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Abstract. Let F and G be homogeneous polynomials in disjoint sets of vari-

ables. We prove that the Waring rank is additive, thus proving the symmetric

Strassen conjecture, when either F or G is a power, or F and G have two
variables, or either F or G has small rank.

1. Introduction

In his famous result of 1969 Strassen showed that it is possible to multiply two
2× 2 matrices using seven basic operations rather than eight, see [Lan08] for more
on this. Using this fact, a better algorithm was produced to multiply matrices of
any size and this was proved to have the best possible computational complexity
by Winograd in [Win71].

After Strassen’s result, it was clear that even straightforward procedures can
require fewer operations than expected. In [Str73] Strassen formulated his well
known additive conjecture for bilinear maps: Given bilinear maps φ, ψ and two
pairs of matrices A,B, and C,D the computational complexity of simultaneously
computing φ(A,B) and ψ(C,D) is the sum of the complexities of φ and ψ. The
conjecture stands open since its formulation in 1973, for some partial results see
[FW84].

Strassen conjecture can be naturally stated in terms of tensors and the notion
of tensor rank, see [Lan12]. Note that an analogue of the additive conjecture for
approximate complexity (border rank, in more recent terminology) does not hold
(see [Sch81]).

We will focus on the relevant case of symmetric tensors, that is, the case of
homogeneous polynomials, also known as forms. The rank, or Waring rank, of a
degree d form F is

rk(F ) = min{r : F = Ld
1 + . . .+ Ld

r for linear forms Li}.

We can now state the symmetric version of the Strassen Additivity Conjecture
(SAC)

Conjecture. (SAC). Let d > 1. If F ∈ C[x0, . . . , xn] and G ∈ C[y0, . . . , ym] are
non-zero forms of degree d, then

rk(F +G) = rk(F ) + rk(G).

Also the symmetric version of the conjecture stands open. A relevant contribu-
tion to its study is the 2012 paper [CCG12] where SAC is proved for the sum of
(several) monomials.
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In this paper we contribute to the study of SAC by proving that the conjecture
holds for one and two variables and for forms of small rank. More precisely, we
prove the following theorem.

Theorem 1.1. Let d > 1 and let F ∈ C[x0, . . . , xn], G ∈ C[y0, . . . , ym] be non-zero
degree d forms. If n = 0 or m = 0 or n,m = 1, then rk(F +G) = rk(F ) + rk(G).

In Corollary 3.2 we show that SAC holds even with no assumptions on n and
m if one of the forms satisfies a condition on the rank (see the statement of the
corollary).

We obtain Theorem 1.1 using algebraic geometry. In particular, we exploit a
deep knowledge of the Hilbert functions of finite sets of points. A similar approach
was considered also in [BB12]. We will use the strong structural result contained
in [BGM94]. Our techniques can be extended to study SAC in more than two
variables, but we need some genericity assumptions on the forms F and G; we are
currently investigating this approach.

2. Preliminaries

In this section we state our notation and we recall the main results that we will
use.

Notation 2.1. For a zero-dimensional scheme Z ⊂ PN , we will denote with hZ the
Hilbert function of Z, that is the function which associates to any integer n the
dimension of the image of the map H0OPN (n) → H0OZ(n). We will denote with
DhZ the first difference of the Hilbert function, that is DhZ(n+ 1) = hZ(n+ 1)−
hZ(n).

Notation 2.2. In this paper, F and G will denote forms of degree d, with d > 1, in
disjoint sets of variables. Namely, F ∈ C[x0, . . . , xn] and G ∈ C[y0, . . . , ym].

We will use the following formulation of SAC. Let rk(F ) = r, rk(G) = s, and
write

F = F d
1 + · · ·+ F d

r and G = Gd
1 + · · ·+Gd

s ,

for linear forms Fi ∈ C[x0, . . . , xn] and Gi ∈ C[y0, . . . , ym]. With these notation
SAC is equivalent to the fact that it is not possible to have

(1) F d
1 + · · ·+ F d

r +Gd
1 + · · ·+Gd

s = Hd
1 + · · ·+Hd

t

where t < r + s and the Hi are linear forms in C[x0, . . . , xn, y0, . . . , ym].
We begin with a reduction step.

Lemma 2.3. To prove SAC as stated in (1), it is enough to consider

Hi 6∈ C[x0, . . . , xn] ∪ C[y0, . . . , ym].

Proof. Assume that we have F,G as in (1), with a of the Hi’s (say the first a of
them) belonging to C[x0, . . . , xn], and b of the Hi’s (say the last b) belonging to
C[y0, . . . , ym].

Notice that F ′ = F d
1 + · · · + F d

r − Hd
1 − · · · − Hd

a is a form of degree d in
C[x0, . . . , xn], whose rank is at least r − a. Otherwise we could write F as a form
of rank less than r − a plus the sum of a powers of linear forms, contradicting the
fact that rk(F ) = r.

Similarly, G′ = Gd
1 + · · · + Gd

s − Hd
t−b+1 − · · · − Hd

t is a form of degree d in
C[y0, . . . , ym], whose rank is at least s− b.
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Then F ′ +G′ = Hd
a+1 + · · ·+Hd

t−b+1, with rk(F ′) ≥ r − a, rk(G′) ≥ s− b. The
remaining forms Hi are t − a − b < r − a + s − b and none of them lies either in
C[x0, . . . , xn] or in C[y0, . . . , ym]. Assuming that SAC holds in this situation yields
a contradiction, thus proving the conjecture for any choice of the forms Hi. �

We recall some basic properties of binary forms, that is forms in two variables.

Remark 2.4. The linear span of a rational normal curve of degree d contains all
binary forms in a given set of variables. Hence, any set of i ≥ d+ 1 degree d binary
forms is linearly dependent. Moreover, any degree d binary form has rank at most
d, see [CS11] for more details.

3. One variable

Assume that either F or G is a polynomial in one variable. In this case, a direct
computation proves that SAC holds.

Proposition 3.1. If n = 0 or m = 0, then SAC holds.

Proof. We will prove the statement for m = 0. Let F (x0, . . . , xn) 6= 0 be a degree
d > 1 form in k[x0, . . . , xn] and let G(y0) = yd0 . We set

P (x0, . . . , xn, y0) = F (x0, . . . , xn) +G(y0),

and we will show that rk(P ) = rk(F ) + rk(G) = rk(F ) + 1.
Let rk(F ) = r. For r = 1, the conclusion immediately follows, so assume r > 1.

Clearly rk(P ) ≤ r+ 1. If rk(P ) < r, since F (x0, . . . , xn) = P (x0, . . . , xn, 0), we get
a contradiction.

We now prove that it is not possible to have rk(P ) = r. Let

P = (α1y0 + L1)d + · · ·+ (αry0 + Lr)d,

where the Li are linear forms in x0, . . . , xn. By setting y0 = 0 we have that

F = Ld
1 + · · ·+ Ld

r ,

and thus

Ld
1 + · · ·+ Ld

r + yd0 = (α1y0 + L1)d + (α2y0 + L2)d + · · ·+ (αry0 + Lr)d.

Since G 6= 0, the αi’s cannot all be equal to zero. Assume that α1 6= 0. Let γ be a
d-th root of the identity. Since d > 1, we may assume that γ 6= α1.

Now set

y0 =
L1

γ − α1
,

so that

(α1y0 + L1)d =

(
γL1

γ − α1

)d

=

(
L1

γ − α1

)d

= yd0 .

Hence we get

F =

(
α2

(
L1

γ − α1

)
+ L2

)d

+ · · ·+
(
αr

(
L1

γ − α1

)
+ Lr

)d

.

It follows that rk(F ) < r, a contradiction. Hence rk(P ) = r + 1. �
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To extend this result, we use apolarity theory, see [Ger96, IK99]. Recall that
(F⊥)1 is the vector space of linear differential operator vanishing on a form F .
Following [Car06] and [BBS08] we say that F ∈ C[x0, . . . , xn] essentially involves
N variables if

dim(F⊥)1 = n+ 1−N.
In other words, F essentially involves N variables if there exists a linear change of
variables such that F ∈ C[z0, . . . , zN−1] ⊂ C[x0, . . . , xn].

Corollary 3.2. If F essentially involves rk(F ) variables, or G essentially involves
rk(G) variables, then SAC holds.

Proof. We let r = rk(F ), s = rk(G) and we prove the statement in the case that G
essentially involves s variables. After a change of variables we may assume

G = yd0 + · · ·+ yds−1.

Arguing by induction on s, we see that F+yd0 + · · ·+yds−2 has rank r+s−1, thus by

Proposition 3.1, F+G = (F+yd0+· · ·+yds−2)+yds−1 has rank (r+s−1)+1 = r+s. �

4. SAC and the Hilbert function

Here we introduce our algebro-geometric approach to SAC with the relative
notation.

Notation 4.1. As above let F = F d
1 + · · ·+ F d

r , r = rk(F ) and G = Gd
1 + · · ·+Gd

s ,
s = rk(G), where the forms Fi and the Gi have degree one. We introduce the sets

Z(F ) = {[F1], . . . , [Fr]} ⊂ Pn = P(C[x0, . . . , xn]),
Z(G) = {[G1], . . . , [Gs]} ⊂ Pm = P(C[y0, . . . , ym]).

We will argue by contradiction assuming that

(2) F +G = Hd
1 + · · ·+Hd

t ,

for t < r + s and linear forms Hi. Finally, we set

Z(H) = {[H1], . . . , [Ht]} ⊂ Pn+m+1 = P(C[x0, . . . , xn, y0, . . . , ym]),

Z = Z(H) ∪ Z(F ) ∪ Z(G) ⊂ Pn+m+1.

We will use the following geometric remarks.

Remark 4.2. The standard exact sequence of sheaves

0→ IZ(d)→ OPN (d)→ OZ → 0

yields
0→ H0IZ(d)→ H0OPN (d)→ H0OZ → H1IZ(d)→ 0.

By the definitions, we have that hZ(d) = |Z|(= dimH0OZ) if and only ifH1IZ(d) =
0. In this case, we will say that Z is separated in degree d or that Z imposes
independent conditions to degree d forms.

Remark 4.3. The equality in (2) implies that the following are linearly dependent
forms:

F d
1 , . . . , F

d
r , G

d
1, . . . , G

d
m, H

d
1 , . . . ,H

d
t .

Thus, by Lemma 1 in [BB12], Z does not impose independent conditions to forms
of degree d. If we denote with ν the d-th Veronese map, one of the points of ν(Z),
say F d

i , depends linearly on the others. Thus, any linear form which vanishes on
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ν(Z)\{F d
i } also vanishes at F d

i . Hence, any form of degree d vanishing on Z \{Fi}
also vanishes at Fi. In other words, Z is not separated in degree d, and the ideal
sheaf of Z is such that

h1IZ(d) > 0.

Remark 4.4. Let LF ' Pn and LG ' Pm, be two skew linear subspaces of Pn+m+1,
containing Z(F ) and Z(G), respectively. The following holds: if for some i > 0

h1IZ(F )(i) = h1IZ(G)(i) = 0,

then
h1IZ(F )∪Z(G)(i) = 0.

To see this, we argue as follows. If P is a point of Z(F ), consider a degree i
hypersurface X ⊂ LF that contains all the points of Z(F ) \ {P}. The cone on X
with vertex LG is a hypersurface of degree i in Pn+m+1. This cone separates P
from the other points of Z(F ) ∪ Z(G). A similar argument works if P ∈ Z(G).
Thus Z(F ) ∪ Z(G) is separated in degree i.

The next two lemmas will be useful in the following section.

Lemma 4.5. Let W be a set of w distinct points spanning a linear space of dimen-
sion at least three. If w ≤ 2u−2 and h1IW (u−2) > 0, then there exists a line that
contains at least u points of W .

Proof. Consider the first difference DhW of the Hilbert function of W . Since

h1IW (u− 2) > 0,

then DhW (u − 1) > 0, so that DhW (i) > 0 for all i = 0, . . . , u − 1. Moreover
DhW (1) ≥ 3, since the points span at least a space of dimension 3. Since w ≤ 2u−2,
we cannot have DhW (i) ≥ 2 for i = 2, . . . , u − 2. It follows that there are at least
two values 2 ≤ i1, i2 ≤ u − 1 for which DhW (i1) = DhW (i2) = 1. By Theorem
3.6 in [BGM94] it follows that we may assume the two steps are i1 = u − 2 and
i2 = u− 1 and moreover u points of W are aligned. �

Lemma 4.6. Let W1,W2 ⊂ Pn be finite sets of points such that W1 is contained
in a proper linear subspace R, and W2 ∩R = ∅. If for some integer u one has:

(1) h1IW2
(u− 1) = 0 and

(2) the cardinality of W1 is at most u+ 1,

then h1IW (u) = 0, where W = W1 ∪W2.

Proof. If we let wi be the cardinality of Wi, then it is easy to see that

h0OPn(u)− w1 − w2 ≤ h0IW (u).

We now use Castelnuovo’s inequality, see [CCG11] Section 3 for more details and
[AH95] Section 2 for a proof. This inequality yields

h0IW (u) ≤ h0IRes(u− 1) + h0ITr(u),

where Tr is the trace of W on a generic hyperplane H ⊇ R ⊃ W1 and Res is
the residue of W with respect to H. More precisely ITr = IW,H = IW1 and
IRes = IW : IH = IW2

, that is Res = W2 and Tr = W1. From (2) we get that
h0ITr(u) = h0OPn−1(u) − w1. From (1) we get that h0IRes(u − 1) = h0OPn(u −
1)− w2. Hence, the result follows.

�
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5. Forms in two variables

In this section, we assume that F,G are forms in two variables, that is we assume
n = m = 1, and we prove that SAC holds in this setting. We let r = rk(F ), s =
rk(G) and we assume that

F d
1 + · · ·+ F d

r +Gd
1 + · · ·+Gd

s = Hd
1 + · · ·+Hd

t

for t < r + s and for linear forms Fi ∈ C[x0, x1] and Gi ∈ C[y0, y1], while the Hi

are linear forms involving all the four variables y0, y1, x0, and x1 (see Lemma 2.3).

Remark 5.1. By Proposition 3.1 and its Corollary 3.2, we may assume r, s ≥ 3.
Moreover, as noted in Remark 2.4 the rank of a form of degree d in two variables
is at most d. So we have r, s ≤ d.

We treat the cases of large r, s using the Apolarity Lemma, see [IK99].

Lemma 5.2. If r = s = d, then SAC holds.

Proof. If F is a binary degree d form of rank d, then the Hilbert-Burch Theorem (see
Theorem 20.15 in [Eis95]) yields that F⊥ = (A,B) where deg(A) = 2,deg(B) = d
and A is a square. From this we see that F = LMd−1 for some linear forms L
and M , thus F is a monomial. The conclusion follows as the rank is additive on
coprime monomials, see [CCG12]. �

From now on we assume that:

s ≤ r and s ≤ d− 1.

We now show that Z(H) spans P3 and that at most d points of Z(H) lie on a
line.

Lemma 5.3. There is no plane containing Z(H).

Proof. Since Z(H) ⊂ P(C[x0, x1, y0, y1]) = P3, we use apolarity theory to describe
the dual space P3∗. Thus, P3∗ can be identified with the space of linear differential
operators on the polynomial ring C[x0, x1, y0, y1]. We now argue by contradiction.
If a plane containing Z(H) exists, then the plane is the vanishing locus of some
differential operator ∂. Thus ∂ vanishes on Z(H), and thus ∂(H) = ∂(F +G) = 0,
that is ∂(F ) = −∂(G). Note that ∂(F ) ∈ C[x0, x1] and ∂(G) ∈ C[y0, y1] are forms
of degree d − 1 > 0, hence ∂(F ) = ∂(G) = 0. The latter is impossible, since F,G
are binary forms of rank at least three. �

Remark 5.4. If t is the minimal integer such that F +G = Hd
1 + · · ·+Hd

t , then we
may assume that at most d points of Z(H) lie on a line.

Indeed, if H1, . . . ,Hd+1 lie on a line, then by Remark 2.4 there is a linear relation
between their d-th powers, say Hd

1 = a2H
d
2 + · · ·+ ad+1H

d
d+1, so that

F +G = (1 + a2)Hd
2 + · · ·+ (1 + ad+1)Hd

d+1 +Hd
d+2 + · · ·+Hd

t

against the minimality of t.

In our notation Z ⊂ P3 = P(C[x0, x1, y0, y1]) and the subsets Z(F ) and Z(G)
span two skew lines, namely the lines corresponding to P(C[x0, x1]) and P(C[y0, y1]).
We will denote these lines with RF ⊃ Z(F ) and RG ⊃ Z(G).

Lemma 5.5. There is no line R containing d points of Z(H) and intersecting RG.
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Proof. Assume by contradiction that such a line R exists, say R ⊃ {H1, . . . ,Hd}.
The projection π from RG to RF is obtained by setting y0 = y1 = 0. Since π
contracts R to a point, it follows that F is generated by the d-th powers of the
images of H1 and Hd+1, . . . ,Ht. So the rank of F is at most t−d+1. On the other
hand t− d+ 1 < r+ s− d+ 1 ≤ r, since we are assuming s ≤ d− 1. Hence we have
a contradiction. �

We now prove SAC for two variables.

Theorem 5.6. Let d > 1. If F ∈ C[x0, x1] and G ∈ C[y0, y1] are non-zero degree
d forms, then

rk(F +G) = rk(F ) + rk(G).

Proof. We will use all the previous notation and we may assume what follows:

• 3 ≤ r ≤ d, 3 ≤ s ≤ d− 1, and thus d ≥ 4 (see Remark 5.1 and Proposition
5.2).
• Z(H) does not intersect RF ∪RG (see Lemma 2.3).
• Z(H) spans P3 (see Lemma 5.3).
• At most d points of Z(H) lie on a line (see Remark 5.4).

By contradiction assume that t < r + s and thus t ≤ 2d− 2. We let

Z = Z(F ) ∪ Z(G) ∪ Z(H)

and we will find the contradiction h1IZ(d) = 0 (see Remark 4.3).
Case 1: there is no line containing d points of Z(H). Lemma 4.5, with u = d,
yields that h1IZ(H)(d− 2) = 0. Since Z(G) has cardinality at most d− 1, we apply

Lemma 4.6 with u = d − 1, and obtain h1IZ(H)∪Z(G)(d − 1) = 0. Finally, since
Z(F ) has cardinality at most d, we may apply Lemma 4.6 with u = d, and obtain
h1IZ(d) = 0, a contradiction.
Case 2: there are d points of Z(H) on a line R. By Lemma 5.5, R cannot intersect
RG. R may or may not intersect RF and, in the first case, the point R ∩ RF may
or may not lie in Z(F ). In any case, set Φ = R ∩ RF and set Z ′ = Z(H) \ R,
Z ′′ = (Z(H)∩R)∪Φ. Notice that Z ′ contains at most d−2 points and Z ′′ contains
at most d + 1 points. Notice also that Z is contained in Z(F ) ∪ Z(G) ∪ Z ′′ ∪ Z ′,
with equality if and only if either Φ = ∅ or Φ is not a point of Z(F ).

Since the cardinality of Z ′ is at most d − 2, then h1IZ′(d − 3) = 0. Because
Z(G) has cardinality at most d − 1, we apply Lemma 4.6 with u = d − 2, and
obtain h1IZ′∪Z(G)(d − 2) = 0. Since Z(F ) \ Φ has cardinality at most d, we may

apply Lemma 4.6 with u = d − 1, and obtain h1IZ′∪Z(G)∪(Z(F )\Φ)(d − 1) = 0.
Finally, notice that Z ′ ∪Z(G)∪ (Z(F ) \Φ) cannot intersect R. Thus, since Z ′′ has
cardinality at most d+ 1, we apply Lemma 4.6 with u = d, and we obtain

h1IZ′∪Z(G)∪(Z(F )\Φ)∪Z′′(d) = 0.

Since Z ⊆ Z ′ ∪ Z(G) ∪ (Z(F ) \ Φ) ∪ Z ′′ we get the contradiction

h1IZ(d) ≤ h1IZ′∪Z(G)∪(Z(F )\Φ)∪Z′′(d) = 0.

�

Theorem 1.1 is now proved by collecting the previous results.

Proof of Theorem 1.1. The cases n = 0 and m = 0 follow from Proposition 3.1 and
Theorem 5.6 yields the rest of the statement. �
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