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Abstract

This work proposes an innovative approach that is based on higher-order beam models for the
damage analysis of metallic and composite structures. The present 1D formulation stems from the
Carrera Unified Formulation (CUF) and it leads to a Component-Wise (CW) modelling.

According to CUF, the accuracy of the analysis is a parameter of the formulation. The displace-
ment field is, in fact, expressed as an arbitrary expansion of the generalized unknowns via user-
defined cross-sectional functions, Fτ . Formally,

u(x,y,z) = Fτ(x,z)uτ(y), τ = 1,2, ....,M (1)

where uτ is the vector of the generalized displacements and M stands for the number of terms used
in the expansion. Taylor-like polynomials, i.e. power series of the coordinates x and z of generic
order N, can be used as basis functions (Fτ ) to enrich the beam kinematics. Taylor Expansion (TE)
models are not described in this paper but they can be found in [1]. Here, the attention is focused on
CW CUF models, which make use of Lagrange polynomials as Fτ expanding functions. Lagrange
polynomials are reported in many reference books, see for example [2]. In this paper, nine-point
cubic (L9) Lagrange polynomials are employed. Nevertheless, thanks to the hierarchical capability
of CUF, the order and the number of the Lagrange elements used to discretize the beam cross-
section can be arbitrarily varied without changing the formal expression of the problem. In the
simple case of single-L9 beam model, the displacement field is

ux = F1 ux1 +F2 ux2 +F3 ux3 +F4 ux4 +F5 ux5 +F6 ux6 +F7 ux7 +F8 ux8 +F9 ux9

uy = F1 uy1 +F2 uy2 +F3 uy3 +F4 uy4 +F5 uy5 +F6 uy6 +F7 uy7 +F8 uy8 +F9 uy9

uz = F1 uz1 +F2 uz2 +F3 uz3 +F4 uz4 +F5 uz5 +F6 uz6 +F7 uz7 +F8 uz8 +F9 uz9

(2)

where ux1 , ...,uz9 are the displacement variables of the problem and represent the translational
displacement components of each of the nine points of the L9 element; F1, ...,F9 are the Lagrange
polynomials. Further details about CUF models based on Lagrange polynomials expansions can
be found in [3].

In this work, a finite element approximation is adopted; the generalized displacements are thus
expressed as a linear combinations of the nodal unknowns, qτi, through classical shape functions
Ni. The governing equations are derived by means of the principle of virtual displacements. A
compact form of the virtual variation of the strain energy can be obtained as shown in [1].

δLint = δqT
τiK

i jτsqs j (3)



Figure 1: Locally damaged structure.

where Ki jτs is the stiffness matrix in the form of the fundamental nucleus. Superscripts indicate
the four indexes exploited to assemble the matrix: i and j are related to the shape functions, τ and
s are related to the theory expansion functions. The fundamental nucleus is a 3× 3 array whose
components can be found in [1, 3]. Matrix Ki jτs has to be expanded versus the four indexes to
obtain any desired class of refined beam finite elements. Similarly, the fundamental nucleus of
the mass matrix, Mi jτs, can be easily obtained from the virtual variation of the work of inertial
loadings, see [4].

A basic damage modelling approach is adopted in this work. Figure 1 shows an example of locally
damaged structure. In the damaged zone, the material characteristics were modified according to
the following formula:

Ed = d ×E with 0 ≤ d ≤ 1 (4)

i.e.;
E0 = E; E0.9 = 0.9×E; ...; E0.1 = 0.1×E (5)

A cantilever I shaped cross-section beam is discussed as a numerical example and it is shown
in Figure 2. The main dimensions of the structure were: height, h = 0.1 m; width, w = 0.1 m;
thickness of the flanges and the web, t = 2 mm; length, L = 1 m. The whole beam was made
of an aluminium alloy (E = 75 GPa, ν = 0.33, ρ = 2700 Kgm−3). Damage was introduced in
the whole top flange. Table 1 shows the first five natural frequencies of the structure subjected
to different damage intensities. A CUF CW model built with 8L9 elements on the cross-section
is compared to classical beam theories (Euler-Bernoulli, EBBM, and Timoshenko beam models,
TBM) and to a 2D finite element plate model obtained with the commercial code Abaqus. Figure
3 shows the mode shapes for the un-damaged structure by the proposed CW CUF model. Also,
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Figure 2: Cross-section of the I shaped beam.



Table 1: First natural frequencies (Hz) for different models and damage intensities, I-section beam.
Models EBBM (193)∗ TBM (305) 8L9 CUF (4743) 2D Abaqus (27972)
(1−d) 0 0.5 0.9 0 0.5 0.9 0 0.5 0.9 0 0.5 0.9

f1 69.9 60.5 51.8 69.7 60.3 51.7 69.7 51.7 26.4 69.2 51.1 26.2
f2 127.0 109.2 84.1 125.6 108.1 83.5 73.8 71.6 70.9 72.8 70.7 70.0
f3 434.7 376.4 322.4 424.7 368.6 346.5 122.7 106.4 82.4 119.8 103.9 80.3
f4 776.3 666.2 510.6 723.9 626.0 488.5 239.1 234.2 136.9 232.3 226.3 134.4
f5 1202.2 1202.3 891.7 1142.0 993.8 855.8 252.8 243.3 199.7 246.3 236.0 183.4

∗The number of degrees of freedom are given in brackets

the same figure graphically shows the effects of damages in the top flange on the first five natural
frequencies. The analysis clearly demonstrates that refined beam models are mandatory to detect
the damage effects. Moreover, it is clear that the results from 1D CUF models perfectly match
those from a 2D FEM model with very low computational costs. The enhanced capabilities of
refined CW models in dealing with damaged complex structures [5] and composite materials [6]
will be further discussed during the 10th International Symposium on Vibrations of Continuous
Systems.

Figure 3: Mode shapes and damage effects on the natural frequencies by the 8L9 CUF model
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