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Abstract— The article presents an experimental 

methodology used to characterize the torsional dynamic 

behaviour of automotive transmission systems and 

components and the analytical methods for simulating 

them in the frequency domain.  

A general description of the test bench is given in the 

paper: it is composed of an induction motor for the 

torsional excitation of the system and of torque and 

angular position sensors. The tests were carried out by 

keeping one end of the transmission locked. 

Two case study are discussed: a Dual Mass Flywheel 

(DMF) and a complete Automated Manual Transmission 

(AMT). In the first example the experimental data from 

sine sweep tests are used to estimate the damping factor  

of the DMF. In the second case the dependency of the 

frequency response function (FRF) on the engaged gear 

ratio for a 5-speed AMT is investigated. A torsional 

model for each test rig configuration is proposed and the 

corresponding equations of motion derived. The 

compliance FRFs of the torsional systems are then 

numerically evaluated and compared with the results 

from the experiments. A good match between simulated 

and measured data is shown. 
 

Keywords: test bench measurements, experimental analysis, 

frequency response function, Dual Mass Flywheel, Automated Manual 

Transmission, torsional vibrations, mechanical system dynamics, 

frequency domain modelling, automotive, experimental modal analysis. 

I. Introduction 

The internal combustion engine is the main source of 

torsional vibrations on conventional passenger cars. The 

engine firing torque pulses, due to gas pressure, and the 

inertia imbalance torque, due to acceleration of 

reciprocating masses, torsionally excite the transmission 

dynamic system downstream of it.  

In Manual Transmission powertrains, the growing 

demand for improving vibration isolation from the engine 

irregularities has led to a more and more widespread 

dissemination of the Dual Mass Flywheel as a torsional 

damper. 

__________________________ 

* enrico.galvagno@polito.it 
† antonio.tota@polito.it  

‡ mauro.velardocchia@polito.it 
§ alessandro.vigliani@polito.it 

It works as a mechanical low-pass filter for the vibrations 

coming from the engine and entering into the gearbox. As 

stated in [1], the dynamic performance of this component 

is not easily predictable from the technical specifications 

provided by DMF suppliers especially in terms of 

vibration damping around the resonance. Therefore 

experimental test bench characterisation remains an 

effective method to systematically investigate its 

dynamic behaviour under different operating conditions.  

In [2] there is a detailed description of an experimental 

apparatus specially designed to examine the dynamic 

performance of a wide variety of torsional vibration 

absorber. 

In [1] the torsional dynamic behaviour of a DMF is 

investigated both experimentally and numerically. An 

analytical expression for the frequency response function 

describing the rotational dynamics of the test rig is 

derived and compared with the estimate from 

experimental data. 

Compared to the two approaches aforementioned, that 

used arbitrary waveform generators for the excitation of 

the dynamic system, a more sophisticated experimental 

technique, is Hardware-in-the-loop (see e.g. [3], [4] and 

[5]), that allows to test the component under more 

realistic loading conditions. Real-time simulation of the 

remaining part of the system, non physically present on 

the test bench, allows calculating a stimulus for the 

system that is closer to real-word conditions.  

As a reference on the issues that must be considered in 

order to obtain accurate torsional measures see e.g. [6].  

In that paper an overview of analogue and digital 

torsional vibration measurement method is presented. 

The errors associated with the digital measurements (e.g. 

encoder and magnetic pick-up) are discussed and 

methods to minimise measurement error (like aliasing, 

leakage, tooth spacing variation, etc.) are explored. Also 

in [7] several torsional vibration measurement techniques 

are presented, together with remarks on precautions 
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against possible sources of error, and the order of 

accuracy to be expected of the test results. 

The experimental analysis of the torsional vibration of a 

complete AMT, from the dual mass flywheel to the wheel 

hub, is not yet present in the literature to the best of 

authors’ knowledge. See e.g. [8] for further details on 

automated manual gearboxes and their components. This 

testing activity, that we have carried out and documented 

in this paper, has allowed to achieve the following 

objectives: to identify the damping effect due to gears 

rotation in the lubrication oil, to investigate the effect of 

the gear engaged on the frequency response function and 

to define a simplified 2-DOF torsional model able to 

describe the transmission system behaviour up to a 

maximum frequency of 30 Hz.  

In this paper after a general description of the test rig 

used for the measurement and analysis of the torsional 

vibrations, the forcing function applied to the system 

during the tests and the system response are shown both 

in time and in time-frequency domain, by means of 

spectrogram plots. The method used to estimate the 

frequency response function from the input and output 

time histories is discussed and the resulting experimental 

FRF is shown. A 2-DOF linear torsional model for each 

system under test  (DMF and AMT) is proposed and 

experimentally validated in the frequency domain. The 

classical approach for the computation of the FRF from 

the dynamic system matrices is extended to the case in 

which the measuring point of the excitation does not 

coincides with the exact point of application.  

II. Test description and specifications 

A. The torsional exciter system 

A tri-phase asynchronous electric motor with a rated 

power of 11kW and a rated torque of 110 Nm, is the 

torsional exciter for the mechanical system under test. 

The torque delivered by the electric motor is applied to 

one side of the transmission component (or system) while 

the other side is fixed to the frame of the test bench.  

The electric motor drive is a frequency inverter set into 

vector control mode; during the tests the torque control 

mode is enabled since the electric motor is used to apply 

almost harmonic torque to the mechanical system.   

The reference torque 𝑇𝑟𝑒𝑓  for the electric motor control 

system is a linear chirp, that is a constant amplitude sine 

wave whose frequency 𝑓(𝑡) varies linearly with time: 

 

 𝑇𝑟𝑒𝑓 = 𝑇𝑚 + 𝑇0 sin(2𝜋𝑓(𝑡) ⋅ 𝑡 + 𝜑0)  (1) 

 

where 𝑇𝑚 [Nm] is the torque mean value, 𝑇0 [Nm] is the 

amplitude of the sine wave,  𝜑0 is the initial phase [rad], 

and 𝑓(𝑡) is the instantaneous sweep frequency [Hz]: 

 

 𝑓(𝑡) = 𝑓0 +
𝑓0−𝑓1

𝑡𝑐ℎ𝑖𝑟𝑝
𝑡  (2) 

 

𝑓0  is the starting frequency, 𝑓1 is the final frequency and 

𝑡𝑐ℎ𝑖𝑟𝑝 is the duration of the chirp signal.  

The generation of the analogue voltage proportional to 

the reference torque which is the setpoint for the motor 

drive was performed thorough a 13-bit waveform 

analogue output module.  

 

B. The sensors 

The time histories of  the torque effectively produced by 

the electric motor and the angular position of its shaft are 

measured through the following sensors:  

- a contactless torque transducer with a measuring 

range of ±230 Nm and accuracy class of 0.1% of full 

scale value measures the torque immediately 

downstream of the electric motor;  

- a rotary incremental encoder with 1024 pulses per 

revolution is mounted on the rear side of the electric 

motor and allows to measures the angular position of 

the motor shaft with a resolution of ≈0.35°.  

 

C. The transmission component and system under test 

The same test bench was used, with minor modifications, 

to test a Dual Mass Flywheel and a 5-speed Automated 

Manual Transmission. Fig. 1 shows the pictures of the 

two test bench configurations. 

In the first case (top) the torque generated by the electric 

motor is applied to the first mass of the flywheel, while 

the second mass is kept fixed to the frame of the rig. A 

special bearing support (S) for the flywheel was designed 

and integrated on the test bench. 

The second experimental setup (bottom) includes the 

flywheel and its support, a clutch unit, a single-stage 5-

speed gearbox having a torque capacity of 300 Nm, a half 

shaft, a wheel hub and a disk brake used to lock the 

transmission end. Also in this case the torque is applied 

by the induction motor to the first mass of the flywheel 

after being measured through the torque sensor. 

The tested transmission has a primary shaft and a single  

secondary shaft. The differential has been locked in order 

to allow the usage of only one of the two half-shafts to 

transfer the mechanical power to the wheel hub of the 

bench. The transmission has three synchronisers: one for 

the 1
st 

, 2
nd

 and Reverse gear which is located on the 

secondary shaft, a second synchronisers for the 3
rd

 and 4
th

 

gear and one for the 5
th

 gear which are both mounted on 

the primary shaft. The lubrication system adopted is a 

splash lubrication with the differential gear almost 

completely immersed in the lubrication oil and gears on 

the secondary shaft dipping into the oil bath and 
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transferring the lubricant to the meshing teeth of the 

primary shaft as they rotates. 

 

 
 

 
Fig. 1 – Test bench for DMF (top) and AMT (bottom) characterisation. 

M: electric motor, T: torque meter, S: bearing support, DMF: dual mass 

flywheel, AMT: automated manual transmission, HS: half shaft, D: disk 
brake.  

III. Data acquisition and signal analysis 

Raw data were acquired from the test bench’s sensors at a 

sampling frequency of 10kHz through a National 

Instruments
®

 data acquisition boards. An example of the 

original time histories of the measured torque and angular 

position is shown in Fig. 2; a linear torque sweep is 

applied to one end of the transmission system while the 

other end is locked.  

 
Fig. 2 - Time histories of the torque and angular position during a linear 

sweep test, from 0.1 to 80Hz. 

Due to the transient nature of the test, it is convenient to 

analyse the measured signals in time-frequency domain. 

To this aim the two signals have been down-sampled by a 

decimation factor of 50 after being low pass filtered to 

avoid aliasing; then spectrograms have been calculated 

from the time signals as the magnitude of the short time 

Fourier transform (STFT). 

The input parameters for the spectrogram algorithm are:  

- windows type: Hamming;  

- windows length: 2s; 

- overlap between segment: 80%;  

- sampling frequency: 200 Hz.  

The spectrograms of the two signals expressed in decibel 

(dB) are shown in Fig. 3 and Fig. 4. 

Observing the charts in Fig. 2 it can be pointed out at 

least qualitatively that, although the reference signal to 

the torque control of the electric motor has a constant 

amplitude, see eq.(1), the actual output torque has an 

amplitude that varies with the sweep frequency. 

Therefore it can be deducted that the frequency response 

of the torsional exciter is not simply a constant over the 

frequency range of interest. A method to solve this 

problem is described in [1], where the design of a feed-

forward dynamic compensator is presented aiming at 

increasing the performance of a standard electric torque 

actuator to be used as a torsional exciter. 

A further  element of non-ideality of the torque 

generation system can be identified from Fig. 3, where, in 

addition to the fundamental frequency, higher harmonics 

occurring at whole-number multiples (2x, 3x, etc.) of the 

sweep frequency are clearly visible. 

Moreover from Fig. 2 and Fig. 4 it can be seen that the 

response of the system after second 45 begins to be very 

attenuated so that the encoder resolution is no more 

adequate to measure the so small oscillation amplitudes. 

For this reason the investigation of the frequency 

response of the system is limited to a maximum 

frequency of 30 Hz. 

M T 

DMF 

M 

AMT 
T 

HS D 

S 

S 
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Fig. 3. Spectrogram of the measured torque during a linear chirp. 

 
Fig. 4 Spectrogram of the measured angular displacement during a 

linear chirp. 

IV. Experimental transfer function estimation 

Considering small oscillation around the static 

equilibrium position, a linear time-invariant transfer 

function can be used to model the relationship between 

the input (x=Torque) and output (y=Angle).  

Since the vibration response is measured in terms of  

displacement, the FRF represents a compliance function. 

Due to the digital nature of the encoder measure it is 

assumed that the noise in the output signal is negligible, 

therefore the unknown transfer function is estimated 

using the so-called 𝐻2 estimator [9], that is the quotient 

of the auto power spectral density of the output 𝑃𝑦𝑦(𝑓) 

and the cross power spectral density between output and 

input 𝑃𝑦𝑥(𝑓) 

 

 𝐻2(𝑓) =
𝑃𝑦𝑦(𝑓)

𝑃𝑦𝑥(𝑓)
 (3) 

 

To evaluate the quality of the estimated FRF the 

coherence function is also computed: 

 𝐶𝑥𝑦(𝑓) =
|𝑃𝑥𝑦(𝑓)|

2

𝑃𝑥𝑥(𝑓) 𝑃𝑦𝑦(𝑓)
 (4) 

 

where 𝑃𝑥𝑥(𝑓) is the auto power spectral density of the 

input and  𝑃𝑥𝑦(𝑓) is the cross power spectral density 

between input and output. 

The algorithm for finding the transfer function and 

coherence function estimates given experimental input 

and output signal vectors uses the Welch's averaged 

periodogram method [9]. The input parameters for the 

transfer function estimation algorithm are: Hamming 

window type; 2 second window length; 80% overlap 

between segment and 200 Hz sampling frequency. 

 

A. Case study #1: the DMF 

The amplitude and phase of the estimated transfer 

function and the coherence function computed using the 

time signals previously commented are shown in Fig. 5. 

 

 
Fig. 5 Transfer function estimate (top) from 0.3Hz to 40 Hz using H2 
estimator and the coherence function (bottom). 

The amplitude of the experimental FRF has a unique 

peak at about 8 Hz in the considered frequency range; at 

that frequency the phase is -64°. Looking at the 

coherence function it should be noted that the accuracy of 

the estimate for frequency higher than 30 Hz and in a 
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narrow band to the right of the peak frequency is poor, 

while elsewhere the quality of the estimate is satisfactory. 

 

B. Case study #2: the AMT 

The same computational methods illustrated for the DMF 

are used for the estimation of the frequency response 

function of a complete Automated Manual Transmission 

(AMT). Separate sweep tests were performed for each 

gear engaged, from 2
nd

 to 5
th

 gear, and the estimated 

transfer functions are compared in Fig. 6.  

 
Fig. 6 Transfer function estimates, modulus (top) and phase (bottom), 

for different gear engaged in the AMT. 

 

Fig. 7 Coherence function estimates for the tests with different gear 
engaged in the AMT. 

Also in this case the amplitude of each experimental FRF 

has only one resonance peak in the considered frequency 

range. The coherence function in Fig. 7 indicates that the 

accuracy of the estimate is high up to 20Hz, from that 

frequency forward the coherence drops below 0.8. 

The comparison shows that the resonance frequency 

increases as the gear engaged, i.e. passing from the 

second to the fifth speed the peak frequency changes 

from 4 to 7 Hz, gaining about 1 Hz for each gear change. 

The DC gain decreases passing from 0.44 °/Nm in 2
nd

 

gear to 0.16 °/Nm in 5
th

 gear mainly due to the different 

gear ratio imposed by the engaged synchroniser. In fact 

the ratio between the DC gains obtained during tests with 

two different engaged gears is approximately equal to the 

ratio between the two gear ratios: 

 

  
𝐻2(𝑓=0)|𝑔𝑒𝑎𝑟 𝑖

𝐻2(𝑓=0)|𝑔𝑒𝑎𝑟 𝑗
≅

𝜏𝑖

𝜏𝑗
 (5) 

 

The phase lag progressively increases from about 15° at 

0.4 Hz to 150° at 12 Hz, while for frequencies higher 

than 12 Hz the phase lag begins to decrease. The major 

differences between the curves in terms of phase are 

concentrated in the neighbourhood of the resonance 

frequency.  

V. Torsional model and numerical transfer functions 

A. Case study #1: the DMF 

Starting from the free body diagrams illustrated in Fig.  8 

the dynamic balance equations for the two degree of 

freedom (d.o.f.) system can be easily found: 

{

I1ϑ1̈ + c1(ϑ̇1 − ϑ̇2) + k1(ϑ1 − ϑ2) + cMϑ̇1 = TM

I2ϑ2̈ − c1(ϑ̇1 − ϑ̇2) − k1(ϑ1 − ϑ2) + c2ϑ̇2 + cBϑ̇2 = 0

 (6) 

 

where  I1 = I𝑀 +
I𝑇

2
 ; I2 =

I𝑇

2
+ I𝑆 + IF1 

IM, IT, IS and IF1 are mass moments of the inertia of: the 

rotor of the electric motor, the torque meter, the rotating 

shaft for the connection of the torque meter to the 

primary mass of the DMF, the primary mass of the DMF 

respectively; 

(since the secondary mass of the DMF is locked it does 

not appear in the equations of motion) 

 

c1, c2, cM and cB are viscous damping coefficients of: the 

torque meter, the internal dissipation of dual mass 

flywheel, the motor bearings and the bearing system 

supporting the input shaft connected to the DMF; 

  

k1 is the torsional stiffness of the DMF; 

 

TMis the electromagnetic torque of the electric motor, the 

excitation for the dynamic system. 
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Fig.  8 – Free body diagrams of the test rig rotating parts for the 

torsional analysis of the Dual Mass Flywheel. 

The equations of motion of the torsional system can be 

cast in matrix form:  

 

[
I1 0
0 I2

] {
ϑ̈1

ϑ̈2

} + [
c1 + cM −c1

−c1 c1 + c2 + cB
] {

ϑ̇1

ϑ̇2

} +

+ [
k1 −k1

−k1 k1 + k2
] {

ϑ1

ϑ2
} = {

TM

0
}  (7) 

 

Recalling that the experimentally estimated FRF is the 

ratio between the two measured quantities, i.e. the 

angular position of the electric motor ϑ1 and the torque 

sensed by the torque transducer TT, it is therefore 

necessary to derive the mathematical relationship 

between these two variables in order to allows the 

comparison between experimental and model results. 

The receptance method, see e.g. [10] for details, is a 

useful instrument to calculate the steady state response of 

a M-DOF (multi-degrees of freedom) system to harmonic 

excitations applied to a system DOF. To allow the 

application of this method it is necessary to express the 

ratio between output and input quantity as a function of 

the external torque applied to a specific degree of 

freedom. In this case, the external action for the torsional 

dynamic system that is applied to the motor inertia, the 

first system DOF, is the electromagnetic motor torque 

TM: 

 

ϑ1

TT
= (

ϑ1

TM
) ⋅ (

TM

TT
) = (

ϑ1

TM
) ⋅ (

TT

TM
)

−1
  (8) 

 

The torque meter torque TT must be derived as a linear 

combination of the system input (TM), the generalized 

coordinates and their time derivatives. To this aim the 

dynamic balance of the torques applied to the first inertia 

gives:  

TT = TM − I1ϑ1̈ − cMϑ̇1    (9) 

Dividing both sides of the equation by the motor torque 

TM it yields: 

TT

TM
= 1 − I1

ϑ̈1

TM
− cM

ϑ̇1

TM
   (10) 

Under harmonic regime of motion in the right end side of 

the former equation the derivatives with respect to time 

can be expressed as a function of the frequency of 

oscillation Ω: 

 {

ϑ̈1

TM
= −Ω2 ϑ1

TM
 

ϑ̇1

TM
= jΩ

ϑ1

TM

      (11) 

Hence, inserting eq. (11) into (10) the transfer function 

between the measured torque and the motor torque is:  

TT

TM
= 1 + I1Ω2 ϑ1

TM
 − cMjΩ

ϑ1

TM
   (12) 

Finally, substituting eq.(12) in (8) the requested transfer 

function is: 

ϑ1

TT
= (

ϑ1

TM
) ⋅ (1 + I1Ω2 ϑ1

TM
 − cMjΩ

ϑ1

TM
)

−1
 (13) 

Where the transfer function 
ϑ1

TM
 can be calculated through 

the inversion of the dynamic stiffness matrix, as 

explained in the next steps.  

Considering harmonic excitation applied to the motor 

inertia the equation of motion becomes: 

[I]{ϑ̈} + [C]{ϑ̇} + [K]{ϑ} = TM0{1   0}TejΩt  (14) 

where TM0 is the amplitude of the motor torque and Ω is 

the frequency of the harmonic excitation. 

The steady-state response of the linear 2 DOF system is 

also harmonic: 

{

{ϑ(t)} = {Θ0} ejΩt

{ϑ̇(t)} = jΩ {Θ̇0} ejΩt

{ϑ̈(t)} = −Ω2 {Θ̇0} ejΩt

    (15) 

where {Θ0} is a 2x1 complex vector. 

Substituting eq.(15) in eq.(14), the steady state response 

amplitude is: 

{Θ0} = [G(jΩ)] TM0{1   0}T   (16) 
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Where [G(jΩ)] is the receptance matrix or frequency 

response function matrix, that is the inverse of the 

dynamic stiffness matrix [Kdyn(Ω)]:  

[G(jΩ)] = [Kdyn]
−1

= ([K] − Ω2[I] + jΩ[C])−1  (17) 

The first element on the main diagonal, i.e. G1,1(jΩ), is 

the transfer function we are looking for, linking the 

amplitude of excitation applied at the motor inertia to the 

amplitude of the system response, i.e. the angular 

displacement of the motor rotor. 

Θ10 = G1,1(jΩ) TM0    (18) 

Substituting eq. (18) in eq. (13) the requested transfer 

function can be evaluated. 

B. Case study #2: the AMT 

A simplified linear dynamic model for the study of the 

torsional vibration of an AMT up to 30 Hz is proposed in 

Fig.  9. 

 

 
Fig.  9 – Torsional model of the test rig rotating parts for the dynamic  

analysis of the AMT. 

In contrast to what was done for the DMF model, where 

also the torque meter compliance was taken into account, 

in the AMT model the torque meter is considered 

infinitely stiff and the system compliance is concentrated 

in other two points, the DMF (arc springs) with stiffness 

k1 and the half shaft with stiffness k2.  

A single lumped inertia I1 is used to account for the 

inertial properties of the rotating components from the 

rotor of the electric motor to the first mass of the 

flywheel. Then a spring and a viscous damper element 

represents the elastic and dissipative effect of the DMF 

and the second inertia I2 models the second mass of the 

flywheel and the equivalent inertia of the transmission. 

The gearbox is considered infinitely stiff and an ideal 

model of gears, with a set of selectable gear ratios 

𝜏𝑖 = 𝜏1𝜏2 and unitary efficiency, represents the speed 

reduction and torque amplification effect of the gearbox. 

A spring element models the half shaft compliance. 

 

A separate discussion must be done for the damping 

effect of  the gearbox. Due to the fact that several gears 

are immersed at least partially in the lubrication oil, the 

rotation of these gears originates a viscous damping 

torque opposing the direction of rotation and therefore 

increasing the energy dissipation. Therefore, the efficacy 

of the transmission oil to dampen the torsional vibration 

of the system must not be neglected.  

This damping effect can be split into two contributions: 

a. the drag torques applied to the idle gears on the 

secondary shaft in constant mesh with the gears fixed to 

the primary shaft, i.e. the 1
st
, 2

nd
 and Reverse gear; 

b. the drag torques applied to the gears connected to 

secondary shaft, i.e. the 3
rd

 , 4
th

 and 5
th

 , and the 

differential gears. 

The first contribution is modelled through a linear 

viscous damper applied to the primary shaft. A unique 

damping coefficient cB is implemented in the model, 

representing the effect of both the bearing support for the 

flywheel and the contribution of the gearbox just 

introduced. 

The second damping contribution in the gearbox is 

modelled as another viscous damper (damping 

coefficient: cO) this time applied to the output shaft of the 

transmission.  

 

The excitation is applied by the electric motor to the 

input side of the transmission while the other end is 

locked by means of a disk brake. 

 

The equations of motion of the AMT torsional system in 

matrix form are:  

 

[
I1 0
0 I2

] {
ϑ̈1

ϑ̈2

} + [
c1 + cM −c1

−c1 c1 + cB + cO/τ2] {
ϑ̇1

ϑ̇2

} +

+ [
k1 −k1

−k1 k1 + k2/τ2] {
ϑ1

ϑ2
} = {

TM

0
}  (19) 

 

Similarly, as explained for the DMF case study, the 

transfer function correlating the two measures, the input 

torque and the angular position of the motor shaft, is: 

ϑ1

TT
= (

ϑ1

TM
) / {1 + [(I𝑀 +

I𝑇

2
) Ω2 − cMjΩ]

ϑ1

TM
} (20) 

where 
ϑ1

TM
= G1,1(jΩ) is the first element of the receptance 

matrix.  
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VI. Simulation results 

A. Case study #1: the DMF 

The transfer functions derived in the former paragraph 

are here numerically evaluated, using Matlab
®

, 

considering the parameters values reported in TABLE 1.  

I1[kg m
2
] 0.078 c1[Nms/rad] 0.1 

H 
I2[kg m

2
] 0.152 c2[Nms/rad] 4 

Mm 
k1[kNm/rad] 13.3 

h 

cB[Nms/rad] 0.3 

H 
k2[kNm/rad] 0.46 

h 

cM[Nms/rad] 0.3 

H TABLE 1 - DMF model parameters 

A comparison of the transfer functions 
ϑ1

TM
 and 

ϑ1

TT
 is 

shown in Fig. 10: passing from the first to the second 

transfer function, the peak amplitude decreases while the 

peak frequency increases.  

 
Fig. 10 – Comparison between two transfer functions: the first has the 

electric motor torque as input, the second has the torque meter torque as 

input; the output is the same for both, i.e. the motor angular 
displacement. 

In order to validate the results of the 2-DOF torsional 

dynamic model, the comparison of the experimentally 

estimated FRF and the modelled FRF calculated through 

eq. (13) is reported in Fig. 11. The identification of the 

unknown model parameter, the DMF viscous damping 

coefficient, was done from the experimental FRF using 

an iterative curve-fitting algorithm. We observe a very 

good match between experimental and simulated data 

especially with reference to the amplitude of the FRF. 

However, a not negligible difference in phase at low 

frequency, and also after the resonance, is  visible in the 

lower part of the figure. This is probably due to an 

inappropriate choice for the damping model of the dual 

mass flywheel, in fact as stated in [1] the hysteretic 

damping model is more suitable for characterising the 

dissipative behaviour of the DMF: the phase lag observed 

experimentally at low frequency cannot be captured 

through a viscous damper model. 

 

Fig. 11 – Experimental validation of the torsional dynamic model. 

 

B. Case study #2: the AMT 

Using the numerical values of the parameters shown in 

TABLE 2 the FRF in eq. (20) has been numerically 

evaluated for every gear engaged and the model results 

compared with the experiments.  

 

I1[kg m
2
] 0.23 c1[Nms/rad] 4 

H 
I2[kg m

2
] 0.13 cO[Nms/rad] 170 

Mm 
k1[kNm/rad] 0.46 cB[Nms/rad] 1.5 

H 
k2[kNm/rad] 12.3 

H 

cM[Nms/rad] 0.3 

H 
τ𝐼𝐼[−] 7.96 τ𝐼𝐼𝐼[−] 5.42 

τ𝐼𝑉[−] 4.14 τ𝑉[−] 3.26 

TABLE 2 - AMT model parameters 

 

 
Fig. 12 – Experimental validation of the AMT torsional dynamic model 

when the 2nd gear is engaged. 
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As an example, Fig. 12 shows the experimental 

validation of the model when the transmission has the 2
nd

 

gear engaged. A good match is found a part from the 

phase at high frequencies, where the curves diverge. 

The values of the damping coefficients cO and cB 

reported in TABLE 2, representing mainly the damping 

effect of the gearbox, have been identified through the 

method of least squares with the aim of getting the best 

match between model and experiment for the test in 2
nd

, 

3
rd

 and 4
th

 gear, especially regarding the resonance peak.  

The experimental test in 5
th

 gear shows a greater damping 

ratio, 27% compared to 22% of the other tests, hence it 

was necessary to increase a damping coefficient with 

respect to its value in the table. A possible choice is to 

change the value of  cO from 170 to 360 Nms/rad, while 

leaving unaltered  cB. See [11] for details on how to 

calculate natural frequencies and damping ratios for a 

system with non-proportional damping.  

Moreover, it must be considered that the oil viscous 

damping is a function of both the temperature and the 

Reynold number, therefore changes in oil temperature 

and gear rotational speed can produce significant 

differences in the damping effect of the gearbox.  

A chart similar to the one reported in Fig. 6, but 

containing the results of simulations instead of the 

experimental estimates of the FRF, is shown in Fig.13. 

The effect of gear ratio on the system dynamic 

performance is very well described by the although 

essential torsional model here adopted.  

 

Fig. 13 – AMT simulation results: the effect of the gear ratio on the 

FRF. 

V. Conclusions 

   In this paper the experimental and analytical 

methodologies for characterizing the torsional dynamic 

behaviour of an Automated Manual Transmission and a 

Dual Mass Flywheel were discussed.  

Time-frequency analysis of the torque measures on the 

test rig revealed two kinds of non-ideality of the torsional 

exciter: a frequency dependent gain of the torque control 

system in the pass band and a considerable harmonic 

distortion. 

The compliance FRF have a unique peak in the analysed 

frequency range for both the case studies. For the AMT, 

the resonance frequency increases as the gear engaged, 

from 4Hz in 2
nd

 gear  to 7 Hz in 5
th

 gear, gaining about 1 

Hz for each gear change.  

On the contrary, DC gain decreases approximately in 

such a way that the ratio between two DC gains is equal 

to the ratio between the corresponding gear ratios. 

The analytical models presented in the paper succeeded 

in predicting the dynamic behaviour of the analysed 

transmission system and component in the frequency 

range considered. 

The classical approach for the computation of the FRF 

from the dynamic system matrices was extended to the 

case in which the measuring point of the excitation does 

not coincides with the exact point of application.  
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