
24 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Integration of mixed-signal components into virtual platforms for holistic simulation of smart systems / Fraccaroli, Enrico;
Lora, Michele; Vinco, Sara; Quaglia, Davide; Fummi, Franco. - ELETTRONICO. - (2016), pp. 1586-1591. (Intervento
presentato al convegno ACM/IEEE Design, Automation & Test in Europe Conference & Exhibition (DATE) tenutosi a
Grenoble (Francia) nel 14-18 Marzo 2016) [10.3850/9783981537079_0376].

Original

Integration of mixed-signal components into virtual platforms for holistic simulation of smart systems

Publisher:

Published
DOI:10.3850/9783981537079_0376

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2622804 since: 2020-02-22T21:58:22Z

IEEE



Integration of mixed-signal components into virtual
platforms for holistic simulation of smart systems

Enrico Fraccaroli, Michele Lora, Sara Vinco∗, Davide Quaglia and Franco Fummi
Department of Computer Science, University of Verona, Italy, Email: name.surname@univr.it

∗Department of Computer Engineering, Politecnico di Torino, Italy, Email: sara.vinco@polito.it

Abstract—Nowadays, the design of applications based on smart
systems requires the joint simulation of both digital and analog
aspects. Even if analog-mixed-signal (AMS) extensions of hard-
ware description languages are an enabling factor, they do not
provide a general methodology for the integration of AMS models
into digital virtual platforms. This paper defines the problem and
provides two main contributions: 1) the automatic conversion of
analog models from Verilog-AMS to C++/SystemC, to remove the
overhead of co-simulation with traditional virtual platform tools,
and 2) the automatic abstraction of analog conservative models,
with the goal of increasing simulation speed. Experimental results
show that the virtual platform with automatically integrated
analog components is 40 times faster than co-simulation with
Verilog-AMS, and the increase of speed due to abstraction is
more than 100%.

Index Terms—Heterogeneity, analog components, signal flow

I. I NTRODUCTION

Smart systemsare small intelligent devices in which the
capability to interact with the physical environment is pushed
to the extreme, thus opening unprecedented opportunities in
home/building/factory automation, automotive, wearableand
healthcare devices, as well as lab-on-chip. Figure 1 shows the
general architecture of a smart system. In such systems, digital
hardware components executing software are tightly coupled
with analog components like sensors (e.g., accelerometers) and
actuators (e.g., micro-mirrors or micro-fluidic devices).

As software applications have become the primary product
differentiator, systems companies now expect their EDA sup-
pliers to provide not only silicon, but also completevirtual
platforms for developing software on top of a simulated
version of actual hardware [8]. The creation of a virtual
platform thus consists in providing simulation models for each
component of the smart system, to allow accurate estimation
of system behavior. The main issue in the creation of such
platforms is minimizing simulation time to make software
execution as fast as on the actual system.

As the main objective of virtual platforms is software de-
velopment rather than hardware design, simulation efficiency
is obtained by rising the abstraction level of the hardware
description. This process is well-established and entirely au-
tomated for digital hardware: RTL descriptions are abstracted
to TLM, data types avoid multi-value logic, and software
execution is modeled at instruction level, thus sacrificingcycle
accuracy [3].

Unfortunately, the presence of analog components intro-
duces new challenges for virtual platform creation. Tools for
the design of analog components typically generate descrip-

Fig. 1. General architecture of a smart system.

tions based on differential and algebraic equations, thus re-
quiring equation resolution instead of event-driven simulation.
This makessimulation timea critical dimension. Even worse,
environments for the representation of analog hardware (e.g.,
Verilog-AMS [10], SystemC-AMS, Matlab, and SPICE [6])
enable co-simulation of digital and analog hardware, at the
price of a further increase of simulation time (see Table VI
in [12]).
It is thus necessary to buildan abstraction methodology for
analog models, to reduce simulation time and simplify the
construction of virtual platforms. As represented by red/blue
arrows in Figure 1, the analog subsystem is stimulated by
analog input signals while only a subset of its output signals
is either observed by the digital HW or used to affect external
environment. The paper exploits this fact, by proposing an
automatic methodology for extracting the input/output rela-
tionships of interest, to generate abstracted signal flow rep-
resentations suitable for homogeneous simulation with digital
components. Therefore, simulation speed is increased by both
reducing model complexity and removing co-simulation.

The paper is organized as follows. Background concepts
and related work are reported in Section II. The problem is
formulated in Section III, and the abstraction methodologyis
described in Section IV. Experimental results are reportedin
Section V, and Section VI draws our conclusions.

II. BACKGROUND AND STATE OF THE ART

A. AMS extensions of hardware description languages

Verilog-AMS and VHDL-AMS extend traditional HDL
languages to analog and mixed signal systems. Despite of



the syntactic differences, both languages represent the same
systems and constructs [10]. In the following Sections, we
will use Verilog-AMS syntax, however all considerations are
applicable to VHDL-AMS.

Verilog-AMS models a system as a topology of nodes, as-
sociated with potential (i.e., voltage,V()) and flow quantities
(i.e., current,I(branch)). The behavior of the system is
thus described in terms of relationships between nodes through
algebraic and differential equations, calledcontribution state-
ments(denoted with<+).

Verilog-AMS supports bothconservativeand signal-flow
descriptions by using the concepts of nets, nodes, branches,
and ports. Conservative descriptions are made of explicit equa-
tions (i.e., contribution statements modeled by the designer)
and by implicit equations,i.e., energy conservation laws. The
simulation of Verilog-AMS models often relies on SPICE (or
derived simulators [9]). This makes AMS simulation very
accurate but slow, thus not allowing an effective simulation
of more complex systems,e.g., including embedded software
running on a processor core [1].

SystemC-AMS extends SystemC (also denoted as SystemC-
DE for its discrete-event model of computation) to represent
analog and mixed-signal systems. It has been successfully
adopted in many simulation scenarios [11]. SystemC-AMS
provides three different abstraction levels, supporting different
communication styles and different adherence to the physical
domain. Electrical Linear Network(ELN) models electrical
networks through the instantiation of predefined primitives,
e.g.., resistors or capacitors, associated with electrical equa-
tions. Linear Signal Flow (LSF) adopts signal-flow (i.e.,
non conservative) representations but still supports differential
equation. The SystemC-AMS internal solver analyses the ELN
and LSF components to derive the equations describing system
behavior, that are solved to determine system state at any
simulation time.Timed Data-Flow(TDF) models are signal-
flow representations scheduled statically by considering their
producer-consumer dependencies.

B. Virtual platforms for effective smart system design

Virtual platforms are a powerful solution in embedded
system design, as they allow to explore alternative design
solutions, to achieve early validation of the overall system
and to develop applications on top of HW components. Most
of the currently available virtual platform environments target
simulation speedup by adopting C++ and SystemC [8]. On
one hand, C++ native constructs and types allow a lightweight
and fast execution. On the other, SystemC, particularly in its
TLM extension, eases integration and reuse of existing IPs,
still preserving good simulation performance and adherence
with respect to the IP functionality. Note that the choice ofa
single language supporting the overall simulation is crucial, as
this avoids the overhead induced by co-simulation, as a result
of frequent synchronization between different simulators.

C. Techniques for model conversion and abstraction

State of the art techniques for conversion and abstraction
of analog models do not remove the energy conservative

Fig. 2. Verilog-AMS description of an active filter (Figure 8).

property which, if not needed, wastes simulation speed. The
approach in [12] avoids co-simulation by proposing language
conversion from Verilog-AMS to SystemC-AMS/ELN. The
approach in [7] approximates non-linear analog circuit models
as a set of linear models. Model Order Reduction [2] reduces
the state space size of large-scale dynamical models. No sound
methodology exists to translate AMS components into C++ or
SystemC-DE. This reduces the efficiency of virtual platforms.

III. PROBLEM STATEMENT

This work addresses the problem of generating efficient
C++/SystemC code from Verilog-AMS descriptions for its
integration into virtual platforms without the need of co-
simulation. As confirmed by analyzing a set of Verilog-
AMS models1, analog descriptions may consist of different
kinds of blocks, i.e., declarations (e.g., blocka in Figure 2),
signal-flow representations (e.g., blockb), and conservative
representations (e.g., blockc).
In the following, let U be the set of input stimuli,Y the

set of output signals,X the set of internal state variables of
the analog sub-system, andX0 their value at the beginning of
simulation.

A. Signal flow representation

Components with signal flow representation are modeled
with equations that describe output signals of interest as a
function of both input signals and the internal state of the
system:

{

X(t) = f0(X0) + f1(0, t, U(t))
Y (t) = g(X(t), U(t))

(1)

where functionsf0(), f1(), and g() can be built in Verilog-
AMS by using numerical/logical operators, conditional state-
ments (e.g., if-else), math functions (e.g., exp(x), sin(x)), and
analog operators (e.g., derivative, integral).

1For example http://www.designers-guide.org/VerilogAMS/ and
http://www.eda.org/verilog-ams/htmlpages/examples.html

2



B. Conservative representation

Conservative representation consists of agraph with a set
on nodes connected by branches. Such graph can be either
an electrical network (e.g., resistors, capacitors, inductances,
and generators connected by wires) or a bond graph [4] for
multi-domain physical systems. For each branch a potential
and a flow are defined (e.g., voltage and current in the electric
domain) so that their product has power dimension. For each
branch, the so-calleddipole equationgives the relationship
between potential and flow quantities (i.e., voltage and current
in the electric domain). The Verilog-AMS simulator adds
energy conservation laws to the dipole equations depending
on graph topology, thus obtaining a system of differential and
algebraic equations:

{

d

dt
g(X(t)) = f(X(t)) + h(U(t))

Y (t) = k(X(t)) + q(U(t))
(2)

where functionsf(), g(), h(), k(), and q() can be built in
Verilog-AMS by using numerical/logical operators and math
functions (e.g., exp(x), sin(x)).
The simulation of such models requires to solve Equation 2
thousands of times per second to capture transient behavior.
Unfortunately, the sparse linear solver and device evaluation
are two most serious bottlenecks in this kind of simulators [5].
This has a major impact on conservative representations, asall
branches must be computed to consider energy conservation
at any time, while signal flow representations only compute
output signals of interest.

C. Abstraction and conversion of Verilog-AMS models

The problem of generating C++/SystemC code should be
addressed in a different way for signal flow and conservative
representations.
In case of signal flow description, the conversion problem
consists in finding a C++/SystemC counterpart of the syntax
elements contained in Equation 1 and writing the translated
equations in the same order as their original counterparts
appear in the Verilog-AMS description.
Vice versa, conservative descriptions contain all the physical
aspects of the system, so that energy conservation can be
represented. Nevertheless, with reference to the architecture
represented in Figure 1, only a subset of analog output signals
affects the behavior of digital hardware and software. Several
computations can thus be avoided by restricting the evaluation
only to output signals of interest. It is important to note
that the loss of information about energy conservation is not
relevant, as virtual platforms do not aim at supporting design
and verification of analog components.
Figure 3 exemplifies this concept on the solution of the set

of input-state-output equations in Equation 2, implemented
as a signal flow description. Bold arrows and gray boxes
represent the sub-set determining the evaluation of the sole
output y1. The extraction of this sub-set is considered as
model abstraction since the resulting representation contains
less information but requires less computational effort to
be simulated. Information loss can be controlled during the
abstraction process, by deciding the output signals of interest.

Fig. 3. Mapping of the complete set of input-state-output equations of a
conservative model into a block diagram and, in gray, sub-setrelated to output
y1.

Fig. 4. Complete abstraction flow.

The extracted signal flow representation can be easily con-
verted into SystemC-AMS/TDF, SystemC-DE, and pure C++
to be seamlessly integrated into C++/SystemC virtual plat-
forms, thus avoiding co-simulation with analog solvers.
It is worth noting that the proposed methodology can be
also applied to analog models derived from piecewise linear
models [7] so that this kind of non-linearity can be easily
covered. Furthermore, with respect to Model Order Reduction,
the proposed methodology preserves the original state space
thus guaranteeing a higher or equal accuracy.

IV. A BSTRACTION METHODOLOGY

This section explains the details of the abstraction methodol-
ogy. Since it refers to an electrical linear network, the descrip-
tion of the algorithm will use the corresponding terminology.
However the approach can be also applied to other physical
domains if they can be mapped onto electrical linear networks.

The proposed abstraction methodology is outlined in Fig-
ure 4. The parameters of the algorithm are the output signal
of interest and the description of the electrical linear network
as an arbitrary set of constitutive dipole equations.

A. Step 1 - Acquisition

Dipole equations are stored in an optimized data structure,
i.e., a Multimap, with average-case insertion timeO(1) and
with search and deletion time proportional to list lenghthO(l).

The right side of each dipole equation, containing values,
variables, operators and functions, is parsed into an abstract
syntax tree (AST) representation (values and variables are
leaves of the tree whereas operators are intermediate nodes).
Every element of the tree has a set of associated flags for stor-
ing additional information, e.g., the presence of a derivative or
integrative operator. From the same set of dipole equations, the
acquisition tool retrieves information concerning the topology
of the electrical network and creates a graphG = (N,B),

3



Program Input : Hash table containing the dipole equations and the1
circuit’s graph.

Output : An enriched version of the original hash table.

ENRICHMENT(HT, G) NodalAnalysis(HT, G);2
MeshAnalysis(HT, G);3
foreach equationin HT do4

Equation previous = equation;5
foreach term in equation.termsdo6

Equation solved = Solve(equation, term);7
HT.insert(solved);8
previous.nextDependent = solved;9
previous = solved;10

previous.nextDependent = equation;11

return HT12

Algorithm 1 : Enrichment of the set of equations.

Fig. 5. Final hash table, with reference to its constructionsteps.

whereN = {n1, ..., nk} is the set of nodes of the network
andB = {b1, ..., bk} is the branches connecting the nodes.

The algorithmic complexity of this step isO(|B|), where
|B| is the size of the list of dipole equations contained in the
input description.

B. Step 2 - Enrichment

Starting from the equations gathered in the previous step
and the graph representing the topology of the circuit, this
step enriches the list with the application of Kirchhoff’s laws.
Let KCL and KVL be the set of Kirchhoff’s current equations
and Kirchhoff’s voltage equations, respectively. The algorithm
that performs the procedure is shown in Algorithm 1 and an
example of resulting hash table is shown in Figure 5. Every
equation inside a chain has associated a linked list of depen-
dencies. This conformation therefore allows to partition the
set of equations into equivalence classes, where the equation
relationship is the linear dependency, thus allowing to disable
an entire set of equations if needed.

In the worst case, the introduction of KCL and KVL
has a computational complexity ofO(|N |2) and O(|N |3),
respectively. Since the outer loop (lines 4-11) iterates over
the set of equations retrieved so far, its complexity isO(|B|).
In the worst case, the loop which iterates through all terms
of an equation has to consider all the branches, thus result-
ing in a complexity ofO(|B|). The Solve function iterates
through all the terms on its right side and, since the longest
equation has|B| terms, the complexity of this function is

Program Input : The current element of the tree under construction.1
Output : The sub-tree which has the current element as root.

ASSEMBLE(element) if element== Value then2
return element;3

else if element== Variable then4
if element.isDefined()then5

if element.hasDerivative()then6
element = ResolveDerivative(element);7

return element8

Equation equation = fetchEquation(element);9
element.setDefined();10
element.disable();11
equation.right = Assemble(equation.right);12
if equation.hasDerivative()then13

equation = ResolveDerivative(equation);14
return equation15

else if element== Operator then16
Operator op = copyOperator(element);17
op.firstOp = Assemble(element.firstOp);18
op.secondOp = Assemble(element.secondOp);19
return operator20

Algorithm 2 : Equation tree generation algorithm.

Fig. 6. Final tree representation.

O(|B|). Thus, the algorithmic complexity of Algorithm 1 is
O(|N |2) +O(|N |3) +O(|B|2).

C. Step 3 - Assemble

The third step consists in building an intermediate structure,
suitable for the next elaboration steps. The algorithm parses the
previously generated hash table, and then generates an AST
(as detailed in Algorithm 2). This process is exemplified in
Figure 6, where the output of interestV (out, gnd) is placed on
the top. This recursive algorithm makes use of one equation of
each dependency set. Thus, in the worst case, the complexity
of this step is linear with the sum of dipole equations and
Kirchhoff’s equations.

The AST generated from Step 3 represents the linear
equation to be solved. Any generated tree has one or more
occurrences of the left value on the right side of the equation,
as forV (out, gnd) of Figure 6. Having these occurrences on
the right-hand side leads to an erroneous description, since

4



Fig. 7. Solution of the linear equation: (a) the final tree (b)the corresponding
generated C++ code.

they introduce an unwanted delay due to the interpretation of
the symbol equal (which in our case is an assignment). The
purpose of this step is thus to remove these occurrences, except
in the case where there is the explicit interest on the output
value at−∆t. This allows for the equation to be compatible
with the desired description language. Since the language
of the final description is C++ (or an extension, e.g., SystemC,
SystemC-AMS/TDF), the output of interest appearing on the
right side is already delayed by∆t. The algorithm that solves
the linear equation is called once the tree is completely formed
and before calling the Code Generation algorithm. The result
of the application of the algorithm on the tree of Figure 6 is
shown in Figure 7.a. In the worst case, the time complexity
needed to solve the linear equation, isO(|N |3).

D. Step 4 - Code Generation and Total Complexity

The purpose of this phase is to generate a description
compliant with the selected output language by recursively
analysing the given tree. For the tree shown in Figure 7.a, the
final code generated by the algorithm is shown in Figure 7.b.
The complexity of Step 4 isO(|B| + |N |). If we consider
the complexity of all the steps, we will reach a total costs of
O(|N |3 ∗ |B|2).

V. EXPERIMENTAL RESULTS

This Section shows the effectiveness of the proposed ap-
proach by validating the abstraction methodology on single
components, and then by showing the impact on the simula-
tion of a complete smart system. Verilog-AMS simulations
have been performed by using ELDO, as provided within
Questa, while SystemC simulations relied on SystemC-2.3.1
and SystemC-AMS-2.0. Simulation times have been computed
by usingclock() differences for SystemC/C++ descriptions
and the ELDOGlobal CPU Time property for Verilog-
AMS. Simulations have been performed on a x86_64 architec-
ture, 3.8 GB memory and 2.27×4 GHz CPU, running Linux.

A. Validation of the abstraction methodology

In the first set of experiments, we report accuracy and
simulation time of four test cases, i.e., a generaln-order
RC filter (denoted as RCn and built by cascadingn RC

Fig. 8. Electrical diagram of a summing amplifier: (a) two-inputs circuit (b)
operational amplifier.

stages), a two-inputs circuit (denoted as 2IN and depicted
in Figure 8.a) and an operational amplifier (denoted as OA
and depicted in Figure 8.b). Circuit parameters for RCn

circuits are: R=5kΩ, C = 25nF; for two-inputs circuit are:
R1=3kΩ, R2=14kΩ, R3=10kΩ; for the operational amplifier
are: R1=400Ω, R2=1.6kΩ, C1=40nF,Rin=1MΩ, Rout=20Ω
The reference model is given in Verilog-AMS. From this
model, a SystemC-AMS ELN model has been written manu-
ally while the proposed abstraction algorithm has been used
to generate SystemC-AMS/TDF, SystemC-DE and C++ ver-
sions. All the models are stimulated by a square wave signal
generator which is modeled by using the same MoC of the
component under test to avoid performance artifacts due to
inter-MoCs interfaces. The choice of the square signal has
two motivations: first, model inaccuracies are emphasized by
transient signals; second, the continuous-time and discrete-
time versions of a square wave are almost identical, thus
allowing a fair comparison of output signals.

Table I presents the comparison of simulation performances
with components in isolation of Verilog-AMS with respect to
different SystemC MoCs and C++. The results in Table I are
obtained by using a time step of 50 ns, a square wave with a
period of 1 ms and 100 ms of simulated time.

The simulation of Verilog-AMS descriptions is the most

TABLE I
SIMULATION PERFORMANCE AND ACCURACY FOR THE ABSTRACTED

MODELS IN ISOLATION.

Component/ Target Generation Simulation Error
Speed-Up

Model Language method Time (s) (NRMSE)

2IN

Verilog-AMS manual 525.76 0.00 0x
SC-AMS/ELN manual 3.15 2.19E-08 167x
SC-AMS/TDF algo 2.40 2.41E-08 219x
SC-DE algo 1.84 2.41E-08 286x
C++ algo 0.04 2.41E-08 13144x

RC1

Verilog-AMS manual 505.95 0.00 0x
SC-AMS/ELN manual 2.16 2.10E-09 234x
SC-AMS/TDF algo 1.60 4.61E-07 316x
SC-DE algo 1.55 4.61E-07 326x
C++ algo 0.04 4.61E-07 12648x

RC20

Verilog-AMS manual 596.44 0.00 0x
SC-AMS/ELN manual 5.88 4.93E-07 101x
SC-AMS/TDF algo 4.16 1.06E-05 143x
SC-DE algo 4.21 1.01E-05 141x
C++ algo 0.14 1.01E-05 4260x

OA

Verilog-AMS manual 543.23 0.00 0x
SC-AMS/ELN manual 2.57 2.44E-07 211x
SC-AMS/TDF algo 1.87 1.04E-05 219x
SC-DE algo 1.72 1.04E-05 315x
C++ algo 0.05 1.04E-05 13580x

computationally expensive. Simulation speed increases pro-
gressively by removing conservative representation (SystemC-

5



TABLE II
SIMULATION PERFORMANCE FOR THE ABSTRACTED MODELS, IN

ISOLATION, COMPARED TOSYSTEMC-AMS/ELN.

Component Target Generation Simulation Speed-Up
/Model Language Method Time (s)

2IN

SC-AMS/ELN manual 31.11 0x
SC-AMS/TDF algo 25.02 1.24x
SC-DE algo 19.00 1.63x
in C++ algo 0.54 57.61x

RC1

SC-AMS/ELN manual 21.35 0x
SC-AMS/TDF algo 16.27 1.31x
SC-DE algo 15.70 1.35x
C++ algo 0.44 48.52x

RC20

SC-AMS/ELN manual 60.15 0x
SC-AMS/TDF algo 42.99 1.39x
SC-DE algo 42.02 1.43x
C++ algo 1.33 45.22x

OA

SC-AMS/ELN manual 25.84 0x
SC-AMS/TDF algo 19.34 1.33x
SC-DE algo 18.51 1.39x
C++ algo 0.49 52.73x

AMS/TDF), AMS interfaces (SystemC-DE), SystemC sched-
uler and data types (C++). The equivalence of generated
models is evaluated by computing the normalized root-mean-
square error (NRMSE) of their output with respect to the
output of the original Verilog-AMS representation.
In Table II we removed Verilog-AMS simulation to analyse
behavior on a longer simulated time (10 s). The abstraction
tool spent 7.67 s to process the most complex model, i.e.,
RC20 which features 22 nodes and 41 branches. This time is
lower than in case of any manual conversion approach.

B. Simulation of the complete smart system

In the second set of experiments, analog components have
been simulated in the context of a complete virtual platform
for smart systems, as depicted in Figure 1. The digital part
consists of a MIPS-based CPU executing assembly instruc-
tions contained in the memory, a UART and the APB bus.
These digital components are described at RTL. Co-simulation
between Verilog-AMS and digital models has been performed
by using Questa ADMS by Mentor Graphics. The time step,
the period of the square wave and the simulated time are the
same as in the previous set of experiments. Results are reported
in Table III. Simulation time in Table III are more realistic
than Table I because it takes into account the simulation of
the whole platform which consists mainly of digital compo-
nents with only one analog device. The proposed abstraction
methodology allows to generate a pure C++ representation
which is two times faster than a SystemC-AMS/ELN scenario
and 40 times faster than co-simulation with Verilog-AMS.

VI. CONCLUDING REMARKS

This work addressed the problem of efficiently integrating
analog devices into virtual platforms to simulate smart sys-
tems. Simulation speedup was achieved through an abstrac-
tion methodology, that extracts input/output relationships of
interest from conservative descriptions and then maps them

TABLE III
SIMULATION PERFORMANCE FOR THE ABSTRACTED MODELS

INTEGRATED IN THE VIRTUAL PLATFORM.

Component Component VP Simulator Gener. Simulation Speed
/Model Language Language Method Time(s) Up (x)

2IN

Verilog-AMS Verilog Questa manual 1067.33 0.00
Verilog-AMS SystemC Questa manual 729.01 1.46
SC-AMS/ELN SystemC SystemC manual 57.76 18.47
SC-AMS/TDF SystemC SystemC algo 54.40 19.62
SC-DE SystemC SystemC algo 49.19 21.69
C++ C++ C++ algo 24.62 43.35

RC1

Verilog-AMS Verilog Questa manual 1082.35 0.00
Verilog-AMS SystemC Questa manual 734.16 1.47
SC-AMS/ELN SystemC SystemC manual 56.43 19.18
SC-AMS/TDF SystemC SystemC algo 53.25 20.32
SC-DE SystemC SystemC algo 48.85 22.15
C++ C++ C++ algo 26.96 40.14

RC20

Verilog-AMS Verilog Questa manual 1242.29 0.00
Verilog-AMS SystemC Questa manual 818.94 1.51
SC-AMS/ELN SystemC SystemC manual 65.91 18.84
SC-AMS/TDF SystemC SystemC algo 54.22 22.91
SC-DE SystemC SystemC algo 51.44 24.15
C++ C++ C++ algo 28.08 44.24

OA

Verilog-AMS Verilog Questa manual 1165.52 0.00
Verilog-AMS SystemC Questa manual 743.54 1.56
SC-AMS/ELN SystemC SystemC manual 57.23 20.36
SC-AMS/TDF SystemC SystemC algo 51.96 22.43
SC-DE SystemC SystemC algo 50.86 22.91
C++ C++ C++ algo 27.72 42.04

onto signal flow representations to be written in SystemC-
AMS/TDF, SystemC-DE or even C++. Experimental results
proved that the generated discrete-event models are 40 times
faster than Verilog-AMS co-simulation, and the speedup due
to the elimination of the conservative representation is 100%,
with a negligible degradation of the output values of interest.

REFERENCES

[1] M. Alassir, J. Denoulet, O. Romain, and P. Garda. ModelingI2C
Communication Between SoCs with SystemC-AMS. InProc. of IEEE
ISIE, pages 1412–1417, 2007.

[2] P. Benner. Solving large-scale control problems.Control Systems, IEEE,
24(1):44–59, Feb 2004.

[3] N. Bombieri, F. Fummi, and G. Pravadelli. Automatic Abstraction
of RTL IPs into Equivalent TLM Descriptions. IEEE TCOMP,
60(12):1730–1743, 2011.

[4] F. Cenni, O. Guillaume, M. Diaz-Nava, and T. Maehne. SystemC-
AMS/MDVP-based modeling for the virtual prototyping of MEMSap-
plications. InDesign, Test, Integration and Packaging of MEMS/MOEMS
(DTIP), 2015 Symposium on, pages 1–6, April 2015.

[5] X. Chen, Y. Wang, and H. Yang. A fast parallel sparse solver for SPICE-
based circuit simulators. InProc. of DATE, pages 205–210, 2015.

[6] R. Daniels, H. V. Sosen, and H. Elhak. Accelerating analog simulation
with HSPICE precision parallel technology.Synopsys Tech. Rep., 2010.

[7] S. Hoelldampf, H. Lee, D. Zaum, M. Olbrich, and E. Barke. Efficient
generation of analog circuit models for accelerated mixed-signal simu-
lation. In IEEE SOC Conference, pages 104–109, Sept 2012.

[8] Imperas Software. OVP - Open Virtual Platforms. www.ovpworld.org.
[9] Mentor Graphics. Questa Advanced Simulator.

www.mentor.com/products/fv/questa.
[10] F. Pecheux, C. Lallemen, and A. Vachoux. VHDL-AMS and Verilog-

AMS as alternative hardware description languages for efficient model-
ing of multidiscipline systems.IEEE TCAD, 24(2):204–225, Feb 2005.

[11] M. Vasilevski, F. Pecheux, N. Beilleau, H. Aboushady, and K. Einwich.
Modeling and Refining Heterogeneous Systems With SystemC-AMS:
Application to WSN. InIEEE/ACM DATE, pages 134–139, 2008.

[12] S. Vinco, M. Lora, and M. Zwolinski. Conservative behavioural
modelling in SystemC-AMS. InProc. of FDL, Sep. 2015.

6


