
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Bayesian network early reliability evaluation analysis for both permanent and transient faults / Vallero, Alessandro;
Savino, Alessandro; Tselonis, S.; Foutris, N.; Kaliorakis, M.; Politano, GIANFRANCO MICHELE MARIA; Gizopoulos, D.;
DI CARLO, Stefano. - STAMPA. - (2015), pp. 7-12. (Intervento presentato al convegno IEEE 21st International On-Line
Testing Symposium (IOLTS) tenutosi a Halkidiki, GR nel 6-8 July 2015) [10.1109/IOLTS.2015.7229819].

Original

Bayesian network early reliability evaluation analysis for both permanent and transient faults

Publisher:

Published
DOI:10.1109/IOLTS.2015.7229819

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2622326 since: 2016-09-16T18:10:42Z

IEEE

Bayesian Network Early Reliability Evaluation
Analysis for both permanent and transient faults

A. Vallero∗, A. Savino∗, S. Tselonis†, N. Foutris†, M. Kaliorakis†, G. Politano∗, D. Gizopoulos†, S. Di Carlo∗
∗Control and Computer Engineering Department, Politecnico di Torino, 10129 Torino, Italy

†Department of Informatics & Telecommunications, University of Athens, 5784, Athens Greece

Abstract—Analyzing the impact of software execution on the
reliability of a complex digital system is an increasing challenging
task. Current approaches mainly rely on time consuming fault
injections experiments that prevent their usage in the early stage
of the design process, when fast estimations are required in order
to take design decisions. To cope with these limitations, this paper
proposes a statistical reliability analysis model based on Bayesian
Networks. The proposed approach is able to estimate system
reliability considering both the hardware and the software layer
of a system, in presence of hardware transient and permanent
faults. In fact, when digital system reliability is under analysis,
hardware resources of the processor and instructions of program
traces are employed to build a Bayesian Network. Finally, the
probability of input errors to alter both the correct behavior of the
system and the output of the program is computed. According to
experimental results presented in this paper, it can be stated that
Bayesian Network model is able to provide accurate reliability
estimations in a very short period of time. As a consequence it
can be a valid alternative to fault injection, especially in the early
stage of the design.

I. INTRODUCTION

Reliability is an important design aspect for computer
systems due to the aggressive technology miniaturization [1],
[2], [3]. Unreliable hardware components affect computing
systems at several levels. Raw errors can manifest due to
several causes such as physical fabrication defects, aging or
degradation (e.g., NBTI), process variations, environmental
stress (e.g., radiations). Raw hardware errors can propagate
through other layers of the system (e.g., architecture, software)
up to the output. During the propagation process, raw errors
can be masked by each of the affected layers.

A significant effort in the research community has been
spent to analyze masking properties at technological and
architectural level [4], [5]. Moreover, understanding the ef-
fect of software on the reliability of a complex system in
which unreliable hardware is present is also gaining increasing
importance. The software has intrinsic masking capabilities
that can be enhanced by the implementation of software level
fault tolerance mechanisms [6], [7] and [8]. However, these
mechanisms often incur in a significant performance overhead.
Therefore, the role of the software stack coupled with the
target hardware architecture must be carefully considered when
system reliability is analyzed.

This paper has been fully supported by the 7th Framework Program of
the European Union through the CLERECO Project, under Grant Agree-
ment 611404. Direct questions and comments to A. Vallero (alessan-
dro.vallero@polito.it), A. Savino (alessandro.savino@polito.it) and S. Di Carlo
(stefano.dicarlo@polito.it).

Several studies focus on understanding and modeling how
hardware faults can propagate and manifest through a software
application, without considering how these faults can actually
propagate and be masked within the software [9], [10], [11],
[12]. A very important contribution that examines the impact
of software on the architectural vulnerability factor (AVF) of
a system is provided in [13]. The paper defines a so called
Program Vulnerability Factor (PVF), isolating the software-
dependent (architecture-level masking) portion of AVF from
the hardware-dependent (microarchitecture-level masking) por-
tion. This metric captures the architecture-level fault mask-
ing inherent in a program, allowing software designers to
make quantitative statements about programs resilience to soft-
errors. PVF can be measured using an architectural simulator,
a dynamic binary translator such as Pin [14] or resorting
to ACE-like analysis [15]. Moreover, a comprehensive PVF
calculation is affected by the software workload that may
increase the simulation effort. Another interesting contribution
has been proposed in [16] where a statistical model is proposed
to estimate the capability of a software application to mask
hardware errors. The main contribution of this paper is to
introduce a statistical model that simply requires a preliminary
characterization of the hardware masking probability and then
it is able to analyze software applications executed on this
hardware. However this work does not take into account
execution time so that it may lead to inaccurate estimations
especially for big programs. Overall, one of the main limi-
tations of the publications presented so far is that they are
limited to the analysis of the effect of soft-errors: permanent
and intermittent faults are not considered at all.

This paper introduces a new statistical approach for the
estimation of the reliability of a microprocessor-based system
considering both the hardware and the software layer. The
software execution on the microprocessor is modeled in the
form of a Bayesian Network that describes relations among
resources (e.g., registers, memory elements, functional units)
involved in the execution of the instructions composing a
program. The Bayesian model is then exploited to compute
a probability of correct (error-free) execution of the software
in the presence of a hardware fault, used to estimate the
overall reliability of the system. To construct the model, a
preliminary characterization of the Instruction Set Architecture
(ISA) of the microprocessor is required. This characterization
aims at evaluating the probability of successful execution of
each instruction of the target ISA in presence of faults in
the microprocessor hardware blocks. Transient, intermittent
and permanent faults can be considered in this phase without
affecting the way the high-level model is constructed.

Bayesian Networks represent a model successful employed
for reliability estimates in different fields [17]. In the software
engineering domain, they have been successfully employed to
model software reliability in the distributed domain (Kishore
at al. [18], etc.). A few publications consider the application
of Bayesian Networks to model system reliability in hardware
devices as well [19], [20]. However, they do not consider the
interaction of hardware and software in an instruction-based
environment.

To validate the proposed statistical model we analyzed 4
different MiBench benchmarks [21] executed targeting per-
manent and transient faults on top of a x86-64 micropro-
cessor. Experimental results highlight that reliability esti-
mations are accurate when compared to those obtained by
time-consuming fault-injection experiments performed using
a micro-architectural fault injector [22]. At the same time, the
proposed approach enables a significant reduction of the time
required to perform the reliability analysis, enabling fast and
accurate reliability evaluations.

This paper is organized as follows: Section II illustrates
the proposed reliability estimation model. It focuses on the
creation and the evaluation of the Bayesian Network. Section
III introduces the experimental setup and shows estimation
results compared to the fault injection campaigns. Eventually,
Section IV summarizes the main contributions of the paper
and set future perspectives on statistical estimation.

II. RELIABILITY ANALYSIS

Bayesian Networks (BNs) are an efficient statistical model
to represent multivariate statistical distribution functions. They
can model relationships among random variables and their re-
spective probability density functions by means of conditional
probability functions. In particular, conditional dependencies
are expressed by a Direct Acyclic Graph (DAG). Nodes of the
DAG represent conditional probability functions of the ran-
dom variables, while edges represent conditional dependencies
among random variables. If two nodes are connected, it means
that the random variables they represent are conditionally
dependent.

The proposed statistical reliability analysis methodology
focuses on the estimation of the probability of failure of
a program running on a specific microprocessor. Bayesian
networks are employed to model program traces, i.e., se-
quences of instructions issued by the microprocessor when the
program is executed with a specific workload. In particular,
the information required to build the BN is the execution time
and the involved hardware resources of instructions. Several
traces can be obtained from a single program by profiling its
execution with different workloads using a dedicated profiler.
We employed [16], but other profilers can be used as well with-
out affecting the estimation model. The collection of analyzed
traces represents different program behaviors that may generate
different error masking effects during the program execution.
Program traces are sequential lists of instructions that can
therefore be efficiently modeled in the form of a Bayesian
network whose main constraint is the absence of loops in the
network. As traces are evaluated, the system failure probability
can be estimated by averaging the trace analysis results.

To assess the system reliability, both the hardware and
the software layer must be taken into account. In the pro-
posed model the microprocessor ISA represents the direct
link between the two layers. In particular, each instruction is
considered with regard to the hardware resources required for
its execution. To build a BN model of a program trace running
in a system, it is essential to take into account the hardware
resources, error sources and the instructions of the analyzed
trace.

Hardware resources, Res, are divided into two subsets:
the storage resources subset (Sres), which includes registers
and memories, and the computational resources subset (Cres),
which includes functional units required for computation.

Resources can be affected by errors during program exe-
cution. Consequently, when dealing with reliability analysis,
it is fundamental to define an error model. For soft-errors the
exponential distribution is assumed. The reliability function
of a resource (Rres(t)), i.e., the probability of an error-free
resource in a period of time t is given by the following
equations:

λres = λcomp
Ares
Acomp

(1)

Rres(t) = e−λrest (2)

where λcomp is the raw SER of the electronic component
dependent on the target technology, while λres is the resource
SER assuming equal spatial distribution of error occurrence
in the component. Since a single resource is part of bigger
electronic component, it can be assumed that its reliability is
related to the one already defined for the component. More
specifically, λres is a portion of λcomp and we assume it is
proportional to the fraction of its silicon area Ares over the
total area of the component Acomp (1). For permanent errors
we assume stuck-at-fault model. If a permanent fault occurs in
a resource, it means that an internal signal or the output signal
of the affected resource has a fixed value.

The occurrence of both transient and permanent errors in
hardware resources can be masked at the hardware level due
to several masking effects. We therefore consider a masking
probability for each instruction of the ISA, representing the
probability that an instruction prevents an error occurrence to
propagate. In this work, each instruction I is characterized by
a set of input storage and computational resources, RIin ∈
Sres ∪Cres, required for the computation, and a set of output
storage resources, RIout ∈ Sres, that are updated by I . All
resources in RIin can mask errors during the execution of an
instruction and are therefore characterized by a given masking
probability. Masking of hardware resources can be obtained by
error protection mechanism implemented in the design (e.g.,
ECC for memories, Triple Module Redundancy for registers,
etc) or by data transformations they perform (e.g., an AND
functional block can mask a bit flip of an operand if the not-
faulted operand is a 0).

Computing masking probability can be performed accord-
ing to two strategies: operand analysis or fault injection.
The former consists of analyzing the mathematical operations
resources are involved. In most of the cases this operation
is simple and it is not time consuming. On the contrary, the
latter method requires a bigger effort. In fact, a fault injection

campaign is required to analyze the system resources error
resiliency. Error can be injected at RTL level as well as at
gate level. However these operations can be done just once,
as when masking probability of a resource is known, it can be
employed in all the system the resource is part of.

To understand how to to build a BN model, let us consider
the simple program trace composed of two instructions that is
reported in Fig.1. The first step is to identify those resources
belonging to RIin and RIout

of each instruction of the trace.
In fact, they represent the nodes of the BN. Each node N can
assume two possible states: error-free (denoted as N) or faulty
(denoted as N).

In the example of Fig.1, I1 has RIin = {R1, R2, AND}
and RIout = {R3}, while I2 has RIin = {R3, R2, ADD} and
RIout = {R1}. We therefore introduce 8 nodes in the network:
ANDI1, R1I1, R2I1, R3I1, ADDI2, R3I2, R2I2, R1I2.
Once resources nodes are defined, resource dependencies are
modeled by means of network edges. Resources belonging to
RIin are connected to resources belonging to RIout

of the
instruction. Moreover, output resources of an instruction may
be connected to input resources of a following instruction to
model instruction dependency. At this point the BN topology
is ready and error nodes, representing the input of the network
can be therefore included. Error nodes, when faulty, express the
raw probability that an error occurs in a resource. According
to our model, input errors can only affect resources belonging
to RIin .

Each node is then associated to a set of conditional
probabilities that quantify the probability of correctness of the
node depending on the correctness of the input nodes. Four
cases must be considered.

a) Input nodes: Input nodes of the network can be
either error nodes or nodes associated to storage resources for
which the initial error probability is known. A single proba-
bility of correctness is associated to these nodes. In case of
soft errors, computational resources can be affected by errors
while they are employed. Consequently, the probability of a
error-free error node connected to a computational resource
is computed according to (2) with a proper λres and t equal
to the execution time of the instruction. On the other hand,
storage resources can be affected by external errors during the
period of time elapsed between a write and a read operation.
Therefore, for error nodes connected to storage resources, the
probability of a error-free node is calculated by means of (2)
considering a proper λres and t equal to the period of time
between the read and the write of the resource. On the opposite,
in case of hard errors, the probability of an error-free error
node can be one or zero, depending on the presence of the
permanent error regardless the kind of resource the node is
connected to.

b) Nodes identifying computational resources in RIin of
an instruction (e.g., ANDI1 in Fig.1): These nodes have a sin-
gle incoming edge connected to an error node. Two conditional
probabilities must be defined as reported in Fig.1 for these
nodes where P (MAND) identifies the masking probability
of the hardware resource. This probability can be computed
by simulating the behavior of each instruction with different
combinations of operands in input [16]. Masking probability is
obtained by injecting faults into input operands and comparing

the obtained output with the one without faults. This operation
only targets operands and it does not involve the gate and the
RTL implementation of the circuit.

c) Nodes identifying storage resources in RIin of an
instruction (e.g., R2I2 in Fig.1): For these nodes there are
two possible causes of faults: (1) the resource was already
corrupted in a previous instruction or (2) an error corrupts
the resource in the time interval between the execution of
two instructions. In this case, four conditional probabilities
must be defined as reported in Fig.1 where P (MR2) identifies
the masking probability of the hardware resource. It is worth
to highlight that, in our example, we always consider that,
when more than one input node is faulty, the probability
of correctness of the current node is zero. This is a worst
case assumption that however reduces the complexity of the
characterization of the masking probability of each resource.

d) Nodes identifying storage resources in RIout of an
instruction (e.g., R1I2 in Fig.1): These nodes may have several
inputs. Therefore, the number of conditional probabilities to
set is equal to the number of possible combinations of states
the input nodes may assume. Similar to the previous case, we
consider that errors can be masked only when computational
resources in RIin are error-free and at maximum a single
storage resource in RIin is faulty. In the example, we denote
with P (MOPADD) the masking probability that the ADD
operation performed by the computational resource will mask
errors in a input storage resource.

Once conditional probabilities are set up properly for every
node, the BN network can be solved and the probability of
correct execution of a trace can be estimated. However, only
a subset of the instructions of a trace directly affect resources
that identify the final outcome of the computation. We denote
this subset of instructions as active state instructions (AI). To
compute the probability that a program trace is correct, error
probability is taken into account only for output resources of
the active state instructions. We define such resources as active
resources (Ares) and we denote with Aresi the subset of active
resources modified by instruction Ii . Given these definitions,
the probability for the active instruction Ii to be correct (P (Ii))
can be computed as the probability that all its active resources
are correct:

P (Ii) =
∏

R∈Ares
i

P (R) (3)

since the probabilities of correctness of output resources of
an instruction are statistically independent.

A program trace T is correct (error-free) if all active state
instructions are correct. The probability of correctness of a
trace (P (T)) can therefore be computed as:

P (T) = P (
⋂
I∈AI

I) =
∏
I∈AI

P (I|J, ∀J < I) (4)

When computing P (T), we need to consider that the event that
all active instructions are correct is not statistical independent.
We therefore need to multiply the probability of correctness
of every active instruction given that all its previous active
instructions are correct, P (I|J, ∀J < I). This is possible
by setting the evidence in the Bayesian network that all its

ERROR
AND

I1

AND
I1

R_ST
R1

I1

R_ST
R2

I1

R_ST
 R3

I1

R_ST
 R3

I2

ERROR
R3

I2

ERROR
 R2

I2

R_ST
 R2

I2

ERROR
ADD

I2

ADD
I2

R_ST
 R1

I2

I1: R3 = R1 and R2

I2: R1 = R3 + R2

I1: R3 = R1 AND R2
I2: R1 = R3 + R2TRACE GENERATOR

E
R2

E
R2

R2
I1

P(M
R2

) 1

R2
I1 0 P(M

R2
)

P(C
AND I1

|...)

P(C
R2

|...)

E
AND I1

E
AND I1

1 P(M
AND

)

R2
I2
 R3

I2
R2

I2
 R3

I2
R2

I2
 R3

I2
R2

I2
 R3

I2

ADD
I2 1 P(M

OP ADD
) P(M

OP ADD
) 0

ADD
I2 0 0 0 0

P(C
R1

|...)

Fig. 1: Example of a bayesian network model for a simple sequence of two instructions.

previous active instructions are correct. The network is then
solved and P (T) can be computed.

Once the probability of correctness of a trace is computed,
for permanent faults, this value is equal to the final masking
probability of the system, P (MSystem). Instead, for transient
faults some additional computation is required. In fact, the
error rate of the system while executing the trace can be
computed by inverting (2) thus obtaining:

λTestimated = −
ln(P (T))

tT
(5)

where tT is the execution time of the analyzed program
trace. To obtain more accurate estimates of the system SER,
λBN , a simple or a weighted average can be applied to all
λestimated of the analyzed traces. Weights of the traces can be
set according to the probability that a trace is executed by the
analyzed system:

λBN =
∑

T∈analyzed traces

λTestimated × wi (6)

where
∑
wi = 1. Finally, to compute the masking probability

of the system:

P (MSystem) = 1− λBN
λcomp

(7)

III. EXPERIMENTAL RESULTS

This section presents the results obtained by implementing
the presented Bayesian network model in a reliability analysis
tool, and by applying it to a test program executed on a given
microprocessor architecture.

A. Framework implementation

We implemented a complete automatic framework able to
perform the reliability analysis described in Section II. The
framework is composed of two main modules: (i) the trace
generator, and (ii) the Bayesian network analyzer.

The trace generator is built on top of the MARSSx86 [23]
full system, cycle-accurate architectural simulator. It simulates
the execution of the target program on the x86-64 architecture.
During the execution, a detailed trace of the list of executed
instructions, and for each instruction the list of resources (e.g.,
physical register or memory virtual addresses) that are involved
in the execution is generated.

Generated traces are analyzed by the Bayesian network
analyzer in order to build the Bayesian model of the trace and
to estimate the related SER. The Bayesian network analyzer
is built on top of SMILE [24], a free C++ framework for
the analysis of Bayesian models. It is important to highlight
here that, when analyzing the network of a real application
composed of hundreds of thousands of instructions, the size of
the related network may increase up to a level that saturates the
available computational resources. To overcome this limitation,
thanks to conditional probability offered by BNs, the networks
of the trace is split into several sequential subnetworks each
depending on the probabilities computed by the previous
network. By applying this iterative approach, scalability of the
reliability analysis on complex applications can be achieved
with very limited computation time.

B. Experiment setup

To validate the proposed reliability estimation methodology
we set up four case studies. They consist of an application
programs running on the x86-64 architecture obtained from the
MiBench benchmarks [21]. They are qsort (32 traces), aes (32
traces) and sha (16 traces) for transient errors, while sha (16
traces) for permanent errors. For each experiment several traces
have been analyzed. For a preliminary analysis, hardware faults
have been just injected into microprocessor physical registers
belonging to the Integer Register File.

Traces have been extracted resorting to the MARSSx86
simulator [23] employed in the Fault Injector tool described in
Section III-B2. The tool has the ability to trace various micro-
architectural events (such as committed instruction sequence,
memory access pattern) which can be reassembled to build the
actual execution trace of a program.

To validate the proposed Bayesian Network analyzer, the
same benchmarks with the related workloads are analyzed
resorting to the proposed Bayesian model and resorting to
an extensive architectural fault injection campaign. Computed
results are then compared to evaluate the accuracy and the
performance of the proposed model.

1) Bayesian model: In order to set conditional probabilities
for BN nodes some preliminary operation must be performed.
First of all, instructions of the x86-64 architecture must be
analyzed. Masking probabilities are evaluated according to the
operands analysis explained in Section II. Secondly, since the
proposed Bayesian model addresses the ISA and faults are
injected at micro-architectural level, some precaution must be
adopted. This operation requires an analysis of the physical
system to be evaluated. In our experiments faults are only
injected into the physical register file instead of ISA registers.
To overcome this issue we decide to adopt a strategy to
tune input error probabilities for ISA registers. In the x86-64
architecture a register rename table keeps the data regarding the
renaming process of each physical register into an ISA register.
When permanent faults are addressed, input error probability
of the faulted resource is set to the probability the register is
mapped to the faulted physical register

P (Error)
1

of PHY S REGs
(8)

instead of being set to one.For transient errors, as register
renaming is dynamic, we assume that the number of physical
registers that are involved in the computation at the same
time is equal to the number of architectural registers. In other
words, we assume that the area of the architectural register
file, AARCH RF , can be evaluated as:

AISA RF = APHY S RF ×
of ISA REGs

of PHY S REGs
(9)

where APHY S RF is multiplied by the number of ISA reg-
isters over the number of physical registers. Moreover, we
assume that all registers have the same size. As a consequence
the area of an architectural register, Aisa reg, is the ratio
between the number of ISA registers and AISA RF .

Active state instructions in a trace are those instructions
storing the result of the computation in memory, and they are
identified based on the results of the trace generator.

2) Fault Injection: Fault injection experiments have been
performed using the MARSSx86-FI [22] fault injector built
on top of MARSSx86 [23] full system, cycle-accurate ar-
chitectural simulator. MARSSx86-FI is capable of injecting
single and multiple transient (bit-flip), intermittent (stuck-at-
0, stuck-at-1), permanent (stuck-at-0, stuck-at-1) faults, or a
mixture of them to the micro-architecture structures of the x86-
64 microprocessor architecture. Furthermore, MARSSx86 full
system simulation feature provides the capability to monitor
the propagation of a hardware fault to the upper levels of
system stack: the application output. The extracted output
files can be analyzed to classify the injected faults: when no
mismatch at the application output is detected, the application
execution is labeled as correct.

We perform a statistical fault injection campaign, on
MARSSx86-FI (see Table I), adopting the statistical sampling
of [25]. The methodology computes the number of injection

experiments in an array of given size under confidence level1
and error margin2 requirements. Using [25], we compute a
fault population for 99% confidence and 3% error margin. The
calculation leads to a total of 1843 different single-bit transient
faults, which are generated for the injections on the integer
physical register file. Each transient fault is then modeled as
a bit-flip placed in a randomly selected position (i.e., a bit in
a physical register) at randomly selected clock cycle.

TABLE I: Marssx86-64 microprocessor model configuration

Parameter Setting
Fetch/Issue/Commit 4/4/4 instructions per cycle
Combined Predictor 16KB (64K entries, 2 bits/entry, 16 bits BHR)meta

pred.: 64K entries
Physical Register File 256 INT; 256 FP; 16 Store; 24 Branch
Reorder Buffer 128 entries
Functional Units 4 clusters (ALUs: 2 INT, 2 FPU; 4 AGUs)
Cache Memories L1-D (32KB, 4-way, WB) L1-I (32KB, 4-way,

WB) L2 (1MB, 16-way, WB)

C. Results

Reliability estimate of the analyzed program traces are
compared for the fault injection and the Bayesian model.
Figure 2 compares accuracy of the two methods. We can state
results show that Bayesian model estimations are very close to
the FI ones. In particular, they belong to the uncertainty range
of 3% according to [25].

(a) Transient faults (b) Permanent faults

Fig. 2: Estimations of masking probability for both the
Bayesian Network and the Fault Injection approaches

Finally, Figure 3 compares simulation time for each ex-
periment. The figure clearly shows that, resorting to the
statistical model, estimation time is reduced by several orders
of magnitude thus enabling very fast estimations.

IV. CONCLUSION

This paper proposes a new statistical approach for the
estimation of the reliability of a microprocessor-based system,
taking into account the interaction between the hardware and

1Probability that the observed sample contains the measured attribute’s real
mean in the full population

2Maximum expected difference between the population’s mean value and a
sample’s mean value of the measured attribute.

(a) Transient errors (b) Permanent faults

Fig. 3: Timing performance comparison of simulation time of
a single trace for both the Bayesian Network and the Fault
Injection approaches. Time is expressed in seconds

the software layer. Preliminary experimental results performed
on the MiBench benchmarks clearly show that the proposed
approach is able to provide an accurate and fast estimations
when compared to a similar analysis performed using micro-
architectural level fault injection. The ability of providing fast
reliability evaluations, considering both the hardware and the
software layer, is a key feature to enable optimized designs,
leading to a progressive avoidance of common practices em-
ployed to reach high reliability levels, such as worst case
design.

The proposed Bayesian model can be easily adapted to
other instruction set architectures as the only requirement to
is a profiler able to track the sequence and the execution time
of every instruction performed by the target system. In order
to reach a comprehensive reliability statistical analysis, further
investigations can address the modeling of micro-architectural
resources other than the registers file, as the ROB, the LSQ
and the BTB.

REFERENCES

[1] R. Baumann, “Soft errors in advanced computer systems,” Design &
Test of Computers, IEEE, vol. 22, no. 3, pp. 258–266, 2005.

[2] S. Borkar, T. Karnik, and V. De, “Design and reliability challenges
in nanometer technologies,” in Proceedings of the 41st annual Design
Automation Conference. ACM, 2004, pp. 75–75.

[3] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A systematic methodology to compute the architectural vulnerability
factors for a high-performance microprocessor,” in Proceedings of the
36th annual IEEE/ACM International Symposium on Microarchitecture.
IEEE Computer Society, 2003, p. 29.

[4] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim,
and K. Flautner, “Razor: circuit-level correction of timing errors for
low-power operation,” IEEE Micro, vol. 24, no. 6, pp. 10–20, 2004.

[5] R. Vadlamani, J. Zhao, W. Burleson, and R. Tessier, “Multicore soft
error rate stabilization using adaptive dual modular redundancy,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2010. IEEE, 2010, pp. 27–32.

[6] M. Dimitrov and H. Zhou, “Unified architectural support for soft-
error protection or software bug detection,” in Proceedings of the
16th International Conference on Parallel Architecture and Compilation
Techniques. IEEE Computer Society, 2007, pp. 73–82.

[7] N. Nakka, G. P. Saggese, Z. Kalbarczyk, and R. K. Iyer, “An architec-
tural framework for detecting process hangs/crashes,” in Dependable
Computing-EDCC 5. Springer, 2005, pp. 103–121.

[8] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, L. Tagliaferri, and
C. Tibaldi, “Promon: a profile monitor of software applications,” in 8th
IEEE International Workshop on Design and Diagnostics of Electronic
Circuits and Systems 2005. DDECS 2005. IEEE, 13-16 April 2005,
pp. 81–86.

[9] L. Rashid, K. Pattabiraman, and S. Gopalakrishnan, “Towards under-
standing the effects of intermittent hardware faults on programs,” in
Dependable Systems and Networks Workshops (DSN-W), 2010 Interna-
tional Conference on, June 2010, pp. 101–106.

[10] M.-L. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S. Adve, and
Y. Zhou, “Understanding the propagation of hard errors to software
and implications for resilient system design,” SIGOPS Oper. Syst. Rev.,
vol. 42, no. 2, pp. 265–276, Mar. 2008.

[11] S. K. S. Hari, S. V. Adve, H. Naeimi, and P. Ramachandran, “Relyzer:
Exploiting application-level fault equivalence to analyze application
resiliency to transient faults,” SIGPLAN Not., vol. 47, no. 4, pp. 123–
134, Mar. 2012.

[12] M.-L. Li, P. Ramachandran, U. Karpuzcu, S. K. S. Hari, and S. Adve,
“Accurate microarchitecture-level fault modeling for studying hardware
faults,” in High Performance Computer Architecture, 2009. HPCA 2009.
IEEE 15th International Symposium on, Feb 2009, pp. 105–116.

[13] V. Sridharan and D. Kaeli, “Eliminating microarchitectural dependency
from architectural vulnerability,” in High Performance Computer Ar-
chitecture, 2009. HPCA 2009. IEEE 15th International Symposium on,
Feb 2009, pp. 117–128.

[14] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” ACM Sigplan
Notices, vol. 40, no. 6, pp. 190–200, 2005.

[15] C. Weaver, J. Emer, S. Mukherjee, and S. Reinhardt, “Reducing the
soft-error rate of a high-performance microprocessor,” Micro, IEEE,
vol. 24, no. 6, pp. 30–37, Nov 2004.

[16] A. Savino, S. Carlo, G. Politano, A. Benso, A. Bosio, and G. Di Natale,
“Statistical reliability estimation of microprocessor-based systems,”
Computers, IEEE Transactions on, vol. 61, no. 11, pp. 1521–1534, Nov
2012.

[17] H. Langseth and L. Portinale, “Bayesian networks in reliability,” Reli-
ability Engineering & System Safety, vol. 92, no. 1, pp. 92–108, 2007.

[18] L. Yuan-Shun Dai and K. Trivedi, “Performance and Reliability of Tree-
Structured Grid Services Considering Data Dependence and Failure
Correlation,” Computers, IEEE Transactions on, vol. 56, no. 7, pp. 925–
936, 2007.

[19] S. Zhai and S. Z. Lin, “Bayesian networks application in multi-state
system reliability analysis,” Applied Mechanics and Materials, vol. 347,
pp. 2590–2595, 2013.

[20] A. Bobbio, L. Portinale, M. Minichino, and E. Ciancamerla, “Improving
the analysis of dependable systems by mapping fault trees into bayesian
networks.” Rel. Eng. & Sys. Safety, vol. 71, no. 3, pp. 249–260, 2001.

[21] University of Michigan at Ann Arbor. Mibench version 1.0. [Online].
Available: http://www.eecs.umich.edu/mibench/

[22] N. Foutris, M. Kaliorakis, S. Tselonis, and D. Gizopoulos, “Versatile
architecture-level fault injection framework for reliability evaluation: A
first report,” in On-Line Testing Symposium (IOLTS), 2014 IEEE 20th
International. IEEE, 2014, pp. 140–145.

[23] A. Patel, F. Afram, S. Chen, and K. Ghose, “Marss: a full system
simulator for multicore x86 cpus,” in Proceedings of the 48th Design
Automation Conference. ACM, 2011, pp. 1050–1055.

[24] M. J. Druzdzel, “Smile: Structural modeling, inference, and learning
engine and genie: a development environment for graphical decision-
theoretic models,” in AAAI/IAAI, 1999, pp. 902–903.

[25] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault
injection: Quantified error and confidence,” in Design, Automation Test
in Europe Conference Exhibition, 2009. DATE ’09., April 2009, pp.
502–506.

