
04 June 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Conservative Behavioural Modelling in SystemC-AMS / Vinco, Sara; Lora, Michele; Zwolinski, Mark. - ELETTRONICO. -
(2015). (Intervento presentato al convegno Forum on specification & Design Languages tenutosi a Barcelona (Spagna)
nel 14-16 Settembre 2015) [10.1109/FDL.2015.7306361].

Original

Conservative Behavioural Modelling in SystemC-AMS

Publisher:

Published
DOI:10.1109/FDL.2015.7306361

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2621723 since: 2020-02-22T21:43:20Z

ECSI/IEEE



Conservative Behavioural Modelling in
SystemC-AMS

Sara Vinco
Dept. of Control & Computer Eng.

Politecnico di Torino,
Torino, Italy

sara.vinco@polito.it

Michele Lora
Dept. of Computer Science,

Università degli Studi di Verona
Verona, Italy

michele.lora@univr.it

Mark Zwolinski
Dept. of Electronics & Computer Science,

University of Southampton
Southampton, UK

mz@ecs.soton.ac.uk

Abstract—SystemC has recently been extended with the Ana-
logue and Mixed Signal (AMS) library, with the ultimate goal of
providing simulation support to analogue electronics and contin-
uous time behaviours. SystemC-AMS allows modelling of systems
that are either conservative and extremely low level or continuous
time and behavioural, which is limited compared to other AMS
HDLs. This work faces up this challenge, by extending SystemC-
AMS support to a new level of abstraction, called Analogue
Behavioural Modelling (ABM), covering models that are both
behavioural and conservative. This leads to a methodology that
uses SystemC-AMS constructs in a novel way. Full automation
of the methodology allows proof of its effectiveness both in
terms of accuracy and simulation performance, and application
of the overall approach to a complex industrial Micro Electro-
Mechanical System (MEMS) case study. The effectiveness of the
proposed approach is further highlighted in the context of virtual
platforms for smart systems, as adopting a C++-based language
for MEMS simulation reduces the simulation time by about 2x,
thus enhancing the design and integration flow.

I. INTRODUCTION

SystemC has long been considered the reference language
for electronic system-level design, as it supports both HW
and SW and the integration of multiple levels of abstrac-
tion, including RTL and transactional level [1]. However,
the increasing presence, in embedded systems, of analogue
components and MEMS limits the generality of SystemC
[2]. Indeed, this type of component requires the support of
continuous time and conservative behaviours, which cannot be
modelled with a discrete event simulator.

In response to this, Accellera has standardized the
SystemC-AMS extension [3]. SystemC-AMS provides a num-
ber of predefined levels of abstraction that reproduce linear
continuous time models with different degrees of accuracy
and adherence to physical behaviours. Unfortunately, such
abstraction levels (briefly outlined in Figure 1) do not model
all types of analogue models. The Linear Signal Flow (LSF)
level of abstraction focuses on behavioural, continuous time
systems, but it does not support the modelling of conservative
systems. On the other hand, Electrical Linear Network (ELN)
is conservative, but it does not support behavioural models.
Furthermore, SystemC-AMS does not yet support non-linear
modelling [9] and it can not therefore be considered a replace-
ment for SPICE [4] or Verilog-AMS [5].

The resulting gap between ELN and LSF thus misses
descriptions that are both behavioural and conservative, that

This work has been partially supported by the European project
SMAC FP7-ICT-2011-7-288827.

Fig. 1. Design space covered by the proposed approach w.r.t. SystemC-
AMS. The methodology bridges the gap between LSF and ELN, by targeting
behavioural and conservative descriptions (ABM).

are commonly used for the modelling of MEMS and other ana-
logue components [6], [7]. The limited flexibility of SystemC-
AMS forces designers to adopt other AMS HDLs (e.g.,
Verilog-AMS) for modelling this kind of component, thus
reducing the applicability of SystemC-AMS.

The key idea of this work is to bridge the gap between
LSF and ELN, to represent models that are both behavioural
and conservative in SystemC-AMS. This new level of ab-
straction, called Analogue Behavioural Modelling (ABM), is
demonstrated with a sound methodology that exploits existing
SystemC-AMS constructs. The goal is to show that SystemC,
with its AMS extensions, can be used as a general embedded
system modelling and simulation framework even in the pres-
ence of analogue circuitry and MEMS. It is important to note
that this paper does not define new SystemC-AMS libraries,
but it rather uses ELN primitives in an innovative way.

The main contributions of this paper are:

• identification of the ABM level of abstraction, necessary for
overall embedded system simulation in a SystemC based
environment;

• definition of a sound methodology for modelling ABM
components in SystemC-AMS, by using existing primitives
in a novel way;

• validation of the ABM level against Verilog-AMS, to show
that those Verilog-AMS descriptions that do not fall into
the ELN and LSF domains can now be correctly repre-
sented in SystemC-AMS;



• automation of the proposed methodology by automatically
converting Verilog-AMS models into ABM SystemC-AMS
models. This simplifies the application of the methodology
to complex industrial case studies.

As a side effect of the proposed methodology, Verilog-AMS
models can be automatically converted into SystemC-AMS
code for easy integration into a virtual platform including
analogue models. This avoids the use of CPU intensive co-
simulation frameworks, thus noticeably speeding up the sim-
ulation of a virtual platform.

The paper is organized as follows. Section II provides the
necessary background on Verilog-AMS and SystemC-AMS.
Sections III and IV focus on the proposed methodology. Fi-
nally, Section V applies the proposed approach to an industrial
case study and Section VI draws some conclusions.

II. BACKGROUND

A. Verilog-AMS

Verilog-AMS is one of the most widely used languages
for analogue and continuous time modelling [5]. In Verilog-
AMS a circuit is modelled as an abstract graph of nodes
(that can also be used for external connectivity) connected
by branches [8]. System state is defined in terms of voltages
(V()) and currents (I()) associated with nodes and branches.
Relationships between nodes are modelled with algebraic and
differential equations, called simultaneous statements. The
contribution operator <+ models a simultaneous statement
summing multiple contributions to the branch current (or
voltage) as a function of all branch voltages (or currents). The
function is realized as a sequence of mathematical expressions,
including time derivatives and integrals.

Conservative modelling is imposed by the requirement that
the sum of currents leaving any node must be equal to zero at
any time (thus reflecting Kirchhoff’s laws). This condition is
managed by the internal solver of the Verilog-AMS simulator,
and thus it must not be explicitly modelled by the designer.

The simulator internal solver uses the simultaneous state-
ments and conservative conditions to build a system matrix.
Equations are thus solved iteratively at discrete time steps to
determine system state over time.

B. SystemC-AMS

SystemC-AMS is the extension of the SystemC framework
for modelling analogue and mixed-signal systems [3]. Its role
is to provide a higher level view of mixed-signal and analogue
systems, to allow early simulation and validation of the overall
system. For this reason, SystemC-AMS supports only linear
and time-invariant descriptions, and is incapable of solving
non-linear functions [9].

To cover a wide variety of domains, SystemC-AMS pro-
vides three different abstraction levels, supporting different
communication styles and representations w.r.t. the physical
domain. Timed Data-Flow (TDF) models are scheduled stat-
ically by considering their producer-consumer dependencies
in the discrete time domain. Linear Signal Flow (LSF) sup-
ports the modelling of continuous time through a library of
pre-defined primitive modules (e.g., integration, delay), each
associated with a linear equation. Finally, the Electrical Lin-
ear Network (ELN) level models electrical networks through

AMS CIRCUIT 
EQUATIONS

APPLICATION OF 
CONSERVATIVE LAWS

SET OF EQUATIONS SET OF EQUATIONS=
VERILOG-AMS SOLVER SYSTEMC-AMS SOLVER

STANDARD 
VERILOG-A 

FLOW

MAPPING TO 
SYSTEMC-AMS

PROPOSED METHODOLOGY
①

DERIVATION OF ELN 
EQUATIONS

④

⑤ APPLICATION OF 
CONSERVATIVE LAWS

⑥

②

ELN COMPONENT 
INSTANTIATION③

DIVISION INTO 
CONTRIBUTIONS

NODE MANAGEMENT

Fig. 2. Overview of the proposed methodology.

the instantiation of predefined primitives, e.g., resistors or
capacitors, associated with electrical equations. A SystemC-
AMS internal solver analyses the ELN and LSF components
to derive the equations modelling system behaviour, that are
solved to determine system state at any simulation time.

The main difference between LSF and ELN is in the
adherence to physical laws. LSF is non-conservative and it
expresses behaviours as directed flows of continuous-time
signals or quantities. On the contrary, ELN is conservative,
i.e., the derived set of equations is extended by the internal
solver with the conservation laws.

III. METHODOLOGY OVERVIEW

The goal of the proposed approach is to prove that
conservative and behavioural descriptions can be modelled
in SystemC-AMS. To this extent, the starting point of the
methodology is a Verilog-AMS behavioural description, made
of a set of simultaneous statements that assemble voltages or
currents to describe the state of the electrical circuit nodes. Due
to the limitations of SystemC-AMS, the models are strictly
linear and time-invariant.

The standard Verilog-AMS simulation flow is depicted on
the left-hand side of Figure 2. The Verilog-AMS internal solver
takes the simultaneous statements as the input and derives
both the user defined equations and the conservative ones. The
resulting equation set is used to build the numerical matrices
that determine the system state.

The methodology to convert the Verilog-AMS code into
SystemC-AMS is based on the reproduction of the final
equation set in the SystemC-AMS environment, through the
flow depicted on the right-hand side of Figure 2. First of all,
Verilog-AMS nodes are mapped to SystemC-AMS nodes ( 1⃝),
and Verilog-AMS simultaneous statements are divided into
basic contributions ( 2⃝). Then, each contribution is mapped
to a basic SystemC-AMS ELN element, where the equation
associated with the ELN module is the same as the original
Verilog-AMS contribution ( 3⃝). The methodology determines
how to connect the ELN modules (i.e., in parallel or in series),

2



CONTROLLER 
NODE SIDE

CONTROLLED 
NODE SIDE

POSITIVE 
TERMINAL

NEGATIVE 
TERMINAL

Fig. 3. ELN terminology applied to an independent source (left) and to a
controlled source (right).

so that the bindings describe the same relationship between
voltages and currents as the original Verilog-AMS simulta-
neous statement. The ELN system is then managed by the
SystemC-AMS internal solver, that builds the corresponding
equations ( 4⃝) and adds conservative laws ( 5⃝). The resulting
equation system will thus reflect the Verilog-AMS one ( 6⃝).

The choice of the ELN model of computation allows us
to delegate the application of conservation laws to the internal
solver. This is an important feature, as adding conservative
laws implies reconstructing the circuit topology from the AMS
equations, which can be far from trivial.

It is important to note that both the basis of the method-
ology and the correctness of the proposed approach lie in
the construction of the same equation set, that is then solved
similarly by the Verilog-AMS and SystemC-AMS AD solvers.

IV. METHODOLOGY

The following sections detail the proposed methodology.
This work focuses on the construction of the ELN system
(steps 1⃝ to 3⃝ in Figure 2). The remaining steps (i.e., the
bottom box on the right-hand side of Figure 2) are automat-
ically performed by the SystemC-AMS internal solver. The
visual representation of ELN modules adopted in the following
Figures is as defined by the SystemC-AMS standard [3].

A. The ABM abstraction level

The ABM abstraction level comprises descriptions mixing
characteristics typical of digital behavioural models and of
electrical conservative ones. ABM models are behavioural in
that they do not directly reflect a HW or circuit implementa-
tion, but they are rather used in the design process to simulate
a certain component’s behaviour. At the same time, ABM
models are conservative as they adopt circuit elements and
constructs (e.g., voltage and current values at circuit nodes),
and thus abide by conservation laws.

These characteristics do not fit in any of the SystemC-
AMS abstraction levels. Nonetheless, they are widely sup-
ported by other AMS HDLs for the design of components
such as MEMS and analogue circuitry [6], [7]. It is thus
necessary to extend SystemC-AMS, to improve its coverage
and effectiveness. To avoid the burden of implementing a new
SystemC-AMS abstraction level (and thus new classes and
libraries), this work proposes a methodology that reduces ABM
descriptions, modelled in other AMS HDLs, to SystemC-
AMS ELN constructs. This guarantees the correctness of the
underlying synchronization and solving mechanisms, and it
preserves compatibility with any SystemC-AMS description.

B. ELN terminology

ELN modules have a standard interface made up of a
positive terminal (p port) and a negative terminal (n port)

for each contributing circuit node (left hand side of Figure
3). When an ELN module is controlled by any circuit node,
the interface is as depicted on the right hand side of Figure 3.
In detail, the interface has a source side (i.e, the result of the
ELN module, here called the controlled node, with a positive
terminal np and a negative terminal nn) and a control node
side (i.e., the input of the primitive module, here called the
controller node, with a positive terminal ncp and a negative
terminal ncn).

C. Circuit node management

The first declaration added to the SystemC-AMS code
is the instantiation of ground, declared as a node of
type sca_node_ref. Verilog-AMS nodes are mapped to
SystemC-AMS ELN circuit nodes (of type sca_node). Each
node is then connected to ground through a 1 GΩ resistor,
by using the ELN sca_r primitive. This is identical to the
Gmin conductance that SPICE automatically inserts between
each node and ground, and it helps to ensure that the final
equation set can be solved.

D. Division into contributions

SystemC-AMS is less expressive than Verilog-AMS, i.e.,
it supports a more restricted range of constructs and ELN
models can be composed only of instances of the predefined
primitives [7], [10]. E.g., in SystemC-AMS a voltage value
can be controlled only by one voltage contribution, while
Verilog-AMS allows any number of contributions. Thus, any
Verilog-AMS simultaneous statement must be reproduced by
connecting a number of ELN elements.

Given a Verilog-AMS description, the methodology identi-
fies the contributions comprising each simultaneous statement
by finding the largest sub-equation that can be represented by a
single ELN object. In linear and time-invariant descriptions this
corresponds to breaking the equation into the single addends.

E. Mapping to ELN components

The remainder of this section presents how a set of template
equations are mapped to ELN primitives to model their indi-
vidual contributions and how such primitives are connected.

1) Voltage sources:
Voltage source Verilog-AMS equations use a number of contri-
butions to assign a voltage level to a circuit node. Contributions
can be of three main types: independent, voltage-controlled and
current-controlled. A complete example of a voltage source
equation is shown in Figure 4.

Independent voltage sources assign a numerical voltage
value, and they correspond to contributions like:

V(a) <+ 8.01

(i.e., contribution 3 in Figure 4). They are implemented by
using a sca_vsource ELN module, where the voltage value
is an instantiation parameter (i.e., +8.01). The module interface
has only a positive terminal, connected to the controlled node
(a), and a negative terminal, connected to ground (gnd).

A voltage controlled voltage source is a voltage source
whose value depends on the voltage level at a certain circuit
node. An example is contribution 1 in Figure 4:

V(a) <+ +4.02 V(b)

3



V(a) <+ +4.02 V(b) -3.72 I(c) +8.01 
1 2 3

anp

np

b ncp

c ncp

nn

nn

interm_b

interm_c

1

2

3

vcvs_b = sca_vcvs(«bb», +4.02);
vcvs_b ->np(a); 
vcvs_b ->nn(interm_b); 
vcvs_b ->ncp(b);
vcvs_b ->ncn(gnd);

ccvs_c = sca_ccvs(«cc», -3.72);
ccvs_c ->np(interm_b); 
ccvs_c ->nn(interm_c); 
ccvs_c ->ncp(c);
ccvs_c ->ncn(gnd); 

vcs = sca_vsource(«vcs», +8.01); 
vcs ->p(interm_c); 
vcs ->n(gnd); 

1

2

3

Fig. 4. Example of voltage source equation (top left) with the corresponding
SystemC-AMS code (right) and ELN module connection (bottom left). Non-
connected terminals are connected to ground.

It is implemented by using the sca_vcvs ELN module,
where the scaling factor is an instantiation parameter (i.e.,
+4.02). The module interface has a controlling node side
(whose positive terminal is connected to b) and a controlled
node side (whose positive terminal is connected to a). Negative
controlling terminals are connected to ground.

A current controlled voltage source describes a voltage
source whose value depends on the current through a certain
circuit branch. An example is contribution 2 in Figure 4:

V(a) <+ -3.72 I(c).

Such contributions are implemented by using the sca_ccvs
ELN module, connected to node a as the controlled node and
to node c as the controlling node.

If a Verilog-AMS voltage source equation is made of more
than one contribution, SystemC-AMS instances are connected
in series. This is achieved by creating intermediate nodes that
connect the nn terminal of a primitive with the np terminal
of the next primitive. In this way, voltage values add up and
any new contribution is added in series with the former ones.
In Figure 4, this is achieved by introducing nodes interm_b
(that connects contributions 1 and 2) and interm_c (that
connects contributions 2 and 3).

2) Current sources:
Current source Verilog-AMS equations are the complement
of voltage source equations for current, i.e., use a number of
contributions to assign an input current to a circuit node. A
complete example is shown in Figure 5.

An independent current source assigns a numerical current
value and is implemented by using the sca_isource ELN
module (contribution 3 in Figure 5). A voltage controlled
current source defines a current source whose value depends
on the voltage level at a certain circuit node (contribution
1 in Figure 5). These kinds of contributions are mapped
to sca_vccs ELN modules. Finally, a current controlled
current source describes a current source whose value depends
on the current flowing through a certain circuit branch (con-
tribution 2 in Figure 5). Such contributions are implemented
by using sca_cccs ELN modules.

If a Verilog-AMS current source equation is made up
of more than one contribution, SystemC-AMS instances are

I(a) <+ +4.02 V(b) -3.72 I(c) +8.01 
1 2 3

anp

np

b ncp

c ncp

nn

nn

1

2

3

vccs_b = sca_vcvs(«bb», +4.02);
vccs_b ->np(a); 
vccs_b ->nn(gnd); 
vccs_b ->ncp(b);
vccs_b ->ncn(gnd);

cccs_c = sca_ccvs(«cc», -3.72);
cccs_c ->np(a); 
cccs_c ->nn(gnd); 
cccs_c ->ncp(c);
cccs_c ->ncn(gnd); 

ccs = sca_csource(«ccs», +8.01); 
ccs ->p(a); 
ccs ->n(gnd); 

1

2

3

Fig. 5. Example of current source equation (top left) with the corresponding
SystemC-AMS code (right) and ELN module connection (bottom left). Non-
connected terminals are connected to ground.

connected in parallel. The ncp terminal of each module is
connected to the controlling node (b and c) and the np (or p)
terminal is connected to the controlled node (a). In this way,
the voltage is the same across all involved circuit branches and
the current is summed at the controlled node a.

3) Differential constructs:
Differential contributions are more complex than voltage or
current ones, as they model a derivative (or integrative) rela-
tionship between the current or voltage of two separate circuit
nodes. SystemC-AMS, on the other hand, restricts differential
behaviours to dependencies on single network nodes, through
the adoption of capacitors (sca_c ELN module) or inductors
(sca_l). To overcome this limitation, it is necessary to
introduce an intermediate node that has no physical correspon-
dence in the circuit, but that is rather used for describing the
differential dependence.

a) Derivative contributions: Derivative contributions
describe a derivative dependency between the voltage or cur-
rent quantities of two different circuit nodes, e.g.:

I(a) <+ ddt(+4.02 V(b))

To overcome SystemC-AMS limitations, the original Verilog-
AMS differential contribution is divided into three separate
contributions, as outlined in Figure 6. The circuit is enhanced
with a new node (interm), used to represent the derivative
dependency as an inductor (implemented as an instance of
a sca_l ELN module). This adds the following equation
(equation 2 in Figure 6):

V(interm) = ddt(I(interm))

Then, two equations are added to bind the values in a and b
to the current and voltage values in the new node interm.
In Figure 6, node a is modelled as a current source dependent
on the voltage in interm (the dependency is implemented as
an instance of sca_vccs). This adds equation 3:

I(a) = +4.02 V (interm)

The current through interm is controlled by the voltage
at b (the dependency is implemented as an instance of
sca_vccs). This adds equation 1:

I(interm)= V(b)

4



I(a) <+ ddt(+4.02 V(b))
1  I(a) = +4.02 V(interm)
2 V(interm) = ddt( I(interm))
3 I(interm) = V(b)

vccs_c = sca_ vccs(«cc», +4.02);
vccs_c ->np(a); 
vccs_c ->nn(gnd); 
vccs_c ->ncp(interm);
vccs_c ->ncn(gnd); 

ll = sca_l(«ll», +1.00); 
ll ->p(interm); 
ll ->n(gnd); 

vccs_b = sca_vccs(«bb», +1.00);
vccs_b ->np(interm); 
vccs_b ->nn(gnd); 
vccs_b ->ncp(b);
vccs_b ->ncn(gnd);

1

2

3a

b ncp

n

nn

3

p

ncp

np

np

2

1

interm

Fig. 6. Example of derivative equation with corresponding individual
contributions and equations (top left), SystemC-AMS code (bottom left) and
ELN module connection (right).

The resulting system of equations will thus reconstruct the
original dependency between nodes:

I(a) = +4.02V(interm)= +4.02ddt(I(interm))

= +4.02ddt(V(b))

The combination of voltage or current sources strictly depends
on the starting simultaneous statement. However, the same
approach can be easily extended to any combination of volt-
age/current dependencies.

The resulting SystemC-AMS sub-system is depicted on the
left hand side of Figure 6. The sub-system can be further
connected to other ELN models if it is included in more
complex simultaneous statements, by adopting either parallel
or series compositions.

b) Integrative contributions: Integrative contributions
describe an integrative dependency between the voltage or
current quantities of two different circuit nodes, e.g.:

I(a) <+ idt(+4.02 V(b))

The approach used to overcome SystemC-AMS limitations
reflects the solution outlined for derivative contributions (Fig-
ure 7). The circuit is extended with a new node (interm),
used to represent the integrative dependency as a capacitor
(implemented as an instance of the sca_c ELN module). This
adds to the system equation 2:

V(interm) = idt(I(interm))

Then, two equations are added to bind the values in a and b
to the current and voltage values in the new node interm,
similarly to the solution proposed for derivative contributions:

I(a) = +4.02 V(interm)

I(interm) = V(b)

The resulting set of equations will thus reproduce the original
dependency between nodes:

I(a) = +4.02V(interm)= +4.02idt( I(interm))

= +4.02idt( V(b))

vccs_c = sca_ vccs(«cc», +4.02);
vccs_c ->np(a); 
vccs_c ->nn(gnd); 
vccs_c ->ncp(interm);
vccs_c ->ncn(gnd); 

cc = sca_c(«cc», +1.00); 
cc ->p(interm); 
cc ->n(gnd); 

vccs_b= sca_vccs(«bb», +1.00);
vccs_b ->np(interm); 
vccs_b ->nn(gnd); 
vccs_b ->ncp(b);
vccs_b ->ncn(gnd);

1

2

3a

b ncp

n

nn

3

p

ncp

np

np

2

1

interm

I(a) <+ idt(+4.02 V(b))
1  I(a) = +4.02 V(interm)
2 V(interm) = idt( I(interm))
3 I(interm) = V(b)

Fig. 7. Example of integrative equation with corresponding individual
contributions and equations (top left), SystemC-AMS code (bottom left) and
ELN module connection (right).

Once again, the combination of voltage or current sources
strictly depends on the starting simultaneous statement. How-
ever, the same approach can be easily extended to any combi-
nation of voltage/current dependencies.

The resulting SystemC-AMS sub-system is depicted on the
left hand side of Figure 7. The sub-system can be further
connected to other ELN models if it is included in more
complex simultaneous statements.

V. EXPERIMENTAL RESULTS

This section demonstrates the effectiveness of the proposed
approach in terms of accuracy and simulation time. All exper-
iments were evaluated on an i7 3.2GHz processor with 16GB
RAM, running Ubuntu 12.04. Verilog-AMS descriptions have
been simulated using Mentor’s Questa 13.1 simulator [11].

A. Methodology automation

Manual application of the proposed methodology is a
tedious error-prone process, whose application to industrial
case studies could be extremely tricky. For this reason, we im-
plemented the automatic tool ABACuS (Analogue BehAvioural
Conservative Systemc-ams). ABACuS leverages the academic
licence version of HIFSuite to ease the conversion process
[12]. Verilog-AMS descriptions are analysed and translated
into the HIFSuite internal format (HIF). The code generated at
this point is a tree-structured XML-like representation of the
original code. ABACuS applies a number of processing steps
to the HIF description to automate the methodology, including
contribution identification and construction of the ELN system.
This leads a new HIF description, containing the instantiation
and connection of the corresponding ELN primitives. The HIF
description is then converted to SystemC-AMS by means of
the HIFSuite hif2sc back-end tool.

B. Methodology validation

The first step to validate the proposed methodology is to
prove the correctness of the mapping of single contributions
detailed in Section IV. Validation focuses on 7 case studies,
each targeting a single type of contributions. The case studies

5



TABLE I. VALIDATION OF THE MAPPING OF EACH TYPE OF
CONTRIBUTION TO ELN CONSTRUCTS.

Case Target Simulation Error
study contribution time (s) (%)

1 V(out)<+ k1V(in1)+...+knV(inn)+c 14.01 0.062
2 V(out)<+ k1I(in1)+...+knI(inn)+c 14.17 0.062
3 I(out)<+ k1V(in1)+...+knV(inn)+c 14.11 0.062
4 I(out)<+ k1I(in1)+...+knI(inn)+c 14.05 0.062
5 I(out)<+ k ddt(V(in1)) + c 14.61 0.006
6 V(out)<+ k ddt(V(in1)) + c 14.53 0.006
7 I(out)<+ k idt(V(in1)) + c 14.25 0.028

were implemented in Verilog-AMS and have been converted
to SystemC-AMS via ABACuS. The main characteristics of
each case study are reported in Table I, in terms of target con-
tribution type and simulation time. Case studies are fed with
sinusoidal inputs with 100Hz frequency, so that the outputs can
be easily controlled and compared w.r.t. the expected result. In
particular, the system of equations described using Verilog-
AMS has been computed symbolically and solved for every
instant of time corresponding to a sample of the SystemC-
AMS execution. The SystemC-AMS simulation is run with a
1us timestep, while the execution is sampled with a period
of 10us. The table shows that the error w.r.t. the expected
behaviour (computed as point-to-point difference) is lower than
0.1%. This error is due to the precision issues of the numerical
algorithms used by the simulator to perform continuous time
simulation. Thus, the table highlights the accuracy in the
mapping of all types of contributions.

Simulation times in Table I refer to the amount of time
needed to simulate 1 second of the design. For all the
cases depicted in table, the time needed for simulating the
starting Verilog-AMS matches that needed for the SystemC-
AMS simulation. This is due to the fact that both the solvers
(i.e., SystemC-AMS and Questa) are solving the same set of
equations, as advocated in Section III.

The similar simulation times imply that the proposed
translation to SystemC-AMS does not provide any simulation
speed up, as both the simulators solve the same set of equa-
tions with similar strategies. However, Sections V-D and V-E
will highlight the effectiveness when handling more complex
designs, including mixed analogue and discrete descriptions.

C. Methodology scalability

Table II proves the scalability of the proposed approach by
estimating the impact of the adopted timestep on the accuracy
of the generated code. The table focuses on case study 1
(i.e., V(out)<+ k1V(in1)+...+knV(inn)+c), but similar
results apply also to the other case studies.

The SystemC-AMS code is stimulated with three different
sinusoidal inputs, with increasing maximum input frequency.
For each input, we simulated the code with different time steps,
ranging from 0.5us up to 10us.

The simulation time decreases linearly with the length
of the time step, with a speedup of approx. 20x between
adopting a timestep of 10us w.r.t. a timestep of 0.5us. At
the same time, accuracy is preserved, as the average error
is below 1% even when the timestep is increased tenfold. It
is important to note that the error varies depending not only
on the adopted timestep, but also on the frequency of the
sinusoidal inputs. As a result, the highest accuracy (0.003%)

TABLE II. SCALABILITY OF THE PROPOSED METHODOLOGY w.r.t. THE
SIMULATION TIMESTEP.

Input Adopted Avg. Simulation
frequency timestep error (%) time (s)

10 Hz
0.5 us 0.003 28.09
1.0 us 0.006 14.15

10.0 us 0.063 1.42

100 Hz
0.5 us 0.032 27.97
1.0 us 0.062 14.01

10.0 us 0.628 1.42

1 KHz
0.5 us 0.314 28.05
1.0 us 0.607 13.92

10.0 us 6.601 1.39

is reached with the 10Hz input and timestep of 0.5us. On the
contrary, the configuration with the 1KHz input and the 10us
timestep performs worse than the others, with an average error
of 6.601%, because the adopted time step is too coarse for the
input frequency. These considerations highlight the importance
of choosing a suitable timestep for the simulation, but also
that the generated SystemC-AMS code allows us to determine
accuracy/simulation speed trade offs.

D. The MEMS accelerometer

In order to prove the effectiveness of the overall method-
ology on more complex designs, we applied the overall ap-
proach to a complex industrial case study, developed in the
context of an industry-funded project. The case study is a
2-dimensional MEMS accelerometer implemented in Verilog-
AMS by means of the MEMS design platform MEMS+, that
supports automatic Verilog-AMS code generation [6], starting
from 3-dimensional physical models as the one depicted in
Figure 9. The choice of a MEMS design was guided by the
consideration that MEMS behavioural modelling is based on
differential and algebraic equations [7], thus following the
Verilog-AMS structure assumed in this paper. Table III reports
the main characteristics of the MEMS design, both in terms
of simultaneous statements and of types of contributions.

Fig. 8. 3-dimensional model of the accelerometer in the MEMS+ design
simulator.

Table IV shows the results of the application of ABACuS to
the MEMS design. The table shows the number of lines of code
of the resulting SystemC-AMS implementation, the number
of added nodes and of instances of SystemC-AMS primitives.
The number of lines of codes is increased tenfold (precisely,
11.12x), as the SystemC-AMS generated by the methodology
is more verbose than Verilog-AMS. Each contribution requires

6



TABLE III. CHARACTERISTICS OF THE ORIGINAL VERILOG-AMS
MEMS DESIGN.

Lines of code 89

Equations Voltage sources 10
Current sources 15

Node declarations Interface 14
Internal 14

Contributions

Independent 4
Voltage 59
Current 0

Derivative 12
Integrative 0

TABLE IV. CHARACTERISTICS OF THE GENERATED SYSTEMC-AMS
MEMS DESIGN.

Lines of code 1,474

Added node declarations 12

sca_r 93
sca_vsource 4
sca_vcvs 32

SystemC-AMS sca_ccvs 0
primitive sca_csource 0

instantiations sca_vccs 48
sca_cccs 0
sca_l 12
sca_c 0

the instantiation of the ELN primitive, plus the corresponding
explicit port binding. Furthermore, the number of ELN primi-
tives is higher than the number of Verilog-AMS contributions.
This is due to the presence of 12 derivative contributions in the
original Verilog-AMS code. Each such contribution determines
the instantiation of three ELN primitives (as explained in
Section IV-E3). As a result, of the 188 resulting SystemC-
AMS ELN instances:

• 93 correspond to resistors added to connect each SystemC-
AMS node to ground;

• 59 correspond to voltage source contributions;
• 36 are generated by the 12 derivative constructs, that

determine also the declaration of 12 additional internal
nodes.

The numbers highlight that ABACuS strictly follows the pre-
sented methodology, in particular:

• one resistor is added for each circuit node;
• each non-derivative contribution determines the addition of

one ELN primitive instance;
• each derivative contribution generates three ELN primitive

instances.

Fast code generation is a major advantage of the proposed
approach. Table V highlights that code generation is almost
instantaneous (17.48s overall), and that most of the effort in
spent in the HIFSuite conversions (55%). The most costly
step of ABACuS execution lies in the mapping from Verilog-
AMS contributions to ELN primitives and in their instantiation
(37%). On the other hand, node management and the sepa-
ration of Verilog-AMS equations into single contributions is
almost immediate.

The generated code was validated by comparing its exe-
cution w.r.t. the original Verilog-AMS code. SystemC-AMS
simulation was run by adopting the same input stimula of

TABLE V. CHARACTERISTICS OF THE EXECUTION OF ABACuS ON THE
MEMS DESIGN.

Overall 17.48s

HIFSuite Conversion to HIF 1.86s
tools Conversion to SystemC-AMS 7.81s

ABACuS
Node management 0.94s

Division into contributions 0.29s
ELN component instantiations 6.58s

Fig. 9. Evolution of the MEMS outputs for Verilog-AMS (solid) and
SystemC-AMS (dashed).

the Verilog-AMS implementation, and with a 1us timestep.
SystemC-AMS proved to be slightly faster than the Verilog-
AMS execution (28.02s and 33.72s, respectively). At the same
time, the average error in the computation of the MEMS
outputs is 0.02%. This confirms the visual accuracy evident
from Figure 9, where the Verilog-AMS and SystemC-AMS
curves are almost totally overlapping. The small error is due
to the different management of time in the two simulators:
SystemC-AMS adopts a fixed timestep, while Verilog-AMS
can adapt the length of the timestep over time, thus reaching a
higher accuracy. The low error rate highlights the effectiveness
of the generated code, both in terms of accuracy and of
simulation speed.

E. Effectiveness of the proposed approach

The most important advantage of modelling ABM models
in SystemC-AMS lies in the ease of integration in more
complex platforms and in the enhanced support for virtual
platforms and system-level design, rather than in the pure
accuracy or simulation speed.

The SystemC-AMS scheduler is an extension of the
discrete-event SystemC scheduler, and it thus allows simul-
taneous simulation components belonging to heterogeneous
domains. Furthermore, integration with a C++ system level
description is eased, thus further removing computationally
expensive interfaces and thus speeding up the simulation

7



Memory MIPS CPU

Software 
application

Bus interface
Peripheral Bus

UART

Bus interface

Accelerometer
(Verilog-AMS)

Analog/Digital 
Converter

Network 
Interface

Bus interface

Network

Fig. 10. Overview of the virtual platform containing the MEMS (i.e., the
Accelerometer) component. Digital components, implemented using SystemC,
are colored in light blue. The MEMS (colored in red) is originally implemented
in Verilog-AMS.

of mixed-signal systems. For these reasons, SystemC-based
languages are a winning solution for the construction and
validation of virtual platforms, and they are adopted by most
of the currently available virtual platform environments [13]–
[16]. Translating ABM models to SystemC-AMS thus allows
their early validation, together with the interaction with other
system components.

The MEMS accelerometer has been integrated into a virtual
platform for smart systems. The structure of the platform is
depicted in Figure 10. It includes (1) a 32-bit RISC proces-
sor (the MIPS CPU) executing (2) a Software Application
elaborating data sensed by the accelerometer and stored in
(3) a Memory. External communication is managed by a (4)
Universal Asynchronous Receiver/ Transmitter (UART) and
by a (5) Network Interface, used to send and receive data to
and from other smart sensors. All system components, except
the MEMS, are implemented in SystemC, and integrated in
a virtual platform. Validating the integration of the original
MEMS component in the overall system would thus require
the construction of a simulation framework.

The first alternative to validate the integration of the
MEMS component in the platform is to preserve the lan-
guage heterogeneity, but within a single simulator. Thus, we
adopted Questa [11], which handles both discrete-time and
analogue descriptions, and that natively provides SPICE-based
constructs to connect analogue and digital designs.

The second alternative is to adopt the methodology pro-
posed in this paper to convert the MEMS design to SystemC-
AMS, integrate it in the virtual platform and to run the overall
system with the SystemC simulator.

Table VI reports the time needed to simulate 100ms of
the real system execution, and it shows how the SystemC
based simulation outperforms Questa (2.21x). This is mainly
due to the heavy communication overhead induced by Questa
to allow communication and synchronization between the
discrete event and the Spice-base simulators used by Questa
respectively for the SystemC and Verilog-AMS parts of the
model. At the same time, SystemC-AMS provides a good level
of accuracy (0.02%), thus constituting a valide alternative for
early validation of the overall system and of the analogue-
digital communication.

TABLE VI. SIMULATION TIME OF THE VIRTUAL PLATFORM BY
PRESERVING THE LANGUAGE HETEROGENEITY AND MOVING TO

SYSTEMC-AMS.

Languages Simulator Simulation time (s)

SystemC and Questa 215.47Verilog-AMS
SystemC and SystemC-AMS 97.59SystemC-AMS kernel

VI. CONCLUSIONS

The work described here proposes a methodology for
representing models that are both conservative and behavioural
in SystemC-AMS. We achieve this goal by adopting existing
SystemC-AMS ELN primitives in a novel way. As a result,
SystemC effectiveness is enhanced in the context of embedded
system design, as it can cover a wider range of descriptions and
components. Experimental results highlight the correctness of
the proposed approach both on synthetic case studies, focusing
on the single methodology steps, and on a complex industrial
MEMS case study. Future work will focus on the identification
of abstraction strategies to target the SystemC-AMS Timed
Data Flow (TDF) level for improved simulation performance.

REFERENCES

[1] IEEE, “1666-2011 - IEEE Standard for Standard SystemC,” 2011,
standards.ieee.org/findstds/standard/1666-2011.html.

[2] R. Zafalon, “Smart system design: Industrial challenges and perspec-
tives,” in Proc. of IEEE MDM, 2013, p. 3.

[3] Accellera Systems Initiative, “SystemC-AMS and Design of Em-
bedded Mixed-Signal Systems,” 2013, accellera.org/activities/working-
groups/systemc-ams.

[4] L. W. Nagel and D. O. Pederson, SPICE: Simulation program with
integrated circuit emphasis. Electronics Research Laboratory, College
of Engineering, University of California, 1973.

[5] Accellera Systems Initiative, “Verilog-AMS,” 2014,
accellera.org/downloads/standards/v-ams.

[6] Coventor, Inc., “MEMS+: MEMS Simulation Software,”
www.coventor.com/mems-solutions/products/mems.

[7] P. Schneider, C. Bayer, K. Einwich, and A. Kohler, “System level sim-
ulation - A core method for efficient design of MEMS and mechatronic
systems,” in Proc. of IEEE SSD, 2012, pp. 1–6.

[8] S. Mijalkovic, “Advanced circuit and device modeling with Verilog-A,”
in Proc. of IEEE MIEL, 2006, pp. 439–442.

[9] P. Hartmann, P. Reinkemeier, A. Rettberg, and W. Nebel, “Modelling
control systems in SystemC-AMS – Benefits and limitations,” in Proc.of
IEEE SOCC, 2009, pp. 263–266.

[10] R. Narayanan, N. Abbasi, M. Zaki, G. A. Sammane, and S. Tahar, “On
the simulation performance of contemporary AMS hardware description
languages,” in Proc. of IEEE ICM, 2008, pp. 361–364.

[11] Mentor Graphics, “Questa Advanced Simulator,”
www.mentor.com/products/fv/questa.

[12] N. Bombieri, G. Di Guglielmo, M. Ferrari, F. Fummi, G. Pravadelli,
F. Stefanni, and A. Venturelli, “Hifsuite: tools for hdl code conversion
and manipulation,” EURASIP Journal on Embedded Systems, vol. 2010,
pp. 4:1–4:20, Jan. 2010.

[13] Synopsys, “Platform architect,”
www.synopsys.com/Prototyping/ArchitectureDesign.

[14] Cadence, “Virtual System Platform,”
www.cadence.com/products/sd/virtual_system.

[15] Imperas Software, “OVP - Open Virtual Platforms,” www.ovpworld.org.
[16] Mentor Graphics, “Vista Virtual Prototyping for SystemC/TLM 2.0 and

QEMU ,” www.mentor.com/esl/vista/virtual-prototyping.

8


