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Abstract—The evaluation of the cycle life of batteries is an
essential task in the assessment of the reliability and cost of
battery-operated devices. Several compact cycle life models have
been proposed in the literature, that exhibit a general trade-off
between generality and accuracy. Some models are based on a
compact equation derived from experimental data and try to
extract a general relationship between cycle life and the relevant
parameters (mostly the depth of discharge), but suffer from poor
accuracy. At the other extreme, more accurate models, based on
incorporating the aging effect into an equivalent circuit, tend
to be focused on a specific device and are seldom applicable to
another battery.

In this work we propose an equation-based model that tries
to overcome the accuracy limits of previous similar models. The
model parameters are obtained by fitting the curve based on
information reported in datasheets, and can be adapted (with
different accuracy levels) to the amount of available information.

We applied the model to various commercial batteries for
which full information on their cycle life is available. Results
show an average estimation error, in terms of the number of
cycles, generally smaller than 10%, which is consistent with the
typical tolerance provided in the datasheets, and much lower
than previous equation-based models.

Index Terms—Battery cycle life, Modeling.

I. INTRODUCTION

Secondary (i.e., rechargeable) batteries have become an

essential component in many applications like mobile telecom-

munication, aerospace, renewable energy applications, and

electric vehicles. The possibility of an early verification of

these systems, including the exchange of energy between

energy storage devices and the other components, requires

accurate and efficient battery models.

Several models, exhibiting tradeoffs between generality and

accuracy, have been proposed in the literature. In electronic

design, the most common approach in battery modeling con-

sists of the definition of a generic model template in terms

of an equivalent electric circuit (e.g., [1], [2]), which is then

populated either using data obtained from direct measurements

on actual devices or by extrapolation of battery characteristics

available from datasheets (e.g., [3]). These kinds of models

are typically generated for a specific battery chemistry and

show a high degree of accuracy. This accuracy may signifi-

cantly degrade if these models are applied to different battery

chemistries.

In other contexts (e.g., automotive, aerospace, smart grids),

conversely, designers often rely on simpler mathematical

macromodels, such as Peukert’s law [4], as a quick estimator

for the sizing of the battery sub-system or for preliminary

what-if analysis. Such macromodels try to infer a general

relationship between the battery runtime and the most relevant

parameters, like the Depth of Discharge (DOD) of a battery.

This relationship can then be applied to different kinds of

batteries with different chemistries, but the estimation results

have, in general, a very low degree of accuracy. This is mainly

due to the fact that these models tend to primarily focus on a

single charge/discharge cycle of a battery, and are not meant

to provide information about the “lifetime” of a battery, i.e, its

decrease in performance due to long-term inter-cycle effects,

such as the fading of the total capacity due to aging or to

repeated cycling.

The literature provides several studies on these effects,

proposing mathematical models that are based on the elec-

trochemical properties or the physics of the batteries and

are therefore strongly bound to specific battery materials

and chemistry (e.g., [5]–[9]). Although some other aging

models, such as those proposed in [10]–[15], are empirically

characterized onto a pre-defined equation template, they are

still derived by measurements and therefore are not general

enough to support different battery chemistries.

In this work, the aim is to derive an aging model that

shares the basic features of a Peukert-like equation, that is,

(i) analytical, but that can be empirically populated, and

(ii) general enough to support different battery chemistries.

Specifically, we propose a mathematical model for estimating

the number of cycles with respect to the related capacity fade

of batteries.

The accuracy of the approach proposed is demonstrated

by applying this model to various commercial batteries of

different chemistries, for which the manufacturers provide in-

formation on the long-term effects in their datasheets. Results

show an average estimation error, in the number of cycles,

generally within 10%, which is consistent with the typical

tolerance provided in various datasheets (e.g., [16]).

The paper is organized as follows. Section II reports related

works on battery modeling, while section III describes the

proposed mathematical model for estimating the number of

cycles of batteries. Section IV reports the experimental results,

while Section V draws some conclusions.



II. BACKGROUND AND MOTIVATIONS

A. Battery Aging Issues

A battery, during its lifetime, deteriorates due to irreversible

physical and chemical changes that mostly occur during

its usage. The main visible effect of such deterioration is

that the battery capacity appears to decrease with multiple

charge/discharge cycles. This capacity fading occurs not only

during cycling, but also under storage (i.e., long-term battery

storage).

Many researchers have studied aging issues in batteries and

have devised various types of models [5]–[7]. The key feature

of these models is that they mostly relate capacity fading to

battery “usage”. The most significant factors that determine

battery aging are the following:

• Temperature. As with other typical reliability mecha-

nisms, aging increases at higher temperatures (typically

according to an Arrhenius-type equation).

• Depth-of-Discharge (DOD). The DOD is the % of

battery capacity that has been discharged before starting

a new charge phase. A DOD of 100% implies that a

battery is fully discharged before re-charging it. Aging is

increased by deeper discharge cycles (i.e., higher DOD

values)

• Discharge current. It is usually measured in C-rate, a

current normalized to the one necessary to discharge the

nominal battery capacity in one hour. Aging is increased

by higher discharge currents.

• Number of cycles (N). Aging obviously worsens as the

number of charge/discharge cycles increases.

B. Battery Aging Models

Concerning cycle life estimation, numerous researchers

have proposed analytical models capturing the main aging

mechanisms and capacity fading based on the electrochemical

properties of the batteries and even including full-physics

based models (e.g., [8] for lithium-ion batteries).

In [9] the authors proposed a model to calculate the usable

number of cycles N of a battery based on the following

equation:

N = N1 · e
α·(1−DOD′) (1)

where DOD′ is the normalized depth of discharge (0 ≤
DOD′ ≤ 1), α is a characteristic constant of the battery and

N1 is the number of cycles at DOD′ = 1. This model is

empirically characterized for lead-acid, nickel-cadmium (Ni-

Cd) and nickel-metal hydride (Ni-MH) batteries, whose cycle-

life vs. DOD curve has an exponential shape. It is not,

however, suitable for many lithium-based cells, whose cycle-

life vs. DOD curve sometimes exhibits a more linear behavior

(e.g., for LiFePO4 cells).

A slightly different relationship between cycle-life and DOD

was introduced in [10]:

N = N0.8 ·DOD′ · eα·(1−DOD′) (2)

where N0.8 is the cycle life at DOD = 80%, while α is

a constant whose value is, respectively, 3 and 2.25 for lead-

acid and nickel metal hydride (Ni-MH) tested battery packs

(nowadays, Ni-MH batteries have mostly been substituted by

lithium-ion batteries as they have higher energy density).

Thaller [11] has defined another relationship for battery

cycle life after considering excess capacity F , with respect

to the rated capacity, and a penalty factor due to the DOD,

by including the P parameter, as reported in (3), which gives

this mathematical prediction model for a general battery:

N =
1 + F −DOD′

A · (1 + P ·DOD′) ·DOD′
(3)

In our work F is always considered equal to 0, so that each

analysis is performed after starting from the rated capacity of

any commercial cell or cell string. The product A · DOD′

represents the irreversible capacity loss in each cycle. Values

of the parameter A were originally declared to be in the range

0.000 ÷ 0.002 [11].

These previous models estimate the cycle life of a battery,

always after considering a fixed irreversible capacity fading

(e.g, 20%, that is, when the total maximum available capacity

reaches 80% of the nominal one).

In [12] the authors introduce a complex cycle life model

consisting of different equations, one for each stress factor

considered, i.e., C-rate, T and DOD. Despite its high accuracy,

the model derivation requires extensive empirical measure-

ments and the model itself lacks the compactness and the

generality of a Peukert-like equation.

Another analytical method for battery life prediction is

based on the Amp-hour–throughput, i.e., the total energy

supplied by the battery during its life [13], also called “charge

life”. The charge life ΓR in Amp-hours (Ah) is defined as:

ΓR = LR ·DOD′ · CR (4)

where CR is the rated capacity in Ah at a rated dis-

charge current IR, and LR is the maximum number of cycles

referring to a given normalized depth of discharge DOD′

and a discharge current IR. In the model presented in [14],

the authors proposed calculating an equivalent Ah weighted-

throughput parameter. They claimed the C-rate effect on aging

is negligible in Li-ion cells, since hybrid electric vehicles

exhibit relatively large C-rates (±4C). This assumption cannot

however be generalized for other applications.

The model proposed in [15] adopted this approach to esti-

mate the cycling capacity fade through a modified definition

of the Arrhenius equation, characterized by a square root time

dependence.

C. Motivations of the Work

In spite of the various differences, all the above models are

built by extracting parameter values through measurements on

the batteries under test. Although the generated models are

typically very accurate, this approach is quite time-consuming

(especially when multiple cycles are involved) and requires

expensive laboratory instrumentation.



For this reason, methods that rely only on available data

(e.g., datasheets) to derive the capacity fade in batteries

using analytical models (e.g., [17]) have been reported in the

literature in recent years. Clearly, the accuracy of these models

depends on the amount of available information reported into

battery datasheets.

Before starting to describe the analytical model for battery

capacity fade that we propose in this paper, an important

consideration must be drawn: if the battery datasheet provides

a cycle-life vs. DOD curve, as the one depicted in Figure 1,

one can evaluate the battery cycle life without resorting to any

estimation model.

Fig. 1. A typical plot of Number of cycles vs. DOD.

Unfortunately, this kind of information is seldomly present

in datasheets. Hence, in these cases, the battery cycle life can

be extracted either by means of empirical characterizations, as

explained in the previous Section, or by an analytical model

able to exploit available information to derive the battery

capacity fade.

Many manufacturers provide information about capacity

fade in the form of a Capacity vs. Number of cycles curve

(e.g., [16]) as also depicted in Figure 2. From these plots, it is

no simple matter to perform the battery cycle life evaluation,

since the data about the number of cycles are available for

a given number of DODs only and, furthermore, sometimes

they might even show an uncertainty that may range from 8

to 10%, or even higher.

In this work we propose an analytical model for capacity

fade that, using only datasheet information, allows the cycle

life of a battery of any chemistry or type to be estimated, while

having a simple mathematical form similar to Peukert’s law.

III. MODELING METHODOLOGY

A. Model Definition

The model proposed in this work somehow mimicks the

shape of Peukert’s law, as expressed by (5), which models

the non-linear dependency between capacity and the discharge

current:
t =

C

Ik
(5)

where C is the capacity of the battery, I is the discharge

current, and t is the time for totally discharging the battery;

k is the Peukert’s coefficient; typical values of k depend on

the battery chemistry and the manufacturing process and they

typically range from 1.1 to 1.3.

As a matter of fact, the curves describing the capacity vs.

number of cycles exhibit a similar non-linear relationship.

Our objective is therefore to derive a model expressing

battery cycle life in a compact mathematical form similar to

Peukert’s law, and describing the general non-linear relation-

ship between the capacity fade and the DOD.

In the case of capacity fade, the non-linearity concerns both

the number of cycles N as well as the DOD, and the actual

relationship among these quantities depends also on the value

of the target capacity degradation (i.e., the behavior for a 20%

capacity fade will be different from that for a 30% capacity

fade). In order to model this non-linearity we need to define

a new parameter that characterizes the battery performance

during the cycling.

The proposed mathematical model is shown in (6); it allows

to estimate the number of charging-discharging cycles N for

a given battery based on four main parameters.

N = L ·
Cfade

DODh
(6)

• L (called the linear factor) is the parameter that charac-

terizes the battery performance over cycling,

• Cfade is the percentage of capacity loss,

• DOD is the depth of discharge expressed as a percentage

(0, . . . , 100);

• h is the coefficient that models the nonlinear relationship

between N and DOD for a certain Cfade.

The similarity with Peukert’s law is evident. N , considered

as an inter-cycle “lifetime” parameter, is obtained as the

ratio of capacity and a weighted metric of discharge current

(DODh). There are however two relevant differences: (1)

factor L is used to scale the ”lifetime” across multiple cycles,

and (2) h is not constant, but depends on Cfade. This makes

our approach more general with respect to previous models

and allows one to adapt it to the available manufacturer’s data.

Equation 6 defines a generic model template, which is

empirically populated based on the extraction of data from

typical capacity fade vs. # of cycles plots, as described in the

next section.

B. Extraction of Model Parameters

Besides the “physical” quantities (Cfade and DOD) the

model includes two other scale parameters, i.e., the linear

factor L and the binding coefficient h, which have to be

determined by fitting empirical data derived from available

information (e.g., datasheet).

The actual parameter identification depends on the amount

of available information. As discussed in Section II, our model

is meaningful if the battery under analysis only provides

information in the form of two or more curves in the (capacity,

number of cycles) plane, each corresponding to a different

DOD.

Let us assume that there are M such curves available in a

datasheet or in a measured set of data. Obviously the larger



M , the more accurate the fitting process will be. Figure 2

exemplifies this scenario.

Fig. 2. Model Extraction Scenario.

Since we need to determine two parameters from the

curve(s) (h and L), and given the limited number of samples

points to be considered, it is feasible to derive them from

an exhaustive exploration for all Cfade and DOD points, as

the values of h and L that minimize the maximum error

with respect to the curves. However, an exploration requires a

feasible range for these two parameters, which is not easy to

determine because they are only weakly linked to “physical”

quantities. Of the two, L is the one with some physical

interpretation since it can be regarded as a correction factor

of the number of cycles N . Therefore, we can assume that L
ranges between 1 and a value Lmax, determined by inspection

of the datasheet. As a rule of thumb, it is usually near to the

largest value of N reported in the datasheet curves. Conversely,

we have no insight of possible values of h. For this reason,

we implement the search as a two-phase process, as described

by Algorithm 1.

The search is organized into of two main iterations over L.

In the first one (Lines 1–7), for all values of Cfade (assumed

to be discretized into P values) and of the M DOD values

it computes the resulting value of h using (7), which is

simply a re-arrangement of (6) expressing h instead of N ,

and determines thus a feasible range H = [hmin, hmax] for h.

h =
log(L ·

Cfade

N
)

log(DOD)
(7)

Now that we have a feasible range for h, in the second

iteration (Lines 10–26), we determine the optimal values of

h and L, as follows. In the outer loop over L (Line 10),

the optimal value of h is calculated first; for each value of

h (using some discretization step), Cfade and DOD, N is

computed using the model equation (6) (Line 16), and the error

between this value and the one extracted from the datasheet

is evaluated. The value of h that yields the least average error

is stored as the best for a given value of L into an array h,

together with the relative errors (array Err, Lines 22-23).

At the end of the iteration over L, the value of L corre-

sponding to the smallest error is selected as single Lopt for

the model (Lines 27-28), which is used as an index in h to

determine hopt for each Cfade.

Algorithm 1 Search for the best value of L

1: for all L ∈ [1, Lmax] do

2: for all Cfade = 1 . . . P do

3: for all DOD = 1 . . .M do

4: Compute h by (7)

5: end for

6: end for

7: end for

8: H ← [hmin, hmax]
9: MinMaxErr ←∞.

10: for all L = 1 . . . Lmax do

11: MaxErr ← 0.

12: for all h ∈ H do

13: TotErr ← 0, MinAvgErr ←∞.

14: for all Cfade = 1 . . . P do

15: for all DOD = 1 . . .M do

16: Calculate N using (6) and compute the

absolute error E
17: TotErr ← TotErr + E
18: end for

19: end for

20: AvgErr ← TotErr/(P ∗M)
21: if AvgErr < MinAvgErr then

22: H[L]← h
23: Err[L]← AvgErr
24: end if

25: end for

26: end for

27: Lopt ← argmin(Err)
28: hopt ← H[Lopt]

IV. MODEL VALIDATION

The validation of the proposed model is performed after

considering batteries of various chemistries produced by dif-

ferent manufacturers. Although the type of aging data differs

from one datasheet to another, we have collected the available

information and translated it into the tabular format described

in Section III; using these data, we ran the search algorithm

to populate the model for each battery under analysis.

A. VRLA Batteries

We start our evaluation from Valve Regulated Lead Acid

(VRLA) batteries, which have a more evident nonlinear ag-

ing behavior with respect to other chemistries. Moreover,

datasheets for most VRLA batteries include more detailed

information on aging, typically in the form of the plot of

Capacity vs. Number of cycles (e.g., Figure 2).

Table I reports the extracted manufacturer data and the

resulting model parameters for the AGM-VRLA XTV1272

battery by CSB. The first three columns represent the data

extracted from the datasheet [16] for three different Cfade

points, namely 10, 20, and 40%. The last four columns report

the parameters obtained by the search algorithm, the resulting

number of cycles Nm from the model, and the estimation error.

After comparing Nm against the cycle life extracted from the



datasheet (i.e., Nd), the absolute maximum error is 12.33%

and the mean value is 9.97%.

TABLE I
EXTRACTED PARAMETERS AND NUMBER OF CYCLES ESTIMATION FOR

THE CSB XTV1272 BATTERY.

CSB XTV1272 VRLA battery

Datasheet Model

Nd DOD Cfade L h Nm Error(%)
681 30

10

2464

1.093621
597 -12.33

305 50 342 12.13
151 100 160 5.96
861 30

20 1.222672
770 -10.57

374 50 412 10.16
186 100 177 -4.84
1130 30

40 1.343506
1021 -9.65

459 50 514 11.98
231 100 203 -12.12

Although the error is not negligible, it is worth emphasizing

that the datasheet for this battery reports a possible range of

the number of cycles rather than a single curve, to indicate

the intrinsic uncertainty of the estimation. The spread of

the values actually increases for increasing DODs. From the

datasheet, we found that the possible variation of the cycle

life (measured as the difference between the minimum or

maximum value with respect to the average) might even be up

to 10, 11, and 16% for Cfade = 10, 20, and 40%, respectively.

Hence, the absolute maximum estimation error obtained by

the proposed model (i.e., around 12, 11, and 12%, respectively)

is comparable with the maximum tolerance given by the

manufacturer.

B. Other Battery Chemistries

Evaluation of other battery chemistries is complicated by

the fact that in general only the manufacturers of VRLA

batteries provide plots of Capacity vs. Number of cycles,

for different DODs. In particular, datasheets usually report

only a single Capacity vs. Number of cycles curve referring

to a single DOD value for lithium-ion (Li-ion) batteries. The

availability of just one DOD reference, however, would yield a

model with little practical use in this case, since the calibration

for discharge patterns would be different from that used for

characterization.

Therefore, in order to have a more meaningful assessment

of the accuracy of the proposed model, we only selected those

batteries whose datasheets report the Number of cycles vs.

DOD characteristic, even just for a single Cfade value. In any

case, values of DOD below 10% are not used for the derivation

of the model because (i) they are not representative of typical

battery usage and (ii) they are not statistically representative. It

is worth noticing that the number of cycles should approach

infinity as DOD → 0%; therefore, as DOD gets smaller it

would be correct to consider a range of values rather than a

precise value. Of course, all the characteristics given by the

manufacturers always refer to certain operating and working

conditions (e.g., charge/discharge current and temperature),

which are usually different from one brand to another. In

this work, we do not consider the differences among these

conditions, in order to firstly validate the basic proposed

model. The parameters and estimation errors for these batteries

are reported in Tables II and III, which also report, for a

more comprehensive validation, the results of the application

of the existing and most meaningful analytical models [9],

[11]. As (1) requires the number of cycles at DOD=100% as

input parameter, the evaluation of that previous model was not

possible for two batteries because this value is not available

in their datasheets, as reported in Table II. On the other hand,

as the model proposed by [11] is useless for DOD′ = 1
(in this case, N in (3) would be equal to zero), the analysis

was re-performed by considering the maximum DOD=80% as

reported in Table III.

In Table II, the largest absolute estimation error of the

model occurs for a LiFeMgPO4 battery, almost 20%, while

the maximum mean value is 11.35% for the Alpha R© one.

However, the total average error of the maximum errors for

the 10 batteries in the table is 10.66%. The mean errors are

obviously smaller, in general less than 10%, and in one case

11.35%. In general, the proposed model shows robustness

and accuracy for different types of electric storage devices.

For the Li-ion battery by Saft Evolion the linear factor L is

very high with respect to any other battery. In fact, the linear

factor usually depends on the battery properties of cycling,

while the range of the h parameter strictly depends on the

linearity of the cycle life with respect to the DOD. The lowest

h coefficient found in the model validation is 0.225627 for the

Discover 22-24-700 battery, whereas the highest h is 2.000414

for the Saft Evolion.

The chart in Figure 3 reports a comparison of the estimation

models after applying each of them to the benchmarks. For a

comprehensive report, it also includes the main results ob-

tained for the analysis of the model by [10], whose estimation

errors are too great to be reported. Furthermore, for the here

proposed model, this chart considers the worst case (i.e., data

reported in Table II). Although the previous models have

Fig. 3. Maximum and mean estimation errors given by the models for all
the selected benchmarks.

two parameters (i.e., coefficients) in their expressions, one

of them always strictly depends on the battery properties.

In the here proposed model, both parameters L and h can

be characterized, resulting in higher accuracy thanks to an

additional degree of freedom in the modeling process.



TABLE II
BATTERY DATA, PREDICTION MODEL PARAMETERS, AND ESTIMATION ERROR OF THE CYCLE LIFE FOR VARIOUS BATTERIES WHOSE MANUFACTURERS

PROVIDE THE NUMBER OF CYCLES VS. DOD CHARACTERISTIC.

Producer Code Type

Model
P roposed [9]

L h
Abs. error [%]

N1 α
Abs. error [%]

max mean max mean

EnerSys 65-PC1750 AGM-VRLA 9083 1.393212 12.34 8.05 330 2.488793 63.03 34.49

Concorde Sun Xtender AGM-VRLA 4629 1.176563 15.20 8.79 354 2.644044 28.56 15.73

Sonnenschein A600 Gel-VRLA 3874 1.020317 2.03 0.92 718 1.747624 21.12 12.84

Alpha Tech. KL, KM, KH types NiCd 31107 1.587189 18.10 11.35 463 2.412794 54.04 28.38

C&D Tech. LI TEL 48-170 C Li-ion 109882 1.420135 6.27 3.60 2987 2.022832 2.53 1.22

Saft Evolion Li-ion 1157452 2.000414 13.84 8.15 n.a. - - -

Seiko (SII) MS621 Mn Si Li− ion 986 0.995693 0.90 0.38 202 1.712398 20.29 12.07

Maxell ML2016 Li/MnO2 2393 1.566125 11.28 6.49 39 2.743101 65.11 36.81

Discover 22-24-6700 LiFePO4 671 0.225627 6.99 4.36 n.a. - - -

Valence U-CHARGE LiFeMgPO4 153425 1.491094 19.66 9.21 2679 2.764444 19.10 12.31

Note. n.a.: not available

TABLE III
BATTERY DATA, PREDICTION MODEL PARAMETERS, AND ESTIMATION ERROR OF THE CYCLE LIFE FOR VARIOUS BATTERIES WHOSE MANUFACTURERS

PROVIDE THE NUMBER OF CYCLES VS. DOD CHARACTERISTIC. THE MAXIMUM DOD IS 80% FOR ALL THE ANALYSES.

Producer Code Type

Model
P roposed [11]

L h
Abs. error [%]

A P
Abs. error [%]

max mean max mean

EnerSys 65-PC1750 AGM-VRLA 9083 1.393212 12.34 7.49 0.00140 -0.436228 36.57 22.68

Concorde Sun Xtender AGM-VRLA 4629 1.176563 15.19 8.81 0.00180 -0.953029 8.37 5.44

Sonnenschein A600 Gel-VRLA 3874 1.020317 2.03 0.82 0.00140 -1.010028 3.64 0.99

Alpha Tech. KL, KM, KH types NiCd 31107 1.587189 18.10 10.70 0.00110 -0.674032 13.67 7.29

C&D Tech. LI TEL 48-170 C Li-ion 109882 1.420135 6.26 4.21 0.00020 -0.864030 9.94 4.43

Saft Evolion Li-ion 1157452 2.000414 13.84 8.15 0.00010 -0.452045 59.81 34.84

Seiko (SII) MS621 Mn Si Li− ion 986 0.995693 0.90 0.40 0.00500 -0.999028 0.99 0.42

Maxell ML2016 Li/MnO2 2393 1.566125 11.28 6.53 0.00500 1.228006 48.20 32.71

Discover 22-24-6700 LiFePO4 671 0.225627 6.99 4.36 0.00060 -1.200934 52.83 38.52

Valence U-CHARGE LiFeMgPO4 153425 1.491094 19.66 8.80 0.00020 -0.967028 27.47 15.69

V. CONCLUSION

A novel mathematical model for estimating the number

of cycles of a battery with respect to an expected capacity

fade, has been proposed. The related equation describes the

cycling behavior of batteries of different chemistries, and it

demonstrates the possibility to obtain a very fast and also

accurate exploration of battery lifespan. The characterization

of the long-term effects for a specific battery only requires two

parameters: a linear factor L and the exponential h coefficient.

Results show an estimation mean error generally within 10%.

Future works will include temperature and current rates

in the model, in order to analyze the estimation error after

considering different operating and working conditions with

respect to the reference ones.
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