Tsallis and Kaniadakis Entropic Measures in Stellar Polytropes

Original

Availability:
This version is available at: 11583/2621751 since: 2015-11-09T20:45:24Z

Publisher:
PHILICA

Published
DOI:

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

(Article begins on next page)
Tsallis and Kaniadakis Entropic Measures in Stellar Polytropes

Amelia Carolina Sparavigna
(Department of Applied Science and Technology, Politecnico di Torino)

Published in astro.philica.com

Abstract

Polytropes are self-gravitating fluid spheres used in astrophysics as a crude approximation of more realistic stellar models. They possess equations that have scale parameters linked to mass, energy and entropy. Since Boltzmann distribution yields unphysical results, the use of generalized entropies, such as Tsallis and Kaniadakis entropies, had been proposed. Here we discuss how these entropies are related in polytrope solutions.

Keywords: Entropy, Generalized Entropies.

1. Introduction

In astrophysics, a polytrope refers to a solution of the Lane–Emden equation. This is an equation which gives the pressure as a function of density [1]. These solutions are modelling self-gravitating fluid spheres that are called “polytropes” too, which are objects used as crude approximation to more realistic stellar models [2]. The solution of the Lane–Emden equation, a dimensionless form of Poisson's equation for the gravitational potential, depends on a parameter which is the polytropic index n. It is written as $P=Kρ^{(n+1)/n}$, where P is pressure, $ρ$ is density and K a constant. If stellar structure is approximated with a polytrope having a given index, then two scaling parameters are needed to express the structure in physical units [3]. The two parameters that we can use are a constant which is related to entropy and the stellar mass. Since Boltzmann distribution yields unphysical results, the Boltzmann entropy had been substituted by a generalized entropy, the Tsallis entropy [4]. Another generalized entropy, the Kaniadakis entropy, had been recently proposed too, in [5]. Here we discuss how these two entropies are related in polytrope solutions, and that the result given in [5] can be easily obtained from [4].

2. The entropies

Well-known is the entropy proposed by Claude Shannon in 1948 [6]. He defined the entropy H of a discrete random variable X, as the expected value of the information content: $H(X)=−Σ p_i \log_b p_i$. The probability of i-event is p_i and b is the base of the used logarithm. However, several entropies exist which are generalizing Shannon entropy. Among them we have Tsallis and Kaniadakis entropies [7,8], which are defined, with a corresponding choice of
measurement units equal to 1, as follow:

\[
\begin{align*}
(1) \quad \text{Tsallis: } T &= T_q = \frac{1}{q-1} \left(1 - \sum p_i^q\right) \\
(2) \quad \text{Kaniadakis} (\kappa \cdot \text{entropy}): K_\kappa &= -\frac{\sum p_i^{1+\kappa} - p_i^{1-\kappa}}{2\kappa}
\end{align*}
\]

In (1) and (2) we have the entropic indices \(q \) and \(\kappa \). For its generalized additivity, the Kaniadakis entropy requires another function, defined as follow:

\[
\mathcal{I} = \sum_i (p_i^{1+\kappa} - p_i^{1-\kappa})/2
\]

A detailed discussion of the generalized additivity of Tsallis and \(\kappa \)-entropy is given in [9]. Tsallis and Kaniadakis entropies are linked:

\[
\begin{align*}
(3) \quad K_\kappa &= \frac{T_{1+\kappa} + T_{1-\kappa}}{2} \\
\text{where } T(q = 1+\kappa) &= -\frac{1}{\kappa} \sum p_i^{1+\kappa} + \frac{1}{\kappa} ; \quad T(q = 1-\kappa) = \frac{1}{\kappa} \sum p_i^{1-\kappa} - \frac{1}{\kappa}
\end{align*}
\]

Eq.(3) is a simpler form of an expression given in [10,11]. However, besides this relation, because of the generalized additivity possessed by the Kaniadakis entropy, we need also another relation:

\[
\begin{align*}
(4) \quad \mathcal{I}_\kappa &= \frac{\kappa}{2} \left(-T_{1+\kappa} + T_{1-\kappa} + \frac{2}{\kappa}\right)
\end{align*}
\]

In (3) and (4), we have Kaniadakis functions expressed by Tsallis entropy. As shown in [12], we can also write \(T \) expressed by means of Kaniadakis functions:

\[
2\kappa + \frac{2}{\kappa} I_\kappa = T_{1+\kappa} + T_{1-\kappa} + \left[-T_{1+\kappa} + T_{1-\kappa} + \frac{2}{\kappa}\right]
\]

And then:

\[
(5) \quad K_\kappa + \frac{1}{\kappa} \mathcal{I}_\kappa = T_{1-\kappa} - \frac{1}{\kappa}
\]

Let us have: \(\kappa = 1 - q \). From (5) we have immediately the relation between Tsallis and Kaniadakis functions:

\[
(6) \quad T_q = K_{1-q} + \frac{\mathcal{I}_{1-q}}{(1-q)}
\]

3. With polytropes

The relation (6) between Tsallis and Kaniadakis entropies can be useful in several problems. Here we consider its use in polytropes. In the previous equations, we have \(p_i \) denoting the probability distribution. In Ref.4, it is used letter \(f \) for probability. From now on, we will use this notation. In [4], the distribution from Tsallis entropy is:

\[
(7) \quad \mathcal{C}_q(f) = \frac{f \left(1 - f^{q-1}\right)}{q-1}
\]

After Eq.6, we can write Eq.7 in the following manner:
\[
C_q(f) = \frac{f - f^q}{q - 1} = \frac{1}{2(q - 1)} (f^{2-q} - f^q) - \frac{1}{2(q - 1)} (f^{2-q} - f^q) = \frac{f}{q - 1}
\]

Of course, (7) and (8) are the same equation. As a consequence, Kaniadakis distributions are linked to Tsallis distribution by:

\[
t_q(f) = C_q(f) = \frac{f - f^q}{q - 1} = k_{1-q} - \frac{f}{q - 1}
\]

where \(K_{1-q} = \sum_i k_{1-q}, \varnothing_{1-q} = \sum_i g_{1-q}, I = \sum_i f \)

From [4], a relation exists between polytrope index and entropic Tsallis index:

\[
n = \frac{3}{2} - \frac{1}{q - 1}
\]

As a special case, for \(q \rightarrow 1 \), we find the isothermal situation. To have Eq.6, as shown in [12], we need \(\kappa = 1 - q \) or \(\kappa = q - 1 \). Then, from (10), considering that we have for the Kaniadakis index, \(-1 < \kappa < 1 \):

\[
n = \frac{3}{2} - \frac{1}{\kappa}
\]

And in fact, (11) is the relation that we find in [5]. Using then the relation between Tsallis and Kaniadakis entropies and distributions we can easily finds results concerning several applications. Polytropes are an example of such a possible approach.

References

Amelia Carolina Sparavigna, ORCID 0000-0003-4502-8974

Information about this Article

This Article was published on 9th November, 2015 at 19:30:37 and has been viewed 3 times.

The full citation for this Article is:

<< Go back Review this Article Printer-friendly Report this Article

Website copyright © 2006-07 Philica; authors retain the rights to their work under this Creative Commons License and reviews are copyleft under the GNU free documentation license. Using this site indicates acceptance of our Terms and Conditions.

This page was generated in 0.2568 seconds.