
22 January 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Inter-function anomaly analysis for correct SDN/NFV deployment / Basile, Cataldo; Canavese, Daniele; Lioy, Antonio;
Pitscheider, Christian; Valenza, Fulvio. - In: INTERNATIONAL JOURNAL OF NETWORK MANAGEMENT. - ISSN 1055-
7148. - STAMPA. - 26:1(2016), pp. 25-43. [10.1002/nem.1917]

Original

Inter-function anomaly analysis for correct SDN/NFV deployment

Publisher:

Published
DOI:10.1002/nem.1917

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2623293 since: 2021-01-27T17:58:23Z

John Wiley & Sons



INTERNATIONAL JOURNAL OF NETWORK MANAGEMENT
Int. J. Network Mgmt XXXX; 00:1–19
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nem

Inter-function Anomaly Analysis
for correct SDN/NFV deployment

Cataldo Basile, Daniele Canavese, Antonio Lioy,
Christian Pitscheider and Fulvio Valenza

Dipartimento di Automatica e Informatica, Politecnico di Torino, Torino, Italy
(e-mail: {cataldo.basile, daniele.canavese, antonio.lioy, christian.pitscheider, fulvio.valenza}@polito.it)

SUMMARY

Implementing the security of a network consists in individually configuring several network functions.
Network functions are configured by means of a policy composed of a set of rules but their actual behaviour
is influenced by the other policies implemented by all the other network functions around them. This
paper proposes a formal model that can be used to detect inter-function anomalies, which are defined
as the interferences between two or more functions deployed in the same network. We have proved with
experiments that the proposed model is fast and scalable.
Copyright c© XXXX John Wiley & Sons, Ltd.
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1. INTRODUCTION

The increasing complexity and heterogeneity of modern distributed systems is mining their own
security. The impact of the ‘human error factor’ on continuously growing networks is certainly not
negligible, as several studies have proved. Nearly 60% of the security breaches which have occurred
in 2015 are attributable to errors made by system and network administrators [1].

This situation is exacerbated by the recent growth in virtualization based technologies which
increase the complexity of networks, especially software-defined networking (SDN) and network
functions virtualization (NFV). NFV decouples software implementation of middleboxes (e.g.,
router, firewall, NAT) from the compute, storage and networking resources through a virtualization
layer. A middlebox is defined as any intermediary device that performs network or security functions
as well as the normal IP router operations on the datagram path between a source host and
destination host [2]. In this context, the ETSI standards organization is working on the definition of
an architecture and the requirements for the deployment of any virtual network functions (VNFs).

Currently the majority of the network functions that enforce security policies are configured
by making use of low level function-specific parameters, which are set in a manual fashion.
Even though some approaches have been proposed for configuring middleboxes through a unified
interface in a VNF architecture [3], these works need anyway the function-specific parameters
from users and overlook the special requirements in configuring security functions. As it is already
envisioned by the I2NSF [4] working group in ETSI, the configuration of single VNFs is not
enough to enforce security in the whole network, because administrators have to consider also the
interactions between different security controls in distributed environment for making the network
secure.
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However, unless a system is really simple, an administrator cannot actually evaluate the global
effect of the enforced security policy, which is obtained by the configuration of all the functions
deployed in the network. In other words, this important task is performed without a holistic view
of the overall security requirements, and this increases the chance of misconfigurations. In addition,
the security administrators must deal with the highly dynamic nature of these deployments, hence
worsening the problem even further. Indeed, VNFs can run on a range of industry standard server
hardware, and can be moved and instantiated at any locations in the network, without the need of
new equipment installation [5].

The typical approach is trial-and-error. When one or more misconfigurations are reported, the
administrators correct them by creating ad-hoc rules and repeat the process until (hopefully) no more
errors are present. This methodology, although simple, is only a temporary palliative since it can
produce serious maintenance problems in the future. Guaranteeing the absence of misconfigurations
is however nearly impossible without an appropriate software tool. It is therefore highly desirable to
have a practical solution to evaluate the policy actually enforced which is based on sound theoretical
foundations.

In the last few years, several authors have tried to identify potential misconfigurations by detecting
and resolving policy conflicts. These works have classified and detected conflicts in the same device
(intra-policy) or conflicts between homogeneous devices, e.g., two firewalls or two cascading IPsec
devices (inter-policy) [6, 7]. Nevertheless, the complexity of real systems is not self-contained,
as each network function may affect the behaviour of other functions in the same network. For
instance, a firewall may block some encrypted communication channels or a network address
translation may alter the decision of several packet filters. For this reason, it is indispensable to
help the administrators by supporting, in a general analysis framework, different types of functions
(e.g., firewalls, content filters, channel protection devices, logging, monitoring, and so on) and their
interactions.

In this paper we propose a novel approach that is able to analyse a SDN/NFV scenario when
heterogeneous networking devices and technologies are used. Our approach also works if different
types of policy-enabled VNFs are deployed. Our solution is both easy to extend to other function
types and fast to compute, as our performance tests have proved. The main contribution of this
paper is a formal model that allows the identification of inter-function anomalies, which are defined
as the interferences that originate when two or more functions are deployed and configured in the
same network. These anomalies need to be carefully analysed by administrators, as they usually
hide misconfigurations. Inter-function anomaly types have been classified and described. These
anomalies are characterized by the correlations among rules belonging to the policies of different
network functions types. We have focused our attention on the modifications that one network
function applies to the packets before they are processed by another network function. For instance,
these modifications include changes in the packet header, encryption of the payload, and tunneling
(i.e., new header addition). Indeed, the most difficult part of the algorithm has been to model the
transformations without simulating the changes. To the best of our knowledge, this is the first model
that allows the anomaly analysis of non-homogeneous functions and, in particular, of those functions
that operate modifications on the packets.

The paper is structured as follows. Section 2 presents the related work. Section 3 starts to
introduce our approach by looking at a simple reference example. Section 4 describes how our
approach can be applied in the NFV architecture, while Sections 5, 6 and 7 present the formal
definition of policy-enabled devices, our analysis model and the model for the transformation
resolution, respectively. Finally, Section 8 contains the performance evaluation of our tool and
Section 9 presents the conclusions.

2. RELATED WORK

NFV and SDN paradigms allow multiple applications and users to program the same physical
network simultaneously, at the cost of potentially creating conflicting rules that alter the intended
behaviour of one or more applications. In recent years, a significant amount of investigations have
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INTER-FUNCTION ANOMALY ANALYSIS FOR CORRECT SDN/NFV DEPLOYMENT 3

addressed conflict analysis and configuration modelling. Some previous research has focused on
conflict analysis for specific middleboxes, while, on the other hand, a new branch of research has
focused on OpenFlow misconfiguration and analysis of network invariants. However, there are not
many works that analyse the problem of inter-function anomalies.

2.1. Intra-function conflict analysis

The most prominent work on firewall conflict analysis has been performed by Al-Shaer et al.,
Yuan et al., Liu et al., and Cuppens et al. The anomaly analysis of filtering policies in distributed
scenarios was first introduced by Al-Shaer and Hamed [6]. The authors presented a classification
scheme for packet filter rule relations, based on which they defined four types of intra-policy rule
anomalies (shadowing, correlation, generalisation and redundancy) and five intra-policy anomalies
(shadowing, spuriousness, redundancy, correlation and irrelevance). Liu et al. focused only on
detecting and removing redundant rules [8]. The authors categorized the redundant rules into upward
redundant rules, which are never matched, and downward redundant rules, which are matched but
enforce the same action as some other rules with a lower priority. Cuppens at al. proposed a system
of anomaly resolution [9]. Although they only support shadowing and redundancy anomalies of
single policies, the resulting policy is anomaly free. FIREMAN, by Yuan et al., was one of the first
approaches to help network administrators to correctly configure a network [10]. Their model makes
use of binary decision diagrams (BDDs) to represent packet filtering policies and it also verifies that
an end-to-end policy has been correctly deployed. Basile and Lioy proposed a model to perform
anomaly analysis of application layer policies and applied it to check HTTP policies [11].

There is also a considerable amount of work on detecting anomalies in routing configurations.
The first systematic study of BGP configuration errors that propagate across the backbone of the
Internet was presented by Mahajan et al. [12]. Feamster and Balakrishnan described the design and
the implementation of a router configuration checker, a tool that finds faults in BGP configurations
using static analysis [13]. Finally, Alimi et. al. presented and evaluated the novel idea of shadow
configurations [14]. A shadow configuration allows a configuration evaluation before its deployment
and can thus reduce potential network disruptions.

Research on IPSec and VPN anomalies was proposed by Fu et al., Hamed et al. and Basile et
al. Fu et al. [15] presented a first approach for IPsec policy anomalies detection. The analysis is
performed on a set of policy implementations written in a high-level language and the anomalies
are identified by verifying the implemented policies against the desired ones. Fu et al. defined an
anomaly as ‘a situation where the policy implementation does not satisfy the requirements of the
desired policy’. Hamed and Al-Shaer [7] formalized the classification scheme of Fu. Their model
not only incorporated the encryption capabilities of IPsec, but also its packet filter capabilities (this
feature can be seen as the extension of its packet filter classification). In particular, the authors
identified two new IPsec errors (overlapping-session and multi-transform anomalies), both valid for
inter and intra-policy analysis.

Finally, Basile et al. [16, 17] presented a novel classification of communication protection policy
anomalies. The proposed model allows the detection of a number of anomalies arising from the
interactions between various protection protocols that work at different layers of the ISO/OSI stack
(IPSec, TLS, SSH and WS-Security), security properties and communication scenarios such as end-
to-end channels, VPN and remote-access communications.

2.2. OpenFlow misconfigurations

OpenFlow was first introduced by McKeown et al. to standardize the communication between
the switches and the software-based controller in an SDN architecture [18]. Although the goal
of OpenFlow was to provide a platform that would allow researchers to run experiments in
production networks, the industry has also embraced SDN and OpenFlow as a strategy to increase
the functionality of the network while reducing costs and hardware complexity.

In the last years, several works have been proposed to find anomaly misconfigurations in
OpenFlow, in order to allow multiple applications to run on the same physical network in a
non-conflicting manner. Al-Shaer and Al-Haj described a tool, FlowChecker, to identify any
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intra-switch misconfiguration within a single FlowTable. They also described the inter-switch
or inter-federated inconsistencies in a path of OpenFlow switches across the same or different
OpenFlow infrastructures [19]. NICE, proposed by Canini et al., performs a symbolic execution
of OpenFlow applications and applies a model checking evaluation to explore the state space of an
entire OpenFlow network [20]. In addition, the authors devised a number of new, domain-specific
techniques for mitigating the state space explosion that plagues approaches such as ours. Finally,
Batista et al. presented an approach for the conflict detection using several first-order logic rules to
define possible antagonisms and employ an inference engine to detect conflicting flows before the
OpenFlow controller implement in the network elements [21].

2.3. Network invariant analysis

In few years the verification of the network invariant violations (i.e. presence of forwarding loops,
black holes, etc.) has become a hot topic in the SDN and VNF context. Today the SDN controllers
are capable of handling around 30K new flow installs per second while maintaining a sub-10 ms
flow install time [22], then they check for updates and analyse the invariants before they hit the
network, raise an alarm, if needed, even preventing bugs as they occur by blocking problematic
changes.

VeriFlow makes use of graph search techniques to verify network-wide invariants and handles
dynamic changes in real time. The VeriFlow tool finds faulty rules issued by SDN applications and
optionally prevent them from reaching the network and causing an anomalous network behavior
[23]. ConfigChecker, proposed by Al-shaer et al., converts the network rules (configuration and
forwarding rules respectively) into boolean expressions that are checked for network invariants
[24, 25]. Other works, instead, are oriented in verifying isolation properties in networks that include
some ‘dynamic data path’ elements using a model checking approach [26, 27]: the notion of
verification is extended to networks containing dynamic data paths, where a checking of invariants
such as the connectivity or isolation is performed.

3. EXAMPLE

In this section we present an example that will be used to informally introduce the concepts of our
model. We use as a reference the simplified network scenario depicted in Figure 1.

The figure shows a simple corporate scenario, where different users connect via remote access to
the corporate data center. Some services are used by all the corporate users and they are located
in the Global subnet, which includes the mail server and an anti-spam system. Other services
are department-specific and they are located in the Department1-3 subnets. Department1 offers
an internal repository and a database, the Department2 provides an application service, while
Department3 has three file services managed by a file access control.

In this example a user is authorized to access the corporate mail server and the services available
for the department he belongs to. To implement this policy, user traffic has to pass through a set
of security controls before accessing the different services. Indeed, at the border there is a VPN
gateway, a traffic monitor, a firewall and a router. These VNFs process the ingress traffic exactly in
this order, dropping or altering the traffic by forwarding (i.e, the firewall) and modifying the headers
and/or payloads of the packets received (i.e. the VPN gateway). Moreover, they can also log traffic
info (i.e. the monitor).

Moreover, there are other high-level requirements to implement: (i) drop all the encrypted traffic
in output to prevent any information disclosure; (ii) permit access only to authenticated users;
(iii) use a load balancer to access the department2 applications; (iv) supervise the access to the
department3 file servers (through an IDS).

Although the proposed scenario is small and simple, we can find some inter-function anomalies.
If we assume the following authorized activities:

• User1 wants to connect via SSH to the Department1 DB;
• User2 wants to access the Department2 application service;

Copyright c© XXXX John Wiley & Sons, Ltd. Int. J. Network Mgmt (XXXX)
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Figure 1. Example network.

• User3 wants to download a file from the Department3file server.

an administrator may notice four incorrect implementation of the security requirements:

1. the monitor cannot analyse the traffic towards the DB because it is encrypted;
2. User1 does not receive responses from the DB because the firewall drops the traffic;
3. the monitor cannot distinguish the three different application servers because the load balancer

changes the source IP addresses;
4. the IDS configuration depends directly on the firewall configuration.

These inconsistencies could have been detected by means of our model, which is able to identify
the anomalies by analysing the policies of the VNFs in the network. In particular, we focus on the
modification induced by the VNF into the packets.

The model we propose requires as input the network topology with the explicit indication of the
VNF. For each VNF it is necessary to specify its capabilities (in terms of the actions it can apply
to the packets) and the configuration rules., i.e., its policy. The model outputs the anomalies as a
set of rule pairs that need to be inspected by an administrator. The anomalous rules may belong to
different VNFs.

To use our model and discover anomalies, it is not necessary to specify the traffic patterns. The
model simply identifies all the potential issues by analysing the conditions of the VNF configuration
rules, which explicitly determine the packets and flows that will be matched by the different VNFs.

In the next sections we will show how our model enables the discovery of these anomalies.
Informally, for anomalies (1) and (3), the monitor, a VNF that only reads information in the packet,
has a rule to log packets that are received after another VNF has modified them. In the first case, the
modification is performed by the VPN gateway, in the second one, by the load balancer. For anomaly
(2), it is the rule to drop all the encrypted traffic that prevents replies from reaching User2. Our
model notices that there is a filtering rule dropping packets that are transformed (i.e., encrypted).
Analogously, for anomaly (4), it discovers that the IDS has to look into traffic that is filtered by
another VNF.

Copyright c© XXXX John Wiley & Sons, Ltd. Int. J. Network Mgmt (XXXX)
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NFV Infrastructure (NFVI)
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(NFV MANO)

Virtualised Network Functions (VNFs)
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Network Service 
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Figure 2. Our proposed extension of the ETSI NFV Architectural Framework.

4. APPROACH

The most important standard in NFV infrastructures is the ETSI NFV Architectural Framework [5]
whose basic structure is sketched in Figure 2. Its main components are the VNFs themselves, the
NFVI (NFV Infrastructure) and the NFV MANO (NFV Management and Orchestration).

In short, the NFVI provides the virtual resources required to support the execution of the VNFs,
while the NFV MANO covers the virtualisation-specific management tasks necessary in the NFV
framework. In particular, the NFV MANO is compose by:

• a set of VNFMs (VNF Managers), responsible for the VNFs’ life-cycles management by
making use of the operations such as instantiation, scaling (increase or reduce the capacity of
the VNF), termination and so on;

• the NFVO (NFV Orchestrator), whose task is the management of the network service life-
cycle. The NFVO performs its services by using the VNFM services and by orchestrating the
NFVI that supports the interconnection between VNFs functionality.

In order to support the configuration and policy management of the VNFs, the NFVO collects a set
of external inputs, it processes the acquired information and sends the configurations to each VNF
via the NFV managers. The NFVO inputs include both the NSDs (Network Service Descriptors) and
the current VNF configurations. The NSDs delineate the instantiation of a network service and they
include several data such as the network service features, its deployment flavours and the service
topology. The latter describes the relationships with the other VNFs, the virtual links, . . . . These
dependencies are defined in terms of source and target VNFs (i.e. target VNF “depends on” source
VNF). In other words, a source VNF must exist and connect to the service before the target VNF
can be initiated/deployed.

In this context, the NFVO is a reactive but liberal component since it ‘trusts’ that the various
VNFs can communicate and interacts with each other flawlessly. Our approach aims to increase the
controlling capabilities of the orchestrator in order to make it aware of the anomalies that can arise
between the VNFs.

In our approach, we added a new component to the NFVO, named the Policy Analyser (PA),
whose ultimate goal is the VNFs anomaly analysis. Note that this component has no enforcement
capabilities. Our goal is solely the anomaly detection. The results of the analysis can be used to
produce a report for the administrators or to actively reconfigure the system on-the-fly by some other
building block. Figure 2 sketches an architectural overview of an NFV with the Policy Analyser and
its location inside the orchestrator.

In Section 3, we described a set of anomalies among several function that can hinder the offered
services and/or decrease their performances, thus making the network operating far from the
expected capacity (the VNFs may still work, but with seriously degraded performances). In order to
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identify such inter-function anomalies, the Policy Analyser must receive enough information from
the NFVO. This data include the VNF configurations and the network service descriptors, so that it
can extract:

• the single rules and their priority from each VNF configuration;
• the VNF forwarding graph and the dependencies among the functions from the network

service descriptors.

From a mathematical point-of-view the Policy Analyser is built on a formal algebraic model that
can detect the presence and absence of interferences (anomalies) between two or more functions
deployed in the same network service. The advantage of our approach is that this technique can be
used both on-line, by integrating the PA in an existing system, to perform an on-the-fly check of a
network service, or off-line, by using the PA alone to perform a-priori checks before a real-world
deployment can take place.

Although the Policy Analyser can be integrated in an existing NFV Architectural Framework, we
consider describing this task out of scope for our work, hence we will focus our efforts on describing
its internal model (Sections 5, 6 and 7) and its off-line performance tests (Section 8).

5. THE MODEL

This section presents a formal model, that extends the work proposed in [28] to allow the analysis
of different types of network functions. A policy-enabled network function takes a packet in input,
it applies some transformations to the received data and it outputs the transformed packet. Since
a packet is a sequences of bits, we assume that the packets belong to a finite discrete set P, the
packet space, without loss of generality. The VNF is then defined as a function V : P→ P, such
that P 3 x 7→ V (x). Usually, a policy-enabled VNF is configured by means of a “set of rules ” and
a “a rule is an association of conditions to a set of actions” [29].

Rules are the method used for describing the transformations to apply to a packet. The policy-
enabled functionality of these network functions can be modelled by means of two processes: (1) a
process that selects the rules matching a packet, and (2) a process that decides the transformation
to apply to the packet. The VNF must also trigger a process that actually applies the transformation
to the packet, but it is belong of this work to describe. To fully model a policy-enabled VNF, it is
necessary to formally define the packets, the rules (actions and conditions), the matching process
and the resolution process.

5.1. Packets

We introduce a structure in the packet space to model the conditions. We assume an organization
of the packet bitstream in a set of fields. Fields are, for instance, the source IP address in an IP
packet, the port number in UDP, the ACK in TCP as well as the MIME type of an HTTP reply. We
suppose that all the fields are known and organized in a set F = {F1, . . . ,Fm}. In the rest of the
paper we will use the notation FI = {Fi | i ∈ I ⊆ [1,m]} to indicate a subset of F indexed by some
sets I ⊆ [1,m]. As the fields are a disjoint portion of a packet it is simple to prove that:

FI =
∏
i∈I

Fi

Every field is characterised by its length, that is, the number of bits that form it. Every Fi is
composed by li bits, thus Fi is isomorphic to

[
0, 2li − 1

]
⊂ N. Under this hypothesis, a packet

becomes a set of values, a value for a specific field, that is, x = {fi ∈ Fi, Fi ∈ FI , I ⊆ [1,m]}, that
is x ∈ FI , for some set I . The packet space P becomes the set of all the possible field assignments.
It is worth noting that not every packet may contains a value for each field of F (as in real cases).
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8 BASILE, CANAVESE, LIOY, PITSCHEIDER, VALENZA

5.2. Conditions

A condition c ⊆ C in the decision space C is a set of values sj for distinct fields in a packet.

c =
∏
j∈I

sj sj ⊆ Fj I ⊆ [1,m]

The decision space C is a subset of packet fields used to define the condition.

C =
∏
j∈I

Fj Fj ⊆ FI I ⊆ [1,m]

A packet x ∈ FI satisfies a condition c only if all values si are satisfied. A value si is satisfied in
Fi if and only if (1) the packet contains a value fi in the field Fi and (2) fi is in si (i.e., i ∈ I and
fi ∈ si). For example a condition c which is defined over one single field F1, that is the destination
IP address of the packet, and s1 = 1.1.1.1, 1.1.1.2. Than only packets where the value f1 in the field
F1 is equal to 1.1.1.1 or equal to 1.1.1.2, that is, packets with destination address 1.1.1.1 or 1.1.1.2,
satisfy the condition c.

5.3. Actions

An action is defined as a function a : P→ P, which transforms a packet. The set of all the possible
actions is A = {a : P→ P}. We extend P with the additional value ∅, a packet composed by no
bits, the “null packet”, that serves us to to formally describe when a packet is dropped. Henceforth
the null packet will be considered ∅ ∈ P. Examples of actions are: forward (i.e., firewalls, network
monitor), changing the packet (i.e., in network address translation), adding a new header (e.g., IP
over IP or IPsec AH in transport mode), and encrypting the payload (e.g., IPsec ESP in transport
mode).

The action clause γ ⊆ T defines the transformation and it is a subset of the transformation space
T . The action clause is composed by different values σ for distinct fields in a packet.

γ =
∏
j∈IT

σj σj ⊆ Fj IT ⊆ [1,m]

The transformation space is a subset of packet fields which are transformed by the action, IT is the
set of indices of those fields:

T =
∏
j∈IT

Fj Fj ⊆ F IT ⊆ [1,m]

Some actions include:

• ALLOW: the simplest case is the ALLOW action that maps on the identity function (i.e., the
function that leaves the packet unchanged);

• LOG/MONITOR: network monitoring and logging rules are modelled the same way as the
ALLOW action, and are all represented by the identity function, since the packets are never
modified but only read;

• DENY: a blocked packet is transformed in to a null packet by the function DENY: P→ P
such that x 7→ ∅;

• REDIRECT: routing rules are modelled as on all interfaces where traffic is routed and the
identity function is applied, while on all interfaces where the traffic is not routed the null
packet is applied;

• MODIFY: when the action modifies certain packet fields, the action clause defines the new
values this fields must be assigned to. For example, a NAT action contains the action clause
with the source address field set to the IP address of the NAT;
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• NEW HEADER: we will assume in this model that adding a new header is always performed
by changing the original packet header instead of adding a new one, without loss of generality.
Therefore, a new header is modelled so that the action clause contains all header fields and is
treated overriding the original header. This assumption is valid since downstream VNFs are
not aware of nested headers and only the first one is considered.

• ENCRYPT: this action can encrypt either specific fields of the packet, or the entire payload of
a specific layer. It is modelled so that the action clause contains all encrypted fields or the layer
at with the encryption is applied (layer 4 PL4, layer 7 PL7). For example, TLS/SSL encrypts
the application layer (layer 7) payload (PL7), while IPsec encrypts the layer 4 payload (PL4).
The encryption is marked with the {·} operator. For example, {PL4} means that the payload
at layer4 is encrypted.

5.4. Policies

In our model, a VNF-policy is a function represented as a four-tuple (R,R,E, ad) [28], where:

• R = {ri}i, i ∈ [1, n] is the rule set.
• R : 2R → A is the resolution strategy used.
• E = {E1, E2, . . .} is the set of external data associated to the rules.
• ad is the default action, applied when a packet matches no rules.

In particular we define:

• rule: in this model, a rule r is an association r = (c, a), c ⊆ C and a ∈ A;
• matching process: Given a set of rules R = {ri = (ci, ai)}i, we introduce the function
matchR, returning the subset M of rules to R matching a given packet. That is, all rules
where the packet satisfies the rule condition;

• resolution strategy: When the subset M returned by the matching process contains more
than one rule, the resolution strategy R is used to decide the action to apply to the packet.
An example of resolution strategy is the First Matching Rule strategy (FMR). For multiple
matching rules, (FMR) selects the action from the rule at highest priority;

• external data: external data are not part of the rules, nevertheless they are used to make
decisions. The association is made using a set of external data functions εk : R→ Ek. FMR
uses priorities as external data. Henceforth, the function that associates rules to priorities will
be denoted by π.

6. ANOMALY ANALYSIS AND CLASSIFICATION

This section explains the different types of anomalies that might occur, their definitions and how
they can be detected.

There exist three types of chain anomalies: blocked, encrypted and modified traffic anomalies.
The different anomaly types are revealed by confronting the rule conditions in VNF configuration
policies. Given their position in the network and depending on the network traffic we will define
downstream VNF and upstream VNF.

We say that two rules are correlated if they match packets belonging to the same traffic flow.
Correlated rules may be found in the same VNF configuration, like the intra-policy anomalies
presented by Al-Shaer for packet filters [30], or in the configuration of two distinct VNFs. A
simplified case of correlated rules in distinct VNFs has been already analysed by Al-Shaer for packet
filters, that named correlated rules inter-policy anomalies [6]. The inter-policy analysis for packet
filters is a simple case, indeed these security controls only forward or block packets. Moreover, the
approach that only looks for correlated rules is valid as long as the rules allow, deny, or monitor the
traffic, but when the data is modified, the correlation between two rules can not be concluded by
confronting rule conditions.
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In order to cope with the case of VNFs that also modify the traffic (with action MODIFY and
NEW HEADER), we propose a process to change the configuration of upstream VNFs to report the
traffic modification that will be applied by the downstream ones. The purpose is to perform changes
so that all the anomalies can be detected by looking at correlated rules. That is, all the complexity is
moved in a preliminary phase, which prepares policies to be analysed easily. This preliminary phase
can be done once and reuse for several analyses. Note that these changes are only performed for
analysis purposes. They need to be performed before the analysis, and does not need to be reported
on the actual VNF configurations.

This process is named transformation resolution and formally described in Section 7. Essentially
the transformation resolution inserts ad hoc rules for each traffic modification rule that will be
encountered by packets in the downstream VNFs. The set of rules before the resolution is called
original rule set R and the newly inserted rules are part of the transformed rule set R(T ).

As an example, Figure 3 shows the policy p before (Figure 3a) and after (Figure 3b) the
transformation resolution. Before the transformation resolution, the original policy only contains
one rule r. Moreover, there is an upstream transformation policy with a rule that transforms packets
in c (e.g., packets whose source address is in a private subnet) into packets in γ (e.g., packets with
source address in a new small public subnet or single IP). For the transformation resolution to take
place, r must intersect γ. After the transformation, a new rule r(T ) is added to the policy, so that the
new rule has a condition with the selectors overwritten by the condition c.

r

c γ

(a) A policy p with a rule intersecting
some γ.

rr(T )

c γ

(b) The policy p after the transforma-
tion resolution.

Figure 3. Transformation resolution.

6.1. Blocked traffic anomalies

The blocked traffic anomaly occurs when a VNF includes a rule where the condition c matches
some packets that have been blocked by another VNF or the packet is not routed to this VNF based
on flow rules. This type of anomaly can be caused by a rule with action DENY or a flow rule
misconfiguration.

The identification of this type of anomaly is possible as there is a linear correlation between the
action of a upstream VNF and the condition of a downstream VNF rule.

The conditions of both rules intersect and a rule r1 or a rule r2 applies the ∅ transformation. In
other words the rule r2 is defined over the packets discarded by the rule r1 or vice versa, that is:

c1 ∩ c2 6= ∅ ∧ (a1 = ∅ ∨ a2 = ∅)

With reference to the anomaly 2 in the example in Section 3, the rule r1 is configured on the DB
and the rule r2 is configured on the firewall FW. The rule r1 creates a encrypted channel that is then
dropped by the rule r2, that is

r1 = ipdest = any → ENCRY PT (PL7)

r2 = {PL4} → DENY

With reference to the anomaly 4 in the example in Section 3, the rule r1 is configured on the
firewall FW and the rule r2 is configured on the intrusion detection system IDS. The firewall rule
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r1 blocks all the traffic directed to the department3, therefore the IDS can not monitor any traffic
directed to 10.0.1.1, that is

r1 = ipdest = 10.0.1.0/24→ DENY

r2 = ipdest = 10.0.1.1→MONITOR

6.2. Encrypted traffic anomalies

The encrypted traffic anomaly occurs when a VNF includes a rule where the condition c matches
some packets that have been encrypted by an upstream VNF. This type of anomaly can be caused
by a rule with the action ENCRYPT. The identification of an encrypted traffic anomaly is similar to
the blocked traffic case, with the difference that it affects only the rules that contain conditions on
fields that have been encrypted and therefore are no longer accessible.

This happens when a rule r1 is applied before a rule r2, the conditions of both rules intersect and
r1 encrypts a field used in the condition c2. In other words, a rule r2 is defined over the packets
encrypted by rule r1, that is

r1 < r2 ∧ c1 ∩ c2 6= ∅ ∧ a1 ∩ c2 = ∗

With reference to the anomaly 1 in the example in Section 3, the rule r1 is configured on User1 and
encrypts all the packets to 10.0.1.1 with an application layer encryption protocol, such as TLS/SSL
and the rule r2 is configured on the Monitor and must log all HTTP GET requests directed to the
Global IP 10.0.1.0/24. In formulas the situation can be formalized as

r1 = ipdest = 10.0.1.1→ ENCRY PT (PL7)

r2 = ipdest = 10.0.1.0/24 httpmethod = GET → LOG

6.3. Modified traffic anomalies

The modified traffic anomaly occurs when a VNF includes a rule where the condition c matches the
packets that have been modified by an upstream VNF. This type of anomaly can be caused by a rule
with an action MODIFY or NEW HEADER.

To identify the modified traffic anomalies, one needs to verify that the condition of a upstream
VNF rule that modifies the packet does not match a condition of a downstream VNF rule. Since
a translation rule interferes not only with the rules by creating some anomalies, it also interferes
with the anomaly detection since it resolves possible anomalies. Therefore, the model of the VNF
networks must be updated accordingly so that the global behavior of the network is correct.

We have such anomalies when a rule r1 is applied before another rule r2, their conditions intersect,
r1 modifies a field used in the condition c2 and both the rules must be in the original rule set. In
other words the rule r2 is defined over the packets modified by the rule r1, that is

r1 < r2 ∧ c1 ∩ c2 6= ∅ ∧ a1 ∩ c1 = ∅ ∧ r1, r2 6∈ R(T )

With reference to the anomaly 3 in the example in Section 3, the rule r1 is configured on the
Load Balancer and transforms all source addresses to 10.0.2.1 and the rule r2 is configured on the
Monitor and must log all traffic from 192.168.0.1. In formulas:

r1 = ipsrc = 192.168.0.0/24→ NAT (ipsrc = 10.0.2.1)

r2 = ipsrc = 192.168.0.1→ LOG
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7. THE TRANSFORMATION RESOLUTION

When a transformation rule matches a packet, it transforms the packet as defined in the action.
The resolution is only required when the transformation function is part of a rule with the action
MODIFY or NEW HEADER.

We take all the rules r = (c, a) in R whose condition c = s1 × s2 × · · · ×sm intersects some
action clause γi and create for each of them a new rule rT =

(
cT, a

)
where cT = sT1 × sT2 × · · ·

×sTm and each sTi ⊆ Fi is obtained as follows:

• if Fi is in T then sTi = ci ⊆ Fi from ci;
• if Fi is not in T , then sTi = si.

Changes into the condition forced by the transformation controls are formally described by the
selector substitution function that substitutes all the selectors in T of ci with the corresponding
conditions in c:

Σ(ci, c) 7→ c′i =
∏

j∈[1,m]

xij

where xij = sij if j /∈ IT and xij = cij if j ∈ IT.
The following functions, working on rules ri = (si,1 × · · · × si,m, ai), help in making this

treatment compact:

• in(τi) = c, named condition extraction;
• out(τi) = γi, named transformation-action clause extraction;
• Ψ (ri) =

∏
j∈IT

sij , named projection on transformation space;

where C(ri) = ci.
The new rules added in the downstream policy are obtained by the rule transformation function

Θ, defined as:

Θ(ri, τj) : ri 7−→ r
(j)
i

where r(j)i is defined as:

r
(j)
i =

{
(Σ(ci, in(τi)), ai) if Ψ (ri) ∩ out(τj) 6= ∅

∅ if Ψ (ri) ∩ out(τj) = ∅

Practically, a new rule r(j)i is returned by the selector substitution function only if ci intersects
the transformation-action clause. If ci does not intersects the transformation-action clause there is
nothing to add to R, thus it returns the empty set. By abuse of notation, we will write:

ri = Θ−1
(
r
(j)
i

)
if r(j)i = Θ(ri, c) for some τj .

The last case to cover is when a packet is transformed but after the transformation it does not
match any rule. In this case, we must ensure that the equivalent firewall enforces the default action.
Therefore, for all the transformation rules whose output clause do not intersect any rule in R we
create some ad-hoc rules (put at a higher priority) that enforce the rules matching the corresponding
condition with the default action.

Formally, if ∀ri,Ψ (ri) ∩ out(τj) = ∅ then we create the rules:

r(τj) = (Σ(FI , in(τj)), ad)

We name D(T ) the set of all the r(τj). It is worth noting that the cardinality of D(T ) is always less
than or equal to the cardinality of T .
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(a) A policy p with rules intersecting some γ.
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(b) The policy p after the transformation.

Figure 4. Composition of transformation and filtering policies.

By applying Θ(ri, τj) for all the ri ∈ R and τj ∈ T and by adding the D(T ), we obtain a set of
rules:

R(T ) = {Θ(ri, τj)}i,j ∪D(T ), with i ≤ m, j ≤ t

These rules inherit the values of the external data from the rules they are derived from, i.e., the
external data functions in {Θ(ri, τj)}i,j are defined as:

∀k, εk(r
(j)
i ) = εk(ri)

while for the rules in D(T ) it is enough to suppose they have the highest priority.
Figure 4 presents an example of a policy before and after application of the rule transformation

function. Figure 4a shows the original firewall configuration with three rules {r1, r2, r3}, and, on
the x-axis (the source IP axis), the NAT policy, composed of two rules, one mapping the x-interval
c1 into γ1 and the second mapping c2 into γ2.
r1 on the x-axis spans over the entire γ1, r2 partly covers γ1, and r3 spans over the union of γ1 and

γ2. Figure 4b shows the resulting equivalent VNF. Both r1 and r2 have been “moved” and stretched
to fit into c1 to originate r(1)1 and r(1)2 ; r3 has been first split into two rules, corresponding to subsets
γ1 and γ2, then the single sub-rules have been moved and stretched to fit into c1 and c2, respectively,
originating r(1)3 and r(2)3 .

The T -modified resolution strategy T is defined as:

T :2R∪R
(T ) → A

Meq ⊆ R ∪R(T ) 7−→

{
R (H) if M (T ) 6= ∅
R (M) if M (T ) = ∅

where Meq = matchR∪R(T )(x) = M ∪M (T ), M ⊆ R, M (T ) ⊆ R(T ), and H =

{Θ−1
(
r
(j)
i

)
| r(j)i ∈M (T )} ⊆ R.

By composing the transformation policy defined by T with the policy (R,R,E, d), we obtain the
T -modified p policy, denoted as p(T ), which can be represented as:

(R ∪R(T ),T, E, d)
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Source IP PortS Dest IP PortD Proto Protocol States Action

r
(1)
5 192.168.0.1 >1023 10.1.1.1 80 TCP NEW ALLOW
r
(2)
6 192.168.0.2 >1023 10.1.1.1 80 TCP NEW ALLOW
r1 any any any any any ESTABLISHED ALLOW

RELATED
r2 10.1.2.7 any 10.1.1.9 any any any DENY
r3 10.1.2.7 any 10.1.1.19 any any any DENY
r4 10.1.2.0/24 >1023 10.1.1.0/24 80 TCP NEW ALLOW
r5 10.2.2.1 >1023 10.1.1.1 80 TCP NEW ALLOW
r6 10.2.2.2 >1023 10.1.1.1 80 TCP NEW ALLOW
· · ·

∞ * * * * * D
Table I. An excerpt of the filtering rules in a firewall after a NAT transformation.

It is worth noting that the T -modified resolution strategies are sound. That is, they give a result
for any subset of R ∪R(T ), because they always decide by using R and, if available, external data
are inherited from the original rules. Moreover, this works also for resolution strategies requiring
unique values of the external data, such as FMR priorities. In fact, after the transformation, there
are rules with duplicated external data values but they are never used in the same decision, as either
original or transformed rules are taken into account.

Table I presents a policy after a NAT transformation, where the rules r(1)5 and r(1)5 are new and
inserted with the highest priority. Rule r(1)5 is created from the intersection of γ1 with r5, and rule
r
(2)
6 is created from the intersection of γ2 with r6. γ1 is part of a NAT rule which transforms the

source IP from 10.2.2.1 to 192.168.0.1. γ2 is part of a NAT rule which transforms the source IP
from 10.2.2.2 to 192.168.0.2. All the other rules remain untouched because their rule clause does
not intersect with the source IPs 10.2.2.1 and 10.2.2.2.

7.1. Multiple transformations

If, before reaching a firewall, a packet encounters first the transformation control T1 then the T2, we
generate the (T1, T2)-modified p policy p(T1,T2) recursively. That is, p(T1,T2) is the T1-modified pT2

policy:

p(T1,T2) =
(
p(T1)

)(T2)

NAT1 fw1 NAT2 m1

V NF1 V NF2 V NF3 V NF4

fw
(NAT1)
1 m

(NAT1,NAT2)
1

Figure 5. Composition of four cascaded VNFs with 2 NAT, 1 firewall and 1 monitor.

In these cases, the rule set is R ∪R(T1) ∪
(
R ∪R(T )

)(T2)
= R ∪R(T1) ∪R(T2) ∪R(T2,T1). The

resolution strategy obtained from these two transformations works in stages. First, it checks if some
of the newly generated rules in R(T2,T1) apply, then it checks in R(T2), then it checks if some rule
from the previous transformation apply (R(T1)), and finally checks in R. Let’s consider the scenario
in Figure 5, with two serially connected filtering devices configured to perform pre- and post-NAT.
The steps to obtain the equivalent firewall are:

• compute theNAT1-modified fw1 (filtering) policy fw(NAT1)
1 (i.e., the inner dashed rectangle

in Figure 5);
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• compute the (NAT1, NAT2)-modified m1 (monitoring) policy m
(NAT1,NAT2)
1 (i.e., the

external dashed rectangle in Figure 5).

7.2. Inverse transformations

Another very important case to consider when working with tunnels is the inverse transformation.
In fact, NAT/NAPT controls perform the inverse transformation for back traffic based on state
information without the need of an explicit rule. For the tunnelling, this is not true and the inverse
transformation must explicitly indicate the other end-point policy. Even if the inverse transformation
can be considered as an independent one is evidently a sub-optimal case. For this reason, we pre-
process the transformation controls in the path to identify and eliminate the inverse rules.

This scenario usually happens when a gateway with a policy p1 contains a rule r1 = (c1, a1)
and another one with a policy p2 contains a rule r2 = (c2, a2). However, the rule annihilation must
be considered even in a subset of the condition and action clauses. That is, given c1 7→ γ1 and
c2 7→ γ2, the annihilation happens if c2 ⊆ γ1. In this case, instead of eliminating both the rules, we
simply leave in one of the transformation controls the “biggest” rule, that is, either c1 r c2 7→ γ1 or
c2 r c1 7→ γ2.

8. PERFORMANCE TESTS

The performance tests focus on the execution time of the Policy Analyser itself and not its
interactions with other NFV components. In order to eliminate all the possible network related
delays and differences in NFV implementations, the tests were executed isolated from a deployed
network. As previously stated the Policy Analyser receives as input the same information required
by the NFV orchestrator, being a sub-component of the latter. The first performance evaluation we
performed is based on the representation of a campus network. Furthermore, since it is infeasible to
perform a great number of tests on real networks of a reasonable size, we also performed extensive
performance and scalability tests on several synthetic networks. Our model was implemented in
Java 1.6 and run inside a virtual machine using two cores of an Intel Core i7-3630QM (2.4 GHz)
CPU, with 16 GB RAM under Debian Linux 8 operating system.

8.1. Campus network

The campus network of the first test is represented in Figure 6. The network is composed of 15
firewalls, 15 NAT devices, about 10,000 hosts, 36 filtering zones with private IP addresses and 30
additional zones with public IP addresses. All filtering zones with private IP addresses are connected
through a NAT devices with the rest of the network. The network has a star topology and in detail
is composed by the following parts:

• The core router is connected to the Internet through the border firewall fwI.
• The boarder firewall contains about 150 rules and acts as a VPN concentrator for external

remote connections.
• There are 11 department networks, composed of 2 zones each: a private zone, connected to

the core router by means of a NAT/NAPT and a firewall (fwDIP), and a public zone connected
just via the firewall (fwDIP) to the core router. The private zone can reach the campus network
and the Internet but is not visible from outside. The public zone is reachable from Internet.

• There are three laboratory networks composed by 5 zones each and connected to the core
router via an individual NAT/NAPT device (NAT). These laboratories can access the campus
network and the Internet, but are not visible from the outside.

• The administration network is composed by 5 zones for its servers and an additional 5
zones for the employees’ workstations. A firewall (fwA) containing approximately 250 rules
connects all these zones to the core router. The services in the 5 server zones have higher
security requirements than the ones allocated in the data centre and are accessed mainly by
the users from the 5 administration user zones.
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• The data center is composed by 10 zones and contains various servers (web, e-mail, file
servers, . . . ) some of which are also accessible from Internet. A single firewall (fwDC) with
about 50 rules connects the date center to the core router.

• A device (fwWLAN) with about 20 rules (acting as NAT/NAPT and firewall) connects the 10
wireless networks to the core router. Wireless clients can access the Internet and the public
parts of the campus network.

fwI

Internet

fwDIP

fwA

×5 ×5

fwDC

×10

fwWLAN

×10

NAT

×5

×11

×3

Figure 6. The campus network.

Although the campus network is not a VNF deployment it is still a valid performance evaluation
because the network topology and involved configurations are similar. We transformed the network
topology and the involved configurations into the required input format for the Policy Analyser.
Each pair of zones in the network topology is interconnected through different paths and therefore
through different transformations. The Policy Analyser applied the transformation resolution for
all 4624 possible paths and analysed the resulting policies. The complete execution took about 3.7
minutes and the identified anomalies helped to improve the network configurations.

8.2. Synthetic network

For the scalability tests on synthetic networks we used a random policy generator. However,
generating meaningful policies with a great number of rules is a complex task. Indeed, rules in
cascaded VNFs must be related to each other and allow end-to-end communication paths. We
ensured reachability on each path by inserting “allow rules” and generated rules according to the
statistical data from Taylor [31] with an average number of anomalies according to Al-Shaer [30].
These works estimate that at most 5 rules intersect simultaneously and that no more than 25% of
rules intersect each other. Therefore, random policies that have such statistical properties should
represent very well (worst case) VNF policies.

The synthetic network path contains a variable number of cascaded VNFs and each VNF is
configured with a variable number of rules. Additionally the network also contains transformation
policy either before or after a VNF. The translation policies include one of the common
transformation rules: NAT 1-to-1, NAT many-to-1, and tunnelling. We used three independent
parameters in our performance evaluation:

• f , the number of VNFs in each path, variable from 1 to 5;
• n, the number of rules per VNF, which varies from 50 to 1000;
• t, the number of translation policies for each path, which ranges from 1 to 25.
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The most complex case tested considered paths with 25 translation policies and 5 VNFs, with
1000 rules each. Basted on this numbers we are confident that the test represent worst case scenarios,
and that the Policy Analyser performance is better on real VNF deployments.

We also performed test to evaluate the impact of the rule statistics on the performance. The results
show that the statistics have almost no impact on the execution time. The reason for this is because
the transformation resolution creates new rule thus alters the statistics significantly. However all
policies are generated with the statistics from Taylor and Al-Shaer, to ensure the most accurate base
case.

We performed each test case 100 times and the result shown in the graphs is the average value.
For all the tests we calculated a 95% confidence interval, shown in the figures as a grey area around
the graph curves. The confidence interval is very small, as shown in Figure 7b where the range of
the y-coordinate is reduced. This small confidence interval proves that the Policy Analyser will have
similar worst case performance on real networks with similar statistical properties.
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Figure 7. Time to analyse a VNF path.

Figure 7 shows the average time needed to analyse a VNF path. The first plot (Figure 7a) shows
the time to analyse a VNF path when the number of VNFs varies from 1 to 5, if the number of rules
per VNF is fixed at 1000 and the number of transformations per path is fixed at 25. The second plot
(Figure 7b) shows the analysis time when the number of transformations per path varies from 1 to
25, if there are 1000 rules per VNF and exactly 5 VNF per path. Finally, the third plot (Figure 7c)
shows the time required when rules vary from 100 to 1000, if the number of VNFs per path is 5 and
there are 25 transformations per path.

It is possible to see that the computation time depends linearly on the number of VNFs in the path
(Figure 7a) and the number of translation rules (Figure 7b). The number of rules is the factor that
affects the execution time the most. As shown in Figure 7c, the computation time quickly increases
with the number of rules and, in the worst case scenario, reaches about 60 s.

These results prove that the analysis time is reasonably low and, furthermore, the majority of the
VNFs contain less then 200 rules [32]. Our test proves that in such cases it takes less then 3 s to
analyse a VNF path and therefore, for the majority of cases our implementation performs more than
satisfactorily. This numbers are also confirmed by the results from the campus network, which is
much smaller as the cases in the synthetic tests. Each path in the campus example has three devices
with on average less than 100 rules and four transformations. On average the analysis of one path in
the campus network took about 0,05 s.

9. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a formal model able to detect inter-function anomalies in a
SDN/NFV deployment scenario. Our approach is able to cope with a wide array of different network
functions, such as firewalls, NAT/NAPT devices, traffic monitors and encryption devices.
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The presented model can detect several kinds of errors and anomalies that originate from
correlations between configuration rules of different network functions. In particular, we have
presented three types of anomalies: blocked traffic, modified traffic and encrypted traffic.

We have provided a detailed description of the underlying mathematical model and developed a
prototype. The prototype can be integrated in a VNF deployment within the orchestrator. It revives
all required informations about the network and its configurations from the orchestrator. The results
can be interpreted directly by the orchestrator or presented as a report to the administrator.

The prototype has been implemented in Java and we evaluated its correctness and performance.
We tested the implementation on a campus network and on several synthetically generated networks.
The results prove to be efficient and scalable, as it is able to check thousands of rules distributed on
several functions in a few seconds.

In the future we are aiming to add support for a smart and optimized resolution of the conflicts.
The model will then be able to remove redundancies and propose an ad-hoc allocation of the rules to
the administrators. This will increase the performance of the network without altering its semantic.

We also aim to integrate the policy analysis module in an open source NFV implementation. This
would provide the NFV orchestrator with additional information, increasing both the security and
the efficiency of the deployment.
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