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Gaussian mixtures based IRLS for sparse recovery
with quadratic convergence

Chiara Ravazzi, Member, IEEE, and Enrico Magli, Senior Member, IEEE

Abstract—In this paper we propose a new class of iteratively
re-weighted least squares (IRLS) for sparse recovery problems.
The proposed methods are inspired by constrained maximum
likelihood estimation under a Gaussian scale mixture (GSM)
distribution assumption. In the noise-free setting, we provide
sufficient conditions ensuring the convergence of the sequences
generated by these algorithms to the set of fixed points of the
maps that rule their dynamics and derive conditions verifiable
a posteriori for the convergence to a sparse solution. We
further prove that these algorithms are quadratically fast in a
neighborhood of a sparse solution. We show through numerical
experiments that the proposed methods outperform classical
IRLS for ¢,-minimization with 7 € (0, 1] in terms of speed and of
sparsity-undersampling tradeoff and are robust even in presence
of noise. The simplicity and the theoretical guarantees provided
in this paper make this class of algorithms an attractive solution
for sparse recovery problems.

Index Terms—Compressed sensing, constrained maximum
likelihood estimation, Gaussian scale mixtures, iterative support
detection and estimation, iteratively re-weighted least squares
methods.

I. INTRODUCTION

Compressed sensing is an efficient technique for nonadap-
tive sampling and reconstruction of sparse signals, allowing us
to recover the signal starting from fewer linear measurements
than classical sampling theory demands [1].

The literature describes a large number of algorithms to
recover a sparse signal from an under-determined linear sys-
tem. The main approaches can be classified as optimization-
based methods [2], pursuit strategies [3], [4], [S], [6], coding-
theoretic tools [7], [8], and Bayesian methods (see [9] and
reference therein). In particular, the optimization-based meth-
ods solve a convex or non-convex program whose minimizer
is known to approximate the target signal. Examples include
quadratic programming [10], such as interior-point meth-
ods [10], projected gradient procedures [11], iterative (hard
and soft) thresholding algorithms [12], [13], and iteratively
reweighted least squares (IRLS, [14]).

In this work, we focus on IRLS reconstruction schemes,
which have been proposed as a valuable strategy for /.-
minimization problems in sparse recovery with 7 € (0,1]
[15]. These algorithms have been deeply studied in absence
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of noise [14]. In particular, under certain conditions, these
methods have been proved to converge to the true signal
globally linearly fast when 7 = 1 and locally superlinearly fast
with rate 2 — 7 for 7 € (0,1). IRLS for ¢,-minimization can
be interpreted as an instance of the Expectation Maximization
(EM) algorithm for constrained maximum likelihood estima-
tion under the assumption that the data are normal/independent
random variables [16]. This connection is useful to extend
theoretical results regarding convergence and speed of conver-
gence to noisy scenarios [16], [17].

Although IRLS algorithms appear very robust and superlin-
early fast with rate close to 2 for 7 approching 0, such guar-
antees of rate of convergence are valid only in a neighborhood
of a sparse solution. More precisely, the algorithm seems to
converge properly when 7 is not too small (say 7 > 1/2) and
tends to fail to reach the region of guaranteed convergence
when 7 < 1/2 [2]. Heuristic methods to avoid local minima
are still an open issue.

In this paper our goal is to design IRLS procedures for
sparse recovery with quadratic rate of convergence. In partic-
ular, our iterative schemes are based on the constrained max-
imum likelihood estimation techniques under the assumption
that the data are two-state mixtures of normal with Bernoulli
prior. More precisely, we model elements in the support of
the signal and zero values as zero mean Gaussian distributions
with high and low variances, respectively. Then we choose the
probability mass function of the state variable to be a Bernoulli
with probability depending on the sparsity level. In the last
years, several authors devoted their attention to sparse signal
recovery using prior information on the support [18], [19]. In
our case the considered model is only used as a proxy for
sparse signals and the maximization of the log-likelihood is
shown to provide a valuable alternative to find the sparsest
vector consistent to the data.

The constrained maximization of the log-likelihood function
for a mixture model turns out to be a hard problem and there
is no closed form solution for the model parameters. In order
to overcome this issue, we propose three iterative techniques,
which we refer to GSM-IRLS: ML-IRLS, EM-IRLS, and
K-EM-IRLS. A common point to the three strategies is
to consider the complete log-likelihood function based on
the missing data. After choosing some initial values for the
mixture parameters, the following updates are alternated: in
the first step, we use the current values for the parameters to
estimate the signal and to evaluate the posterior distribution of
the signal coefficients; in the second step we use these prob-
abilities to re-estimate the mixture parameters. In this sense,
GSM-IRLS can be also seen as sparse reconstruction methods



that combine iterative support detection (ISD) and estimation
[3], [4], [5], [6], [20], [21]. We remark that our reconstruction
schemes differ from that literature. For example, with respect
to [3], [4], [5] the identification of the support is not nested
or increasing over the time. While [6], [20] use greedy rules
to identify the support, the proposed methods are based on
Bayesian rules and a probabilistic model. Moreover, once the
support has been identified, all elements in the support are
used in the estimation task, unlike to [3], [4], [5], [6], [20].
Besides the design of the algorithms, our main contribution
includes a rigorous proof of convergence of the algorithms.
More precisely, under certain conditions, these reconstruction
schemes converge to a fixed point of the map that rules
their dynamics (see Theorem 3). Moreover, if there is a
sparse solution to the inverse problem, then the limit of
the proposed algorithm is that sparse solution (Theorem 3)
and the algorithm is quadratically fast in a neighborhood of
that solution (Theorem 4). Numerical simulations validate our
predictions and show that GSM-IRLS are quadratically fast
and avoid local minima, outperforming classical IRLS for
sparse recovery in terms of sparsity-undersampling tradeoff.
Moreover, they reach performance comparable to algorithms
based on iteratively reweighed ¢;-minimization but with a
lower computational effort. Finally, we show that GSM-IRLS
converge even in presence of noise and are robust against
noise, outperforming also in this case classical IRLS for sparse
recovery in terms of speed of convergence and accuracy.

A. Outline of the paper

The paper is organized as follows. The general linear inverse
problem and the classical IRLS algorithms for ¢,-minimization
are described in Section II. In Section III the basic ideas and
the philosophy of the proposed algorithms are presented and
the relations to the state of the art is discussed. Section IV
introduces the GSM model for sparse signals and recast the
sparse optimization into a constrained maximum-likelihood
estimation problem. Then the GSM-IRLS are developed and
described in Section V. Section VI summarizes the theoretical
contribution. Numerical experiments are presented in Section
VII and some concluding remarks (Section VIII) complete
the paper. The theoretical results are rigorously proved in
Appendix through intermediate steps. We conclude this section
with some notations and preliminary definitions.

B. Notation and preliminary definitions

We denote column vectors with small letters, and matrices
with capital letters. If x € R™ we denote its j-th element as
x;j and, given S € [n] := {1,...,n}, we denote as x|g the
subvector of x corresponding to the indexes in .S. The support
set of x is defined by supp(x) = {i € [n] : z° # 0}. Later we
use the /,-norms

1/7‘
lzlle, = (D |zl € (0,00),
1€[n]
the ¢y pseudonorm ||z||¢, = |supp(z)|. The Euclidean norm

of a vector x is often denoted as ||z|| instead of ||z||s,. Let
wy, ..., w, be a set of positive numbers. The corresponding

weighted inner product and weighted norm on R"™ are defined

as
l’ y w = E w‘Iz’yu

VT, x)w szl,

i€[n]

[2]lw =

respectively. We denote as r(x) the non increasing rearrange-
ment of x r(z) = (|zy, |, \x12|, oy |mi, )T, where |z;,| >
|zi, ., ], V€ =1,...,n— 1. Given a matrix A, A" denotes its
transpose.

We give some definitions regarding the speed at which
a convergent sequence approaches its limit. Formally, let
(G(t))tGN be a sequence which converges to a limit point 6,

Definition 1 (Linear convergence). We say that (0);en
converges linearly, if there exists n € (0,1) such that

164D — B |
107~ 7 = Vool
106 — Ooc |

The following definition describes a stronger form of con-
vergence than linear convergence.

)

Definition 2 (Super-linear convergence). We say that (0)),en
converges super-linearly, if the condition (1) holds for all n €
(0,1) or, equivalently,

10+ — foo |
D — O
The next definition is used to distinguish super-linear rates

of convergence. We say that the sequence converges with order
q to O for g > 1 if

lim su
P17

=0 2)

164+ — O]
100 = 0ncllt
with finite ¢ > 0. In particular the convergence with order
q = 2 is called quadratic convergence.

3)

lim sup
t—o0

II. THE SPARSE RECOVERY PROBLEM
A. Sparse signal reconstruction

Compressed sensing [1] is a technique used to recover
sparse signals starting from few noisy measurements. More
precisely, a signal 2* € R™ has to be recovered starting from
m < n measurements of the form

y = Az +1, 4)

where y € R™, A € R™*"™ is the sensing matrix with m <
n, and n € R™ is some unknown perturbation bounded by
[7]] < 6. A common approach in many applications is to
estimate 2* € R™ under the assumption that * is sparse (i.e.,
the number of nonzero components is much smaller than n). It
is thus natural to consider the following optimization problem
in order to estimate x*:

(Pos) : subject to x € F(y,d), (5)

with F(y,0) = {x e R" : || Az — y|| < §}.
In absence of noise (i.e. 4 = 0), the system in (4) is linear
and underdetermined. Therefore, the problem (5) with § = 0

min [z,



has infinitely many solutions. We denote with N'(A) = {z €
R™ : Az = 0} the null space of the matrix A and the set of
solutions of (4) can be represented by the affine space F(y) :=
F(y,0) = 2* + N(A). It can be shown [22] that, if z* is k-
sparse and the following assumption is satisfied, then z* is the
unique solution to (Pp ).

Assumption 1. For every index set T C {1,...,n} with
IT| = 2k the columns of A associated with T' are linearly
independent.

Under certain assumptions on the sensing matrix and for a
sufficient low level of the signal sparsity [23], robust signal
recovery is possible in presence of noise. This means that the
solution Zo 5 of (Pys) obeys ||Zo,s — x*|| < k0 where k is a
positive constant.

B. Sparse recovery via IRLS for {.-minimization

The problem (P 5) is known to be NP-hard and, despite its
attractiveness, solving (Fps) is not a viable way to estimate
x*. However, an attractive alternative is given by solving a
slightly different problem that consists in selecting the element
in F(y,0), which has minimal ¢,-norm with 7 € (0, 1]:

(Prs) min flzlle, st o€ F(y,d) (6)

From now on, unless otherwise specified, we consider the
noise-free case (§ = 0). Problem (6) has strong performance
guarantees, which are easily described by the following defi-
nition.

Definition 3. The matrix A is said to satisfy the T-null space
property (T-NSP) of order K if there exists v € (0,1) such
that

T
£r

Insliz, < ~lns:
for all sets S with |S| < K and all n € N'(A).

The null space property characterizes the exact recov-
ery of sparse signals from noise-free measurements via £, -
minimization [24]: if A satisfies the 7-NSP of order k and
there exists a k-sparse vector in F(y), then this k-sparse vector
is the unique solution of (Pr ).

The optimization in (P; ) can be carried out by an IRLS
algorithm. In particular, given an initial guess (%), this algo-
rithm generates a sequence of estimates for the signal x* as
follows:

Y = argmin ||z , )
zeF(y)

with
wi = () + (7))~ (7)
for i € [n] and a suitable non-increasing sequence ¢(*). At
each iteration the IRLS algorithm corresponds to a constrained
weighted least-squares problem and can be efficiently solved
using standard convex optimization methods.
The IRLS for ¢, minimization can be also interpreted as
the constrained maximum likelihood estimation under a GSM

distribution [16], i.e., assuming that x* is a random variable
with i.i.d. entries distributed according to

o) = = exp (~5r(e2))

with
1

With this assumption the minimization of the rescaled negative
log-likelihood takes the form

min L7 (z) = min (22 4 €2)7/? (8)
z€F(y) TEF(y) !

i€[n]
which is the e-smoothed version of /.-norm of z with
T € (0,1]. Using the formalism introduced in EM theory for
normal/independent random variables [16], it can be shown
that all IRLS algorithms with a weighting scheme with a
completely monotone derivative [25] can be interpreted as an
EM algorithm.

Although [16] shows a one-to-one correspondence between
classical IRLS algorithms and a class of EM algorithms, this
fact is not sufficient to guarantee the convergence of IRLS.
In fact, as already observed in [16], the EM algorithm is not
guaranteed to converge to a limit point but it is only guaranteed
to converge to a set of points. If this set is discrete then the
only connected components are singletons and the algorithm
converges to some point. An ad-hoc proof for IRLS for /-
minimization is provided in [14] in the noise-free setting,
relying on the null space property of the constraint set. In
[16] the proof is extended also for noisy-scenarios using the
connection to the EM theory and the specific properties of the
negative log-likelihood function in (8) (see [16], Appendix A).

The following theorem summarizes the convergence prop-
erties of IRLS for ¢,.-minimization in absence of noise. More
precisely the following theorems have been proved in [14].

Theorem 1 (Theorem 7.7 in [14]). Let K be chosen so that
A satisfies the T-NSP of order K with constant v < 1 — KL—Q—Q
For any y € R"™, let Z.(y) be the set of accumulation points
of the sequence (x")),cn produced by IRLS, and define € =
limy_, o €®). Then the following properties hold:

(i) If € = 0, then Z.(y) consists of a single point T, i.e.,
x®) converges to T, and T € F(y) is an {.-minimizer in
F(y) that is also a K-sparse.

(ii) If € > 0, then for each T € Z.(y) we have

<fv 77>w(§,5,7') = OfOI" all ne N(y)

The convergence is either globally linearly fast (if 7 = 1)
or super-linearly fast (when 7 € (0, 1)) in a neighborhood of
the optimal solution.

Theorem 2 (Theorem 7.9 in [14]). Assume that A satisfies
the 7-NSP of order K with constant v € (0,1) and that F(y)
contains a k-sparse vector x* with k < K. Let T = supp(x*)
and suppose that, for a given p € (0,1), the local error
2(t) — 2*|| < R = pminser |z}|7, then

2—T1

2+ — 2| < x(r, Ky, 7o) o) — 2| ©)

for all t > tq if x and R are such that YR'™™ < 1.



III. SUPPORT DETECTION AND SIGNAL RECONSTRUCTION

In order to illustrate how the proposed algorithms work and
evolve to solve (5), we will first describe their rationale and
philosophy, which is very intuitive. Then, different procedures
will be presented and their relations to the state of the art will
be discussed.

A. Basic idea: an oracle estimator

Before presenting the proposed iterative algorithms to solve
(5), we outline their basic principles. Let us start with some
preliminary observations.

Proposition 1. Suppose Assumption 1 holds and let x> be
the (unique) k-sparse solution of (Ppyp), 0 < a < f =
% Sty || Then the (unique) solution T* of the weighted
least squares problem

DTS

Jj€supp(z*) Jé¢supp(z*)

(10)

min
zE€F (y)

o &,

is such that lim,_,0 7% = x*.

Proof: Let us denote A = supp(z*) and nn = 2% — a* €
N (A). Since Z° is the optimal solution of (10) then for any
h € N(A), we have

> EBhi/B+ Y ifhi/a=0

€A i€A°

(1)

Using Cauchy-Schwarz inequality we obtain
4|2

ol < (325 k< (2 BE 4 50 2B ) g
b B a B e

€A €A i€A°

_ (Z (x5 _ﬂmz')fh' + Z

€A i€A°

e
Li i
«Q

) kB < 2™ oo lnall 1k,

where the last equality follows from (11) with h = 1. We
evince that ||[n4]|1 is bounded by k||2*||«. Similarly, we have
el < ll2*|oolinallu(n — k)a/B < ¥ oo k(n — K)a/B.
We conclude that lim,_,o % = x* as, by Assumption 1, z*
is the unique k-sparse vector in F(y). [ |

This result guarantees that the optimization problem in (5)
can be recast into a weighted />-minimization. The advantage
of this formulation consists in the constrained minimization
of a smooth quadratic function which well approximates the
nonsmooth ¢, pseudonorm in (5) (see Fig. 1). In fact, by
contuinuity of the weighted /5-minimization we get that the
value of (10) is approximately equal to k£ when o =~ 0.
However, it is clear that we do not dispose neither of z* nor
supp(«*) and this approach is impractical.

B. Iterative support detection and estimation

Inspired by previous observation, we consider the solution
of the following optimization problem

22 2
min min -+ + i (12)
Te[n].|T|<n/22€F(y) l; B ; a]

—7=02
04 —GSM

Fig. 1. The £--balls and the weighted £2-ball 22/ + 23/8 = 1 and
22/B + x3/a = 1 with GSM mixture parameters o = 5-10~* and 8 = 1.

with 0 = o << 3. Fixed the set T', the idea is to penalize less
the entries of = supported in 7" (see Fig. 1). Fixed the set T’
the solution is given by

xa,B,T _ QflAT(AﬂflAT)fly,

where () is a diagonal matrix such that Qg = 1/8if £ € T and
Qg =1/ if £ ¢ T. Similar arguments used in Proposition 1
lead to conclude that, under Assumption 1, the solution atla
of (12) tends to the true signal z* when o/ — 0.

Since the problem in (12) is still NP-hard, we are interested
in designing low-complexity algorithms that incorporate both
support detection and signal reconstruction. The methods we
propose belong to a more general family of algorithms.

The first one performs hard support detection and signal
reconstruction in an iterative fashion. The general lines of
the procedure are described in Algorithm 1. The idea is that,
starting from an initial guess 7' of the support of the signal
and of the parameters « > 0 and S > 0, the reconstruction is
provided by the constrained weighted ¢5-least squares

min Z i + Z i
w€F(y) i P ier @
(see Step 3 in Algorithm 1). Then, given the estimation x of the
signal, the support detection identifies a new atom set 7' C [n)]
according to a certain rule. Step 4 of Algorithm 1 performs a
hard assignment of indexes, as each component of the signal is
associated uniquely to one cluster T or, alternatively, to [n]\ 7.
More precisely, the criterion upon which we decide whether
i € Torini € [n]\T is described by a thresoshold test.
Given a threshold § = §(«, 8) > 0 depending on parameters
o and (3, we assign the index ¢ to T if |z;| > ¢ and to [n]\ T
otherwise. Finally, parameters « and 3 are updated and the
procedure is iterated until a specific stopping criterion is met.
The choice of the threshold § and the updates of o and £ will
be clear in Section V.A.

Another option is to alternatively perform a soft support
detection and signal reconstruction. The second family of
algorithms we consider is listed in Algorithm 2. It makes a soft
assignment based on some prior information on the support,



Algorithm 1 Hard support detection and signal reconstruction

Input: Measurements y € R"™, data matrix A € R"
1: Initialization: a(®) = oy, B = g,, TO =T,
2: for t =0,1,...,Stoplter do
3:  Constrained weighted least square minimization:

72
= arg min [Z ﬂ(t Z a(i ]

z€F (W) |ier

2+ —

4. Support detection: set threshold § = 6(04(” BHY >0
T = {i € [n]: || > 8)

5:  Weights update:
A1) Z q(41) (5(E41) Tl

BEFD) . g+ ((t+1) (e4D)y

6: end for

i.e. the assignment represents a belief that a certain component
isin T.

Algorithm 2 Soft support detection and signal reconstruction
Input: Measurements y € R™, data matrix A € R”

1: Initialization: o(®) = ag, SO = 3y, 7 € [0,1]"

2: for t =0,1,...,Stoplter do

3:  Constrained weighted least square minimization:

— 7®y2 (t) 2
2D — arg min Z (1-m ")z T, T
e€F(y) |ieT

3

O 2o

4:  Posterior beliefs of the signal coefficients:

MORION

7D = 7 (z(HD)

5:  Weights update:

QlFFD) = (D) (D) 7 (t41))

B — G (1) (1))

6: end for

Algorithm 1 and 2 do not specify a stopping criterion;
standard criteria are to iterate until the estimate stops changing:
2+ — 2O /]2 < tol for some tol > 0.

C. Relation to prior literature

As in greedy algorithms such as Matching Pursuit, (MP,
[3]) Orthogonal Matching Pursuit (OMP, [4]), Regularized
Orthogonal Matching Pursuits (ROMP, [5]), Stagewise OMP
(StOMP, [26]) and CoSaMP (see [6]), Algorithm 1 identifies at
each iteration a set of indexes 7" and updates the estimation of
the signal based on the knowledge of T". However, regarding
the set selection, Algorithm 1 differs from StOMP, ROMP and
OMP (see [27] for comparisons of these methods), where the
index set T is nested or increasing over the iterations. When
the index set 7" has been computed, Algorithm 1 updates all the
components of z, including both the detected and undetected

ones, at the same time. This feature marks its difference with
the mentioned algorithms which update only components in
T.

In [20] an iterative support detection Threshold-ISD method
is proposed that runs as fast as the best Basis Pursuit algorithm
(BP, [1]). We remark that Algorithm 1 differs from Threshold-
ISD in all steps 3, 4, and 5. Given a set 7', Threshold-ISD
solves a truncated BP instead of a constrained weighted Least

Squares
min E T;|.
zeF(y) g ‘ ‘

It should be noticed that, in this case, for the estimation of the
signal a truncated ¢;-norm is used. While Threshold-ISD, like
CoSaMP, uses a greedy rule to identify index set 7', based
essentially on thresholding techniques, Algorithm 1, as we
will see in the next section, uses a Bayesian rule for the
identification. Finally, it should be noted the update in Step 5
makes Algorithm 1 more flexible than Threshold-ISD.

As already said, both Algorithm 1 and 2 belong to the
more general class of IRLS methods [14], [21], [28]. As will
be discussed in next section, compared to the classical IRLS
algorithms, the weights used in the constrained weighted Least
Squares (see Step 3 in Algorithm 1 and Step 3 in Algorithm
2) depend on the energy of the signal supported in 7" or in the
complementary set of 7' and this marks its difference with
IRLS where the weights associated to component ¢ of the
signal (7), chosen with the aim of approximating the ¢.-norm
of z, turn out to depend exclusively on the value z;.

IV. GSM MODELS FOR SPARSE SIGNALS
A. Bayesian formulation of the signal

Let us now consider a two-state GSM model [7], [16] as a
prior that describes our prior knowledge about the sparsity of
the signal. Because our approximately sparse signal consists
of a small number of nonzero coefficients and many zero
coefficients, we associate each probability density function
with a state variable that can take on two values. Large
and small magnitudes correspond to zero mean Gaussian
distributions with high and low variances. To ensure that we
have few nonzero coefficients, we choose the probability mass
function of the state variable to be Bernoulli with probability
depending on the sparsity rate. The resulting model for signal
coefficients is a two-state GSM distribution. More formally,
let * be a random variable with components of the form

x; = ziv/au; + (1 — z)\/Bu; i€ [n)

where u; are identically and independently distributed zero-
mean Gaussians and z; are identically and independently
distributed positive scalar random variables with probability

mass function
1 1—-»p
zi \Ri) =
fu ) {0 ,

with p = k/n, a =~ 0, and 8 >> 0. In our model we thus have
(see Fig. 2)

foi () = L pesiy P % (13)
me V2ra \2mp3 '



Fig. 2. Mixture Gaussian model for signal coefficients. The distribution of
z conditioned on the two state variables, z = 0 and z = 1, is depicted
with 1 = o << B = 100. the overall distribution is also shown for x with
p=k/n=1/3.

and N N
= H J(wi|2) H f(z).

Since a =~ 0 the family of GSM densities in (13) enhance
sparsity in all coordinates (see Fig. 2).

In the last years, several authors devoted their attention to
sparse signal recovery using prior information on the support
[18], [19]. It is worth remarking that the GSM model is only
used as a proxy for sparse signals.

This mixture model is completely characterized by three
parameters: the sparsity ratio k/n, the variances «, 3, and the
configuration state z (z; = 1 or z; = 0).

With these options on the signal x, our goal is to estimate
the parameters «, 8 and the specific configuration z; of each
components starting from linear measurements y = Az. A
natural approach to our problem would be to consider a joint
maximum likelihood estimation (ML) of «, 8 and a maximum
a-posteriori estimation of z; (see [29]). Let f(x, z|a, 5) be the
joint distribution of x and z given the parameters « and (3,
and consider the negative rescaled log-likelihood function

L (2,0, 0) 1= = log f (2, 2|, B)

The hybrid ML/MAP solution, which for simplicity for now
on we will refer to as the ML solution, prescribes to choose
xr, 2z, a, and 8 as

(xML, ZML, OML; ﬂML)

= arg min L™ (z, z,a, ) (14)
©€F(y),2€{0,1}",a€R* SERT
Standard calculations lead to the following result
L= (2, 2,0, 8)
Z[ ( loga—log(l— )) (15)

- )<£

where ¢ is a constant.

—log 8 — logp>} +c

The minimization of (15) subject to z € F(y), z € {0,1}",
a € RT,5 € RT provides a valuable alternative to solve
(5) even if the assumption on the distribution (13) of z is
not satisfied. In particular, it should be noted that partial
minimizations of L~ (x, z, «, 3) with respect to « and 3 have
a simple form:

n

1
a(x,z) =argminL™(z, 2,0, ) = ST Zzzzf (16)
o =1 =1

B(m, z) = argminl™(x, z, «, 3)
B

. n , o an
E AR S

i=1
Putting (16) and (17) into (15) we obtain a non-convex penalty
function which promotes the sparsity in the estimation:

= n+§;zl< log Zz o —log(1 — ))
+§(1—zl)< logm—logp> +e

The ML estimation can be performed by minimizing the
following function

[E2s

(T
L(ﬂ”‘< n)lﬁn—WMme

‘ |

subject to T € [n] and x € F(y).

The obvious drawback of minimizing (15), and conse-
quently (18), is that this problem is not well posed. In fact, if
we consider the limit ||z7||? — 0 or ||a7¢||> — 0, then the cost
function goes to —oo. Such singularities will always be present
and will occur whenever one of the Gaussian components
collapses onto a specific data point. On the other hand, we can
not expect that ||z7||? # 0 or ||az<||?> # 0, since we desire
a sparse solution. We can hope to avoid these pathological
behaviors by minimizing the following modified cost function:

Jz, 2,0, B, €)
2
Z[Zix +e'/n leogalelog(lf D)

(1—z)af+e/n  (1—2)
+ 25 +

(18)

+c

log8— (1 —2) logp} +c.

(19)

V. GSM BASED IRLS

The considerations above suggest three methods to design
IRLS algorithms for sparse recovery, which we refer to as
ML-IRLS algorithm, EM-IRLS algorithm, and K-EM IRLS
algorithm, respectively.

1) ML-IRLS is an alternating method for choosing minimiz-
ers and weights based on the functional J(z, z, «, 8, €) in



(19) and alternates two steps: hard support detection and
estimation (see Algorithm 1);

2) EM-IRLS is a more refined iterative technique which is
inspired by the so-called EM algorithm for parameters es-
timation and consists in an iterative soft support detection
and signal estimation (see Algorithm 2);

3) K-EM IRLS is a modification of EM-IRLS and so
belongs to the class of algorithms described in Algorithm
2. The idea behind such a modification is to modify the
beliefs on the support in such a way that the n— K entries
of the signal that are expected to be small are penalized

more.
A. ML-IRLS
We initialize the parameters K = K, p = K/n,
a0 = o, 20 = 1, e = 1. Then, for each time
t=0,1,...,Stoplter, we compute
) = arg min J(z, PN QN e(t)) (20)
z€F(y)
) = argminJ(x(Hl),z,a(t),ﬂ(t),e(t)) (21
z€{0,1}
(t+1)
D = min (e(t), ) <3} )KH) (22)
n

(@D D) — argmin J(zFD, 2D o, 8,e®)  (23)
a,B

In particular, the computation of (20), which corresponds
to Step 3 in Algorithm 1, requires the solution of a weighted
least squares problem. If we define

wi =2 /a® + (1= ) /80
then

(E(t+1) _ Q—lAT(AQ—lAT)—ly

with € defined as the n x n diagonal matrix whose j-th
diagonal entry is w](-t). Once z(**1) has been computed, (21)
is given by

Z(t—&-l) _ 1 lf ‘xz‘ < 6(0[,5,27)
t 0 otherwise

and

Finally estimation in (23) are performed according to the
following rules

n t+1
QD) = dic1 z,|x£ )|2 + [e(t1))2

Z:?:1 Zi
(t+1) — i (1— Zi)|l‘§t+1)‘2 + |e(t+D))2
E?:l(l — 2;) ’

B

B. EM-IRLS

A more refined iterative solution is inspired by the so-called
Expectation-Maximization (EM) algorithm [30], [31].

We initialize the parameters K = K, p = K/n,
a® = qo, 7@ = 1, @ = 1. Then, for each time
t=0,1,...,Stoplter, we compute

2 = argmin J(z, 7™, o, g D)
zeF(y)

ﬂ_(t+1) _ f(Z(t-i_l) _ 1|a:(t+1),a(t),ﬂt,e(t)) (25)

7 K2

(24)

t+1
(D) (6(0’ r(a! ))K+1) 26)
n

a,pB

In particular, (24) requires the solution of a weighted least
squares problem. If we define

Wl =70 fal® + (1—x(")/80 i€ [n]
then

J,‘(H_l) — Q_lAT(AQ_lAT)_ly (28)
where €2 is the n x n diagonal matrix whose j-th diagonal
entry is w§t). Once z**1) has been computed, the estimation

(25) is given by

(t+1) 2
=g 17 log(a) (1
(t+1) _ o~ e — % +log(1-p)
T - 12D 2 D12
——tga— 3 log(e)Hog(1—p) 4 o=z~ 2 tlogp

and the update (27) is performed according to the following
rules

n t+1
S w2 4 et

(t+1) _
¢ B ’
Z?:l T
ﬂ(t+1) o Z:;l(l — ﬂ-i)ll‘l(-t+1)|2 + ‘6(t+1)‘2
Z?=1(1 — ;) ’
C. K-EM-IRLS

Finally, we propose a modification of EM-IRLS. K-EM-
IRLS differs from the previous algorithm because in the E-step
a thresholding operator o,,_ i is applied in order to promote
the sparsity in the probability vector 7. More precisely, it acts
on 7 by taking the n — K biggest elements

On—x(v) = argmin |z — .
z€R™:||z][o<n—K
We initialize the parameters K = K, p = K/n,
a® = Q, 70 = 1, e = 1. Then, for each time
t=0,1,...,Stoplter, we compute
) = argmin J(z, 7, a®, g0 1)
z€F (y)
7TZ(tJrl) _ f(zz(t+1) — 1|x(t+1),a(t)”@t76(t))
D) — Un—K(W(t_H)) (29)
D) — i <€<t> WWU)KH)
’ n
(a(t+1)7ﬁ(t+l)) = arg minJ(x(tH), 7t o, 8, e(t)).

a,B



VI. THEORETICAL RESULTS
A. Convergence of the proposed methods

In order to state our results in formal way, it is convenient to
rewrite the dynamics of the proposed algorithms. In particular,
we express the iterations as follows. The updates of GSM-
IRLS are denoted as follows: given 9(0), we consider the
dynamical system

oUtD = (o) (30)

where U & {\I’ML, \I/EM, \I/K_EM},
1) Wy, is the map composition described by (20)-(23) and
0 = (2t 2 o®) BE) (1),
2) Wgy is the map composition described by (24)-(27) and
61 = (2, 7() o) g1 @),
3) Ui gm is the map composition described by equations
in (29) and ) = (z® 7O o®) 31O 0
In other terms, the recursive formula in (30) joins in one
step the operations that in the GSM-IRLS algorithms are split
into multiple steps, but the dynamics are actually the same.
The algorithms have been designed in such a way that there
exists a function V' which is non-increasing and convergent
along the sequence of iterates:

V(W) = v(E(e©W)) = v(6"D).

More precisely, we have
1) VML(G) = VML(Ia Z, /Ba 6) = J(m) Zy O ﬁ? 6) is the
function defined in (19);
2)

VEM(Q) = VEM(xvﬂ-a a»ﬁv 6)

= _%ZH(WZ) —‘,—J(ZL‘JT,Oé,B,E)

i=1

€29

where H : [0,1] — R is the natural entropy function

H(¢) = —Clog ¢ — (1 = ¢)log(1 = ().

The next theorem ensures that, under certain conditions, also
the sequence (H(t)) is converging to the set of fixed points of
v,

Theorem 3 (Convergence). Let us assume that for every index
set T' C [n] with |T'| = K the columns of A associated with T
are linearly independent and define € = lim;_, o €.

For any y € R™, the sequence

OD)en = (20,70 D o® g1,

produced by GSM-IRLS converges to a fixed point of U.
Moreover, if € = 0 then (") converges to a point T that is
also K-sparse.

The proof of Theorem 3 for EM-IRLS, postponed to Ap-
pendix A, is obtained using arguments of variational analy-
sis. More precisely, the following facts are proved: (a) the
sequence (9(t))teN is bounded; (b) two successive iterations of
these algorithms become closer and closer: lim;_, o, ||9(t+1) —
0| = 0. The assertion is then concluded by continuity of
W. The convergence of K-EM-IRLS uses similar arguments,
while the proof of ML-IRLS can be obtained by first proving

(a), (b) and the stabilization of discrete variables of zi(t) in

finite time by modeling the system as a switching dynamical
system (see [32]).

In other terms, as is typically the case with constrained
£, minimization problem (6) with 7 € (0,1), Theorem 3
does not ensure that Algorithm 1, 2, and 3 converge to the
sparsest solution of (4). However, it does provide sufficient
conditions that are verifiable a posteriori (e.g., € = 0) for such
convergence. The reason for this weaker result lies in the non-
convexity of the cost function in (19). Nevertheless, in the
following theorem we show a local convergence result, which
also highlights that the proposed techniques are quadratically
fast in a neighborhood of a sparse solution.

Theorem 4 (Quadratic rate). Assume that A satisfies the NSP
of order K with constant ~y € (0,1) and that there exists a
k-sparse vector x* € F(y) with k < K. Let A = supp(z*)
and

1 ie€A°
ﬂAc = . .
0 otherwise
There exist Ry, Ro, R3, Ry > 0, such that if

lz) — 2*[| < Ry,

5(750)

||7T(t0) - ]lAcH < R27
2
|a(to)| < Rs, _ ||£L'*H

S R47

then for all t > ty

20D — 2| < xala®],  atHD — Dpe]] < xala® M2
Il PSRN

p < xala'™]
(32)

with x; := Xi(R1,Re, Ry,v,K,n) for i € {1,...,4} and
such that

Ry [Ry\> 1 [Rs\?
R3<min{1,(2> ,,<4> ,1}.
x1'\x2/ "x3"\ x4

This result is proved in Appendix B for EM-IRLS but
similar arguments can be used for ML and K-EM-IRLS.
Theorem 2, as Fact 2 for ¢,.-minimization, states that there
exists a region where the convergence to a sparse solution
is guaranteed and is quadratically fast. We conclude that the
proposed methods outperform classical IRLS in terms of rate
of convergence.

It should be emphasized that Theorem 2 provides only
a sufficient condition for this convergence. In principle the
region of quadratic convergence could be very small if at least
one among X1, X2, X3, and x4 is quite large. In the following
section we exhibit different simulations that show that this is
not the case: while classical IRLS with 7 < 1/2 get trapped
in local minima, the proposed method converge quadratically
fast to the desired solution.

|a(t+1)| < X3|Oé(t)\2, ’ﬁ(t+1)

(33)

VII. NUMERICAL EXPERIMENTS

In this section we discuss a series of experiments in order to
assess the performance of the proposed GSM-IRLS methods
in terms of convergence time and accuracy. We also show that
these algorithms yield exact reconstruction in the noiseless
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Fig. 3. A typical evolution of the approximation error E(t) = [Jz(t+1) —

z*||/||=*|| for classical IRLS algorithms (with 7 = 1,0.7,0.2) and IRLS
based on ML and EM. The nonzero components of the signal z* are drawn
from a uniform distribution U([—10, 10]).

scenario and are robust in presence of noise, in that small
errors on the measurements produce small perturbation in the
reconstruction.

A. Reconstruction from Noise-free Measurements

We begin with some experimental results describing the
performance of GSM-IRLS methods in terms of convergence
times and reconstruction capability in absence of noise. Our
experiments include three different test sets: in the first and
the second experiment we use synthetic signals and the last
analysis considers a two-dimensional image, taken from the
Sparco toolbox [33].

1) Rate of convergence (demo): A signal x* to be recovered
is generated choosing k = 45 nonzero components uniformly
at random among the n = 1500 elements and drawing
the amplitude of each nonzero component from a uniform
distribution U([—10,10]) in order to introduce a mismatch in
the signal model. The sensing matrix A with m = 250 rows
is sampled from the Gaussian ensemble, n with zero mean
and variance 1/m. Such matrices are known to satisfy the
NSP (see Definition 3) with high probability [34]. We have
initialized the parameters o(®) = 0.1, 7(®) = 1 and K = 55.

In Fig. 3, we compare the convergence rate of classical
IRLS for different choices of 7 = 1,0.7,0.2 and GSM-based
methods. In particular, the approximation error of the iterates

E(t) = [« — 2*||/||2*]

to the unique sparsest solution of (5) is depicted as a function
of the iteration step. The case with 7 = 1 shows linear conver-
gence and for the smaller values of it (i.e., 7 = 0.7), the error
decay initially follows a linear, transient regime; however, once
the iterates get sufficiently close to the sparse solution vector,
the convergence is seen to speed up dramatically resulting
in super-linear convergence. For smaller values of 7 (i.e.,
7 = 0.2), we often do not observe convergence to the sparsest
solution of (4). In fact, if 7 < 0.5, then the algorithm tends to

fail to reach the region of guaranteed convergence. The GSM-
IRLS are faster than classical IRLS methods: the transient
linear regime lasts less and the local region of super-linear
convergence is larger than classical IRLS methods based on
£,-minimization with 7 < 0.5.

2) Empirical probability of reconstruction: We compare the
performance of GSM-IRLS with classical IRLS methods, Ba-
sis Pursuit (BP, [35]), Iterative support detection (Threshold-
ISD, [20]) and Orthogonal Matching Pursuit (OMP, [4]), in
terms of the empirical recovery success rate, averaged over 50
experiments, as a function of the sparsity level and number of
measurements. The recovery is considered successfully when
the reconstruction error is below 1074

In the first experiment the matrix A € R169%512 jg generated
as above; then, for each sparsity level & € [10,100] , the signal
x* is generated choosing k nonzero components uniformly
at random among the n = 512 elements and drawing the
amplitude of each nonzero component from a uniform dis-
tribution U([—10,10]). IRLS’s smoothing parameter and the
Threshold-ISD parameters have been optimized as suggested
in [20]. For GSM-IRLS we have set o(®) = 1, 7(¥ = 1,
K = k+30 and fixed a total number of iterations equal to 200.
In Figure 4, it should be noticed that GSM-IRLS outperform
the classical ones with 7 = 1 and 7 = 0.7 in terms of sparsity-
under-sampling tradeoff and the BP. Since classical IRLS with
7 = 1 has the global convergence property, we expect it to
reach the accuracy obtained by BP. However, the convergence
is extremely slow and before 200 iterations we get only an
approximation with an error of order 1072 in most of the
cases. In the same picture are also reported the curves obtained
using OMP with sparsity guess equal to k. In the considered
setting OMP enjoys similar performance to BP only with the
perfect knowledge of the sparsity of the signal. We leave it
to the reader to verify that, as soon as the sparsity level is
not perfectly known, the relative error is of order 1071, We
would like to remark that IRLS methods are not affected by the
choice of the sparsity guess if K < n/2. Moreover EM-IRLS
reaches performance comparable to Threshold-ISD.

In the second experiment, we test the performance using
sparse Bernoulli signals (see also Test set 4 in [20]): x* is
a column vector of length n = 600 with £k = 40 nonzero
components equal to +1 with probability 1/2, respectively.
The signal is measured by a Gaussian matrix, taking m random
measurements. The GSM-IRLS parameters have been set as
follows: a(® =1, #(9 = 1, K = 55 and a total number of
iterations has been fixed to 200. Figure 5 depicts the empirical
recovery success rate (when the relative reconstruction error
of the estimate provided is below 10~%) averaged over 50
experiments, as a function of the number of measurements
m € [80,220]. In particular, Threshold-ISD, EM-IRLS and
K-EM IRLS achieve the same recoverability, which is signif-
icantly higher than that obtained using BP. The recoverability
of the OMP method is the worst. It can be checked that the
empirical probability of reconstruction obtained with other
greedy methods like StOMP starts to become positive as soon
as m > 340. It should be noticed that for this signal model also
ML-IRLS does not achieve a good recovery and get trapped
into local minima as classical IRLS with 7 < 1/2.
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Figure 6 shows the average running times (over 50 exper-
iments) of the algorithms and the error bar represents the
standard deviation of uncertainty. This picture testifies that
IRLS methods are much faster than both Threshold-ISD and
BP. We conclude that EM-IRLS and K-EM IRLS are not only
the fastest algorithms but also required minimum number of
measurements.

3) Sparco 501: In Sparco 501 and in the discussion that
follows, a two-dimensional image is vectorized before the
application of any linear operator. In particular, the vectorized
form of an image X* € R64*64 s trasformed into z* defined
as

a* =vee(X*) = (X7 Xx3T ... XxxD)T

We assume that the image has relatively sparse representations
in Haar wavelets; i.e., there exists z* € R%0996 guch that

¥ =Wz*
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Fig. 6. Empirical probability of successful recovery as a function of the
number of measurements m € [80,220] with sparse Bernoulli signals n =
600 and k = 40.

where W € R4096x4096 i the Haar wavelet basis, and z* is ap-
proximately sparse. We use a gaussian matrix A € R2048x4096
to compute

y= Az = AWz*

We try to obtain the wavelet coefficients z by using IRLS
methods. Finally, we complete the recovery by computing T =
Wz.

Fig. 7 depicts the relative error between the true Haar
coefficients of the image and the recovered Haar coefficients
as a function of iterations: after 30 iterations the GSM-IRLS
provide an approximation with a relative error of order 10~ 4
and the classical methods are able to achieve just an error of
order 1072 for 7 = 1 and of order 10~! for 7 = 0.5,0.7.
Fig. 8 and Table I compare the recovered images and the
relative errors obtained by greedy algorithms such as OMP
[4], Basis Pursuit (BP, [35]), classical IRLS methods for ¢,-
minimization with different values of 7, sparse reconstruction
schemes via Threshold-ISD [20], and GSM-IRLS techniques.
It can be shown that greedy algorithms are not able to obtain
good recovery. Classical IRLS with 7 = 1 will reach the
accuracy of BP but the decay of error is only linear and after 30
iterations the relative reconstruction error is of order 2.7-1072.
Classical IRLS with 7 = 0.7 and 7 = 0.5 are trapped into a
local minima and the resulting reconstruction error is larger
that the one obtained with 7 = 1. Only the algorithms based on
the combination of iterative support detection and estimation
(Threshold-ISD and GSM-IRLS) are able to reach very high
accuracy in a reasonable number of iterations. In particular,
Threshold-ISD has success after solving one ¢;-minimization
and six Truncated-¢; -minimization problems (about CPU Time
= 132 [s]), while GSM-IRLS reach the accuracy after about
20 iterations (about CPU Time = 56 [s]).

B. Reconstruction from Noisy Measurements

1) Rate of convergence (demo): The IRLS algorithms can
be extended for the minimization problem (P:s) in (6). At
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(a) Wavelet coefficients of the image: n = 4096, k = 1056.
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Sparco 501: Original and recovered images for Shepp-Logan phantom. The image has been recovered using m = 0.5n linear measurements. After

20 iterations the GSM-IRLS provide an approximation with a relative MSE of order 10~!% and the classical methods are able to achieve just an error of

order 10~2 for 7 = 1 and of order 10~ for 7 = 0.5,0.7.

[ Algorithm [ Tter | MSE |
OMP 55 3.8.10°1T
BP - 2.7-102
IRLS 7 =1 20 | 6.9-1072
IRLS T=0.7 || 20 | 1.4-1071T
IRLS 7 = 0.5 20 2.1-10°1
Threshold-ISD 7 4.1-10" 1%
ML-IRLS 21 | 31-10"14
EM-IRLS 18 [ 1.1-10714
K-EM-IRLS 16 | 1.8.107 1%

TABLE I
RELATIVE RECONSTRUCTION ERROR OF RECOVERED IMAGES FOR
SHEPP-LOGAN PHANTOM (SEE ALSO FIGURE 8). ONLY THE ALGORITHMS
BASED ON THE COMBINATION OF ITERATIVE SUPPORT DETECTION AND
ESTIMATION (THRESHOLD-ISD AND GSM-IRLS) ARE ABLE TO REACH
VERY HIGH ACCURACY IN A REASONABLE NUMBER OF ITERATIONS.

each iteration the IRLS algorithm corresponds to a constrained
weighted least-squares problem (x € F(y,d)) and can be
efficiently solved using standard convex optimization tools.
As observed in [16], if the output SNR is greater than 1, then,
at each iteration, O is not a feasible solution and the solutions
lie on the boundary of F(y,d). Classical IRLS appears very

robust and stable with a linear (if 7 = 1) or super-linear
(when 7 € (0, 1)) convergence in a neighborhood of the global
minimizer of (P, ;) (see [16] for a rigorous proof).

As a first experiment, we have considered a noisy sce-
nario: the signal z* to be recovered is generated choosing
k = 45 nonzero components uniformly at random among
the n = 1500 elements and drawing the amplitude of each
nonzero component from a uniform distribution U([—10, 10]).
The sensing matrix A with m = 250 rows is sampled from the
Gaussian ensemble, n with zero mean and variance 1/m. The
the vector 7 is an additive white Gaussian noise with standard
deviation o = 0.01. We assume the standard deviation of the
noise is known in advance and, as E[||n||?] = mo?, we set
§ = y/mo. We have initialized the parameters o’ = 0.1,
7(® = 1 and K = 55. Figure 9 shows that all the tested
algorithms converge to a fixed point of the algorithm in few
iterations. For smaller 7 = 0.5, we often do not observe
convergence to the desired solution. In fact, since the £,-norm
is not a convex function, the algorithm easily gets trapped
in local minima. It is worthwhile noting that the estimations
obtained by the proposed GSM-IRLS are significantly more
accurate in terms of the mean square error compared to those
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Fig. 9. Noisy scenario: A typical evolution of MSE as a function of the
iterations for classical IRLS algorithms (with 7 = 1,0.7,0.2) and GSM-
IRLS. The nonzero components of the signal x* are drawn from a uniform
distribution U([—10, 10]) and the vector 7 is an additive white noise with
standard deviation o = 0.01.

obtained with the classical IRLS methods.

2) Robustness: In Figure 10 we use the same test set of
the previous section and show that the proposed methods
are robust against noise. More precisely, the mean square
error, averaged over 50 runs and obtained after 50 iterations,
is depicted as a function of Signal-to-Noise ratio (SNR). It
should be noted that only few iterations are required to reach
a satisfactory degree of accuracy. In all curves we can clearly
identify the log-linear dependence of the MSE as a function
of the SNR and, consequently, of the parameter J. Moreover
the MSE of the proposed algorithms are smaller than those
obtained via classical IRLS algorithms with 7 = 1,0.7 and
7 = 0.5. As already observed, the MSE of classical IRLS
with 7 = 0.5 is very high compared to the other methods.
Moreover, it does not decrease as the SNR increases and the
algorithm turns out to be not robust against noise. This is due
to the fact that the algorithm gets trapped into local minima
and is unable to reach the global minima of (P; s).
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Fig. 10. Mean square error after 40 iterations as a function of the SNR
for classical IRLS (with 7 = 1, 7 = 0.7 and 7 = 0.5) and the proposed
GSM-IRLS.

VIII. CONCLUDING REMARKS

In this paper, we designed three new techniques for sparse
recovery problems. These iterative procedures, obtained by
combining constrained likelihood maximization under GSMs
assumptions and IRLS methods, are very powerful. The main
theoretical contribution includes the proof of convergence
of the algorithm to a fixed point and the conditions for
local quadratic convergence in noise-free scenarios. Numerical
results confirm our predictions and show that the proposed
algorithms outperform classical IRLS schemes and related
algorithms based on iteratively ¢; minimization in terms of
convergence rate and sparsity-undersampling tradeoff even in
presence of noise.

APPENDIX

In this section we prove rigorously Theorem 3 and 4, which
state the convergence of the algorithms to a fixed point of the
map W. We provide the proof for EM-based IRLS and similar
arguments can be used also for ML and K-EM based IRLS.

A. EM-based IRLS: Convergence

In this section we prove the convergence of the EM-based
IRLS (Theorem 3). We begin with the following preliminary
results.

Lemma 1. Ler us assume that for every index set I' C [n]
with |T'| = K the columns of A associated with T are linearly
independent. Then, the set of feasible points x € F(y) such
that ||z]|o < K is finite.

Proof: From hypothesis, it should be deduced that the set
of feasible points x € F(y) such that ||z|lp < K is finite.
In fact, if we consider for any set S C [n] so that |S| < K,
submatrix Ag of A comprised of the columns corresponding
to the set S, then by the assumption it follows that the
matrix Al Ag is nonsingular and x = (AfAg) tALy. To



summarize, for each set of indices S satisfying |S| < K,
there is at most one candidate in F(y) with support S. Since
the number of subsets of [n] is finite, the result follows. B

Proposition 2. The function V defined in (31) is nonincreasing
along the iterates (0®))cn.

Proof: Let 7 = m(z, a, B, €) =
argmingcg. V(2,€, @, B8,¢) then, by differentiating V'
with respect to 7; we obtain

o2 log(a
o~ 2t — 25 tlog(1-p)

~

T, =

(34)

2

z2 7 log(B)
o~ 7~ loa(@)Flog(1-p) y o=k~ %5 +logp

and 32V/87r§ > 0.
It should be now noticed that, for each time ¢ € N, we have
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Lemma 2. Let us define the sequence of weights
O (t)
® _ Ti 1—m
Wit = 5,® T 280
and assume that for every index set T' C [n] with [T'| = K
the columns of A associated with T" are linearly independent.

Then, the sequence (ml(-t))teN is bounded and (wgt))teN is
lower bounded for all i € [n] and t € N.

(35)

Proof: From Proposition 2 we obtain
a®

n+ Z log o + Z log B — Z H(m;)

— Zwit) log(1 — Z 1— 7r(t) )logp
i=1 i=1

=V (z®, 7 RINCIONEO)

< V(x(l),w ’5(1)76(1))'

Then, there exists a constant C' € R such that

Zl logﬁ(t +Z

i=1
We prove now that both a(Y) and () must be upper bounded.
Suppose ad absurdum that 5() — 400, then by (36) at) — 0
and

® <.

(36)

lim €® > lim r(z®), =0

t—o0 t—o0

for all £ > K +1. This implies that there exists a subsequence
(') jen and a set S with |S| < K such that

lim 247 = 0.
g, Tt =0

From Lemma 1 and the fact that x(t/) € F(y) then there exists
a K-sparse accumulation point Z such that lim;_, i) =
. This fact implies that the sequence ((*/));cy is bounded
and, consequently (5(ti))j€N is bounded, as it is a convex
combination of finite points. We conclude that

1 ifi¢gs |z
lim 7% = lim ) = .
Jgnooﬂ- {0 ifies ]gnooﬂ K
From (28) and by continuity we get lim; xl(-t) = 7 and

limy_y oo ﬁ(t) = @, hence the contradiction. The same argu-
ments can be used if we suppose lim;_, a® = 4+00. Since
both sequences (a(*),en and (). are upper bounded
by a constant C' € R, then also (2("));cy is bounded and
(w(t))teN is lower bounded for all ¢ € [n]:

i
O
=1
t t
(t)H2 7T§ : 1- () > l
a) ﬂ(t) C’

(t)H2 (t)) <Cn

[z
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|

The following lemma ensures that two successive iterations

of these algorithms become closer and closer. This property

implies that these algorithms converge numerically when the
number of iterations goes to infinity.

Lemma 3.

¢+ _ 2@ =0

lim ||z
t— o0

Proof: Let us consider the weights wl(t) defined in (35)
with 7 € N. For each time ¢t € N, we have

V(a®, 70 o0 g0 (0)
V(x““) (D) (1) gt+1) (41))
>V (e®, 7 a(t) B0, <t>)
— V(D) 70 o® g0 (1)
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From (24) we have for any n € N (4)

Sl =

and observing that 2 — z(*+1) € A/(A) we obtain
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with w > 0 (see Lemma 2). Summing both sides over times
t € N we get there exists a constant C' > 0 such that

S lle® — a2 <0
teN
from which we evince the statement of the theorem. [ |

Proof of Theorem 3: (a) From Lemma 2 the sequence
(x®) is bounded and by the Bolzano Weierstrass Theorem,
there exists a subsequence (zP7);en such that

lim 2 = 7.
t—o00

From (28) and by continuity we get lim; oo :r(pﬁl)

lim; oo a:(p 1) — = 7. and using the continuity of ¥ we conclude
U(z) =17.

(b) Let us suppose that there exists a time t; such that
e(t) = 0, then the algorithm is stopped at t = o and e(t0) =
r(x®)) g = 0, ie. (') is K-sparse. By assumption and
by the fact that z(*0) € F(y) we obtain that z(*0) = Z which
is the only K -sparse vector in F(y).

Let us assume now that ¢®) > 0 for all t € N and € = 0.
Then there is an increasing sequence (t¢)¢en and a set S € [n]
with |S| < K such that lim;_, xstf = 0. From Lemma 2
the sequence (z(!)) is bounded and, consequently, there exists
a subsequence (p;);en of (t7)¢ew such that

lim 2z =%
t—o0

with Zge = 0. By assumption we conclude again £ = T which
is the only K -sparse solution in F(y). We conclude that

1 ifi¢ s 7|2
lim wft ) = 1 ME lim g%) = 7||x|| .
j—oo 0 ifee S j—o0
From (28) and by continuity we get lim;_, xgt) =TI =T.

B. EM-based IRLS: Quadratic rate of convergence

We prove now Theorem 4 through intermiediate steps. Let

A = supp(z*) and n® = ||z — 2*||.

Lemma 4. The following equality holds

2 <W§t) AP+ 2T
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Proof: We start with the observation that
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e + 2
(t) (t)
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- a® 30 i

icA
where the last step follows from the optimality condition in
(24) and from z*|5c = 0. [ |

Proof of Theorem 4: We prove the statement by induction
ont € N. Let A = supp(«*) and, for a given p € (0, 1), define

R = pmm |7 ].

We assume (inductive assumption) that for some Ry € (0, 1),
R3 € (0,1), and R4 € (0, ||*]|?/4)
Jo® —a*| < Ry, [n) —1ac]| < Ry

* |2
la®| < Rs, |B® - ka|| <R

and we will derive (32).
If n® = 2® — 2* is such that ||p"|| < Ry, then we have
foralli € A

] < |ln@| < Ry < plag)-

We evince that for all ¢ € A
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The combination of the above inequality with Lemma 4 and
the NSP (see Definition (3)) yields

3 £+1—W§t) (D2
a® T T pm )

i€[n]
< Alln™ sl < Ay ac 1

Using the Cauchy-Scharz inequality and defining

Jo_m)  1-m)

wi' = oot aw
we obtain

[ lacllf < (Z |n§t“>2wi> (Z wf’”rl)
i€Ae i€Ae
< A0 aclhy (Z lw§”-1)
ieAe

If n(*+1[xc = 0 then the algorithm is stopped and in finite

time the algorithm reaches the sparse solution z*. Let us

suppose now that (t+1)|yc # 0 then
I aclle < InDaclly < Ay Y 7

i€Ae
Z ())-1 Z OB PSUAS Z a®
jwi | = “wt—=o | <2 —w
= i€Ae al® s = 7"5 :
<(n—k)a® (1-Ry)!

from which we conclude

It should be noticed that

I |acllz < xal” (37)
with y = Ay(n — k) (1 — Ry)™" . We thus have
D12 = [ AL + D ae )2
< (L+72(n = k)Y el
< (1472 = k)PP (38)
If we define
N e Ty 2ny(n — k)14 v2(n —k)

(1 — p)?minep |2F|(1 — R2)
we obtain the first inequality in (32).

From the inductive hypothesis |3(*) — W| < Ry and the
fact that (2(*));cy is bounded (see Lemma 2) we have that
there exists ¢ so that Vi € A

(D)2 | (+1))2
t o' 712 e 24 _
7D < B )ef 2a® T 25® p
@ al) P
c (1-p)?|zF|? (39)
S e 2a(t)
Va®)

and, consequently, 7r§t+1) < Bl|aW|? for some positive

constant B. Notice that, since :cEtH) are bounded and () >
lz*||*/k — R4 > 0, then there exists a constant C' > 0 so that
Vi e A¢

(t+1) 2
NG i i S W
1— 71_l(t-i-l) < %e 2 (a(t)

ﬁ) S [ORY a(t)_

If we define xyo = nmax(C, B)y/a we obtain the second
inequality in (32).
From (26) and inequality (4.4) in [14] we have

r(z®+D (t+1)12
_ (o I+

K1)

(t+1)2 ()
[ n2 _(K+1—k)22_D|a *
(40)
where D := K_&i_%k)% and the last inequality follows from

(38) and Cauchy-Schwarz inequality.
Let us consider now

t+1 t+1
Siepm i P 4 [P

. Zle[ ]W(t“)
C Tieam PP 4 e P 4 1P
Zze[ ]W(t+1)
< ZZGA ﬂ.(t+1)|x(t+1)‘ + |\77(t+1)\Ac||2 n |e<t+1 |
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Combining the above inequality with (37), (39) and (40) and
from hypothesis we obtain ™) < y3]a(?)|? with constant
a positive constant .

Finally, we consider
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We conclude that there exists a constant 4 such that | B(t“) —
* 112
%| < xaVa® If we consider the assumption in (33), we



now have

Jo ) — " < Ry, 70D — Lpe| < Ra,

6(t+1) - ||$*H2

latV)] < Ry, < Ry,

which completes the inductive step.
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