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Abstract

Polytropes are self-gravitating fluid spheres used in astrophysics as crude approximation of more realistic
stellar models. They possess equations that have scale parameters linked to mass, energy and entropy.
Since Boltzmann distribution yields unphysical results, the use of generalized entropies, such as Tsallis and
Kaniadakis entropies, had been proposed. Here we discuss how these entropies are related in polytrope
solutions.
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Abstract: Polytropes are self-gravitating fluid spheres used in astrophysics as crude
approximation of more realistic stellar models. They possess equations that have scale
parameters linked to mass, energy and entropy. Since Boltzmann distribution yields unphysical
results, the use of generalized entropies, such as Tsallis and Kaniadakis entropies, had been
proposed. Here we discuss how these entropies are related in polytrope solutions.
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1. Introduction

In astrophysics, a polytrope refers to a solution of the Lane—Emden equation. This is an
equation which gives the pressure as a function of density [1]. These solutions are modelling
self-gravitating fluid spheres that are called “polytropes” too, which are objects used as crude
approximation to more realistic stellar models [2]. The solution of the Lane-Emden equation, a
dimensionless form of Poisson's equation for the gravitational potential, depends on a parameter

which is the polytropic index n. It is written as P=Kp(n+1)/ " where P is pressure, p is density
and K a constant. If stellar structure is approximated with a polytrope having a given index,
then two scaling parameters are needed to express the structure in physical units [3]. The two
parameters that we can use are a constant which is related to entropy and the stellar mass. Since
Boltzmann distribution yields unphysical results, the Boltzmann entropy had been substituted
by a generalized entropy, the Tsallis entropy [4]. Another generalized entropy, the Kaniadakis
entropy, had been recently proposed too, in [5]. Here we discuss how these two entropies are
related in polytrope solutions, and that the result given in [5] can be easily obtained from [4].

2. The entropies

Well-known is the entropy proposed by Claude Shannon in 1948 [6]. He defined the entropy H
of a discrete random variable X, as the expected value of the information content: H(X)=—Z%; p;

logy, p; . The probability of i-event is p; and b is the base of the used logarithm. However,

several entropies exist which are generalizing Shannon entropy. Among them we have Tsallis
and Kaniadakis entropies [7,8], which are defined, with a corresponding choice of
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In (1) and (2) we have the entropic indies q and «. For its generalized additivity, the Kaniadakis
entropy requires another function, defined as follow:
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> A detailed discussion of the generalized additivity of Tsallis and k-entropy is given in [9].

Tsallis and Kaniadakis entropies are linked:
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Eq.(3) is a simpler form of an expression given in [10,11]. However, besides this relation,
because of the generalized additivity possessed by the Kaniadakis entropy, we need also
another relation:

2
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In (3) and (4), we have Kaniadakis functions expressed by Tsallis entropy. As shown in [12],
we can also write T expressed by means of Kaniadakis functions:

2 ( 2
K+ 2 3=Ty =T+ Ty + T +—
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And then: (5) Ky +2p=Tp, -~
LY K

Let us have: k=1—q. From (5) we have immediately the relation between Tsallis and Kaniadakis

functions:
6 T,-K._ + Sl
1 =g (l_qj
3. With polytropes

The relation (6) between Tsallis and Kaniadakis entropies can be useful in several problems.
Here we consider its use in polytropes. In the previous equations, we have p; denoting the

probability distribution. In Ref.4, it is used letter f for probability. From now on, we will use
this notation. In [4], the distribution from Tsallis entropy is:

£l1-£97!

(M) CqlH)=—

After Eq.6, we can write Eq.7 in the following manner:
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Of course, (7) and (8) are the same equation. As a consequence, Kaniadakis distributions are
linked to Tsallis distribution by:

(f -1y f
1 '.—q__g'_—q

From [4], a relation exists between polytrope index and entropic Tsallis index:

(1) n=

1
g-1

ta| s

As a special case, for qg—1, we find the isothermal situation. To have Eq.6, as shown in [12],
we need k=1—q or k=q—1. Then, from (10), considering that we have for the Kaniadakis index,
—l<x<lI:

(11} n=%—l
] K

And in fact, (11) is the relation that we find in [5]. Using then the relation between Tsallis and
Kaniadakis entropies and distributions we can easily finds results concerning several
applications. Polytropes are an example of such a possible approach.
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