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Ensemble empirical mode decomposition (EEMD) is a noise assisted method widely used for roller bearing damage detection.
However, to successfully handle this technique still remains a great challenge: identification of two effective parameters (the
amplitude of added noise and the number of ensemble trials), which affect the performances of the EEMD. Although a number
of algorithms or values have been proposed, there is no robust guide to select optimal amplitude and the ensemble trial number
yet, especially for early damage detection. In this study, a reliable method is proposed to determine the suitable amplitude and the
proper number of trials is investigated aswell. It is shown that the proposedmethod (performance improvedEEMD) achieves higher
damage detection success rate and creates larger Margin than the original algorithm. It leads to a substantially low trial numbers
required to achieve perfect labelling of samples; in turn this fact leads to considerably less computational cost. The number of real
vibration signals is analysed to verify effectiveness and robustness of the proposed method in discriminating and separating the
faulty conditions.

1. Introduction

Modern rotating machines become more precise and auto-
matic, fast and costly. As an obvious consequence, their
lifetime is extended as much as possible, and this fact implies
a strong request of increasing reliability and capacity of
detecting faults at a very early stage. Through the pro-
cessing of collected vibration signals and the extraction of
significant information, it is possible to detect even small
defects appearing on bearings during their life. Several
signal processing techniques exist to decompose a signal
and extract informative features. Randall and Antoni have
broadly treated the background of a number of successful
diagnostic methods [1]. The EMD is another recent adaptive
data driven technique [2], to decompose a multicomponent
signal into several elementary intrinsic mode functions
(IMFs) and has been widely applied to fault diagnosis of
rotating machines. However, there exist some drawbacks
of the method such as the stopping criterion for sifting
process, the mode mixing, and the border effect problem.

The intermittency of the detected extrema, which belong to
the different orthogonal components, is the main reason of
mode mixing effect. EEMD is a noise assisted data analysis
method and has been recently proposed to eliminate the
mode mixing problem of the EMD technique [3]. Essentially,
the EEMD repeatedly decomposes the original signal with
added white noise into a series of IMFs, by applying the
original EMD process.Themeans of the corresponding IMFs
during the repetitive process is considered as the final EEMD
decomposition result. Since white noise is added throughout
the entire signal decomposition process, mode mixing is
effectively eliminated. The EEMD has been already used to
detect rotating machine faults such as defective bearings and
gears in the past few years [4].

However, another challenge still exists: how to better
identify the two effective parameters (the amplitude of added
noise and the number of ensemble trials), which affect the
performance of the EEMD. If the amplitude of the added
noise is too small relative to the original signal, a considerable
modemixing improvement cannot be achieved. On the other
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hand, if the amplitude of the added noise is too high, it will
create some redundant IMF components which lead to mis-
interpretation of the analysis result. In addition, although an
infinite number of ensemble trials are required to completely
cancel out the effect of the added white noise, too many trial
numbers would increase the computational cost. Wu and
Huang [3] suggested the value of 0.2 of standard deviation
of the original signal as the amplitude of the added white
noise and a few hundred for trial number of ensemble. It has
been shown in various cases that such an amplitude is not
appropriate. Zhang et al. [5] suggested using a band-limited
white noise to decrease the computational cost. Analysing
a simulated signal, it was concluded that appropriate range
of SNR (signal-to-noise ratio based on signal power) is (50–
60) dB. However, they used another range ((0.01–0.1)), which
is outside of the suggested SNR. A nonstationary signal was
constructed to mimics realistic vibration signals measured
from rolling bearing and the appropriate range of SNR was
considered (49–58) dB for the vibration signals. Applying the
EEMD to the simulated signals, it was obtained that when the
number of ensemble trials is 100, the corresponding correla-
tion coefficient approaches 0.95. Using the modified EEMD
method, the acceptable results were achieved approximately
after 70 ensemble trials, instead of the 100 trials suggested
for the original EEMD method. For real data (acceleration
signals), it was shown that the percentage improvement of
the computational efficiency (the consumed time ratio) varies
from 30% to 45%, depending on the operating conditions.
Guo and Tse [6] investigated the influence of the param-
eters setting on the results of reducing the mode mixing
problem using a simulated signal. The effects of frequency
and amplitude ratio of two different parts of the simulated
signal (the high frequency and low frequency components)
were investigated as well. The investigated amplitudes were
considering again coefficients of standard deviation of the
original signal (0.01, 0.1, 0.2, and 0.3). As real data is noisy
(produced by other industrial equipment) and the amplitudes
and composition of frequency are unknown, lower amplitude
of noise was added and more number of ensemble trials
applied (0.1 of standard deviation of the original signal for
amplitude and 3000 for ensemble trial number). As only
one specific operating condition with a single predefined
amplitude was investigated, it would not represent a reliable
guideline for properly setting the best parameters for real
signals. Lin [7] tried to provide guidance on choosing the
appropriate amplitude and reduce the tremendous timewaste
occurring in the EEMD method. An optimal interval was
suggested that lies between the square root of the average
power of the weak sinusoid component and that of the weak
transient component. When the amplitude is selected from
the mentioned interval, Pearson’s correlation coefficients of
the components reach their maximum value. Taking into
consideration that only one specific gearbox vibration signal
was investigated to verify the suggested procedure, its perfor-
mance does not seem too reliable to identify small defects.
Furthermore, it seems difficult to apply such a procedure
for damage identification, especially for automatic damage
detection. Jiang et al. [8] applied multiwavelet packet as
a prefilter to enhance the weak multifault features in the

narrow frequency bands. Then two ranges were suggested
for the amplitude: (0–0.2) of the standard deviation of the
original signal for high frequency components and (0.2–0.6)
of the standard deviation of the original signal for the low
frequency components. As some specific amplitudes were
selected (0.04, 0.08, and 0.5) without any justification in this
study, it seems that no robust guide is yet available to choose
the optimum amplitude based on the wide suggested ranges.
Tabrizi et al. [9] applied the wavelet packet decomposition
with combination of the EEMD to identify very small faults
under various operating conditions. It was concluded that
more appropriate amplitude was (0.4–0.6) of the standard
deviation for noisy signals and 0.5 for denoised signals. The
number of trial was set on 100 for all conditions.

As we have shown, there is no reliable guide for amplitude
settling; so far, in this study, a new method (PIEEMD)
is proposed to calculate an appropriate and effective noise
amplitude for real vibration signals. A number of vibration
signals is analysed to verify the proposed algorithm in
automatic fault diagnosis based on support vector machine
(SVM). Furthermore, as mentioned before, there is no sug-
gestion on the specific number for ensemble trials; this is only
declared in three aforementioned studies: the modified new
number for simulated signals (70 trials) in [5], a very high
number (3000 trials) in [6], and the 100 trials in [3, 9]. In view
of this, the appropriate ensemble trial number for real data is
investigated as well.

2. EMD Algorithm

The EMD method decomposes a complex signal into a
number of IMFs. Decomposition consists of following steps
[2].

(1) To identify all the local extrema and then connect
all the local maxima by an interpolation method. To
repeat the procedure for the local minima to produce
the lower envelope.

(2) To determine the difference between the signal 𝑥(𝑡)
and the mean of upper and lower envelope value to
obtain the first component. If it is an IMF, then it
would be the first component of 𝑥(𝑡). Otherwise, it
is treated as the original signal and steps (1)-(2) are
repeated.The sifting process can be stopped by any of
the predetermined criteria which will be discussed in
Section 3.

(3) To separate IMF from the original signal 𝑥(𝑡) to
obtain the residue and consider it as the new data and
repeat the above described process.

(4) To stop the decomposition process when the residue
becomes a monotonic function from which no more
IMF can be extracted.

3. Ensemble Empirical Mode Decomposition
(EEMD)

Decomposition using EEMD consists of the following steps.
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Figure 1: A real collected vibration signal from a roller bearing (a) and a created random white noise (b).
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Figure 2: The predefined constant amplitude (0.3 std (signal)) (a) and the proposed amplitude algorithm (PIEEMD with SNR = 10) (b).

(a) To add a random white noise signal to the acquired
original signal:

𝑥𝑗 (𝑡) = 𝑥 (𝑡) + Amp ⋅ 𝑛𝑗 (𝑡) 𝑗 = 1, 2, . . . ,𝑀, (1)

where Amp is the amplitude of added white noise and
𝑀 is the predetermined number of trial.

(b) To decompose the obtained signal (𝑥𝑗(𝑡)) into IMFs
using EMD:

𝑥𝑗 (𝑡) =

𝑁𝑗

∑

𝑖=1

𝑐𝑖𝑗 + 𝑟𝑁𝑗
, (2)

where 𝑐𝑖𝑗 represents the 𝑖th IMF of the 𝑗th trial, 𝑟𝑁𝑗
represents the residue of 𝑗th trial, and𝑁𝑗 is the IMFs
number of the 𝑗th trial.

(c) To repeat steps (a) and (b) until the predefined
ensemble trial number (𝑀) (add different random
noise signal each time).

(d) To calculate the ensemblemeans of the corresponding
IMFs of the decompositions as the final result (𝑐𝑖):

𝑐𝑖 (𝑡) =

(∑
𝑀
𝑗=1 𝑐𝑖𝑗)

𝑀

𝑖 = 1, 2, . . . , 𝐾,
(3)

where 𝐾 is the minimum number of IMFs among all
the trials.

4. Performance Improved Ensemble Empirical
Mode Decomposition (PIEEMD)

As mentioned in Section 1, the added noise must affect
the extrema of the original signal so that the intermittency

of the components will be removed or decreased as much
as possible. However, in the predefined constant amplitude
value, the extrema are being affected (and as a consequence
decreasing the existed mode mixing) by a random noise,
which might not effectively change some extrema.

Instead, an adaptive method (PIEEMD) is proposed
and its performance and applicability are evaluated utilizing
several real vibration signals. After adding a random white
noise, by applying the signal-to-noise ratio (SNR) definition
(4), the Amplitude value for each data point of a sample is
obtained from (5). Considering an appropriate value for SNR,
there would be a confidence that the extrema of the original
signal are influenced adequately:

SNR𝑗 (𝑡) = 20 log(
𝑥 (𝑡)

Amp𝑗𝑛𝑗 (𝑡)
) (4)

Amp𝑗 (𝑡) = 10
−(SNR/20)

(

𝑥 (𝑡)

𝑛𝑗 (𝑡)
) , (5)

where 𝑗 = 1, 2, 3, . . . ,𝑀.
In Figure 1, a vibration signal of a roller bearing and a

created randomnoise are shown.A suggested fixed value (0.3)
multiplied by standard deviation of the original signal creates
a predefined constant value along the whole signal (Figure 2).
Thus, affecting the extremadepends on value of randomnoise
at the location of the extrema. Using the proposed algorithm
(5), an adaptive value (Figure 2) is generated to preserve the
SNR ratio. It means that, for any randomly created noise,
the amplitude will be high enough to affect the extrema.
Investigating the result of adding noise to the vibration signal
shows how the proposed amplitude acts more efficiently on
the extrema (Figure 3).
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Figure 3: The influence of using constant amplitude (0.3 std (signal)) and the PIEEMD algorithm (SNR = 10) on extrema.

5. Support Vector Machine (SVM)

Support vector machine (SVM) is a powerful technique for
data classification [10]. Based on available acquired data
(training data), the SVM attempts to construct a hyperplane
that separates two different classes of samples and orients
it to maximize the “Margin” which is the distance from the
hyperplane to the closest data points in either class. An
example of the optimal hyperplane of two datasets is shown
in Figure 4 from [11]. Every time a new element appears, it
can be classified according to where it places with respect to
the separating hyperplane. The SVM could also be applied in
a case of nonlinear classification by mapping the data onto
a high dimensional feature space (𝜙(𝑥)), where the linear
classification is then possible. By applying Kernel function as
the inner product of mapping functions (𝐾(𝑥𝑖, 𝑥𝑗) = (𝜙(𝑥𝑖) ⋅
𝜙(𝑥𝑗)) it is not necessary to explicitly evaluate mapping in the
feature space. Various kernel functions could be used, such as
linear, polynomial, or Gaussian RBF (radial basis function).
In real world problem, it might be impossible to get a separate
line dividing the data and a curved decision boundary might
be chosen inevitably. However, ignoring few outlier data
points will create smooth boundary. This is handled here by
using the slack variable 𝜉𝑖 and the error penalty 𝐶; it is called
soft margin-SVM.

The Margin is defined as [12]

margin = 2

‖𝑤‖

. (6)

And the optimization problem will be as follows [12]:

minimize (

1

2

‖𝑤‖
2
+ 𝐶

𝑙

∑

𝑖=1

𝜉𝑖)

subject to 𝑦𝑖 (𝑤 ⋅ 𝜙 (𝑥𝑖)) ≥ 1 − 𝜉𝑖

𝜉𝑖 ≥ 0

𝑖 = 1, . . . , 𝑙,

(7)

where 𝑤 and 𝑏 are the vector and scalar that are used to
define the position of the hyperplane and 𝜉𝑖 is measuring the
distance between the hyperplane and the samples laying in

Positive class

Negative class

Margin

H1: {x|(w + x)b = +1}

H2 : {x|(w · x) + b = −1}

H: {x|(w · x) + b = 0}−b

|w|

Figure 4: Classification of two classes of data using SVM.

the wrong side of the hyperplane. Introducing Lagrangemul-
tipliers and solving the dual optimization problem, nonlinear
decision function will be [11]

𝑓 (𝑥) = sign(
𝑙

∑

𝑖=1

𝛼𝑖𝑦𝑖𝐾(𝑥𝑖, 𝑥) + 𝑏) . (8)

6. Methodology

The goal of this study is to evaluate the performance of the
proposed amplitude calculation algorithm (PIEEMD) for the
various operating conditions of a roller bearing.

The fault diagnosis method is given as follows.

(1) To collect vibration signals both for healthy and
defective bearings at three different external loads and
four shaft speeds.

(2) To apply the EEMDwith different amplitude of added
white noise to decompose the vibration signals into
some IMFs. The first 𝑚 IMFs including the most
dominant fault information are chosen to extract the
feature.
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(3) To calculate the total energy 𝐸𝑖 of the first𝑚 IMFs:

𝐸𝑖 = ∫

+∞

−∞





𝑐𝑖 (𝑡)






2
𝑑𝑡. (9)

(4) To create a feature vector with the energies of the 𝑚
selected IMFs:

𝐹𝑉 = [𝐸1, 𝐸2, . . . , 𝐸𝑚] . (10)

(5) To normalize the feature:

𝐹𝑉 = [

𝐸1

𝐸

,

𝐸2

𝐸

, . . . ,

𝐸𝑚

𝐸

] , (11)

where 𝐸 = (∑𝑚𝑖=1 |𝐸𝑖|
2
)
1/2.

(6) To carry out the training procedure of SVM by
utilizing the normalized feature vectors. The 60% of
data are used for training and the rest are taken as the
test samples.

After training the SVM successfully, it would be ready to test
samples to identify the different work conditions and fault
patterns.

7. Experiment

The bearing dataset (acceleration signals) was collected from
an aeronautical specific bearing (SKF NN 76141) under
various operating conditions using the test rig (Figure 5)
developed and assembled by theDynamics and Identification
Research Group (DIRG) at the Department of Mechanical
and Aerospace Engineering of Politecnico di Torino. The
signals were acquired by Oros OR38 data acquisition system
at 102.4 kHz sampling frequency with a passing band of
40 kHz, taking into account the antialiasing filters.TheKistler
triaxial accelerometers (model 8763A500) were used, in
which the axes orientation is shown in Figure 5 so that x-,
y- and z-axis correspond to the axial, radial, and tangential
direction, respectively. In addition to the healthy bearing,
two defective bearings were utilized during the test, one with
the very small artificial defect severity over one roller (150
microns in diameter) and another with the same fault level
on the inner ring. Four different shaft speeds (100, 200, 300,
and 400Hz) and three different external radial loads (1.0, 1.4,
and 1.8 kN) were considered to acquire the signals in different
operating and controlled conditions, allowing speed, load,
and oil temperature control.

The original acquired signals were divided into 20 seg-
ments including 10000 data points each, to extract required
informative feature vectors. Thus, each signal includes 20
segments which create 20 feature vectors as inputs for the
SVM. Selecting samples as the training ones includes all
the possible random selections to obtain the maximum
classification accuracy rate for training.

8. Analysis

Implementing the methodology described in Section 5, the
feature vectors for each algorithm, damage location, and

signal direction are obtained.The normalized energy of IMFs
introduced as an efficient feature vector in fault diagnosis of
roller bearing has been adopted just using only first three
elements of the feature vectors [13].

In Table 1, it is shown that the smallest defect size
(150 microns on a roller) is not recognized using EMD for
signals collected through the accelerometer in Y direction
(for someworking conditions). Although applying the EEMD
(with the 100 trails) improves the success rates, there is no
correct classification and fault diagnosis for some operating
conditions. It seems that amplitudes with 0.3, 0.5, and 0.6 lead
to less misclassification (only three operating conditions).

Now, by applying the PIEEMD algorithm, the accuracy of
damage detection is investigated. The success rate of defect
detection is shown in Table 2 for various preselected SNR
values. Obviously, a considerable improved success rates are
achieved for some SNR values, especially for SNR = 10 so
that there exists only one working condition (speed = 200Hz
and load = 1.8 kN) that the state of bearing is not perfectly
identified. However, none of the SNR values leads to a perfect
labelling for all conditions. Increasing the SNR (to SNR =
20) increases the success rate for the mentioned operating
condition which means that such a signal needs weaker noise
to affect the extrema and decrease themodemixing.Whereas
for some signals (such as speed = 100Hz/load = 1.8 kN and
speed = 300Hz/load = 1.4 kN) the smaller value (SNR = 10)
seems to be more appropriate. It means that those signals
require some stronger noises.

Exploring reliability of the obtained success rate, the
Margin ((6) and Figure 4) of each SVM classification is
calculated and presented in Table 3. It is clear from the
definition of Margin that higher Margin means more reliable
hyperplane and classification.As it can be seen, someMargins
aremuch smaller than others such as 0.6806 (SNR= 20, speed
= 300Hz, and load = 1.4 kN). It means that the possibility
of sorting out new misclassified samples (like the result
shown in Table 2) is increased. On the other hand, it is
reasonable to expect that higher Margins have more reliable
results (a correct classification and defect detection for any
new investigated sample).Themost important conditions are
those achieving a perfect classification rate (100%), whereas
the calculatedMargin is not high enough such as 0.7749 (SNR
= 20, speed = 200Hz, and load = 1.8 kN). There exists the
possibility of misclassification for the new samples based on
the constructed SVM. It is worth mentioning that there is no
determined reliable value forMargin.TheMargins calculated
are shown in Table 4 for the amplitudes who had better
results.

To test the reliability of the constructed SVM, 20 new
samples (10 healthy and 10 damaged samples) for each oper-
ating condition were classified with previously constructed
SVM(Table 2).The results are proposed inTable 5. Obviously,
as it is expected, the new samples are not classified perfectly
for previously mentioned low Margin (SNR = 20, speed =
200Hz, and load = 1.8 kN). Although the previous success
rate was 100% and it seemed to be a reliable constructed SVM,
its low Margin (in comparison with those showing a perfect
damage detection) declares that it may not be a confident
SVM (Figure 6). However, for all other conditions, which had
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Table 1: The classification rates for different operating conditions (signals collected in 𝑌 direction).

Method Noise
amplitude

100Hz
1.0 kN

100Hz
1.4 kN

100Hz
1.8 kN

200Hz
1.0 kN

200Hz
1.4 kN

200Hz
1.8 kN

300Hz
1.0 kN

300Hz
1.4 kN

300Hz
1.8 kN

400Hz
1.0 kN

400Hz
1.4 kN

400Hz
1.8 kN

EMD — 100 100 75.0 100 100 81.3 100 81.3 100 100 93.8 62.5
EEMD 0.2 100 100 81.3 100 93.8 87.5 100 87.5 100 100 100 100
EEMD 0.3 100 100 93.8 100 100 87.5 100 93.8 100 100 100 100
EEMD 0.4 100 100 87.5 100 93.8 81.3 100 100 100 100 100 100
EEMD 0.5 100 100 87.5 100 87.5 87.5 100 100 100 100 100 100
EEMD 0.6 100 100 87.5 100 87.5 87.5 100 100 100 100 100 100

Table 2: The success rates of damage detection using the proposed algorithm (PIEEMD) in 𝑌 direction.

SNR 100Hz
1.0 kN

100Hz
1.4 kN

100Hz
1.8 kN

200Hz
1.0 kN

200Hz
1.4 kN

200Hz
1.8 kN

300Hz
1.0 kN

300Hz
1.4 kN

300Hz
1.8 kN

400Hz
1.0 kN

400Hz
1.4 kN

400Hz
1.8 kN

5 100 100 81.3 100 87.5 73.3 100 100 100 100 100 100
10 100 100 100 100 100 87.5 100 100 100 100 100 100
15 100 100 93.8 100 100 93.8 100 87.5 100 100 100 100
20 100 100 87.5 100 100 100 100 87.5 100 100 100 100
25 100 100 81.3 100 100 93.8 100 87.5 100 100 100 93.8
30 100 100 81.3 100 100 93.8 100 87.5 100 100 100 93.8

Table 3: The Margin calculated using the proposed algorithm (PIEEMD) in 𝑌 direction.

SNR 100Hz
1.0 kN

100Hz
1.4 kN

100Hz
1.8 kN

200Hz
1.0 kN

200Hz
1.4 kN

200Hz
1.8 kN

300Hz
1.0 kN

300Hz
1.4 kN

300Hz
1.8 kN

400Hz
1.0 kN

400Hz
1.4 kN

400Hz
1.8 kN

5 1.1553 1.0479 0.7044 1.2654 0.7560 0.7179 1.2676 1.0039 0.9007 0.8362 1.0402 0.9647
10 1.1627 1.0881 0.8863 1.2660 0.8095 0.6854 1.1806 0.8123 0.8628 0.9342 0.8768 0.9274
15 1.2295 1.1278 0.7577 1.2779 0.8885 0.7732 1.1139 0.7493 0.8810 0.9128 0.8454 0.8652
20 1.2519 1.1192 0.7303 1.2750 0.9342 0.7749 1.0344 0.6806 0.8959 0.8668 0.8547 0.7864
25 1.2066 1.1015 0.6819 1.3166 0.9003 0.7793 1.0172 0.7014 0.9039 0.8631 0.8189 0.7514
30 1.1962 1.0799 0.7069 1.2634 0.8601 0.7705 0.9985 0.7425 0.9084 0.8292 0.7611 0.7108

Table 4: The Margin calculated using EEMD with different amplitudes (𝑌 direction).

Method Noise
amplitude

100Hz
1.0 kN

100Hz
1.4 kN

100Hz
1.8 kN

200Hz
1.0 kN

200Hz
1.4 kN

200Hz
1.8 kN

300Hz
1.0 kN

300Hz
1.4 kN

300Hz
1.8 kN

400Hz
1.0 kN

400Hz
1.4 kN

400Hz
1.8 kN

EMD — 1.1684 1.0417 0.6961 1.2276 0.8157 0.7156 0.9656 0.7523 0.8620 0.8438 0.7013 0.7109
EEMD 0.3 1.2248 1.1168 0.8136 1.3011 0.8000 0.6922 1.2131 0.8100 0.9289 1.0498 0.8895 0.9143
EEMD 0.5 1.2162 1.1324 0.8112 1.3009 0.7000 0.6372 1.2868 1.0633 0.9100 0.8995 0.8779 0.9069
EEMD 0.6 1.2388 1.1706 0.7633 1.3019 0.7693 0.7099 1.2880 1.0276 0.9312 0.9056 0.8980 0.9543
SNR 10 1.1627 1.0881 0.8863 1.2660 0.8095 0.6854 1.1806 0.8123 0.8628 0.9342 0.8768 0.9274
SNR 20 1.2519 1.1192 0.7303 1.2750 0.9342 0.7749 1.0344 0.6806 0.8959 0.8668 0.8547 0.7864

Table 5: The reliability test of the constructed SVM with 20 new samples (𝑌 direction).

Method Noise
amplitude

100Hz
1.0 kN

100Hz
1.4 kN

100Hz
1.8 kN

200Hz
1.0 kN

200Hz
1.4 kN

200Hz
1.8 kN

300Hz
1.0 kN

300Hz
1.4 kN

300Hz
1.8 kN

400Hz
1.0 kN

400Hz
1.4 kN

400Hz
1.8 kN

EMD — 100 100 75 100 100 80 100 85 100 100 85 65
EEMD 0.3 100 100 90 100 100 80 100 90 100 100 100 100
EEMD 0.5 100 100 90 100 85 75 100 100 100 100 100 100
EEMD 0.6 100 100 85 100 85 80 100 100 100 100 100 100
PIEEMD
(SNR) 10 100 100 100 100 100 80 100 100 100 100 100 100

PIEEMD
(SNR) 20 100 100 80 100 100 90 100 80 100 100 100 100
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Figure 5: DIRG test rig, the axes orientation of the triaxial accelerometers (x, y, and z) and the damaged roller used in the tests.
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Figure 6: The normalized energy of the three first IMFs (FV𝑛) with new samples, SNR = 20 (speed = 200Hz and load = 1.8 kN).

higher Margin, the states of the new samples are identified
correctly. As it can be seen in Figure 7, all faulty and healthy
samples are completely separable.

For the EMD and EEMD (with the predefined constant
amplitudes or the presented method (SNR = 10)), the pre-
viously constructed SVMs can successfully detect the fault,
as it was expected because of their high Margins. The results
shown in Table 5 confirm such an expectation.

To investigate in more detail, the collected signals of
another defective bearing (small defect on the inner ring)
in two directions (Y and Z) are analyzed. The results of
classification are shown in Table 6. As all the constructed
SVMs have highMargins, they are reliable and lead to perfect
success rates for both Y and Z directions, except for one
condition (speed = 200Hz and load = 1.8 kN) in Z-axis which
achieved 81.3% success rate.

Finally, the appropriate ensemble trial number for dam-
age detection is investigated. The results of fault diagnosis
for different trials are presented in Table 7. In the most of
the operating conditions, the 30 ensemble trial numbers are
enough to achieve a perfect labelling rate, which is far lower
than the number used in previous studies (as mentioned in
Section 1). It leads substantially to less time consuming and
decreasing the computational cost. The higher Margin is not
obtained by increasing the number; even in some cases the
30 trials achieve a little higher Margin. For two conditions
(speed = 200Hz, load = 1.4 kN and speed = 300Hz, load =
1.4 kN), the 100% success in detection is achieved by applying
the 100 trails. There exists only one operating condition in
which the 100 trials do not achieve perfect success rate (speed
= 200Hz and load = 1.8 kN). As it can be seen in Table 8,
implementing the proposed method with 50 trials improves
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Figure 7: The normalized energy of the three first IMFs (FV𝑛) with new samples, SNR = 10 (speed = 200Hz and load = 1.0 kN).

Table 6: The Margin calculated (using PIEEMD with SNR = 10), for the defective inner ring.

Direction 100Hz
1.0 kN

100Hz
1.4 kN

100Hz
1.8 kN

200Hz
1.0 kN

200Hz
1.4 kN

200Hz
1.8 kN

300Hz
1.0 kN

300Hz
1.4 kN

300Hz
1.8 kN

400Hz
1.0 kN

400Hz
1.4 kN

400Hz
1.8 kN

𝑌 1.2186 0.8674 1.4268 1.3744 1.2852 1.0538 1.3522 1.1211 0.8542 1.2552 1.2583 0.8326
𝑍 1.2603 0.8788 1.3713 1.3391 0.9743 0.7350 1.2272 1.0937 1.1128 1.1918 1.1989 1.3516

Table 7: The results of using different trial numbers (NR) using PIEEMD (SNR = 10) for 𝑌 direction.

NR 100Hz
1.0 kN

100Hz
1.4 kN

100Hz
1.8 kN

200Hz
1.0 kN

200Hz
1.4 kN

200Hz
1.8 kN

300Hz
1.0 kN

300Hz
1.4 kN

300Hz
1.8 kN

400Hz
1.0 kN

400Hz
1.4 kN

400Hz
1.8 kN

100
Margin 1.1627 1.0881 0.8863 1.2660 0.8095 0.6854 1.1806 0.8123 0.8628 0.9342 0.8768 0.9274
Success rate 100 100 100 100 100 87.5 100 100 100 100 100 100

90
Margin 1.1584 1.0700 0.8506 1.2383 0.7776 0.7356 1.1625 0.8339 0.8704 0.9009 0.8886 0.9049
Success rate 100 100 100 100 93.8 93.8 100 93.8 100 100 100 100

70
Margin 1.1714 1.0856 0.8575 1.2234 0.7344 0.7043 1.1347 0.7825 0.8819 0.8238 0.8668 0.9005
Success rate 100 100 100 100 93.8 87.5 100 93.8 100 93.8 100 100

50
Margin 1.1487 1.0633 0.8858 1.2563 0.7450 0.7244 1.1732 0.8410 0.8700 0.8748 0.8685 0.9103
Success rate 100 100 100 100 93.8 87.5 100 93.8 100 100 100 100

30
Margin 1.1586 1.1026 0.8378 1.2413 0.8442 0.6353 1.1698 0.8271 0.9037 0.8861 0.9065 0.9346
Success rate 100 100 100 100 93.8 81.3 100 87.5 100 100 100 100



Shock and Vibration 9

Table 8: The results of using different trial numbers (NR) for the condition: speed = 200Hz and load = 1.8 kN.

Method NR
30 50 70 100 500 1000 2000

PIEEMD (SNR = 10) Success rate 81.3 87.5 87.5 87.5 87.5 93.8 93.8
Margin 0.6353 0.7244 0.7043 0.6854 0.7254 0.7151 0.7267

EEMD (0.3) Success rate 81.3 81.3 87.5 87.5 87.5 87.5 87.5
Margin 0.6912 0.6998 0.7032 0.6922 0.6975 0.7086 0.7116

Table 9: The results of using different trial numbers (NR) after
denoising, for the condition: speed = 200Hz and load = 1.8 kN.

SNR = 10 NR
30 50 70 100 500

Margin 0.7175 0.8119 0.7573 0.7643 0.7913
Success rate 93.8 100 100 100 100

the success rate and the Margin. Increasing the trials to
1000, higher classification accuracy is achieved (from 87.5%
to 93.8%), whereas the Margin does not change considerably
after the 50 trial numbers. Although with the 70 trials the
classification result improves from 81.3% to 87.5%; however,
the original EEMD does not obtain higher rates by applying
more trial numbers (even up to 1000).

On the contrary, denoising the signals can improve the
results to obtain perfect classification results [9]. Using only
30 trials, the same success rate (93.8%), achieved with 1000
trials for the noisy signals, can be obtained (Table 9). To
achieve 100% labelling success, the limit of 50 trials is
sufficient; however, there is no considerable improving of the
Margins after the 50 trial numbers.

9. Conclusion

Obviously, in the EEMD technique, there is no robust guide
to select an optimal amplitude for the added noise. As the
amount of the amplitude is very important, especially for
early damage detection (very small defects), in this study
a reliable method (PIEEMD) is proposed to calculate the
amplitude, instead of using previously suggested amplitudes,
a priori predefined and constant. The vibration signals of the
various operating conditions are analyzed for three bearings
with different states: healthy, faulty (small fault on a roller),
and faulty (small defect on inner ring). It is shown that,
by applying the proposed amplitude calculating algorithm
(especially with SNR = 10), considerable improvement in
accuracy of damage detection is obtained, in comparisonwith
predefined constant amplitudes. Exploring reliability of the
obtained success rates, theMargin of each SVM classification
is calculated and it is confirmed that, for those conditions
whose Margin is relatively high, the results are more reliable.
For the defective inner ring, the acceleration signals of two
radial directions are investigated to achieve more confident
results and it is validated that the PIEEMD algorithm looks
reliable and can be favorably applied instead of the previous
predetermined approach.

It is shown that substantially low trial numbers are
required to achieve perfect labelling of samples, which leads
to considerably less computational cost. In themost operating
conditions only the 30 trial numbers are sufficient to achieve
successful damage detection. Using the 100 trial numbers
lead to 100% success rate for all working conditions, except
for one condition (speed = 200Hz, load = 1.4 kN) that
although increasing the number improves its result, the
perfect classification can be achieved only after denoising.
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