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An entropy is additive when the entropy of the union of two independent subsystems, X and Y,
is the sum of the subsystems entropies, that is S(X,Y)=S(X)+S(Y). Among the generalized
entropies, there are some for which this additivity does not hold. Two nonadditive entropies are
the Tsallis and the Kaniadakis entropies [1-3]. The use of them is quite interesting for
applications, because they have entropic indices that can be used to tune behaviour of the
different contributing variables (see for instance their use in image processing [4]). Tsallis
entropy is a generalization of the standard Boltzmann—Gibbs entropy, introduced in 1988 as a
basis for generalizing the standard statistical mechanics, whereas the Kaniadakis entropy, also
known as x-entropy, emerged in the context of the special relativity. Both entropies possess a
generalized sum [5].

When nonadditive entropies are involved, in the calculus of the mutual information, the
conditional entropies must be properly defined. Let us remember that the mutual information
I(X;Y) of two random variables X,Y is providing a measure of the mutual dependence of the
variables [6]. If X and Y are independent, knowing X does not give any information about Y
and vice versa: the mutual information is zero.

The conditional entropy (or equivocation) is quantifying the information needed to describe the
outcome of a random variable Y if the value of another random variable X is known: it is
written as H(Y|X). Let us assume the joint entropy H(X,Y) for the combined system determined
by two random variables X and Y. We need H(X,Y) “bits of information™ to describe its exact
state [7]. If we first learn the value of X, we have gained H(X) bits of information. “Once X is
known, we only need H(X,Y)—H(X) bits to describe the state of the whole system” [7]. This
quantity is exactly H(Y|X), which gives the chain rule of conditional entropy: H(Y|X)=H(X,Y)
—H(X) . The mutual information is then given as I(X;Y)=H(X)+H(Y)-H(X,Y), with the
following properties, [(X;Y)=I(Y;X) and I(X;X)=H(X) [7]. When H is the Shannon entropy S
and X,Y are independent, we have that S(X,Y)=S(X)+S(Y), and therefore I(X;Y)=0.
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Here q is the entropic index. We have the probabilities {p;}, where index i is running from 1 to
the total number of configurations. As q approaches 1, the Tsallis entropy becomes the Shannon
entropy.

If XY are independent, we must have a mutual information equal to zero. Is it possible to write
IGY)=T(X)+T(Y)-T(X,Y), as for the Shannon entropy, and have it equal to zero? Let us
calculate:

(5) TFTY)-TXY)=(1-q)T(X)T(Y)
Since:
6)  TXY)=TX)*TY)+H(1-qTX)T(Y)

Therefore 1(X;Y) defined in this manner is different from zero. In his paper, Tsallis is
discussing the problem of correlated systems too [1]. He used the Rényi entropy for correlated
systems:

(7 I=TEY-TX®-TM

It is easy to see that, if X,Y are independent, I" is equal to zero. Let us note that it is function I'
which seems working as the mutual information. However, a quite useful formula was given in
[10], by S. Abe and A.K. Rajagopal,. In this reference, it is the nonadditive conditional entropy,
which is defined, so that:

TX. V) - T(X)

®  MIE V) =T -T& | V) =TW) ~T( [¥) =T ~ ==

For X,Y independent variables:

TNA +(1-gTE) —TE) —T(Y) - (1-gTETE) +TED) _
1+(1- QT

Let us consider, instead of the Tsallis entropy T, the Kaniadakis entropy K=S, (x is the

(®) MIX Y) =

entropic index):

l+x 1- l+x 1-x

B R~ e e i o

(10) K=K, = Tﬂ——:m : J—‘;—z
im K=Sg.p: Im S=1 and: KX, Y)=KX) I(Y) +K(Y) 300

We have the probabilities {p;}, where index i is running from 1 to the total number of

configurations. The generalized additivity is discussed in [11] and [5]. As in the case of the
Tsallis entropy, we have to be careful because of its generalized additivity. Following the
approach of Ref.10, here we propose, for Kaniadakis entropy, a nonadditive conditional
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entropy and a mutual entropy as in the following formulas:

KEY) -K(¥)SE)

(11} ME(XY) =K(X) -KX|Y) =K(X) -

3(Y)
—K(Y) ~K(Y | X) =K(v) - S D RS
30
When X,Y are independent:
12) MK Y) = K30 ~KEOI(®) -~ KIS + KEOI®) _

3(X)

From (11) and (12), it is more clear the role of the auxiliary function which is necessary for the
Kaniadakis generalized additivity (we have also discussed this function is [12]). Further studies
are in progress on this conditional entropy and for evaluating the conditional Kaniadakis
entropies for multivariate problems.
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