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Abstract—Simulation speed is crucial in virtual platforms, in
order to enhance the design flow with early validation and design
space exploration. This work tackles this challenge by focusing on
two main techniques for speeding up virtual platform simulation,
namely efficient data types implementation and a novel scheduling
technique. Both the optimizations are obtained through code
manipulation. The target language is C++ and its extensions (i.e.,
SystemC), that are the most widespread languages for virtual
platform modeling and simulation. The optimization techniques
are considered orthogonal, as they target different aspects of the
simulated code. Experimental results prove the effectiveness of
both the single techniques and of their combined application on
complex case studies, with the result of reaching a maximum
speedup of 70x in the simulation of a virtual platform.

Keywords—Virtual platform, data types, SystemC, C++ code
generation, scheduling, simulation, SystemC optimization.

I. INTRODUCTION

Virtual platforms are a powerful solution in embedded
system design, as they allow to explore alternative design
solutions, to achieve early validation of the overall system
and to develop and validate applications on top of the HW
components. In this context, simulation speed is a pressing
concern, as a slow simulation would slow down the entire
design and validation process.

Most of the currently available virtual platform environ-
ments target simulation speedup by adopting C++ and Sys-
temC TLM [5], [15], [17], [23]. On one hand, C++ native
constructs and types allow a lightweight and fast execution. On
the other, SystemC, particularly in its TLM extension, eases
integration and reuse of existing IPs, while still preserving
good simulation performance and adherence w.r.t. the IP func-
tionality.

The choice of C++ and SystemC as target languages reduces
the type of IPs and models that can be reused, as models imple-
mented in other HDLs can not be straightforwardly included
in the virtual platform. Co-simulation would overcome this
limitation [1], [16], but it would decrease simulation perfor-
mance due to the frequent synchronization between different
simulation environments. At the same time, many state-of-the-
art methodologies and tools allow to automatically convert
HDLs to C++ and SystemC [3], [14], [22]. However, such
tools focus on the reproduction of the IP functionality, with
no concern for simulation performance and optimization. On
the contrary, code conversion for inclusion in virtual platforms
requires a further effort to achieve not only correct simulation
but also good simulation speed, to allow multiple executions
and to enhance the development of the virtual platform.

This work was supported by the EC co-funded SMAC (SMArt Systems
Co-Design) project Grant Agreement FP7–ICT–288827.
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Fig. 1. Overview of the proposed approach. The starting IP is reduced to an
intermediate HDL-independent format (1), and it then optimized via efficient
data type implementation (2) and a novel scheduling technique (3). The code
is then converted to C++ for inclusion in virtual platforms (4).

In this scenario, this article aims at enhancing virtual plat-
forms by easing the integration of existing IPs, and by speeding
up code execution through the adoption of novel optimization
techniques. The methodology goes beyond standard C++ code
generation solutions to reduce the impact of the two major
bottlenecks: data type implementation and scheduling of the
HDL processes [7], [8]. The optimizations are considered
orthogonal, as they target different aspects of the simulated
code and they require specific solutions.

Figure 1 outlines the resulting approach. The starting point
is a digital IP, in any HDL, that must be inserted into a
C++/SystemC virtual platform. Information extracted from the
IP (e.g., inter-process dependencies and data declarations) is
formalized to ease code manipulation (1). HDL data types are
converted to native C++ data types to speed up simulation
(2). HDL scheduling is then replaced by a novel scheduling
technique, mixing static and dynamic scheduling to execute
each subset of processes of the original IP with the most
suitable scheduling strategy (3). The resulting description is
finally converted to C++ for integration into virtual platforms
(4).

The main contributions of the current work are:
• enhancement of data types through a novel methodology

that converts HDL data types into C++ native data types.
Type conversion is supported by the modification of the
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IP code and the implementation of an efficient library of
operators, supporting typical HDL constructs;

• an analysis of traditional static and dynamic scheduling
approaches, to define their limitations and to determine
what conditions make the one more efficient than the other;

• construction of a new scheduling technique, that combines
the advantages of both approaches by executing each subset
of processes of the IP with the most suitable scheduling
strategy, still preserving inter-process dependencies;

• implementation of automatic tools that apply all code
manipulations to existing IPs, i.e., DDT for data type-based
optimizations and TANGLE for automating the adoption of
the novel scheduling strategy. The tools are based on an
existing framework for code manipulation, HIFSuite [3].
However, all manipulation and formalization steps related
to the proposed methodology have been implemented for
the first time in TANGLE and DDT.

The result is an optimal configuration, that allows to reach
a speedup of up to 474x when applied to single IPs, and a
speedup of up to 70x when applied to a complex cryptographic
platform. The approach proves thus to be especially suited
for repeated simulation sessions, such as the case of virtual
platform simulation during design exploration and validation.

The article is organized as follows. Section II provides
the necessary background. Section III formalizes information
extracted from the IP. Section IV focuses on data types.
Section V outlines the novel scheduling strategy, while Section
VI focuses on C++ code generation. Sections VII and VIII
conclude the paper with experiments and with our remarks.

II. BACKGROUND

A. EFFICIENT DATA TYPE IMPLEMENTATION

The popularity of C++ and SystemC for virtual platform
environments is due to the lightweight and fast execution
offered by C++, and by the enhanced support for integration
and reuse offered by the SystemC extensions. SystemC data
types support all types and operators offered by the main
HDLs, thus recreating the correct behavior of the physical
circuit in a C++ environment. Unfortunately, SystemC types
decrement simulation performance due to an inefficient im-
plementation [8]. Different works have been proposed in the
literature with the aim of defining a trade-off between accuracy
and simulation speed of SystemC data types. [27] exploits
native types to increase performance, but it limits the support to
concatenation, bit selection and range operators. Performance
close to native C/C++ data types is reached in [8], [24],
providing arbitrary-length integer, fixed-point and complex
data types. However, logic data types are not handled and the
level of abstraction is too low, as the aim is to ease synthesis.
The result is a limited speedup (about 2x). [13] supports only
the unsigned integer data type uc_uint, for substituting the
sc_uint SystemC type. The type uc_uint is provided only
with a very limited range of operators (i.e., assignment, bit
selection and read operations), thus limiting the support for
HDL types and constructs.

[2] proposed an efficient bit-accurate data type library,
called HDTLib, that complies with the SystemC standard.

Optimized execution is gained by avoiding dynamic memory
allocation and by reducing class hierarchy to the minimum.
Furthermore, unsigned integers are used as underlying data
structure to perform operations on words, rather than on single
bits. However, HDTLib is still affected by performance penal-
ties due to its implementation as C++ template classes, e.g.,
overheads associated with function calls and class hierarchy.

B. STATIC AND DYNAMIC SCHEDULING

Dynamic scheduling is the reference scheduling policy for
HDL simulators. It is strictly event-based, as each process
is executed only when fresh data are available. The major
bottlenecks are the management effort to determine the queue
of runnable processes, and potentially repeated executions of
processes in a single simulation cycle in response to multiple
activation events.

Static scheduling has been adopted in literature in various
scenarios, e.g., for execution on massively parallel architec-
tures [28] or in case of real-time systems [4]. It determines a
static execution order between processes based on the intra-
process dependencies. Most of the approaches in the literature
assume that the dependency graph is acyclic, claiming that
cycles can not be written in synthesizable code [4], [21].
Unfortunately, cyclic dependencies are not as rare as one may
think (projects systemcaes, a_vhd_16550_uart and plasma
from [19]). Even if some attempts to remove cycles have been
made [12], [20], cycle removal mostly relies on the designer’s
knowledge and its automation is thus far from trivial.

To the authors’ knowledge, no work in the literature tar-
geted the creation of a scheduling approach mixing static and
dynamic. All available scheduling strategies either try to make
simulation very efficient and easy to control (i.e., dynamic
scheduling) or meet the requirements of a specific architecture
(e.g., static scheduling for GP-GPUs [28]).

III. FORMAL REPRESENTATION OF THE STARTING IP
HDL languages (e.g., VHDL and Verilog) have major dif-

ferences in terms of both syntax and semantics. It is thus
necessary to represent the main characteristics and information
of IPs in a common language-independent format.

The application of the proposed methodology requires to
extract the following information from any given IP: (1) list
of the ports constituting the IP interface, (2) list of signal
declarations, for allowing inter-process communication, (3)
processes of the IP, modeled as functions, and (4) a dependency
graph, for modeling inter-process dependencies.

An example of IP and corresponding extracted information
is provided in Figure 2. The following sections deepen the
information extraction process. The intermediate format is
represented in a tree-structured XML-like language including
all objects and statements of a typical HDL language, that
allows to apply the same methodology independently from the
language and the characteristics of the starting IP.

1) Hierarchy removal: The proposed methodology forces
hierarchy flattening as hierarchy smoothes the dependencies
between processes, that are not instantaneously evident. This
step does not constitute a novel contribution, as it relies on
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entity design is
port(
in1: in std_logic;
out1: out std_logic;
...
);
end design;

architecture behav of design is
signal sig1: std_logic;
signal a : std_logic; 
...
p1: process( reset, in1 )
begin
if(in1 == false) a <= true;     
else a <= in2; 
end

p2: process( a )
begin
sig1 <= a | sig1;
... 
end
...
end behav;

in1 : LOGIC

…
out1 : LOGIC

PORTSTRUCT:

PROCESSES:

DEPENDENCY 

GRAPH:

SIGSTRUCT:

p1

p2

reset, 

in1, in2

a

sig1

…
a : LOGIC

sig1 : LOGIC

p1
if (reset == 0; 

a = 0; a = in1) 

…
sig1 = or(a,sig1) p2

Fig. 2. Adopted intermediate format. Ports and signals are grouped into two
lists (iostruct and sigstruct, respectively). Processes are modeled as
functions, and their dependencies are formalized in a dependency graph.

the HR tool, part of HIFSuite [3], which manipulates the
starting code to remove the hierarchy and returns a new non-
hierarchical IP equivalent to the original one. However, its
presentation was necessary to better explain the characteristics
of the adopted IP description.

The hierarchy of any IP is removed by starting from the
non-hierarchical instances, and moving up across the hierarchy
levels. Each sub-component is flattened in its parent compo-
nent by moving all its internal declarations and processes to
the parent. To avoid conflicts, all declarations and processes
are given fresh names. Then, operations on ports of the sub-
component are replaced with operations on the signals of the
parent that were originally bound to each sub-component port.

2) Data declarations: The HDL-independent format lists
all declarations as objects (e.g., port objects, signal objects,
variable objects). All such objects are provided with a name
(i.e., the name in the starting HDL). As shown in Figure 2,
the type of each object is obtained by mapping the original
HDL type (e.g., std_logic) to a HDL-independent type (e.g.,
LOGIC). Finally, port objects are annotated with their direction.

To ease code generation and encapsulation, data declarations
of the starting IP are grouped into two lists, outlined in Figure
2. Ports are collected in a list called iostruct, storing the
direction, the HDL-independent type and the name of the port.
Signals are collected in a list called sigstruct, whose entries
store the name of the signal and its HDL-independent type.
In order to preserve system consistency all along simulation,
signals are duplicated to preserve both the current value of the
signal at any simulation time, and its value after the execution
of the previous simulation cycle. This reproduces the semantics
of most HDLs (e.g., VHDL, Verilog and SystemC).

3) Processes: Aside from the difference in terms of syn-
tax, all HDLs model HW processes as functions executed
in response to system events, such as changes in the input
ports or in the value of signals. In the intermediate format,
processes are converted to functions, named pi(), where i is
an index. The body of each function is the list of actions of the

original process (e.g., assignments, conditions and loops). Each
function accesses data declarations through pointers to the
iostruct and sigstruct lists, so that changes to the system
state are visible from all functions.

4) Process management: Moving the IP to C++ implies
that all scheduling and event management routines are not
preserved. On the other hand, inter-process dependencies, that
constrain both the activation (and the ordering) of processes
and the data propagation flow across the IP, must be preserved
to ensure the correctness of any scheduling routine.

To fill this gap, the intermediate format is enriched with
a management function, called mixed_scheduler(), in charge
of executing the HDL processes in an order that respects all
dependencies (i.e., the sensitivity list of each process) and that
allows to detect all changes in the system status. The behavior
of the mixed_scheduler() function is determined at later
stages of the proposed approach (step 3, Section V). However,
its construction requires a preliminary effort to formalize read
and write dependencies between processes.

The intermediate format represents inter-process dependen-
cies with a specific type of graph, called dependency graph
(Definition 1). In a dependency graph, each vertex represents a
process and points to the corresponding function pi(). Vertexes
are divided between synchronous (i.e., processes that react to
changes of the clock signal) and asynchronous (i.e., processes
that are activated by other signals). An edge connects two
vertexes if the source vertex writes on one or more signals
read by the destination vertex. Given edge e = (v, v′), signal
se is the signal that determines the dependency of v′ from v.

Definition 1 (Dependency graph). A dependency graph DG =
(V, E) is a direct graph built as follows:
• V is the set of vertexes of the graph. Each vertex corre-

sponds to one of the design processes and it is provided
with a pointer F to the corresponding function pi(). A flag
sync is used to state whether the process is sensitive to
changes of the clock signal, i.e., synchronous (true), or
asynchronous (false).

• E ⊆ (V × V) is the set of edges between vertexes. An edge
e = (v, v′) ∈ E exists if process v′ reads a signal s written
by process v and v′.sync is false.
The condition on v′ implies that the dependencies of
synchronous processes from asynchronous processes are
not represented, since they create a dependency between
present-state values and next-state values through time.

Figure 3 shows an example of dependency graph. Colored
vertexes are asynchronous nodes (i.e., sync is false), while
synchronous nodes (i.e., sync is true) are dashed.

Note that, depending on design quality and programming
style, the signals included in any process sensitivity list may
be only a subset of the read signals. Whenever the sensitivity
list of a process does not include all read signals, this may lead
to losing some read-write dependencies, and thus to scheduling
errors due to an incorrect execution order of processes. This
explains why the dependency graph is built depending on
signals read by each process, rather than on the process
sensitivity list.
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Fig. 3. Example of dependency graph. Vertexes represent processes and
edges represent read-write dependencies between processes. Colored vertexes
are asynchronous nodes, while synchronous vertexes are dashed. Each vertex
is labeled with the name of the corresponding function pi().

TABLE I. MAPPING OF LOGIC AND BIT VECTORS INTO C++
FIXED-WIDTH UNSIGNED INTEGER TYPES.

Bitwidth range Fixed-width integer type
2–8 uint8_t

9–16 uint16_t
17–32 uint32_t
33–64 uint64_t
> 64 Multiple uint64_t chunks

IV. EFFICIENT DATA TYPE IMPLEMENTATION

Data types have a heavy impact on both the functionality and
the performance of the generated code [7], [9]. In the context
of the development of C++/SystemC based virtual platforms, a
straightforward solution is to map HDL data types to SystemC
data types. Nevertheless, SystemC proved to be up to 10x
slower than the other HDLs, mainly because of the heavy data
types class hierarchy [9]. This Section aims at overcoming
such limitations by proposing a methodology to convert HDL
data types into C++ native data types.

A. CONVERSION OF HDL DATA TYPES TO C++ NATIVE
DATA TYPES

This section proposes a comprehensive methodology to
convert HDL data types to C++ native data types, made of
three main steps: (1) retrieving data declarations, (2) converting
types of data declarations to the most suitable C++ native
types, (3) converting operations on data types.

1) Retrieving data declarations: the first step consists of
retrieving all the data declarations (i.e., ports, signals and
variables) in the design description. Signal and port declara-
tions are available in the sigstruct and iostruct lists, built
at formalization time. Then, variable declarations internal to
processes are collected in lists, to be easily accessed and to
preserve the scope of each variable.

2) Converting data types: the type of each data declaration
is then examined and converted to a corresponding C++ native
data type. Single bit or logic types are replaced with the
native bool type. Bit and logic vectors are replaced with
corresponding fixed-width unsigned integer types, as defined
in the <cstdint> header of the C++ standard library. Given
a bit or logic vector, the corresponding fixed-width unsigned
integer type is selected as the smallest that can safely contain
the bitwidth of the vector, as shown in Table I. Note that this
may lead to map logic and bit vectors to an unsigned integer

type larger than their bitwidth. For example, a 24-bits vector
is mapped to uint32_t, a 32-bits unsigned integer.

In case the bitwidth is larger than 64 bits, the vector is split
into multiple unsigned integer chunks. These chunks are all of
type uint64_t, except for the last chunk, containing the most
significant bits, that may fit into a smaller unsigned integer.
For example, a 160-bits logic vector v is converted into the
following chunks:

uint64_t v_63_0; // 64 least significant bits
uint64_t v_127_64; // bits from 64 to 127
uint32_t v_159_128; // 32 most significant bits

HDL logic types typically extend two-valued logic (i.e., ’
0’ and ’1’) with a set of metavalues (e.g., ’U’, ’X’, ’Z’).
Metavalues are used for debugging purposes and for simulating
HW-specific behaviours, such as uninitialized, unknown, or
high-impedance values. Fully reproducing this accuracy would
introduce a performance overhead, as each logic value would
be mapped to a number of bits (4 to reproduce the 9-valued
logic of VHDL). For this reason, the data type mapping
proposed in this work abstracts the multi-value logic and re-
places all metavalues with ’0’, similarly to the data abstraction
methodology in [2]. This allows to map logic values to bool
and logic vectors to unsigned integers, as done for bits and bit
vectors. This transformation can be deemed as a reasonable,
as metavalues model a low-level behavior no longer needed
during virtual platform simulation. The loss of accuracy is
thus considered an acceptable trade-off in order to significantly
speed up simulation.

3) Converting operations on data types: operations on data
types must be changed accordingly to take into account
the conversion of data declarations. To this extent, typical
HDL operators are implemented with corresponding bitwise
operations or function calls, as detailed in Table II, where
column HDL syntax provides a representation of the operation
in Verilog syntax. This shows that adopting C++ native types
for efficient simulation requires both the definition of a library
of operators, reproducing the typical HDL operators, and heavy
code manipulations, to replace HDL types and operators with
the efficient ones.

In case logic and bit vectors are mapped to an unsigned
integer type larger than their bitwidth, bitwise masking opera-
tions are added to the right-hand side of assignments on those
vectors, in order to preserve bitwise accuracy. For example,
suppose a is a 24-bits logic vector (mapped to the uint32_t

type). a is assigned the sum b + c. The corresponding
assignment is implemented as follows:

a = (b + c) & 0xffffffU;

where the bit mask 0xffffffU ensures that a is not assigned
values larger than the maximum allowed by its bitwidth.

If a logic or bit vector is split into multiple unsigned integer
chunks, operations on the vector are decomposed into the
involved chunks. For example, suppose the slice v[95:32] of
the 160-bits logic vector v is accessed. This slice access is
converted to the following expression:

((v_127_64 & 0xffffffffULL) << 32) |
((v_63_0 & 0xffffffff00000000ULL) >> 32)
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TABLE II. IMPLEMENTATION OF OPERATIONS ON HDL DATA TYPES WITH CORRESPONDING BITWISE OPERATIONS ON UNSIGNED INTEGERS.

Operation HDL syntax Implementation Notes

Slice access a[hi:lo] (a & mask)>> lo mask = (2(hi−lo+1) − 1) )<< lo
Slice assignment a[hi:lo] = b a = (a & mask)| (a << lo) mask = (~0)-((2(hi−lo+1) − 1) << lo)
Single bit access a[i] (a & mask)== mask mask = 2i

Single bit assignment a[i] = b a = singleAssign(a, i, b)
uint64_t singleAssign(uint64_t l, int i, bool b) {

uint64_t mask = 1ULL << i;
if (b) return (l | mask);
else return (l & (~mask));

}
Concatenation {a, b} (a << wb) | b wb = bitwidth of operator b
Bitwise and a & b a & b
Bitwise or a | b a | b
Bitwise xor a ^ b a ^ b
And reduction &a (a == mask) mask = 2wa − 1, wa = bitwidth of operator a
Or reduction |a (a > 0)
Xor reduction ^a xorReduce(a, wa) wa = bitwidth of operator a

bool xorReduce(uint64_t v, int w) {
bool result = (v & 1ULL) == 1ULL;
uint64_t mask = 2ULL;
for (int i = 1; i < w; ++i) {

result ^= ((v & mask) == mask);
mask <<= 1;

} }

Now suppose that v is assigned the concatenation of 64-bits
vector a and 48-bits vectors b and c:
v = {a, b, c};

This assignment is decomposed into three separate assign-
ments, one for each chunk of v:
v_63_0 = ((b & 0xffffULL) << 48) | c;
v_127_64 = ((a & 0xffffffffULL) << 32) |

((b & 0xffffffff0000ULL) >> 16);
v_159_128 = (a & 0xffffffff00000000ULL) >> 32;

Finally, the most widespread arithmetic libraries (e.g., ieee
.numeric_std of VHDL) are supported by implementing their
operations on C++ native data types. Additional arithmetic
libraries can be easily supported by mapping their operations
on corresponding expressions and function calls operating on
C++ native data types.

V. A NOVEL SCHEDULING TECHNIQUE

Scheduling is usually considered an underlying dimension
of IP simulation in the context of embedded system design.
Scheduling algorithms are not considered as a target for opti-
mization, and the state-of-the-art versions of HDL scheduling
algorithms are considered as standard-de-facto. To overcome
their heavy impact on IP simulation [7], many approaches have
been proposed in the literature targeting parallel simulation of
HDLs, with a focus on SystemC simulation [6], [10], [18],
[29]. Such solutions, despite being effective at reducing sim-
ulation speed, are not suitable for standard virtual platforms,
as they require highly (or massively) parallel architectures.

This work proposes to overcome such limitations by defining
a novel scheduling approach that goes beyond standard static
and dynamic scheduling approaches.

A. ANALYSIS OF STATIC AND DYNAMIC SCHEDULING

Dynamic scheduling execution time is made of two major
contributions: process execution and scheduling management.

The term #iterj,i represents the number of executions of pro-
cess pj at simulation cycle i, while the scheduling management
cost at cycle i is represented by the term mgmti. Given tj
average execution time of process pj , the resulting execution
time is thus:

Tdynamic =
∑

0≤i<#cycles

(mgmti +
∑
0≤j<

#process

#iterj,i × tj) =

(#cycles×
∑
0≤j<

#synch
process

tj)+
∑
0≤i<

#cycles

(mgmti+
∑
0≤j<

#async
process

(#iterj,i× tj))

where the latter formula further breaks down execution
contribution between synchronous processes (executed exactly
once at any simulation cycle) and asynchronous processes
(whose execution is less predictable).

Overall execution time of static scheduling is the sum of
the execution time of all processes, accumulated for all clock
cycles. Given tj average execution time of process pj :

Tstatic = #cycles×
∑

0≤j<#process

tj .

The presented formulas are very hard to apply to real
case studies without any profiling information. On the other
hand, the formulas are useful for providing some guidelines
for the application of static or dynamic scheduling. In both
the versions, synchronous processes are executed once at
any simulation cycle. Dynamic scheduling outperforms static
scheduling if asynchronous processes execute sporadically, as
management time mgmti is compensated by the time saved
because of executing processes only on fresh data. On the con-
trary, if asynchronous processes execute often, then the mgmti
overhead outweighs the benefit of restricting execution to ready
processes, thus making static scheduling more efficient.

An experimental evidence of this analysis is applied in the
following, by profiling and comparing the execution of two
designs with complementary characteristics. The CAMELLIA
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design is a Verilog cryptographic core [26], while the ECC is a
VHDL error correction code module provided by an industrial
partner. Table III compares their characteristics in terms of
execution times in their purely dynamic and static scheduling
versions, and in terms of profiling.

TABLE III. ANALYSIS OF SIMULATION PERFORMANCE AND
PROFILING OF THE DES56 AND ECC DESIGNS IN THEIR STATIC AND

DYNAMIC SCHEDULING VERSIONS.

CAMELLIA ECC

Processes Synchronous 6 4
Asynchronous 71 7

Dynamic
Execution time (s) 129.4 99.8

Processes per cycle (avg. #) 114.6 8.5
Mgmt. overhead (%) 0.9 24.2

Static Execution time (s) 64.9 145.9
Processes per cycle (avg. #) 77.0 11.0

The CAMELLIA design is better in its static scheduling
version (speedup 2.0x), as it executes on average 77.0 pro-
cesses per simulation cycle, versus the 114.6 of the dynamic
version. This means that in the dynamic version some of
the processes are executed more than once (even more than
3 times) per simulation cycle. This slows down execution,
even if the management overhead has a very low impact
on execution (0.9%). On the contrary, the ECC design is
better in its dynamic version (speedup 1.5x), which executes
on average 8.5 processes per simulation cycle, instead of
11.0 as for the static version. Indeed, not all processes are
activated at any simulation cycle, and only in few cases the
same process is executed more than once. This balances the
management overhead, that accounts for slightly more than
24.0% of execution time. Such considerations explain the
different performance of the two designs when adopting static
and dynamic scheduling, and prove that no scheduling strategy
is optimal for any design.

B. EXTENDING STATIC SCHEDULING WITH CYCLE SUPPORT

Static scheduling is based on the assumption that there
are no cyclic dependencies between processes. Unfortunately,
cyclic dependencies are not as rare as one may intuitively
think: examples of cyclic designs are available at [19] (projects
systemcaes, a_vhd_16550_uart and plasma). Cyclic dependen-
cies may be difficult to detect, e.g., they may occur between
processes at different hierarchy levels. Furthermore, cyclic
dependencies may not raise any error during the synthesis
phase whenever the dependencies are between different cones
of logic contained in the processes, rather than the entire
processes. As a result, the restriction to non-cyclic designs
severely limits the applicability of static scheduling. One of
the goals of this paper is to go beyond this limitation, to allow
applicability of static scheduling to any kind of designs.

1) Cycle identification: The identification of cycles in a
dependency graph can be easily accomplished by applying
Tarjan’s algorithm for enumerating elementary circuits [25].
If the algorithm identifies any cycle in the dependency graph
(e.g., the graph between P2, P3 and P4 in Figure 4.a), it is
then necessary to break the cyclic dependencies to make the
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Fig. 4. Example of cyclic dependency graph (a) and of application of the
cycle management approach (b-c).

dependency graph acyclic. This allows to apply the topological
order and to create the static scheduling for the current design.

To ease the presentation of the cycle management strategy,
it is now necessary to define the first vertex of a cycle.

Definition 2 (First vertex of a cycle). Given a dependency
graph DG = (V, E) and a cycle contained in DG, the first
node f is a vertex of the cycle such that:
• ∃e = (v, f ) ∈ E s.t. v.sync is true, i.e., the node receives

inputs from a synchronous process;
• ∀ e = (f , v) belonging to to the cycle, !∃e′ = (v′, f ) such

that e′ belongs to the cycle and the value of se is computed
from se′ .

The first condition implies that f is the first function to
execute, as it gets fresh data from a synchronous process. The
second condition states that any output signal se of the first
vertex must obey this constraint:
• either edge e does not belong to the cycle, and thus any

new value produced for se does not provide fresh data to
processes of the cycle;

• or edge e belongs to the cycle, but se is not function of
any signal se′ belonging to the cycle.

This guarantees that there is no cyclic dependency on signals,
thus making the cycle synthesizable. Indeed, all outputs pro-
duced by f and belonging to the cycle are not influenced by the
execution of the other processes of the cycle, thus guaranteeing
that the cycle will never be executed an infinite number of
times. Note that the synthesizability of the IP guarantees the
existence of at least one first vertex per cycle. If no vertex in
the cycle can be first vertex, than the cycle may be activated an
infinite number of times also in its dynamic scheduling version.
If more than one vertex qualifies as first vertex of a cycle, the
first vertex is the process with the lightest computational effort.

An example of identification of the first vertex of a cycle is
provided in Figure 4.b. Given the cycle made of P2, P3 and
P4, vertex P4 has an input edge coming from the synchronous
vertex P1, thus satisfying the first condition. P4 can be
identified as first vertex if and only it satisfies the second
condition, even if it has an output edge (b) belonging to the
cycle. The condition is thus satisfied only if the value of sb
(i.e., of the signal associated to the output edge b) does not
depend on the value of sd (i.e., of the signal associated to the
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input edge d, that is part of the cycle).

2) Cycle removal: Given a cycle in a dependency graph, the
cycle is broken by replacing it with a new vertex, v_new. The
function pointer of the new node (i.e., v_new.F) reproduces
the functionality of the whole cycle, as determined by visiting
the cycle starting from the first vertex f and following the
cycle edges until f is reached again (lines 7-10 of Algorithm
1). In this way, f is executed as first function (in response
to its synchronous dependencies) and as last function of the
cycle (in response to system changes due to the execution of
the cycle).1 The edges forming the cycle are then removed
from the dependency graph (lines 11-13). The input and output
edges of the vertexes forming the cycle are then moved to
the new vertex (lines 14-17 for input edges and 18-21 for
output ones). This allows to preserve the dependencies w.r.t.
the remainder of the design.

As an example, Figure 4.c shows that the previously iden-
tified cycle (made of P2, P3 and P4) is replaced by a new
vertex associated with the functionality of all processes listed
as: P4 (i.e., the first vertex), P2, P3 and P4. Input edges of
the original vertexes (i.e., u and a) constitute the input edges
of the new vertex, while e, x and y are its output edges.

1 break_cycle(cycle, DG) begin
2 f = cycle.find_first_vertex();
3 v_new = new vertex();
4 V.add(v_new);
5 V.remove(cycle.get_vertexes());
6 v_new.F = v_new.F ∪ f .F;
7 foreach v ∈ cycle s.t. v ̸= f by topological sort do
8 v_new.F = v_new.F ∪ v.F;
9 end

10 v_new.F = v_new.F ∪ f .F;
11 foreach (v, v′) ∈ E s.t. v,v′ ∈ cycle do
12 E = E \ {(v, v′)};
13 end
14 foreach v ∈ cycle ∀ (v′, v) ∈ E s.t. v′ /∈ cycle do
15 E = E \ {(v′, v)} ∪ {(v′, v_new)};
16 s(v′,v_new) = s(v′,v);
17 end
18 foreach v ∈ cycle ∀ (v, v′) ∈ E s.t. v′ /∈ cycle do
19 E = E \ {(v, v′)} ∪ {(v_new, v′)};
20 s(v_new,v′) = s(v,v′);
21 end
22 end

Algorithm 1: Algorithm for breaking a cyclic dependency

a) Discussion on correctness: Let us consider a cycle made
of a number of vertexes vi, such as the one formed by
processes P2, P3 and P4 in Figure 4. Section V-B1 showed
that, if the IP is synthesizable, the cycle must contain at least
one node f that is a first vertex node (in this case, P4).

By definition, f receives fresh data both from synchronous
processes (i.e., P1) or external inputs, and from inside the
cycle (i.e., from P3). The synchronous dependency implies

1Note that removing a cycle results in replicating the first vertex f . This
explains why, whenever two or more vertexes are eligible for being the first
vertex, the first vertex is the process with the lighter computational effort.

that f is the first node of the cycle to be executed with any
scheduling strategy. At this point, inputs coming from inside
the cycle (i.e., d) are not stable yet, as the other processes have
not executed yet. However, synchronous inputs are stable (i.e.,
a) and it is thus possible to compute the updated value for the
outputs involved into the cycle (i.e., b).

Then, all cycle vertexes are executed one at a time, by
following the order implied by the cycle (i.e., P2 and then P3).
This implies that each process executes as soon as all its input
data are available, by respecting the dependency constraints.

Finally, f gets fresh data from vertexes inside the cycle (i.e.,
d from P3). The constraints posed in Definition 2 imply that
such fresh data are not involved in the computation of the value
of output signals belonging to the cycle (i.e., b is not function
of the value of d). Thus, outputs for the cycle are not updated
and it is not necessary to reactivate the other cycle processes.
This is consistent with dynamic scheduling, where the other
cycle processes would not be executed anyhow, as no event
occurred on their inputs.

Finally, fresh data are used to update the value of the process
outputs outside the cycle (i.e., y), that are propagated in the
following of the execution. This confirms that the algorithm
for cycle removal preserves both the correctness of execution
and all dependency constraints.

3) Cycle management approach: Our experimental analysis
proves that designs tend to contain a number of nested cycles,
rather than a single cycle (e.g., project plasma from [19]
contains 194 cycles). Given a generic dependency graph, cycles
are broken one after another by starting from cycles that
do not contain nested cycles, and in order of size (i.e., the
cycle containing the fewest vertexes is broken first). The cycle
removal algorithm modifies the graph with new vertexes and
edges. Thus, it is necessary to reorder the cycles after any
execution of the cycle removal algorithm. Once all cycles have
been eliminated, it is possible to apply the standard topological
sort algorithm, and to build the static scheduling for the design.

C. BEYOND STATIC AND DYNAMIC SCHEDULING

Section V-A highlighted that no scheduling approach is
the best solution overall, as static and dynamic scheduling
approaches are suited to different types of execution pro-
files. As such, it is worth trying to mix static and dynamic
scheduling, thus building a novel solution targeting frequent
simulations in virtual platforms. The proposed solution adopts
each scheduling approach only in the most suitable conditions,
combining the advantages and reducing the drawbacks. Note
that the extension of static scheduling to support a wider range
of designs (achieved in the previous section) further augments
the chances for evaluating alternative scheduling associations.

The resulting flow is depicted in Figure 5:
a. construction of the dependency graph of the IP;
b. partitioning of the dependency graph into sets of vertexes,

executed with the same scheduling approach;
c. association of scheduling approaches to sets, depending on

heuristic policies or on designer’s configurations;
d. sets are executed sequentially by a mixed scheduler by

respecting dependency constraints.
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Fig. 5. Proposed approach. The dependency graph (a) is partitioned into sets
(b). Each set is associated with the most suitable scheduling policy (c). The
generated mixed scheduler sequentially executes the sets if any incoming edge
changed value (d).

1) Partitioning into sets: The dependency graph is parti-
tioned into subgraphs, called sets (the solid rectangles in Figure
5.b). Vertexes in the same set represent processes that are
executed at the same time with the same scheduling approach.
Some constraints are defined to preserve the inter-process
dependencies:

• Synchronous processes: all synchronous processes must
belong to the same set (e.g., set 1 in Figure 5.b). In HDL
simulation, synchronous processes are the first ones to
execute at the beginning of a new simulation cycle. To
reflect this behavior, they are collected in a single set,
called synchronous set, that is executed at the beginning
of any simulation cycle.

• Ancestors and descendants: a set can not contain both
ancestors and descendants of a vertex, unless the vertex
itself is contained in the set. This condition guarantees that
sets can be ordered by respecting the dependencies outlined
in the dependency graph. An example of application of
this constraint is outlined in Figure 6. In Figure 6.a, set 2
contains both an ancestor (i.e., P4) and a descendant (i.e.,
P10) of P7, that is contained in set 1. This implies that
set 2 should be executed both before (P4-P7 dependency)
and after set 1 (P7-P10 dependency). A possible correct
partitioning is achieved by partitioning set 2 into two

a. Wrong partitioning (constraint b) b. Correct partitioning
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Fig. 6. Effect of the ancestors and descendants constraint on set partitioning.
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Fig. 7. Effect of the cycle management constraint on set partitioning.

separate sets (Figure 6.b).
• Cycle management: all vertexes of a cycle must belong to

the same set, to allow a correct management of the inter-
process dependencies. Separating vertexes belonging to the
same cycle (as done in Figure 7.a with vertexes P10, P11
and P8) would create a cyclic dependency between the
sets. An example of correct partitioning is provided in
Figure 7.b, where the cycle is mapped to set 2 and sets
can finally be executed in the order 3 - 1 - 2.

2) Association of scheduling approaches to sets: Associa-
tion of scheduling approaches to sets (Figure 5.c) is mainly
based on heuristic policies and on the considerations about
the optimal conditions for static and dynamic scheduling
reported in Section V-A. This step leaves space to design space
exploration and to the evaluation of alternative associations to
determine an optimal solution. This may require some effort
from the designer, but support for automatic code generation
eases and speeds up the process. Once an optimal result is
found, the generated code can be used for multiple executions
of the virtual platform, thus balancing the effort.

a) Synchronous processes: The synchronous set is always
associated with static scheduling (set 1 of Figure 5.d). Indeed,
all synchronous processes are executed at the beginning of a
simulation cycle, with no need to check activation conditions.

b) Cycle management: The extension to static scheduling
presented in Section V-B allows to handle cycles both with
static and dynamic scheduling. Applying cycle removal to
cycles does not result in a huge computational effort, as
the proposed solution executes all processes of the cycle
and replicates only one of them. However, our experimental
analysis proves that designs tend to contain a number of nested
cycles, rather than a single cycle (as the experimental section
will show). This leads to an explosion of the computational
overhead, that cancels the benefit of reducing event manage-
ment costs. Thus, dynamic scheduling is the optimal approach
for cycle scheduling. This guarantees optimal performance,
since cycle execution is suspended whenever no fresh data
are available.

c) Heuristic policy: Finding an optimal balance between
static and dynamic scheduling for a given design is a matter
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of exploration of possible alternatives. However, it is possible
to define policies to guide the choice of the designer.
• Time-based policy: this accurate policy is derived by the

considerations in Section V-A. The idea is to determine
the ratio (at any simulation time) between the computa-
tional cost of all process of a set w.r.t. the management
cost derived from the system update and event evaluation
routine. When considering set i (seti in the following), the
proposed heuristic is:∑

sim.cyclej

∑
pk∈seti

t(pk, j)∑
cyclej

∑
pk∈seti

mgmt(pk, j)
≥? 1

where t(pk, j) and mgmt(pk, j) are the execution time and
the management cost of process pk at simulation cycle
j, respectively. This estimation is accurate and effective.
However, it requires very detailed profiling information
(i.e., the execution time of any given process and its
management cost at any simulation cycle). Unfortunately,
properly recording such information typically demands
a much finer time granularity than the time resolution
employed by profilers, thus making the application of this
heuristic very difficult.

• Invocation-based policy: a more effective heuristic consid-
ers the average number of invocations of each process per
cycle. When considering set i, the heuristic is calculated
as: ∑

pj∈seti
invocations(pj)

(|seti|(#cycles))
≥? 1

where |seti| is the number of processes in set i. This metric
determines whether, on average, processes are executed at
least once per simulation cycle. If so, static scheduling
is a winning solution, as it would limit the number of
executions per simulation cycle to 1. Otherwise, the set
should adopt dynamic scheduling. This heuristic is far
easier to apply, as any profiler would estimate the number
of process invocations. Still, it is really effective, as it
relates the adopted scheduler to the execution profile.
Adding execution weight of each process invocation would
make the heuristic more detailed, but once again this
information would be really difficult to profile.

3) Set scheduling: Final code execution implies to execute
the identified sets one after another, by following a topological
order. Sets (except for the synchronous one) are executed
dynamically, i.e., they are predicated by a check on their
incoming signals (Figure 5.e). This means that each set is
executed only if fresh data are available for its processes, no
matter the chosen scheduling approach. The result is that, if no
new data are available, a lot of computational effort is avoided.
This allows to balance the presence of static scheduling sets.
As a result, the final generated code interleaves set execution
with sensitivity list checks, as shown on the left hand side of
Figure 5.d (where circled numbers show the execution order).

4) Discussion on correctness: The correctness of the parti-
tioning into sets is guaranteed by the defined constraints, that
avoid cyclic dependencies between sets and that at the same
time guarantee that cyclic dependencies between processes are

struct iostruct {
bool in1; 
bool out1;
... } iostruct;

struct sigstruct {
bool sig1_new;
bool sig1_prev; 
... } sigstruct;

void p1 (iostruct * ios, sigstruct * sigs){
if(ios->reset == 0) sigs->a = 0; 
else sigs->a = ios->in1; 

}

void p2(iostruct * ios, sigstruct * sigs){
sigs->sig1 = sigs->a | sigs->sig1; 
… }

voidmixed_scheduling(iostruct * ios, sigstruct * sigs){
// sensitivity check
if (changed(reset) | changed(in1) | changed(in2=)){

// execute statically scheduled set: p1, p2
p1(ios, sigs); 
p2(ios, sigs)

} }

in1 : LOGIC

…
out1 : LOGIC

PORTSTRUCT:

PROCESSES:

DEPENDENCY 

GRAPH:

p1
if (reset == 0; 

a = 0; a = in1) 

…
sig1 = or(a,sig1) 

…
sig1 : LOGIC

SIGSTRUCT:

p1

p2

reset, 

in1, in2

a

sig1

p2

Fig. 8. C++ code generation applied Figure 2. The lists of ports and signals
are implemented as structs, and processes are converted to functions. The
mixed_scheduling() function reproduces the scheduling routine.

preserved. Once the sets have been identified, their scheduling
is entirely based on a topological sort of the dependency
graph, that respects by definition inter-set and inter-process
dependencies.

The proposed approach guarantees that processes do not
miss any event or fresh data. In case of dynamic scheduling,
processes are executed as soon as any event is available on
their inputs. At the same time, in case of static scheduling,
processes are executed after all the processes that may produce
fresh inputs have finished. This guarantees that no event is
missed, despite the adopted scheduling.

Finally, correctness of inter-set scheduling relies on the
correctness of standard dynamic and static scheduling.

VI. C++ CODE GENERATION

This section focuses at first on C++ code generation for
a single IP (Section VI-A) and then on integration issues
(Section VI-B).

A. C++ CODE GENERATION FOR A SINGLE IP
The main steps of C++ code generation are: (i) data structure

declaration, (ii) processes and (iii) implementation of the
scheduling function (Figure 8).

The first conversion step is applied to data structures.
The iostruct and sigstruct lists are implemented as C++
struct declarations. The fields of each struct are declared
by replacing the HDL-independent types of each entry with
the corresponding C++ native data types (by following the
conversion proposed in Section IV). Each IP instantiates one
instance of iostruct and one of sigstruct.

The functions pi() associated with the starting HDL pro-
cesses are converted by translating each statement into a corre-
sponding C++ statement. Each function receives as parameters
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pointers to the iostruct and sigstruct instances. Operations
applied to ports or signals are converted to operations on the
fields of the iostruct and sigstruct structs.

The mixed_scheduler() function is finally implemented
by alternating process invocations and checks on signals, as
determined by set scheduling and by the scheduling approach
adopted in each set. As a result, the mixed_scheduler()

is a mix of static and dynamic scheduling, reflecting the
result of the strategy in Section V. Each invocation of the
mixed_scheduler() function corresponds to the execution of
one clock cycle in the starting HDL IP.

The HDL design can now be integrated in virtual platforms
as C++ code. In order to ease integration, the generated code
can be wrapped with SystemC TLM modules or with interfaces
specific of the adopted integration environment. It is important
to note that this would affect only the interface of the generated
code, with no decrement of simulation performance.

B. INTEGRATION ISSUES AND SOLUTIONS

The methodology proposed so far focuses on a single IP,
where any level of hierarchy has been flattened to expose
all inter-process dependencies (as explained in Section III).
However, virtual platforms are adopted for the simulation
of complex systems. Flattening the overall platform may be
extremely complex, and the resulting description may explode
in the attempt of flattening a high number of levels of hierar-
chy. Moreover, the generated code may have to interact with
existing IPs, designed with different approaches and wrapped
in C++-based languages, e.g., SystemC and SystemC TLM.
It is thus necessary to define how code generated with the
proposed approach can interact with the surrounding system.

1) Orchestration of different IPs: Whenever two or more IPs
have to be integrated, a global mixed_scheduler() function is
generated for orchestrating overall execution. Section VII-F
shows an example of integration on a cryptographic virtual
platform.

The global mixed_scheduler() function reproduces over-
all system evolution by invoking all IPs mixed_scheduler()

functions one after the other. Since the HDL signal semantics
is preserved (i.e., signals are duplicated to separate current
and future value), invocation order does not affect system
evolution. The underlying assumption is that all data exchanges
between IPs happen synchronously2.

In case IPs have different clock periods, the system clock
period is the least common divider of all IPs clock periods.
Each invocation of the global scheduler function reproduces
one system clock period, and each IP is activated whenever
necessary to respect its starting clock period.

2) Integration in existing platforms: Whenever necessary,
e.g., for enhancing reuse or reducing design costs, it is possible
to mix code generated with the proposed approach with
existing IPs and platforms.

If an IP must be integrated with C++/SystemC/SystemC-
TLM IPs and platforms, its mixed_scheduler() function must

2In case of asynchronous communication, the IPs must be treated as a single
IP and flattened, not to miss events and synchronization points.

TABLE IV. BENCHMARK CHARACTERISTICS.

Designs PI PO Processes (#) HDL Lines of
(#) (#) Sync. Async. language code

AES 260 129 5 26 Verilog 1,776
CAMELLIA 262 131 6 71 Verilog 887
DES56 132 67 3 23 VHDL 1,054
ECC 25 46 4 7 VHDL 180
MLITE 36 100 7 46 VHDL 2,315
PAR_FIB 6 256 1 13 VHDL 148
RAM_BIST 48 47 2 15 VHDL 451
XTEA 195 64 3 12 VHDL 278

be wrapped to allow seamless integration. In case of C++, a
global scheduling routine must be generated, to activate all
C++ IPs consistently w.r.t. their temporal relationship (e.g.,
in terms of clock cycle). In case of SystemC, the generated
mixed_scheduler() function is declared as a synchronous
process and it is wrapped by a SystemC module, having
as interface the ports listed in the iostruct structure. Fi-
nally, in case of SystemC-TLM, the mixed_scheduler() func-
tion is encapsulated by a TLM wrapper, following either a
blocking or non-blocking interface. Each transaction required
from the TLM module corresponds to one invocation of the
mixed_scheduler() function.

If existing IPs are otherwise implemented in non-C++-based
languages (e.g., VHDL and Verilog), they must be converted
to C++ by using any technique available at state of the art
(including the approach proposed in this work). The integration
process follows the previously outlined strategies.

VII. EXPERIMENTAL RESULTS

The benchmarks used for experimental analysis are:
• four cryptographic cores: AES, DES56 and XTEA from

[19] (projects systemcaes, BasicDES and xteacore) and
CAMELLIA from [26];

• an industrial error correction code module (ECC);
• a MIPS processor (MLITE) from [19] (project plasma);
• a parallel Fibonacci numbers calculator (PAR_FIB);
• an industrial BIST module for a simple-port synchronous

RAM (RAM_BIST).
Table IV reports the main characteristics of the designs, in
terms of primary inputs and outputs (columns PI (#) and PO
(#), respectively), number of synchronous and asynchronous
processes (column Processes), IP language and lines of code.

All experiments have been carried out on a 64-bit Linux
server with 6 2.53 GHz CPU cores and 16 GB RAM memory.
All the alternative implementations of the same design are exe-
cuted with the same testbench, which consists of the translation
to SystemC and C++ of the original testbench for the design.
Functional equivalence between the different versions of each
design has been dynamically verified by comparing resulting
waveforms. Simulation times are calculated as an average over
a number of executions.

A. METHODOLOGY AUTOMATION

Manually applying code manipulations to complex designs
may result in a time-consuming and error-prone process, which
may reduce by far the effectiveness and usefulness of the
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TABLE V. IMPACT OF DATA TYPES ON SIMULATION PERFORMANCE.

Designs SystemC HDTLib DDT
Time (s) Time (s) Speedup (x) Time (s) Speedup (x)

AES 8,484.4 4,436.6 1.9 132.5 64.0
CAMELLIA 25,641.4 19,394.5 1.3 423.9 60.5
DES56 19,534.2 14,903.3 1.3 293.9 66.5
ECC 993.4 290.1 3.4 120.3 8.3
MLITE 3,374.7 2,605.1 1.3 232.4 14.5
PAR_FIB 454.8 336.6 1.4 82.8 5.5
RAM_BIST 1,422.8 403.3 3.5 157.4 9.0
XTEA 2,935.6 826.6 3.6 79.7 36.8

achieved speedups. Thus, all the proposed transformations
have been automated and manual configurations and interven-
tions have been reduced to the bare minimum.

The methodology presented in Section IV-A has been im-
plemented in DDT, which automatically converts HDL data
types to C++ native data types and maps operations on HDL
data types to corresponding C++ operations and function calls.

Application of the mixed scheduling approach has been
automated in the novel tool TANGLE, which uses the GNU
profiling tool gprof [11] to gather profiling information for the
heuristic policies. Note that TANGLE is capable of generating
alternative versions of the same design with different schedul-
ing policies, as specified by user-defined configurations.

TANGLE and DDT are based on the commercial suite
HIFSuite [3]. In detail, HIFSuite front-end tools are used to
convert the starting IPs to the HIF intermediate language. This
description is then manipulated by TANGLE and DDT through
the HIF APIs to apply all the presented code transformations.
Note that all transformations, including the extraction of the
formal representation, are based on HIF APIs, but they are
by no means natively included in HIF, as they rather have
been implemented for the sake of the proposed methodology.
Finally, HIFSuite back-end tools are used to convert the
resulting description to C++. Thus, even if the newly developed
tools make an extensive use of HIFSuite interfaces and tools,
all manipulation steps related to the proposed methodology
have been implemented ex novo in TANGLE and DDT.

B. DATA TYPE OPTIMIZATION

To determine the sole impact of data types on simulation
performance, it is necessary to compare versions of the same
design having a single language and scheduling approach,
but different data type implementations. To this extent, all
benchmarks have been converted to C++ by adopting standard
HDL scheduling for process management.

As reference implementation, we adopted SystemC data
types to emulate the conversion of each design for insertion
into a C++-based virtual platform. This version is then com-
pared against the adoption of the HDTLib data type library [2]
and of the C++ native data types proposed in this work. Table
V shows the corresponding simulation times and the speedup
of the latter data types w.r.t. SystemC types. HDTLib achieves
a fairly limited speedup (up to 3.6x), while still retaining
accuracy w.r.t. multi-value logic. Conversely, C++ native types
greatly enhance simulation performance of all designs (up to
66.5x), at the expense of accuracy w.r.t. multi-value logic.

TABLE VI. DEPENDENCY GRAPHS AND EXECUTION TIMES WITH THE
DYNAMIC AND STATIC SCHEDULING APPROACHES.

Designs DG Simulation time (s)
|V| |E| Cycles Dynamic Static

AES 27 74 y 106.1 228.9
CAMELLIA 46 69 n 129.4 64.9
DES56 18 25 n 115.3 100.2
ECC 11 8 n 99.8 145.9
MLITE 51 121 y 67.6 1,092.7
PAR_FIB 13 30 n 123.2 53.8
RAM_BIST 17 42 n 141.9 345.7
XTEA 11 10 n 74.2 87.3

C. SCHEDULING OPTIMIZATION

To determine the sole impact of the scheduling policy on
simulation performance, it is necessary to compare versions
of the same design adopting a single data type library (i.e.,
SystemC types), but different scheduling approaches. The
dynamic and static version of each design have been generated
through HIFSuite. The dynamic version of each design features
the event-based process scheduler that is typically adopted in
HDL simulations (i.e., a lightweight implementation in C++
of the SystemC simulation kernel). The static version of each
design implements the static scheduling approach that can be
found in the literature [12].

Table VI shows the main characteristics of the generated
dependency graphs, in terms of number of vertexes |V| and
edges |E|, and of presence of cycles. The reported simulation
times of the static and dynamic versions for each design show
that none of the scheduling approaches wins on all designs.
Static scheduling in faster on the CAMELLIA, DES56, and
PAR_FIB designs, while dynamic scheduling is faster on the
ECC, RAM_BIST and XTEA designs. Dynamic scheduling
also performs better on cyclic designs AES and MLITE,
since the process replication in presence of multiple nested
cycles significantly raises simulation times. This proves that
performance strictly depends on the design characteristics,
rather than solely on the adopted scheduling approach.

a) Partitioning into sets: Table VII shows the result of
applying set partitioning to the benchmarks, defined as number
of processes per set (column Proc. (#)). The table shows also
whether each set contains synchronous processes (Synch. (y/n))
and cycles (Cycle (y/n)). Such characteristics straightforwardly
determine the type of scheduling to be adopted, i.e., static if
the set is synchronous, dynamic if the set contains cycles. If
such conditions do not hold, column Heuristic ratio reports
the heuristic policy ratio. This allows to determine the ideal
scheduling policy for each set (Sched. policy).

b) Association of scheduling approaches to sets: Table
VIII shows code performance when applying the scheduling
policies determined in Table VII (row Heuristic application
of each design). This is compared with alternative scheduling
policies, as specified by user-defined configurations. For each
configuration, the table reports execution time and differences
in terms of scheduling choices.

c) Performance of the generated code: The comparison be-
tween the execution times of all the code versions is depicted,
for the sake of clarity, in Figure 9. Config 1 always represents
the version following the proposed heuristic policy.
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TABLE VII. SET PARTITIONING AND HEURISTIC APPLICATION.

Design Set Proc. Sync Cycle Heuristic Sched.
ID (#) (y/n) (y/n) ratio policy

AES

1 5 y n - Static
2 2 n n 0.439 Dynamic
3 2 n n 1.710 Static
4 1 n n 1.498 Static
5 21 n y - Dynamic

CAMELLIA

1 6 y n - Static
2 17 n n 0.434 Dynamic
3 8 n n 1.020 Static
4 5 n n 1.011 Static
5 11 n n 1.613 Static
6 12 n n 1.991 Static
7 4 n n 2.435 Static
8 10 n n 2.473 Static
9 3 n n 2.957 Static

10 1 n n 3.064 Static

DES56

1 3 y n - Static
2 3 n n 0.916 Static
3 1 n n 0.903 Static
4 1 n n 1.847 Static
5 8 n n 1.814 Static
6 1 n n 2.790 Static

ECC

1 4 y n - Static
2 4 n n 0.251 Dynamic
3 1 n n 1.000 Static
4 1 n n 0.506 Dynamic

MLITE
1 7 y n - Static
2 3 n n 0.105 Dynamic
3 43 n y - Dynamic
1 1 y n - Static
2 2 n n 1.000 Static
3 2 n n 1.500 Static

PAR_ 4 2 n n 2.000 Static
FIB 5 2 n n 2.500 Static

6 2 n n 3.000 Static
7 2 n n 3.500 Static
8 1 n n 4.000 Static

RAM_ 1 2 y n - Static

BIST 2 10 n n 0.063 Static
3 4 n n 0.095 Dynamic

XTEA

1 3 y n - Static
2 9 n n 0.251 Dynamic
3 1 n n 0.500 Dynamic
4 1 n n 1.000 Static
5 1 n n 1.440 Static

The code generated with the mixed scheduling approach
is always at least as fast as the best between static and
dynamic scheduling, as it executes all processes with the most
suitable approach. The mixed scheduling version is up to 2.3x
faster than the dynamic scheduling version and up to 17.4x
faster than the static one. These considerations highlight that
adopting the mixed scheduling approach allows to exploit
design characteristics to the full.

The effectiveness of the proposed heuristic approach is also
proved by a comparison with alternative scheduling choices.
The mixed scheduling version is always the fastest:
• if the heuristic ratio of a set is lower than 0.9, static execu-

tion leads to running processes exactly once per simulation
cycle, thus slowing down simulation. This explains the
slowdown of configuration 2 of MLITE, and configurations
2 and 3 of AES, ECC, RAM_BIST and XTEA;

• if the heuristic ratio of a set is higher than 0.9, dynamic
execution of the set leads to executing asynchronous pro-
cesses, on average, at least once per simulation cycle,
and to paying the management overhead. This explains
the slowdown of configurations 2 and 3 of CAMELLIA,

TABLE VIII. MIXED SCHEDULING WITH INVOCATION BASED
HEURISTIC APPLICATION AND DESIGN SPACE EXPLORATION.

Designs Configuration Simulation
(#) Characteristics time (s)

AES
1 Heuristic application 83.4
2 2 static 84.3
3 2 static, 3 and 4 dynamic 84.8

CAMELLIA
1 Heuristic application 63.1
2 3 dynamic 67.1
3 3 and 4 dynamic 69.5

DES56
1 Heuristic application 62.2
2 6 and 7 dynamic 124.5
3 1 and 7 dynamic 94.4

ECC
1 Heuristic application 90.8
2 2 static 155.4
3 3 dynamic, 4 static 91.6

MLITE 1 Heuristic application 62.8
2 2 static 63.1

PAR_FIB
1 Heuristic application 53.2
2 2 dynamic 55.8
3 2, 3, and 4 dynamic 66.1

RAM_BIST
1 Heuristic application 74.9
2 2 static 75.1
3 3 static 75.7

XTEA
1 Heuristic application 66.6
2 2 and 3 static, 4 and 5 dynamic 75.6
3 2 static, 4 and 5 dynamic 79.2

Fig. 9. Execution time (in seconds) of the different configurations provided
for each design, including dynamic and static scheduling and mixed schedul-
ing. Execution time of the proposed approach is labelled as Config 1 (circled).

DES56, PAR_FIB and XTEA and of configuration 3 of
AES and ECC.

The 0.9 threshold to determine scheduling policies has been
empirically chosen after experiments. It is slightly less than the
expected value of 1.0 (i.e., exactly once per simulation cycle)
since it takes into account the scheduling management cost
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associated with dynamic scheduling. In fact, it is more efficient
to statically execute processes for which the heuristic ratio is
slightly less than 1.0 (i.e., belonging to the range [0.9, 1]),
because the performance penalty due to extra executions turns
out to be less than the scheduling management cost.

The speedups prove that performance relies on both an
optimal partitioning and on an effective heuristic, that exploits
the features of each set to get the best performance.

D. DISCUSSION ON STATIC MANAGEMENT OF CYCLES

Table IX summarizes the characteristics of the cyclic designs
adopted in this experimental evaluation, i.e., AES and MLITE.
Both designs are hierarchical, with a high number of cycles
hidden from the designer by the presence of multiple levels
of hierarchy. To make things worse, these cycles are nested,
which has a heavy impact on the cycle removal algorithm, as
processes duplicated to remove inner cycles may be replicated
a number of times when removing outer cycles. This leads to
an explosion of the number of replicated processes.

TABLE IX. EFFECT OF STATIC CYCLE MANAGEMENT ON
HIERARCHICAL CYCLIC DESIGNS.

Designs Hierarchy Cycles Simulation time (s)
(y/n) (#) Dynamic Static

AES y 32 106.1 228.9
MLITE y 194 62.8 1,092.7

Columns Dynamic and Static report simulation times by
adopting the standard HDL scheduling and static scheduling,
respectively. The table shows that the application of static
scheduling is not convenient, as this approach pays too hefty
a price to remove nested cycles from the process graph. The
extremely high number of cycles in both designs renders the
process replication strategy highly inefficient from a simulation
performance standpoint. This is particularly evident in the
MLITE design, for which the static version is more than one
order of magnitude slower than the dynamic version.

Despite the impact on performance, it is important to note
that static scheduling management of cycles constitutes an
important contribution to state of art. Indeed, it allows to
apply techniques restricted to non-cyclic designs, thus leaving
space for further optimization and for the application of highly
efficient parallelization approaches [18], [28].

E. EFFECTIVENESS OF THE PROPOSED APPROACH

The previous sections presented the results of the proposed
approach by focusing on the single optimizations. Table X
combines the effects of both data type optimization and of
scheduling optimization, to highlight the effectiveness of the
overall proposed approach.

The table adopts as reference simulation time the perfor-
mance obtained by simulating each design with SystemC
data types and with standard HDL scheduling (Column HDL
scheduler + SystemC types (s)). This emulates the conversion
of each design to SystemC, for insertion into a C++-based
virtual platform. Column Full optimization displays the effect
of combining both the optimizations by applying data type
optimization to the best scheduling configuration. Simulation

results prove that the proposed techniques are orthogonal and
mutually influence each other. Data types have a stronger
impact on simulation time, as they reduce time spent both in
process execution and in event management for the dynamic
scheduler versions. At the same time, scheduling optimization
allows to further improve simulation performance, by exe-
cuting each set with the most suitable scheduling approach.
The achieved speedups greatly vary from design to design
according to the following three design characteristics: (1)
the subdivision of the functionality of the design between
synchronous and asynchronous processes (as synchronous
computation is left unchanged by the proposed approach), (2)
the presence of asynchronous processes executing on average
multiple times per clock cycles, (3) the amount and the
computational weight of operations performed on data types.
The result is a maximum speedup of 441x, which is higher than
the speedups gained with the single optimization techniques. A
speedup of two orders of magnitude has a significant impact on
simulation, and can be considered an important improvement
of simulation performance.

TABLE X. SIMULATION SPEEDUP OBTAINED WITH THE APPLICATION
OF THE PROPOSED APPROACH.

Designs HDL scheduler + Full optimization
SystemC types (s) Time (s) Speedup (x)

AES 8,484.4 106.7 79.5
CAMELLIA 25,641.4 58.1 441.3
DES56 19,534.2 70.8 275.9
ECC 993.4 106.8 9.3
MLITE 1,342.9 67.6 19.9
PAR_FIB 454.8 58.8 7.7
RAM_BIST 1,422.8 100.4 14.2
XTEA 2,935.6 58.6 50.1

F. APPLICATION TO A CRYPTOGRAPHIC PLATFORM

The proposed experimental results show performance on
relatively short executions. However, the achieved speedup
scales also on longer executions, and becomes even more
significant in virtual platforms, where simulations would be
frequently repeated to evaluate alternative configurations.

For this reason, we applied the overall optimization method-
ology to the cryptographic platform in Figure 10, composed
of a subset of the analyzed benchmarks. It includes the
cryptographic cores (AES, DES56 and CAMELLIA) and the
MLITE processor. A simple memory is used by all the other
modules to communicate and share data.

MLITE SW APP.

AES DES56 CAMELLIA

MEMORY

Fig. 10. The cryptographic platform.

Table XI shows simulation times of the cryptographic plat-
form. Column HDL scheduler + SystemC types reports the
reference simulation time of the description featuring SystemC
data types and standard HDL scheduling. Column Full opti-
mization displays the simulation time after applying data type
and scheduling optimizations. Integration of the components
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was achieved by applying the technique outlined in Section
VI-B1. Column Speedup shows the achieved speedup, which
is definitely significant, as simulation goes from about 334
minutes to less than 5 minutes. This is especially important in
the context of virtual platforms usage, as simulations have to
be repeated very frequently.

TABLE XI. SIMULATION TIMES OF THE CRYPTOGRAPHIC PLATFORM.

HDL scheduler + Full optimization
SystemC types (s) Time (s) Speedup (x)

20,048.4 287.1 69.8

VIII. CONCLUDING REMARKS

The paper proposed two code manipulation techniques for
optimizing simulation of IPs in the context of virtual plat-
forms, i.e., data types implementation and process scheduling.
Both techniques proved to achieve a good speedup, and their
combined application allowed to achieve a maximum speedup
of 441x on single IPs, and of 70x on a cryptographic virtual
platform. Future work will extend the proposed approach with
an evaluation of alternative mechanisms for set invocation and
with the generation of wrappers for integration in commercial
virtual platform environments.
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