fact, (3.4) becomes

(
α1

0

α2
0

)
=

(
k 0
0 0

)(
α3

1

α3
2

)
,

(5.1) α1
0 = kα3

1, k ∈ R \ {0}.
Moreover, up a a change of frame field, we can consider an adapted frame field so
that its connection form is

α =




0 0 0 0 0
α1

0 0 −α2
1 −α3

1 0
0 α2

1 0 −α3
2 0

0 α3
1 α3

2 0 0
0 α1

0 0 0 0




.
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The structure equations yield dα1
0 = 0 and then by (5.1),

(5.2) dα3
1 = 0 = −α3

2 ∧ α2
1.

On the other hand, differentiation of α2
0 = 0 yields α2

1 ∧ α1
0 = 0, which implies

α2
1 = q2

1α3
1, for some function q2

1 . Substituting into (5.2), we would have q2
1 = 0,

since α3
2 ∧ α3

1 6= 0, and hence α2
1 = 0. But this is in contrast with the fact that

dα2
1 = α3

2 ∧ α3
1 6= 0.

Case C: h0, h4 6= 0 and, say, tr h0 = 0, i.e. H is a section of N0.
By the discussion in Case III, γ is the central sphere congruence (conformal

Gauss map) of its immersed envelope f = [A0] : M → S3 and the adapted frame
field along γ can be suitably reduced to become the central frame field along f .
Accordingly, the condition ∇⊥H = 0 takes the form

(5.3) d(p1 − p3) + 2(p1 − p3)(−q2α
1
0 + q1α

2
0) = 0.

We claim that when γ is a marginally outer trapped surfaces with non-zero paral-
lel mean curvature vector field, then f is locally Möbius equivalent to a non-zero
constant mean curvature surface in some space form embedded in the conformal
3-sphere.

The claim will follow from the discussion in the next section.

6. Conformal Gauss map and holomorphic differentials

Let γ be a marginally outer trapped surface as in Case III. Then γ is the central
sphere congruence of its envelope f : M → S3, which is an umbilic free immersion
into Möbius space. Moreover, an adapted frame field A along γ can be chosen so
that A be the central frame field along f .

We start by making some general consideration about f . The metric I = (α1
0)

2+
(α2

0)
2 and the area element α1

0 ∧ α2
0 induced by A determine on M an oriented

conformal structure and hence, by the existence of isothermal coordinates, a unique
compatible complex structure which makes M into a Riemann surface. In terms of
the central frame field A, the complex structure is characterized by the property
that the complex-valued 1-form

(6.1) ω = α1
0 + iα2

0

is of type (1, 0). Moreover, the differential form

H = (α1
0 + iα2

0)
2

is a Möbius-invariant quadratic form of type (2, 0).

Remark 6.1. We recall that a conformal immersion f : M → S3 is isothermic if
there exist a holomorphic quadratic differential D on M and a real-valued smooth
function r : M → R such that H = rD. It is known that f is isothermic if and only
if p2 vanishes identically on M (see [24]).

Definition 6.2. As above, let f : M → S3 be a conformal immersion free of
umbilic points. The complex-valued quartic differential form given by

(6.2) Qf = Fω4, F :=
1
2
(p1 + p3)− ip2,

and the complex-valued quadratic differential form given by

(6.3) Pf = Gω2, G := p1 − p3
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are globally defined on the Riemann surface M .

Remark 6.3. The quartic form Qf was considered by Bryant [9] for Willmore im-
mersions and by Chern [15], [16] for minimal immersions in Sn.

Lemma 6.4. The quartic differential Qf is holomorphic if and only if

(6.4) dF ∧ ω = −4(α0
0 − iα2

1)F ∧ ω.

Proof. Taking the exterior derivative of (6.1) and using the structure equations give

(6.5) dω = (α0
0 − iα2

1) ∧ ω.

Let z be a local complex coordinate on M , so that

(6.6) ω = λdz, λ 6= 0.

Then, locally,
Qf = Fλ4(dz)4.

Exterior differentiation of (6.6) and use of (6.5) give

(6.7)
(
dλ− λ(α0

0 − iα2
1)

) ∧ ω = 0.

By (6.7), it is easily seen that condition (6.4) holds if and only if

d(Fλ4) ∧ ω = λ4
[
dF + 4(α0

0 − iα2
1)F

] ∧ ω = 0,

that is, if and only if ∂
∂z̄ (Fλ4) = 0. ¤

We are now in a position to prove the following.

Theorem 6.5. In Case III, a marginally outer trapped surface γ : M → S4
1 has

parallel mean curvature vector field if and only if the quartic form Qf is holomor-
phic.

Proof. It suffices to prove that (6.4) is equivalent to the H-parallel condition (5.3).
Writing out the left and right hand side of (6.4) using the structure equations
(2.6)-(2.10), we get

dF ∧ ω = −1
2
(dp1 − dp3) ∧ α1

0 +
i

2
(dp1 − dp3) ∧ α2

0

+ (4q2p2 + q1(3p1 + p3))α1
0 ∧ α2

0 − i(4q1p2 − q2(p1 + 3p3))α1
0 ∧ α2

0

and

−4(α0
0 − iα2

1)F ∧ ω = [2q1(p1 + p3) + 4q2p2 + i(2q2(p1 + p3)− 4q1p2)] α1
0 ∧ α2

0.

Thus, (6.4) is equivalent to

−1
2
(dp1 − dp3) ∧ α1

0 + (q1p1 − q1p3)α1
0 ∧ α2

0 = 0,

1
2
(dp1 − dp3) ∧ α2

0 + (q2p3 − q2p1)α1
0 ∧ α2

0 = 0,

which in turn is equivalent to the condition ∇⊥H = 0,

d(p1 − p3) + 2(p1 − p3)(−q2α
1
0 + q1α

2
0) = 0,

as claimed. ¤

As a particular case, we obtain a well-known result of Bryant [9].
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Corollary 6.6. In Case III, if a marginally outer trapped surface γ : M → S4
1

has zero mean curvature vector, then the envelope f is a Willmore surface and the
quartic form Qf is holomorphic.

The holomorphicity of Qf implies that of Pf .

Lemma 6.7. If the quartic differential Qf is holomorphic, then the quadratic dif-
ferential Pf defined in (6.3) is also holomorphic.

Proof. First, observe that the exterior derivative of ω can be written as

(6.8) dω = (q1α
2
0 − q2α

1
0) ∧ ω.

By reasoning as in the proof of Lemma 6.4, the quadratic differential Pf is holo-
morphic if and only if

(6.9) dG ∧ ω = −2(q1α
2
0 − q2α

1
0)G ∧ ω.

The claim follows from the condition dG + 2G(−q2α
1
0 + q1α

2
0) = 0, which expresses

the holomorphicity of Qf . ¤

Next, we collect two additional useful results.

Lemma 6.8. In case III, if γ : M → S4
1 is a marginally outer trapped surface with

non-zero parallel mean curvature vector, then its enveloping surface f : M → S3 is
isothermic.

Proof. Taking the exterior derivative of (5.3) and using the structure equations, we
get

0 = 2p2(p1 − p3)α1
0 ∧ α2

0,

which implies p2 = 0, since p1 − p3 6= 0 by hypothesis. ¤

Lemma 6.9. If Qf = Fω4 is holomorphic and Pf = Gω2 6= 0, then

F = cG2,

for a real constant c.

Proof. Under the given hypotheses, it follows from Lemma 6.8 that p2 = 0 and
then that condition (6.4) can be written

dF + 4µF ≡ 0, mod ω,

where µ = q1α
2
0 − q2α

1
0 and dω = µ ∧ ω. Moreover, condition (6.9) expressing that

Pf is holomorphic can be written

dG + 2µG ≡ 0, mod ω.

Actually, dG + 2µG = 0. It then follows that

d

(
F

G2

)
≡ 0, mod ω.

This proves that the real-valued function F/G2 is holomorphic, and hence a con-
stant function, as claimed. ¤
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6.1. MOTS, CMC surfaces in space forms, and T-transforms. The previous
results are now applied to prove our claim about marginally outer trapped surfaces
with non-zero mean curvature vector.

Theorem 6.10. In Case III, if γ : M → S4
1 is a MOTS with non-zero parallel

mean curvature vector, then its enveloping surface f : M → S3 is isothermic and
its Calapso potential, Φ = eu, satisfies

(6.10) ∆u = ce−2u − e2u (c ∈ R)

with Pf = kdz2, where k ∈ R \ {0} and z = x + iy is an isothermic chart on M .

Proof. By Lemma 6.8, the envelope f is an isothermic immersion. Let z = x + iy :
U ⊂ M → C be an isothermic chart, so that the central coframe (α1

0, α
2
0) takes the

form α1
0 = Φdx and α2

0 = Φdy, where Φ = eu is the Calapso potential (see Remark
2.1). From (2.11) and (2.12) we get

Qf =
1
2
(p1 + p3)ω4 = je4u(dz)4 = −1

2
(1 + e−2u∆u)e4u(dz)4.

Since Qf is holomorphic,
(1 + e−2u∆u)e4u = c,

for a constant c ∈ R, that is

∆u = ce−2u − e2u.

Moreover, since the quadratic differential

Pf |U = (p1 − p3)ω2 = (p1 − p3)e2udz2

is also holomorphic, (p1 − p3)e2u = k, for a non-zero constant k. ¤

Remark 6.11. Let f : M → S3 be an umbilic free isothermic immersion with
Calapso potential Φ = e2u and let B be a central frame field along f . By the previ-
ous discussion, we know that the map γ := B3 : M → S4

1 is a spacelike immersion
into de Sitter spacetime which coincides with the central sphere congruence of f .
The mean curvature vector field of γ is H = (p3 − p1)B0, so that γ is a MOTS.

If we now assume that Φ = e2u satisfy the equation (6.10), then the right hand
side of (2.13) vanishes identically, which implies that p1−p3 = ke−2u, for a constant
k ∈ R. A direct computation shows that p1 − p3 = ke−2u satisfies the equation

d(p1 − p3) + 2(p1 − p3)(−q2α
1
0 + q1α

2
0) = 0.

This expresses the fact that the central sphere congruence of f , γ = B3, has parallel
mean curvature vector, or equivalently, that the quartic form Qf is holomorphic.
If k 6= 0, the central sphere congruence γ is a MOTS with non-zero parallel mean
curvature vector. If k = 0, f is Willmore and the mean curvature vector field of γ
vanishes identically.

Definition 6.12. According to [11] (see also [20]), two isothermic immersions f, f̃
which are not Möbius equivalent are said to be T -transforms of each other if they
have the same Calapso potential. In [24], it has been shown that T -transforms may
be viewed as second order conformal deformation in the sense of Cartan.

Let M3(ε), ε = −1, 0, 1, denote the 3-dimensional space form of constant sec-
tional curvature ε, conformally embedded into Möbius space S3.
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Theorem 6.13 ([11], [12], [20]). Let f : M → S3 be an umbilic free, conformal,
isothermic immersion. Then the Calapso potential of f , Φ = eu, satisfies the
equation

∆u = ce−2u − e2u (c ∈ R)

if and only if it is locally Möbius equivalent to a constant mean curvature (CMC)
immersion into some M3(ε).

A classical result of G. Thomsen [32] asserts that a conformal immersion into S3 is
Willmore and isothermic if and only if it is locally Möbius equivalent to a minimal
immersion into some 3-dimensional space form in Möbius space S3. Therefore,
CMC surfaces in space forms are T -transforms of minimal surfaces.

This, combined with Theorem 6.10 and with Theorem 3.7 of [12], gives the
following.

Corollary 6.14. In Case III, if γ : M → S4
1 is a marginally outer trapped surfaces

with non-zero parallel mean curvature vector, then its enveloping surface f : M →
S3 is the T-transform of an isothermic Willmore immersion. Moreover, if z =
x + iy : U → C is a local isothermic chart and Φ = eu is the Calapso potential of
f , which satisfies

∆u = ce−2u − e2u, s ∈ R, and Pf = kdz2, k ∈ R \ {0},

then:

(1) if c − k2 > 0, f is Möbius equivalent to a CMC isothermic immersion
f ′ : M → M3(1) whose fundamental forms are given by

If ′ = (c− k2)e−2udzdz̄, IIf ′ =
√

c− k2

(
−ke−2udzdz̄ +

1
2
(dz2 + dz̄2)

)
.

(2) if c − k2 < 0, f is Möbius equivalent to a CMC isothermic immersion
f ′ : M → M3(−1) whose fundamental forms are given by

If ′ = (k2 − c)e−2udzdz̄, IIf ′ =
√

k2 − c

(
−ke−2udzdz̄ +

1
2
(dz2 + dz̄2)

)
.

(3) if c − k2 = 0, f is Möbius equivalent to a CMC isothermic immersion
f ′ : M → M3(0) whose fundamental forms are given by

If ′ = 4L2e−2udzdz̄, IIf ′ = 2L

(
−ke−2udzdz̄ +

1
2
(dz2 + dz̄2)

)
,

for a positive constant L > 0.

This proves the claim in Case C.

Remark 6.15. As a by-product of the above discussion, it follows that the quartic
differential Qf of an umbilic free conformal immersion f : M → S3 is holomorphic
is and only if f is locally Möbius equivalent to a Willmore surface or to a CMC
surface in some space form. According to Bohle–Peters [7], [8], this result was
pointed out by K. Voss in a talk at Oberwolfach.
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7. MOTSs from CMC canal surfaces in space forms

According to Remark 6.11, examples of MOTSs with parallel mean curvature
vector can be obtained as central sphere congruences of umbilic free isothermic sur-
faces whose Calapso potential satisfies equation (6.10). In this section we discuss a
significant class of such isothermic surfaces, namely the class of CMC canal surfaces
in space forms. Their relationship with elastic curves in 2-dimensional space forms
is also discussed.

7.1. Isothermic canal surfaces. Let f : M → S3 be an umbilic free isothermic
immersion with Calapso potential Φ = eu. According to [27] (see also [28], [5]), if
z = x + iy is an isothermic chart, then f is called canal if Φx ≡ 0 (or Φy ≡ 0). If
Φ is constant, then f is called a Dupin surface.

If f is an isothermic canal surface, from the structure equations (2.9) and (2.10),
it follows that

(7.1) w = e−2u

(
1
2
ü +

1
2
u̇2 + m + e2u

)
,

for a constant m ∈ R, where u̇ denotes the derivative with respect to y.
It is a classical result of Darboux and Vessiot that isothermic canal surfaces in

Möbius space are Möbius equivalent to surfaces of revolution, cones, or cylinders
in Euclidean space [33], [21]. More precisely, by arguing as in [27], one can prove
the following.

1. If m = 0, then f is Möbius equivalent to a cylinder

(x, y) 7→ α(y) + xn ∈ R3

where n is a unit vector and α is a curve in the plane through the origin orthogonal
to n. The arclength and the (geodesic) curvature of α are given by

s =
√

2y, κ(s) = −
√

2Φ(s/
√

2).

2. If m > 0, then f is Möbius equivalent to a cone

(x, y) 7→ e−
√

2mxα(y) ∈ R3

with vertex in the origin and directrix curve α which takes values in the unit 2-
sphere S2. The arclength and the (geodesic) curvature of α are given by

s =
√

2my, κ(s) =
√

2/mΦ(s/
√

2m).

3. If m < 0, then f is Möbius equivalent to a surface of revolution

(x, y) 7→ (−a(y) sin
√−2mx,−b(y) cos

√−2mx, b(y))T ∈ R3,

where the profile curve α : y → (0, a(y), b(y))T , a > 0, takes values in the half plane

H2 = {(x1, x2, x3)T ∈ R3 : x1 = 0, x2 > 0}.
If H2 is endowed with the hyperbolic metric ds2 = (x2)−2(dx2

2+dx2
3), the arclength

and the (geodesic) curvature of α are given by

s =
√−2my, κ(s) =

√
−2/mΦ(−s/

√−2m).
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7.2. Elastic curves in 2-dimensional space forms. Following [23], we briefly
recall the notion of an elastic curve. Let M2(ε), ε = −1, 0, 1, be a complete,
simply connected, 2-dimensional space form of constant sectional curvature ε. On
the space of immersed curves in M2(ε), consider the functional

(7.2) α 7→
∫

(κ2 + λ)ds,

where s denotes the arclength, κ the geodesic curvature of the curve α, and λ is a
constant. The Euler-Lagrange equation of (7.2) is

(7.3) 2κss + κ3 + 2κε− λκ = 0.

A unit-speed curve α is called an elastica (or an elastic curve) if it satisfies equation
(7.3) for some value of λ, and a free elastica (or a free elastic curve) if it satisfies
(7.3) with λ = 0. Multiplication of (7.3) by 2κs and integration yields

(7.4) (κs)2 +
1
4
κ4 + (ε− λ/2)κ2 = A, (A undetermined constant),

Making the change of variable u = κ2, one obtains an equation of the form (us)2 =
P (u), P a polynomial of degree three, which can be solved by standard techniques
in terms of elliptic functions.

Remark 7.1 (Elasticae, motion of curves, and the mKdV equation). Let R3(ε),
ε = −1, 0, 1, be R3 with the scalar product

(7.5) 〈x, y〉ε = εx1y1 + x2y2 + x3y3 = xTgεy,

where the orientation is defined by requiring dx1 ∧ dx2 ∧ dx3 > 0. If ε = −1, we fix
a time-orientation by saying that a timelike or lightlike vector x is future-directed if
x1 > 0. Let Gε be the identity component of the pseudo-orthogonal group of (7.5).
The group Gε can be identified with the manifold of all oriented basis (e1, e2, e3) of
R3(ε) such that 〈ei, ej〉ε = gε

ij . If ε = −1, e1 is required to be future-directed.
Let M2(ε), ε = −1, 0, 1, be the 2-dimensional Riemannian space forms of con-

stant sectional curvature ε, defined by

M2(−1) =
{
x ∈ R3(−1) : 〈x, x〉−1 = −1, x1 > 0

}
,

M2(0) =
{
x ∈ R3(0) : x1 = 1

}
,

M2(−1) =
{
x ∈ R3(1) : 〈x, x〉1 = 1

}
,

Let α : I → M2(ε) be a unit-speed regular curve defined on an open interval I ⊂ R.
For each s ∈ I, let t(s) = α′(s) and let n(s) be the unique unit vector of R3(ε) such
that (α(s), t(s),n(s)) ∈ Gε. The Frenet frame along α is the map

Γ : I → Gε, s 7→ (α(s), t(s),n(s)),

which satisfies the Frenet–Serret equation

(α′, t′,n′) = (α, t,n)




0 −ε 0
1 0 −κ
0 κ 0


 ,

where κ : I → R is the geodesic curvature of α.
As shown by Goldstein and Petrich in [18] (see also [25] for the generalization to

2-dimensional space forms), the modified Korteweg–de Vries (mKdV) equation

(7.6) κt +
3
2
κ2κs + κsss = 0
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can be interpreted as the evolution equation of the geodesic curvature of a curve
propagating in M2(ε) according to the equation

(7.7)
∂

∂t
α(s, t) = (ε− κ2/2) t− κs n.

In fact, if Γ( ·, t) : I → Gε is the Frenet frame of the curve α( ·, t) : I → M2(ε),
writing Θ = Γ−1dΓ, we have

Θ =




0 −ε 0
1 0 −κ
0 κ 0


 ds +




0 −ε(ε− κ2/2) εκs

ε− κ2/2 0 κss − κ(ε− κ2/2)
−κs −κss + κ(ε− κ2/2) 0


 dt.

The integrability condition dΘ + Θ∧Θ = 0 amounts to (7.6). Conversely, if κ(s, t)
is a solution of (7.6) and Θ is defined as above, then dΘ+Θ∧Θ = 0, which implies
the existence a curve motion satisfying (7.7).

The curves that move under (7.7) retaining their shape are called congruence
curves. They correspond to the solutions of (7.6) which are in the form of a traveling
wave, so κ(s, t) = κ(x), where x = s + (ε− v)t, for some constant v, and

κ′′′ +
3
2
κ2κ′ + (ε− v)κ′ = 0.

Integrating twice, we find

(κ′)2 +
1
4
κ4 + (ε− v)κ2 + Bκ = A,

where A, B are two constants of integration. Comparing with (7.4), we see that,
for B = 0 and v = λ/2, the congruence curves of the motion (7.7) are elastic curves
in M2(ε).

7.3. CMC canal surfaces in space forms. By the above cited Theorem 6.13, an
umbilic free, isothermic, canal surface f : M → S3 is Möbius equivalent to a CMC
immersion in some space form M3(ε) ⊂ S3 if and only if the Calapso potential of
f , Φ = eu, satisfies the equation

(7.8) ü = ce−2u − e2u,

for a constant c ∈ R. From (7.1) and (7.8), we have

(7.9) w = e−2u

(
1
2
u̇2 +

c

2
e−2u +

1
2
e2u + m

)
.

On the other hand, using the condition (7.8), it follows from the structure equation
(2.13) that w = ke−2u, k ∈ R. This, combined with (7.9), gives

(7.10)
1
2
u̇2 +

c

2
e−2u +

1
2
e2u = h, (h a constant),

where h, k and m are related by k = h+m. This implies that the Calapso potential
Φ = eu satisfies the equation

(7.11) Φ̇2 + Φ4 − 2hΦ2 + c = 0.

We have then the following classification of CMC canal surfaces:

1. If m = 0, then f is Möbius equivalent to a cylinder

(x, y) 7→ α(y) + xn ∈ R3
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where n is a unit vector and α is a curve in the plane through the origin orthogonal
to n. Using the fact that

s =
√

2y, κ(s) = −
√

2Φ(s/
√

2),

equation (7.11) becomes

(κs)2 +
1
4
κ4 − kκ2 = −c, (c constant),

which implies that α is an elastic curve in R2, possibly a free elastic one, with
λ = 2k, A = −c.

2. If m > 0, then f is Möbius equivalent to a cone

(x, y) 7→ e−
√

2mxα(y) ∈ R3

with vertex in the origin and directrix curve α which takes values in the unit 2-
sphere S2. Using the fact that

s =
√

2my, κ(s) =
√

2/mΦ(s/
√

2m),

equation (7.11) becomes

(κs)2 +
1
4
κ4 − (k −m)

m
κ2 = − c

m2
, (c constant),

which implies that α is an elastic curve in S2, possibly a free elastic one, with
λ = 2k/m, A = −c/m2.

3. If m < 0, then f is Möbius equivalent to a surface of revolution

(x, y) 7→ (−a(y) sin
√−2mx,−b(y) cos

√−2mx, b(y))T ∈ R3

where the profile curve α : y → (0, a(y), b(y))T , a > 0, takes values in the hyperbolic
plane H2. Using the fact that

s =
√−2my, κ(s) =

√
−2/mΦ(−s/

√−2m),

equation (7.11) becomes

(κs)2 +
1
4
κ4 +

(k −m)
m

κ2 = − c

m2
, (c constant),

which implies that α is an elastic curve in H2, possibly a free elastic one, with
λ = −2k/m, A = −c/m2.
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[2] L. J. Aĺıas, B. Palmer, Deformations of stationary surfaces, Class. Quantum Gravity 14
(1997), 2107–2111.

[3] L. Andersson, M. Eichmair, J. Metzger, Jang’s equation ad its applications to marginally
trapped surfaces (2010), arXiv:1006.4601.

[4] L. Andersson, M. Mars, W. Simon, Stability of marginally outer trapped surfaces and exis-
tence of marginally outer trapped tubes, Adv. Theor. Math. Phys. 12 (2008), 853–888.

[5] H. Bernstein, Non-special, non-canal isothermic tori with spherical lines of curvature, Trans.
Amer. Math. Soc. 353 (2001), 2245–2274.

[6] W. Blaschke, Vorlesungen über Differentialgeometrie und geometrische Grundlagen von
Einsteins Relativitätstheorie, B. 3, bearbeitet von G. Thomsen, J. Springer, Berlin, 1929.

[7] C. Bohle, G. P. Peters, Bryant surfaces with smooth ends, Comm. Anal. Geom. 17 (2009),
no. 4, 587–619; arXiv:math/0411480v2.



24 EMILIO MUSSO AND LORENZO NICOLODI

[8] C. Bohle, Constant mean curvature tori as stationary solutions to the Davey–Stewartson
equation, Math. Z. 217 (2012), 489–498.

[9] R. L. Bryant, A duality theorem for Willmore surfaces, J. Differential Geom. 20 (1984),
23–53.

[10] R. L. Bryant, P. A. Griffiths, Reduction for constrained variational problems and
∫

1
2
k2ds,

Amer. J. Math. 108 (1986), 525–570.
[11] P. Calapso, Sulle trasformazioni delle superficie isoterme, Ann. Mat. Pura Appl. 24 (1915),

11–48.
[12] D. Carf̀ı, E. Musso, T-transformations of Willmore isothermic surfaces, Rend. Sem. Mat.

Messina Ser. II, suppl. (2000), 69–86.
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