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Abstract—Gene Regulatory Networks (GRNs) are one of the most 
investigated biological networks in Systems Biology because their 
work involves all living activities in the cell. A powerful but 
simple model of such GRNs are Boolean Networks (BN) that 
describe interactions among biological compounds in a 
qualitative manner. One of the most interesting outcomes about 
GRNs's dynamics are the so called network attractors, since they 
seem to well represent the stable states of a living cell. Though 
collecting state space trajectories is a quite simple task when the 
network topology consists of few nodes, it becomes not so trivial 
when nodes are of the size of hundreds or thousands. Thus, we 
exploit the MapReduce algorithm in order to cope this 
complexity on a cloud architecture built for the purpose. We 
found that scaling-out the problem is a better solution rather 
than increasing resources on single machine, thus allowing 
simulations of large networks. 
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I. INTRODUCTION 
One of the most important challenges today is that the 

latent knowledge embedded in biological networks is not 
currently fully exploited [1]. Since networks are useful to 
model complex systems, they are heavily adopted in many 
research areas, and they find applications in systems biology 
too. More specifically, interactions among biological 
compounds are mapped into a particular kind of networks 
called biological pathways (or simply pathways), which acts as 
a knowledge representation about biological phenomena 
involved in cell metabolism, cell signaling or gene regulation 
in living cells. By modeling the last phenomenon, pathways are 
usually called Gene Regulatory Networks (GRNs) and they are 
the subject of our work. Furthermore, scientists discovered that 
genes never act alone in a biological system, but they 
participate in a cascade of networks [2] increasing the 
complexity of the system to be analyzed. 

Since computational models are well suited to cope with 
these complex systems, many of them have been proposed 

since ‘70s to properly model GRNs and their dynamics [11-14]. 
Among them, we chose a qualitative modeling approach by 
adopting a Boolean Network model similar to the one 
introduced by Kauffman as reviewed by Gershenson in [14]. 
Major differences between the Random Boolean Network 
model described in [14] and our model consist in a 
deterministic selection of the node updating function (instead 
of a random selection from a predefined set of them) and the 
inclusion of gene/product and post-transcriptional information 
in the network topology [28]. A common approach adopted by 
most of the network dynamics simulators is to assume a 
synchronism while updating the state of each node in the 
network. Our implementation of the model follows this 
assumption, thus the network dynamics are those generated by 
a Finite State Machine (FSM) and trajectories in the network 
state space are composed of a finite set of nodes univocally 
determined by the network attractor, which is the termination 
node. This property of a deterministic state space is the key to 
understand why using the MapReduce paradigm is an 
interesting and valid approach to analyze the dynamics of large 
GRNs modeled by Boolean Networks. Details about 
implementation will follow in next sections. 

There are a few tools in literature that allow the simulation 
of Boolean Networks as those proposed in [7-10], but all of 
them share common drawbacks like limitations in network 
size, i.e., tens or few hundreds of nodes, and a limitation in the 
degree connectivity per node because of their implementation 
that uses truth tables for representing updating functions in 
memory. For example, when modeling post-transcriptional 
regulation, a node could have many incoming connections due 
the presence of hub nodes like MicroRNAs or Transcription 
Factors. This leads to model node updating functions with truth 
tables that need huge memory resources (e.g., truth table for a 
network with a node !	targeted by other 50 nodes would need 
250 rows, just for !, to be stored in central memory). Therefore, 
to allow the simulation of large networks we need tools that are 
able to handle this bottleneck. 

Few of these tools let the user to analyze the network state 
space of the whole simulation. We adopted as Boolean 
Network Simulator the Enhanced Boolean Network Toolkit 
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(EBNT Simulator), which is the one available at [36] because it 
is implemented in C++, it runs fast, it uses multithreaded 
libraries, and it is an open source solution. 

II. OBJECTIVES AND MOTIVATION 
The whole human genome consists of more than 30,000 

genes [3] and a single GRN model is not able to take into 
account all interactions among all genes. This is due to 
limitation of our knowledge about a general and complex 
GRN model and to the huge computational resources needed 
to analyze such a model. Moreover, a single pathway is a 
model of just a small subset of these genes for which the 
interconnecting mechanisms are well known in the scientific 
community. Nevertheless, the increasingly knowledge about a 
specific GRN allows scientists to infer links between related 
GRNs, providing cascades of these networks formin bigger 
GRNs. Furthermore, there are more and more tools that 
provide a network enhancing based from the retrieval of 
information from many online databases. Thus, there is an 
increasing requirement for tools able to simulate very large 
GRNs.  

The aim of our study is to allow the simulation of GRNs 
modeled by large Boolean Networks, which consist of 
thousands of nodes highly interconnected. This goal is reached 
through a cloud architecture based upon the well-know 
MapReduce algorithm. The final outcome consists of a set of 
XML files containing a subset of basins of attraction of the 

simulated GRN and their network attractors. These XML files 
can be imported in Cytoscape [29] to be further analyzed. 

III. MATERIALS AND METHODS 
The data flow process, as shown in Fig. 1, starts with the 

selection of a pathway from online databases. These pathways 
are manually curated and a large collection is classified and 
available online from many repositories [5-6]. A useful tool 
which is able to download a biological pathway, enhance it, 
and provide as output a boolean network topology 
representation is a Cytoscape plugin named ReNE [30]. The 
second step is the network enhancing. Although, it is an 
optional step and can be skipped if just a classical simulation is 
desired without post-transcriptional elements modeled. After 
that, the files containing the model representation of the GRN 
are ready to be shipped as input for the EBNT Simulator. Until 
now, the process is performed on a single machine by a single 
user.  

The general architecture on which the workflow in Fig.1 is 
based is composed of the following components. 

A.  Enhanced Boolean Network Toolkit 
The Boolean Network model is implemented in a software 

toolkit (EBNT) that allows to analyze GRNs from both a 
structural and a dynamic point of view. Among its capabilities, 
we used the EBNT to simulate the network dynamics in order 
to find those stable states of a GRN called attractors. This 
process is well described in [31,37]. The open-source toolkit is 
compatible with available visualization tools like Cytoscape 
and allows to run detailed analysis of the network topology as 
well as of its attractors, trajectories, and state-space. 

B. Cloud Computing Integration 
Since the network analysis algorithm requires considerable 

resources in terms of temporary memory and permanent 
storage, an effort was made in order to enhance the 
computational power and the storage capabilities of the 
system. Moreover, the massive amount of data generated by 
the EBNT Simulator limits the scope of information available 
for even computationally sophisticated users. 

 To overcome these limitations in simulation and analysis 
stages, an experimental virtualized cloud computing 
environment was implemented in the form of a Platform as a 
Service (PaaS). 

The problem of efficiently dealing with extremely large 
quantity of data is recurring in modern industry and a variety 
of solutions and infrastructures have been proposed. Both 
storage and computation are aspects that need to be taken into 
account and optimized in order to serve an efficient Big Data 
analysis system. MapReduce, proposed by Google [25], has 
soon emerged as a leading paradigm for Big Data processing 
due to its scalability and reliability [32]. Hadoop [33] is an 
open-source implementation, which is reminiscent of GFS 
(Google File System) and MapReduce [35], and is released 
under the umbrella of the Apache Software Foundation [34]. 

 
Figure 1 - The overall data flow from network topology to XML 

attractors set. 

 



 

MapReduce algorithms have been widely used in 
bioinformatics applications such Next Generation DNA 
Sequencing analysis [15-16], exploiting the computational 
capabilities of the cloud architecture, and in storage and 
retrieval of large biomedical data as in [17-18]. An interesting 
review on bioinformatics application using MapReduce and 
Hadoop is done by Taylor in [22]. Moreover, the MapReduce 
algorithm performs better when data are homogeneous, and 
this is the data type that we designed to work with. 

C. Cloud Environment 
The base of the distributed system was built using the 

Apache Hadoop framework [19] deployed inside a Cloud 
constituted by Ubuntu Server Virtual Machines [20]. 

The Cloud environment was built using open source 
virtualization tools on top of IBM BladeServer hardware.  The 
complete virtualization stack depicted in Fig. 2 is composed of 
several layers which consists in, from bottom to top: 

• Hardware (IBM Blade) 
• Host OS (Cent OS)  
• Hypervisor (KVM) 
• Guest OS (Ubuntu Server 14.04) 

The Cloud Management is performed through OpenNebula  
[21]. We used the Hadoop framework version 2.0 deployed 
inside Guest OS VMs. This technique permits to dynamically 
allocate computing clusters of the required size. 

Inside the Hadoop cluster, two Virtual Machines (VMs) 
are dedicated exclusively to do the Master Agent. One 
machine, the HDFS Master, controls the Distributed File 
System (DFS) and the other, the YARN Master, leads 
computational resources. All the remaining allocated VMs act 
as slaves and provide active storage and Workers at the same 
time.  

In the proposed cluster architecture, YARN master serves 
as an interface node for scheduling/dispatching purposes. File 
management, including propagation of EBNT description files 
and splitting/indexing of big files is held by the HDFS master. 
 

D. MapReduce Algorithm 
The generation of the results is divided into various stages 

and sub-steps, where every step is coordinated between the 
various machines by a central entities. The workflow, which is 
going to be described is depicted in Fig. 4. 

The goal in the first stage is to generate the inputs that will 
be supplied to the EBNT Simulator. The second stage uses the 
data generated in the previous step (initial states) to simulate 
and track the network evolution down to the final states 
(attractors) saving the trajectories in the state space. The third 
stage, the map phase in the MapReduce paradigm, parses the 
results files and assign to each attractor a key and the number 
of hits encountered as its value. The fourth and last stage, the 
reduce phase, identifies multiple instances of the same 
attractor generated in different simulations and sum up all its 
hits values. 

The details of the various stages of the whole process are 
shown in Fig. 3 and explained in the following. 

A request to start a simulation is initially performed using 
a custom developed User Interface (a web page which exposes 
custom Web Services APIs). The data needed in order to start 
the simulation is inserted in the DFS and made available to all 
the connected Workers. The total number of simulations to 
perform is divided among all the available slave VMs in the 
system, in order to reduce the complexity of the generation 
stage. For example, if the cluster is composed of 100 Slaves 
VMs, a request of 1010 simulations will be split among the 
slaves by performing 108 simulations in each VM. Some 
measurements will be needed to identify the best compromise 
between minimum subset and framework overhead. The 

 
Figure 2 - The virtualization stack. 

 

 
Figure 3 - UML Sequence Diagram of data flow on the cloud architecture. 

 



 

YARN Master, which acts as a controller, generates a random 
seed for each Slave VM. Using the EBNT Simulator and the 
assigned seed, each machine generates a subset of initial states 
from which to start the simulation. Managing the seeds 
generation in a central controller has the purpose to avoid 
running simulations with the same initial conditions, which 
could lead to useless identical datasets. The initial states are 
stored locally on each VM in order to avoid unnecessary 
network traffic. A custom application developed for the 
YARN Framework [23] deals with running the necessary 
commands on each VM setting the right parameters to the 
EBNT Simulator. Afterwards, each VM is able to perform the 
simulation running the attractor finder algorithm, which is 
multi-threaded, collecting all trajectories in the state space. 

When a VM completes all the simulations, the output 
produced is a XML file, which stores the set of network 
attractors, each with all its basins (the set of trajectories). This 
file is stored on the HDFS [24] distributed filesystem provided 
by Hadoop, allowing the availability of the results at a global 
scope. 
 

Next, it comes the analysis performed on all computed 
datasets by the MapReduce paradigm, which can be loosely 
summarized in two phases. In the first one, the map phase, 
files are parsed and mapped in order to obtain sets of key-
value pairs. The second phase is called the reduce phase and 
consists in the aggregation of all the key-value pairs on the 
basis of the key value, while performing a algorithm of 
interest. In our implementation, the map phase consists in the 
indexing of all attractors found (keys) by assigning, as value 
for each key, a edge which composes a trajectory. After, the 

reduce phase will collect keys with same value (i.e. a network 
attractors) from all simulation instances performed in parallel 
by the VMs. Then, the basin size is computed counting all 
edges that belong to the same attractor while taking into 
account possible duplicates. 

We are still collecting results about simulations and till 
now we ran a test comparing the simulation time of the mTOR 
pathway, both on a single machine and on the cloud 
environment. The mTOR pathway is taken from the KEGG 
Online Database [37] (with the KEGG code hsa04150) and 
processed with the Cytoscape plugin ReNE [30]. The resulting 
pathway after the enhanced phase is a GRN, which consists in 
1668 nodes (among genes, Transcription Factors and 
MicroRNAs) and 12603 edges. 

Running the simulations for a total of 106 initial states, we 
got the computational time on a single VM and on different 
clusters each composed of a certain number of allocated VMs 
as shown in Fig. 5.  

From the same Fig. 5 it’s clearly noticeable a performance 
boost of a 10x factor using a cluster of 20 VMs. Indeed, using 
20 VMs, the total time is just the 9% of the simulation time 
performed by a single allocated VM. 

 

IV.  CONCLUSIONS AND FUTURE WORKS 
By using established methods derived from cloud 

computing we have proposed a fully scalable architecture for 
the analysis of the dynamics of GRNs modeled by Boolean 
Networks. 

Thus, the study of real networks dynamics with significant 
size it is now possible also thanks to the many cloud platforms 
and services that are providing support to the technology we 
used. 

A possible improvement in the proposed cloud architecture 
consists  in replacing XML files by a NoSQL DBMS like 
MongoDB [26] during the MapReduce algorithm beacuse it 

 
Figure 4 – The MapReduce algorithm applied to simulation results. 

 

 
Figure 5 - Simulation timings 

 



 

seems to scale better [27]. We are working in that direction, 
also considering to other kind of knowledge discovery using 
data mining techniques to exploit the huge amount of data (i.e. 
Big Data) generated by simulations and stored in the cloud. 
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