
Dynamic Partial Reconfiguration for Dependable
Systems

Giulio Gambardella

Giulio.Gambardella@polito.it

Submitted in total fulfillment of the requirements

of the degree of Doctor of Philosophy

January 2014

Faculty of Computer Engineering

Department of Control and Computer Engineering

Politecnico di Torino

Herewith declare that I have produced this paper without the prohibited assistance of third par-

ties and without making use of aids other than those specified; notions taken over directly or

indirectly from other sources have been identified as such. This thesis has not previously been

presented in identical or similar form to any other Italian or foreign examination board. The the-

sis work was conducted from 01/2011 to 12/2014 under the supervision of Prof. Paolo Prinetto at

Politecnico di Torino.

LIST OF PUBLICATIONS

Journal papers

S. Di Carlo, G. Gambardella, P. Prinetto, D. Rolfo, P. Trotta: SATTA: a Self-Adaptive Temperature-

based TDF awareness methodology for dynamically reconfigurable FPGAs, ACM Transactions on

Reconfigurable Technology and Systems (TRETS)

S. Di Carlo, G. Gambardella, P. Prinetto, D. Rolfo, P. Trotta: SA-FEMIP: a Self-Adaptive Features Ex-

tractor and Matcher IP-core based on Partially Reconfigurable FPGAs for Space Applications, IEEE

Transactions on Very Large Scale Integration Systems (TVLSI)

Conference papers

S. Di Carlo, G. Gambardella, M. Indaco, D. Rolfo, P. Prinetto: A unifying formalism to support au-

tomated synthesis of SBSTs for embedded caches, on Proceedings of the 9th East-West Design &

Test Symposium (EWDTS), pages 39–42, 9th – 12th September 2011, Sebastopol (Ukraine).

S. Di Carlo, G. Gambardella, M. Indaco, D. Rolfo, P. Prinetto: MarciaTesta: an automatic generator

of test programs for microprocessors’ data caches, on Proceedings of the 20th Asian Test Sympo-

sium (ATS), pages 401–406, 20th – 23rd November 2011, New Delhi (India).

S. Di Carlo, G. Gambardella, M. Indaco, D. Rolfo, P. Prinetto: Validation & Verification of an

EDA automated synthesis tool, on Proceedings of the 6th International Design and Test Work-

shop (IDT), pages 48–52, 11th – 14th December 2011, Beirut (Lebanon).

S. Di Carlo, G. Gambardella, M. Indaco, D. Rolfo, G. Tiotto, P. Prinetto: An Area-Efficient 2-D Con-

volution Implementation on FPGA for Space Applications, on Proceedings of the 6th International

i

Design and Test Workshop (IDT), pages 88–92, 11th – 14th December 2011, Beirut (Lebanon).

S. Di Carlo, S. Galfano, G. Gambardella, M. Indaco, P. Prinetto, D. Rolfo, P. Trotta: NBTI Mitigation

by Dynamic Partial Reconfiguration, on Proceedings of the 13th Biennal Baltic Electronics Con-

ference (BEC), pages 93–96, 3rd – 5th October 2012, Tallinn (Estonia).

S. Di Carlo, G. Gambardella, T. Huynh Bao, P. Prinetto, D. Rolfo, P. Trotta: ZipStream: improving

dependability in Dynamic Partial Reconfiguration, on Proceedings of the 7th International De-

sign and Test Symposium (IDT), pages 1–6, 15th – 17th December 2012, Doha (Qatar).

S. Di Carlo, G. Gambardella, P. Lanza, P. Prinetto, D. Rolfo, P. Trotta: SAFE: a Self Adaptive Frame

Enhancer FPGA-based IP-core for real-time space applications, on Proceedings of the 7th Interna-

tional Design and Test Symposium (IDT), pages 1–6, 15th – 17th December 2012, Doha (Qatar).

S. Di Carlo, G. Gambardella, M. Indaco, I. Martella, P. Prinetto, D. Rolfo, P. Trotta: A software-based

self test of CUDA Fermi GPUs, on Proceedings of the 18th European Test Symposium (ETS), pages

1–6, 27th – 30th May 2013, Avignon (France).

S. Di Carlo, G. Gambardella, M. Indaco, I. Martella, P. Prinetto, D. Rolfo, P. Trotta: Increasing the

robustness of CUDA Fermi GPU-based systems, on Proceedings of the 19th International On-Line

Testing Symposium (IOLTS), pages 234–235, 8th – 10th July 2013, Chania (Greece).

S. Di Carlo, G. Gambardella, P. Lanza, P. Prinetto, D. Rolfo, P. Trotta: FEMIP: A high performance

FPGA-based features extractor & matcher for space applications, on Proceedings of the 23rd Inter-

national Conference on Field Programmable Logic and Applications (FPL), pages 1–4, 2nd – 4th

September 2013, Porto (Portugal).

S. Di Carlo, G. Gambardella, M. Indaco, P. Prinetto, D. Rolfo, P. Trotta: Dependable Dynamic Par-

tial Reconfiguration with minimal area & time overheads on Xilinx FPGAs, on Proceedings of the

23rd International Conference on Field Programmable Logic and Applications (FPL), pages 1–4,

2nd – 4th September 2013, Porto (Portugal).

S. Di Carlo, G. Gambardella, I. Martella, P. Prinetto, D. Rolfo, P. Trotta: Fault mitigation strategies

for CUDA GPUs, on Proceedings of the International Test Conference (ITC), pages 1–8, 6th – 13th

September 2013, Anaheim (USA).

T. Sanislav, G. Mois, S. Folea, L. Miclea, G. Gambardella, P. Prinetto: A cloud-based Cyber-Physical

System for environmental monitoring, on Proceedings of the 3rd Mediterranean Conference on

Embedded Computing (MECO), pages 6–9, 15th – 19th June 2014, Budva (Montenegro).

S. Di Carlo, G. Gambardella, P. Prinetto, D. Rolfo, P. Trotta, A. Vallero: A novel methodology to

increase fault tolerance in autonomous FPGA-based systems, on Proceedings of the 20th Interna-

tional On-Line Testing Symposium (IOLTS), pages 87–92, 7th – 9th July 2014, Platja d’Aro (Spain).

S. Di Carlo, G. Gambardella, P. Prinetto, F. Reichenbach, T. Løkstad, G. Rafiq: On enhancing fault

injection’s capabilities and performances for safety critical systems, on Proceedings of the 17th

Euromicro Conference on Digital System Design (DSD), pages 583–590, 27th – 29th August 2014,

Verona (Italy).

CONTENTS

List of Figures vii

List of Tables x

1 Introduction 1

2 Dependability issues in digital systems: an overview 5

2.1 Single Event Effects . 6

2.1.1 Physical causes . 9

2.1.2 Single Event Transient in digital logic . 10

2.1.3 Single Event Upset in SRAM . 14

2.2 NBTI: Causes and Effects . 16

2.2.1 Effects on digital logic . 20

2.2.2 Effects on SRAM memories . 22

3 FPGA architecture and Dynamic Partial Reconfiguration 25

3.1 FPGA Families . 26

3.1.1 Antifuse-based FPGAs . 28

3.1.2 Flash-based FPGAs . 29

3.2 SRAM-based FPGAs . 31

3.3 Dynamic Partial Reconfiguration . 33

4 Enhancing dependability of dynamically partially reconfigurable systems 41

4.1 Dependable DPR with minimal Area & Time overheads on Xilinx FPGAs 42

4.1.1 Xilinx approach . 42

4.1.2 Proposed Methodology . 44

4.1.2.1 Partial bitstream file splitting . 45

4.1.2.2 DfD#1: Critical links protection . 48

4.1.2.3 DfD#2: Critical modules protection 48

4.1.3 Experimental results . 48

4.1.3.1 Xilinx approach implementation 49

4.1.3.2 Proposed approach implementation 50

4.1.3.3 Comparison . 52

4.2 ZipStream: improving dependability in Dynamic Partial Reconfiguration 55

v

4.2.1 Compression Algorithms overview . 55

4.2.2 ZipStream Methodology . 56

4.2.2.1 Compression Algorithm . 57

4.2.2.2 Hardware Decompressor . 58

4.2.2.3 Design-for-Dependability rule . 59

4.2.3 Experimental results . 60

4.3 NBTI Mitigation by Dynamic Partial Reconfiguration 64

4.3.1 Proposed Methodology . 64

4.3.1.1 DfD#1: Static connection avoidance 64

4.3.1.2 DfD#2: Using different interfaces 65

4.3.1.3 DfD#3: Smart external controller 65

4.3.2 Case study . 66

4.3.3 Experimental results . 69

4.4 SATTA: a Self-Adaptive Temperature-based TDF awareness methodology for dy-

namically reconfigurable FPGAs . 71

4.4.1 SATTA sensors organization and architecture 73

4.4.1.1 Temperature Sensor . 74

4.4.1.2 TDF Sensor . 76

4.4.1.3 CLK Generator . 77

4.4.1.4 Manager . 79

4.4.2 SATTA integration methodology . 83

4.4.3 Experimental results . 86

5 Conclusions 93

Bibliography 99

vi

LIST OF FIGURES

1.1 Moore’s Law applied at Intel’s processors . 1

1.2 3 different technology enablers in recent nodes (by Global Foundries) 2

1.3 Required failure rates over years [25] . 3

2.1 Types of Single Event Effects [65] . 7

2.2 Impact of a high-energy particle in a CMOS structure [54] 8

2.3 Differential flux for atmospheric neutrons, protons, muons and pions at ground level

in Marseille, France [7] . 9

2.4 Representation of charge collection in a silicon junction immediately after (a) an ion

strike, (b) prompt (drift) collection , (c) diffusion collection, (d) the junction current

induced as a function of time [9] . 11

2.5 Funneling in an n+/p silicon junction following an ion strike: (a) electrostatic poten-

tial and (b) electron concentration [30] . 12

2.6 Single-event transient width in bulk and SOI devices as a function of LET and technol-

ogy scaling [21] . 13

2.7 SEU and MBU cross sections versus critical energy [61] 15

2.8 Vth shift as a function of stress time [31] . 17

2.9 Vth shift and interface traps creation as a function of stress time for three different

temperatures[31] . 18

2.10 Relative shifts for traps and Vth versus stress time [31] . 19

2.11 Stress and recovery phases on transistor [57] . 20

2.12 Threshold voltage degradation during stress and recovery phases [57] 21

2.13 6 Transistor SRAM cell . 23

2.14 Read failure probability with different static probablityes [37] 24

3.1 FPGA market share in recent years . 26

3.2 Unprogrammed antifused connections [44] . 28

3.3 Programmed antifused connections [44] . 29

3.4 Floating Gate transistor [44] . 30

3.5 Adaptive Logic Modules architecture [4] . 32

3.6 Configurable Logic Block architecture [69] . 32

3.7 Slice architecture [69] . 33

3.8 Dynamic Partial Reconfiguration - Basic Idea . 34

vii

3.9 Partial Reconfiguration software flow [71] . 36

3.10 Partial Bitstream download [71] . 37

3.11 Reconfiguration by mean of external microprocessor [71] 38

4.1 Xilinx solution - Bitstream generation . 43

4.2 Xilinx Solution - Loading process . 43

4.3 Reconfiguration time of Xilinx solution . 45

4.4 Our software solution . 46

4.5 Our Hardware Solution . 46

4.6 Comparison between proposed solution and Xilinx solution 47

4.7 Critical connections and cores . 49

4.8 Reconfiguration time with 2 Frames . 50

4.9 PlanAhead Device View . 51

4.10 Difference of DPRs time in 1 day - 2 Frames . 53

4.11 Difference of DPRs time in 1 day - 4 Frames . 54

4.12 Difference of DPRs time in 1 day - 8 Frames . 54

4.13 Decompressor architecture . 59

4.14 Example of protecting the critical blocks . 61

4.15 Compression rates for streams 0, 1 and 2 . 62

4.16 Compression rates for streams 3, 4, 5 and average . 62

4.17 Possible connection schemes . 66

4.18 Zynq™Architecture . 67

4.19 Graphic representation of IP-core states within the FPGA 68

4.20 Signal Noise Margin degradation in function of time (measured in years) and static

probability (probability to have ‘1’ in a SRAM cell) . 69

4.21 Example of Transition Delay Fault. A signal connected to the input of a register or flip-

flop violates the set-up time changing its value in correspondence to the clock rising

edge and thus increasing the probability of sampling a wrong value. 71

4.22 SATTA overall architecture. TDF detection and mitigation is implemented inserting

in the design: (i) a set of temperature sensors, (ii) a set of TDF sensors, (iii) a clock

generator, (iv) and a global manager. 74

4.23 Example of a critical path delay variation w.r.t. temperature in Virtex 4 Devices 75

4.24 Behavior of the TDF sensor . 76

4.25 Clock Generator internal architecture . 78

4.26 ASM describing the behavior of the Manager . 80

4.27 Sampling periods with respect to temperature . 82

4.28 SATTA integration flow. It enables to automate the insertion of all sensors and struc-

tures required to implement the TDF detection and compensation. 83

viii

4.29 Example of a timing analysis report generated using the Xilinx Timing Analyzer tool. . 84

4.30 Example of User Constraints File (.ucf) extracted running Xilinx FPGA Editor tool after

design implementation. 85

4.31 Paths slack distribution. The y axis represents how may paths have a delay included

in a range of the nominal clock period identified on the x axis. 87

4.32 Leon3-based SoC critical paths and temperature sensors floorplan 88

4.33 SATTA LUTs and FFs overhead when applied to the Leon3-based SoC case study 89

4.34 SATTA LUTs and FFs overhead when applied to the AES case study 90

4.35 SATTA LUTs and FFs overhead when applied to the AMBER case study 90

4.36 Simulated operating frequency trend with temperature variations 92

ix

LIST OF TABLES

3.1 Comparison among FPGA families . 27

3.2 Partial Reconfiguration command sequence . 39

4.1 Area occupation and reconfiguration time of different implementations 52

4.2 Synthesis Results . 86

4.3 SATTA synthesis results . 88

x

Confidence is what you have before

you understand the problem

Woody Allen

C
H

A
P

T
E

R

1
INTRODUCTION

Customer needs and market requirements have acted as a constant push to technol-

ogy during the past 40 years, somehow following Moore’s prediction. This driving

force had, on the one hand, led to great benefits in terms of computational power and

lower cost, while, on the other hand, caused several headaches to dependability engineers. The

Figure 1.1: Moore’s Law applied at Intel’s processors

so-called die shrinking for digital logic, as summarized by the ITRS, can be defined as "scaling of

the MOSFETs for leading-edge logic technology in order to maintain historical trends of improved

device performance" [34].

Such a continuous scaling has been characterized of several phases, depending on the method-

ology adopted to achieve the scaling. As shown in Figure 1.2, three main Technology Enablers

1

1. INTRODUCTION

have been identified:

1. Lithography: optical lithography scaling has been the exploited by the semiconductor in-

dustry for several generations, and enabled classical geometrical CMOS scaling by eco-

nomically decreasing the resolution, feature size and die area of devices at every subse-

quent technology node. Due the challenges associated with scaling the wavelength of the

light source used for modern optical lithography systems and theoretical optical limits [36],

industry had to make a step forward to the basic geometrical scaling;

2. Materials: in order to follow Moore’s law beyond the limits of wavelength scaling, new ma-

terials have been employed in technology nodes after 65 nanometers. Among them, the

most important innovations, as reported by Intel in [45], have been the introduction of:

High-k dielectric replacing silicon dioxide to guarantee higher impedance; metal gates for

planar CMOS technologies replacing poly-silicon to decrease electrical resistance; strained

silicon, in order to increase channel mobility by mean of compressive (for PMOS) or tensile

(for NMOS) strain;

Figure 1.2: 3 different technology enablers in recent nodes (by Global Foundries)

3. 3D: the traditional flat two-dimensional planar gate has been replaced with a thin three-

dimensional silicon fin that rises up vertically from the silicon substrate, allowing the in-

sertion of multiple gate accesses. Further then to create the so-called FinFET transistor, 3D

2

technology has been exploited also to build IC composed of multiple layers of active com-

ponents. The scaling is then emulated, since the actual transistor dimension is not-scaled

or scaled very little, but the components per area is anyway increasing.

In the past, the technological reliability margins that were available to achieve the required

failure rate levels were always sufficiently high. Also reliability could be guaranteed at the 130nm

technology level, based on accelerated stress experiments [25]. When the device geometries are

scaled into the range of 65nm CMOS technologies and below, however, the available reliability

margins are strongly reduced, implying new paradigms in reliability approaches 1.3.

At every technology node, as it may be expected, the gain in terms of performances, speed and

Figure 1.3: Required failure rates over years [25]

possibly cost of ICs does not come for free. In the sub-micron era, miniaturization affects several

aspects of the produced device: MOS leakage current has been proved to increase due to direct

tunnelling [60], thus raising static power consumption.

As a secondary effect, the increase of die temperature in modern silicon-based devices act as a

major hard failure cause. Experimental results shows that scaling has a significant and increasing

impact on processor hard failure rates, due to the increase in processor temperature. The maxi-

mum temperature reached by a 65nm processor is 15 degrees Kelvin higher than that reached by

a 180nm processor. The failure rate for a 65nm processor is 316% higher than the failure rate at

180nm, with similar reliability qualification [35].

Another major issue due to technology scaling and dramatically enhanced at high temperature

has been identified as process variation. Advanced CMOS technology includes two major types

of process variability: local (intradie) and global (interdie). Local variability is the parametric

changes of identical MOSFETs across a short distance. Global variability refers to such changes

for identical MOSFETs separated by a longer distance or fabricated at a different time [52]. The

3

1. INTRODUCTION

effects at system level of both intradie and interdie variation feature another criticality: non pre-

dictiveness. Thus, no countermeasures further then worst case design has been ever taken into

account for safety critical applications.

The works presented in this thesis tries to face new dependability issues in modern reconfig-

urable systems, exploiting their special features to take proper counteractions with low impact

on performances. The thesis is organized following the reasoning that have been made during

the research phases. First of all, the most critical dependability issues of recent technology nodes

are evaluated in Chapter 2, highlighting the two main effects that the research tackled.

Following, Chapter 3 will give the reader the chance of understanding the reconfigurable archi-

tecture, namely FPGA, that has been adopted in the research experiments, focusing on the Dy-

namic Partial Reconfiguration feature.

The methodologies adopted to increase the overall dependability of dynamically and partially re-

configurable systems will be explained in Chapter 4, while the conclusions of the research carried

out will be eventually drawn in Chapter 5.

4

Simplicity is prerequisite for

reliability

Edsger W. Dijkstra

C
H

A
P

T
E

R

2
DEPENDABILITY ISSUES IN DIGITAL SYSTEMS: AN

OVERVIEW

Dependability has been defined as the quality (previously referred as trustworthiness

and continuity) of the delivered service such that reliance can justifiably be placed on

this service [42].

More recently, the term dependability has described as the composition of four main properties,

namely:

• Reliability: the probability that a piece of equipment or component will perform its in-

tended function satisfactorily for a prescribed time and under stipulated environmental

conditions;

• Availability: the probability that the system will be functioning correctly at any given time;

• Maintenability: the ease with which a product can be maintained in order to cope with a

changed environment;

• Safety: the freedom from undesired and unplanned event that results in a specific level or

loss (i.e. accidents).

that are usually referred as RAMS.

The achievement of high level of dependability in digital systems is critical whenever the life of

a human being is in charge of the digital system itself. Ad-hoc devices must be adopted in those

situations, guaranteeing a low level of risk.

Accordingly, safety critical systems often rely on the adoption of old technology nodes, even if

they introduce longer design time w.r.t. consumer electronics. In fact, functional safety require-

ments, due to international directives like IEC-61508 [32] for industrial applications and ISO-

26262 [33] for automotive, are increasingly pushing industry in developing innovative method-

5

2. DEPENDABILITY ISSUES IN DIGITAL SYSTEMS: AN OVERVIEW

ologies to design high-dependable systems with the required diagnostic coverage.

More recently, commercial off-the-shelf (COTS) devices adoption began to be considered for

safety-related systems. Real-time requirements, the need for the implementation of computa-

tionally hungry algorithms and lower design costs are pushing industries in this direction. These

design choices have a significant impact on the dependability capabilities and diagnostic cover-

age measurements. FPGAs are more and more adopted in safety-critical applications thanks to

their flexibility, high parallelism and increased performances. These features have been achieved

because FPGAs have been aggressively moving to lower gate length technologies. The scaling of

technology has an adverse impact on the reliability of the underlying circuits in such architec-

tures. Various different physical phenomena have been recently explored and demonstrated to

impact the reliability of circuits in the form of both transient error susceptibility and permanent

failures.

On November 5, 2001, a processor reset occurred on board the Microwave Anisotropy Probe

(MAP), a NASA mission to measure the anisotropy of the microwave radiation left over from the

Big Bang. The reset caused the spacecraft to enter a safe mode from which it took several days to

recover. NASA assembled a team of engineers, including experts in radiation effects to tackle the

problem. They observe that the processor reset occurred during a solar event characterized by

large increases in the proton and heavy ion fluxes emitted by the sun [11]. As dimensions shrink

to below 90 nm, SEEs in all devices (ASICs and FPGAs) and in all safety critical applications must

be considered [65]. Section 2.1 will give an overview, from the causes to the effects, of Single Event

Effects (SEE).

Apart from the increased vulnerability of the circuits to transient errors, there is an increase in

the impact of different aging phenomena that result in permanent failures of the devices and in-

terconnect. Therefore, the aggravation of such aging phenomena like Hot-Carrier Effect (HCE),

Time Dependent Dielectric Breakdown (TDDB), Electromigration (EM), Thermal Cycling, Stress

Migration, and Negative Bias Thermal Instability (NBTI) need to be analysed carefully in such FP-

GAs designed using newer technologies. Among them, NBTI has been forecast to be main aging

phenomenon in future technologies and has been addressed during my research. Section 2.2 will

underline NBTI root causes and device-level effects to better understand how to tackle them.

2.1 Single Event Effects

Single Event Effects (SEE) in microelectronics are caused when highly energetic particles present

in the natural space environment (e.g., protons, neutrons, alpha particles, or other heavy ions)

strike sensitive regions of a microelectronic circuit (see Figure 2.2). Depending on several factors,

the particle strike may cause no observable effect, a transient disruption of circuit operation, a

change of logic state (i.e., nondestructive SEE or soft errors), or even permanent damage to the

device or integrated circuit (IC), the so called destructive SEE or hard errors [20].

6

2.1. Single Event Effects

Soft errors are upsets to the device operation and are self-correcting in time or are correctable

Figure 2.1: Types of Single Event Effects [65]

by rewriting a memory element, and they can be classified as:

• Single-event transients (SETs) result when a high-energy particle impacts a combinatorial

path of a device and can induce a voltage/current spike. If the pulse-width of this spike is

sufficient and at the right time, it can propagate through the logic;

• Single-event upsets (SEUs) are the result of high-energy particles causing a change in the

state of a memory element (SRAM, flash, flop, or latch). SEUs can be categorized as single-

bit or multi-bit upsets (SBUs or MBUs);

• Single-event function interrupts (SEFIs) are disruptions to normal device operation (be-

yond a simple corruption of user data). These types of effects alter the functionality of the

circuit and typically require reconfiguration/reset or power cycling for recovery.

Errors that cause lasting damage to the device are classified as hard errors. The three subclasses

of hard errors are:

• Single-event latch-up (SEL) is a circuit latch-up induced by radiation. This latch-up can be

either permanent or disappear with power cycling;

• Single-event burnout (SEB) is a short-circuiting caused when a high-energy ion impacts a

transistor source, causing forward biasing. SEBs are typically a threat to power MOSFETs,

high-voltage diodes, and similar circuits;

• Single-event gate rupture (SEGR) is a plasma spiked caused by a high-energy ion impact,

resulting in rupture of the gate oxide insulation [65].

7

2. DEPENDABILITY ISSUES IN DIGITAL SYSTEMS: AN OVERVIEW

Figure 2.2: Impact of a high-energy particle in a CMOS structure [54]

Natural radiation that causes SEE in digital circuits may come from various sources. At ground

level, one can distinguish two major sources of radiation:

1. atmospheric radiation environment: elementary particles and electromagnetic radiation

are produced in the Earth’s atmosphere when a primary cosmic ray (of extraterrestrial ori-

gin) enters the atmosphere. The term cascade means that the incident particle (generally

a proton, a nucleus, an electron or a photon) strikes a molecule in the air so as to produce

many high energy secondary particles (photons, electrons, hadrons, nuclei) which in turn

create more particles, and so on (see Figure 2.3).

2. telluric radiation sources: Natural radioisotopes contained in the Earth’s crust are the prin-

cipal natural sources ofα,β and γ radioactivity but only the alpha-particle emitters present

a reliability concern in microelectronics. Beta and gamma processes are indeed not able to

deposit a high enough amount of energy susceptible to significantly impact the microelec-

tronic circuit operation. The presence of alpha-particle emitters in electronic devices can

be classified as materials that are naturally radioactive (they contain a fraction of radioac-

tive nuclei) or materials that contain residual trace of radioactive impurities. Currently,

several types of alpha particle emitters have been identified at wafer, packaging and inter-

connection levels, including lead in solder bumps, uranium and thorium in silicon wafers

and in molding compounds, more recently hafnium in new high-Îž gate and platinum in

silicide materials [7].

8

2.1. Single Event Effects

Figure 2.3: Differential flux for atmospheric neutrons, protons, muons and pions at ground level
in Marseille, France [7]

Nondestructive SEE can lead to different system malfunction. From what concerns FPGA de-

vices, particular emphasis has been established in Single (Multiple) Event Upset (SEU and MEU)

in static random access memories (SRAM) and single-event transients (SET) in logic.

2.1.1 Physical causes

There are two primary methods by which ionizing radiation releases charge in a semiconduc-

tor device: direct ionization by the incident particle itself and ionization by secondary particles

created by nuclear reactions between the incident particle and the device:

• Direct Ionization: it appears when an energetic charged particle passes through a semicon-

ductor material it frees electron-hole pairs along its path as it loses energy. When all of its

energy is lost, the particle comes to rest in the semiconductor, having travelled a total path

length referred to as the particle’s range. The term linear energy transfer (LET) is used to

describe the energy loss per unit path length of a particle as it passes through a material.

Direct ionization is the primary charge deposition mechanism for upsets caused by heavy

ions, where we define a heavy ion as any ion with atomic number greater than or equal

to two (i.e., particles other than protons, electrons, neutrons, or pions). Lighter particles

such as protons do not usually produce enough charge by direct ionization to cause upsets

9

2. DEPENDABILITY ISSUES IN DIGITAL SYSTEMS: AN OVERVIEW

in memory circuits, but recent research has suggested that as devices become ever more

susceptible, upsets in digital ICs due to direct ionization by protons may occur [20];

• Indirect Ionization: even if direct ionization by light particles does not usually produce

enough charge to cause upsets, protons and neutrons can both produce significant upset

rates due to indirect mechanisms. As a high-energy proton or neutron enters the semicon-

ductor lattice it may undergo an inelastic collision with a target nucleus. These reaction

products can now deposit energy along their paths by direct ionization. Because these par-

ticles are much heavier than the original proton or neutron, they deposit higher charge

densities as they travel and therefore may be capable of causing an SEU. Inelastic collision

products typically have fairly low energies and do not travel far from the particle impact

site. They also tend to be forward-scattered in the direction of the original particle.

After a particle hits the device, the charge is then released and collected in the device structure.

When a particle strikes a microelectronic device, the most sensitive regions are usually reverse-

biased p/n junctions, as shown in Figure 2.4. The high field present in a reverse-biased junction

depletion region can very efficiently collect the particle-induced charge through drift processes,

leading to a transient current at the junction contact. Strikes near a depletion region can also

result in significant transient currents as carriers diffuse into the vicinity of the depletion region

field where they can be efficiently collected. Charge generated along the particle track can locally

collapse the junction electric field due to the highly conductive nature of the charge track and

separation of charge by the depletion region field. as shown in Figure 2.5 This funnelling effect

can increase charge collection at the struck node by extending the junction electric field away

from the junction and deep into the substrate, such that charge deposited some distance from

the junction can be collected through the efficient drift process.

2.1.2 Single Event Transient in digital logic

A Single Event Transient (SET) is any temporary voltage disturbance that occurs in an integrated

circuit following the passage of an ionizing particle through the IC. SETs occur in both digital and

analog ICs (SETs in digital circuits are referred to as DSETs and those in analog circuits as ASETs).

SETs occur in devices manufactured with silicon CMOS, bipolar, or BiCMOS, or III-V technology.

SETs are generated at internal circuit nodes, but whether they are detected depends on a number

of factors. [11] DSETs are momentary voltage or current disturbances that, although they don’t

cause an upset in the circuit actually struck by an energetic particle, may propagate through sub-

sequent circuitry and eventually cause an SEU when they reach a latch or other memory element.

At least four criteria must be met for a DSET to result in a circuit error:

1. The particle strike must generate a transient capable of propagating through the circuit

10

2.1. Single Event Effects

Figure 2.4: Representation of charge collection in a silicon junction immediately after (a) an ion
strike, (b) prompt (drift) collection , (c) diffusion collection, (d) the junction current induced as a
function of time [9]

11

2. DEPENDABILITY ISSUES IN DIGITAL SYSTEMS: AN OVERVIEW

Figure 2.5: Funneling in an n+/p silicon junction following an ion strike: (a) electrostatic potential
and (b) electron concentration [30]

2. There must be an open logic path through which the DSET can propagate to arrive at a

latch or other memory element

3. The DSET must be of sufficient amplitude and duration to change the state of the latch or

memory element

4. In synchronous logic, the DSET must arrive at the latch during a clock pulse enabling the

latch

The probability that momentary glitches will be captured as valid data in combinational logic

increases linearly with frequency because the frequency of clock edges increases [21]. With the

12

2.1. Single Event Effects

increase of circuit speeds, also the ability of a given transient to propagate increases. Nonethe-

less, also the duration of transients decreases. Due to both their greater ability to propagate in

high-speed circuits and their higher probability of capture by subsequent storage elements such

as latches, DSETs have been predicted to become endemic in deep sub-micron digital ICs. In

Figure 2.6: Single-event transient width in bulk and SOI devices as a function of LET and tech-
nology scaling [21]

bulk CMOS devices, a clear scaling trend emerges, namely that peak current significantly de-

creases with technology scaling.This decrease to be primarily due to the smaller cross-sectional

area presented by the struck drain junction for diffusive charge collection (more than 6 times

smaller at 0.1 m compared to 0.25 m), in combination with the higher well doping levels of the

13

2. DEPENDABILITY ISSUES IN DIGITAL SYSTEMS: AN OVERVIEW

scaled technologies (which further decrease charge collection efficiency).

The situation is different for Silicon over Insulator (SOI) technologies, where the buried oxide

prevents charge collection from the substrate and therefore the size of the drain is unimportant.

Figure 2.6 indicates that DSETs in SOI technologies are generally less than 250ps in duration,

much faster than in the bulk devices. In addition, the SOI DSET durations decrease with technol-

ogy scaling, consistent with the fact that SOI collection is dominated by fast collection within the

body volume, which shrinks with gate length. These differences in transient pulse widths have

significant implications for DSET propagation in bulk and SOI technologies. Once a DSET has

been produced in the struck device, its evolution through the digital logic can be predicted. Re-

search usually exploit inverter chains to understand the behaviour and the propagation of DSETs.

Transients that can propagate without attenuation are obviously a concern, although it must be

remembered that propagation of the DSET is only the first of four conditions that must be met

for a DSET to become an SEU. The DSET must still have an open logic path to a latch, meet the

timing parameters of the latch, and arrive during a sensitive timing window to become an error.

2.1.3 Single Event Upset in SRAM

Single event upsets in memory circuits are a key issue for advanced CMOS technologies. A single

particle hitting a very dense device, like SRAM, can produce severe consequences.

Single-bit upsets (SBU) and multiple-bit upsets (MBU) are important in both terrestrial and space

applications. With technology scaling, the number of upsets per chip will typically increase due

to higher circuit density and may also increase due to higher circuit sensitivity. For SRAM cir-

cuits, MBUs are particularly important since the MBU sensitivity can limit the effectiveness of

error correcting codes (ECC) [29]. Early SRAM was more robust against single event because of

high operating voltages and the fact that data was stored as the state of a bi-stable circuit made

up of two large cross-coupled inverters, each strongly driving the other to keep the bit in its pro-

grammed state. However, with each successive SRAM generation, reductions in cell collection

efficiency due to the shrinking cell depletion volume have been swamped out by big reductions

in operating voltage and reductions in node capacitance. Thus SRAM single bit Single Error Rate

(SER) increased with each successive generation [8]. Figure 2.7 shows the SEU and MBU cross

sections for a chosen energy of 400 MeV. As expected from nuclear physics, the behaviours of

neutrons and protons are nearly identical. Experiments take advantage of this similar behaviour

of neutrons and protons above 100 MeV (i.e., protons, easier to produce and control, replace neu-

trons).

It is seen that the increase of the MBU cross section when the critical energy is decreasing is faster

than the SEU one, and that the ratio of these two cross sections exhibits large variation. Starting

from three orders of magnitude, it tends to only one order of magnitude. The fast increase of the

two cross sections at very low critical energy is due to the increasing participation of the light

14

2.1. Single Event Effects

Figure 2.7: SEU and MBU cross sections versus critical energy [61]

particles. At very low critical energies, the SEU and MBU cross sections are almost governed by

geometrical probabilities. The number of SEUs depends on the size of the sensitive volume and

the deposited energy in this volume. As far as the MBUs are concerned, the distance between the

bits is a third important characteristic. Device downscaling thus clearly induces soft error rate

concerns. MBUs are particularly worrying because they are the most difficult to correct since

they effects multiple bits in the same word [61].

Recent Soft Error Rate (SER) testing result of SRAM-based FPGAs from Actel [1] shows a signifi-

cant and growing risk of functional failures due to the corruption of configuration data, especially

when the system has higher densities. The number of upsets per 1 million gates per day increases

because of the altitude dependent increase in neutron flux density. It is expected that neutron-

induced soft errors get worse by a factor of two as we move from 0.13µ to 0.09µ technology.

The radiation induced soft errors have become one of the most important and challenging failure

mechanisms in modern electronic devices. SER of commercial chips is controlled to within 100-

1000 FITs. Compared to most hard failure mechanisms that produce failure rates on the order of

1-100 FIT, the SER of a low-voltage embedded SRAM can easily be 1000 FIT/Mbit. Therefore, a

four-phase approach to deal with them is in progress [58]

1. Methods to protect chips from soft errors (prevention).

2. Methods to detect soft errors (testing).

3. Methods estimate the impact of soft errors (assessment).

4. Methods to recover from soft errors (recovery)

15

2. DEPENDABILITY ISSUES IN DIGITAL SYSTEMS: AN OVERVIEW

2.2 NBTI: Causes and Effects

Bias temperature instability (BTI) is a degradation phenomenon occurring mainly in MOS Field

Effect Transistors (MOSFETs).

Even though the exact root causes of the degradation are not yet well understood, it is now com-

monly admitted that under a constant gate voltage and an elevated temperature a build up of pos-

itive charges occurs either at the interface Si/SiO2 or in the oxide layer leading to the reduction of

MOSFET performances. Nevertheless, this degradation remained marginal for many years, but

with aggressive scaling of MOS transistors this phenomenon became important.

In order to improve the transistors performances, nitrogen atoms were introduced into the oxide

layer by different nitridation processes, but mostly by thermal annealing. This nitridation step is

intended both to give a better control on the gate leakage current and to avoid the boron atoms,

used to dope the poly-silicon gate, to flow through the oxide into the substrate.

Besides, the general trend was that most of the devices turned out to be surface-channel devices

instead of buried-channel ones in recent technologies to counter the short-channel effects in-

herent of the downscaling process and to improve the performances.

As a consequence of both the introduction of the nitridation process step and the use of surface-

channel devices, researchers ascribed an enhanced BTI-like degradation of p-MOSFETs under

negative bias and elevated temperatures, the so-called NBTI effect.

By definition, bias temperature instabilities are observed when either a capacitor or a transistor

is stressed at relatively high temperatures (typically ranging from 80◦C to 150◦C) under a low and

constant gate voltage while the source/drain and well electrodes are grounded.

The symmetry of stress conditions along the channel proves that this degradation is not related

to channel carrier transport. Generally, it is observed that after an NBTI stress, the saturated

drain current value (Id sat) is reduced. The forward and reverse values of the saturated drain cur-

rent both degrade identically, demonstrating the symmetry of the stress. By the same time, the

threshold voltage (Vth) is increased as well as the S/D series resistance.

Altogether, the degradation of these parameters demonstrates the build-up of positive charges

close or at the interface of Si −SiO2 and yields to a lower level of performance for the transistor.

For short stress times, the off-leakage current is decreasing due to the shift of the Id /Vg curves

linked to the threshold voltage shift. Nevertheless, in some cases, an increase of the GIDL ob-

served at low fields may overcome this decrease and limit the performances of the circuit by an

increased consumption.

The instabilities exist in most of the configurations, for either p-MOSFETs or n-MOSFETs, and

whatever a negative bias and/or a positive bias is applied, except for the n-MOSFET under pos-

itive bias, which does exhibit almost no degradation. Nevertheless, as shown in Figure 2.8 , ap-

plying NBTI stress conditions (i.e. negative gate voltage) on p-MOSFETs represents the most

degrading case.

16

2.2. NBTI: Causes and Effects

Figure 2.8: Vth shift as a function of stress time [31]

So far, the microscopic details of the NBTI degradation are not clearly understood but there is a

general agreement to say that there is generation of traps at the Si −SiO2 interface during nega-

tive BTI aging.

But, to understand the impact of the NBTI degradation up to circuit level, it is important to make

the link with device parameters such as threshold voltage. As NBTI degradation is mainly a build-

up of charges at the interface in a symmetrical configuration along the channel, the threshold

voltage parameter is more relevant to describe the degradation than other parameters such as

the saturated drain current.

As already discussed above, the NBTI degradation is known to be activated with temperature.

For many researchers, the degradation of electrical parameters is mostly linked to the creation of

interface traps, especially in ultra thin oxides.

Figure 2.9 shows the temperature dependence of the interface traps creation and the threshold

voltage shift for a given set of stress conditions and varying temperatures. If the threshold voltage

is only influenced by the creation of interface traps at the interface, these two parameters should

have similar apparent temperature activations.

If the threshold voltage shift would have been explained solely by the interface traps creation,

17

2. DEPENDABILITY ISSUES IN DIGITAL SYSTEMS: AN OVERVIEW

Figure 2.9: Vth shift and interface traps creation as a function of stress time for three different
temperatures[31]

similar activation energies would have been found for both phenomena. Different activation en-

ergies imply that another process has to be taken into account in order to explain the threshold

voltage shift. It is reasonable to think that this second component is related to charges into the

oxide.

Effectively, under a constant voltage stress such as under NBTI stress conditions, an increase of

the number of oxide defects is known to occur, which leads the oxide to break once a critical limit

is reached. But defects can also be present in the oxide previously to the stress, induced either by

impurities or strain relaxation during the latter process phases.

In this case, applying an oxide field would increase the trapping efficiency of charges in those de-

fects. Thus, the second component of the NBTI degradation could then be either holes trapped

onto oxide defects, pre-existent to the stress or created during the stress, or slow states present

close to the interface.

Applying a positive gate bias consecutively to a negative bias stress is known to neutralize both

trapped holes and/or positively charged slow states.

18

2.2. NBTI: Causes and Effects

In order to determine the relative importance of the interface traps and the positive charges into

the oxide on the threshold voltage, an electrical neutralization phase, where the device is posi-

tively gate biased, is introduced after a normal, continuous negative gate bias stress.

The relative shifts for the interface trap density (open symbols) and for the threshold voltage

(filled symbols) versus the stress time are presented in Figure 2.10.

The main feature is a strong reduction (more than 50%) of the threshold voltage under the posi-

Figure 2.10: Relative shifts for traps and Vth versus stress time [31]

tive bias, when the interface trap density remains almost unchanged. First, the absence of a large

variation of the trap density under the positive bias is worth noticing. The possible repassiva-

tion of the Si dangling bonds, as the hydrogen species might move back to the SiO2/Si interface

when the bias polarity is changed, appears to be negligible. This result, in agreement with the re-

sults obtained by adding additional delay between stress and measurement as described above,

is another clue that the threshold voltage does not depend only on the interface trap density and

the recovery effect should not be addressed with a diffusion controlled annealing model.

Consequently, the threshold voltage shift that consists of the difference of the threshold voltage

shifts before and after the electron injection represents the contribution of positive charges in-

duced during the stress by hole trapping into the oxide.

19

2. DEPENDABILITY ISSUES IN DIGITAL SYSTEMS: AN OVERVIEW

This shift presents almost no temperature dependence, which is expected for defect generation

by hole trapping as the tunnelling effect involved in the charging is hardly temperature depen-

dent. The small temperature dependence observed experimentally is only to be explained by a

variation of the effective hole capture cross-section with temperature.

The positive charges build-up within the oxide observed experimentally can still be explained ei-

ther by holes trapped in oxide defects or by the charging of slow states. Both trapped holes and

positively charged slow states can be neutralized by a further electron injection under positive

bias for few minutes as in Figure 2.10. Though, they should present a different recharging be-

havior when the slow states can be recharged under a small negative bias whereas holes trapped

into the oxide cannot, as they need larger energies to get back into the oxide and to restore the

positive charge.

2.2.1 Effects on digital logic

NBTI occurs under negative gate voltage (e.g., Vg s =−VDD) and is measured as an increase in the

magnitude of threshold voltage. It mostly affects the PMOS transistor and degrades the device

drive current, circuit speed, noise margin, and the matching property. Indeed, as gate oxide gets

thinner than 4nm, the threshold voltage change caused by NBTI for the PMOS transistor has

become the dominant factor to limit the life time, which is much shorter than that defined by

hot-carrier induced degradation (HCI) of the NMOS transistor.

For a PMOS transistor, there are two phases of NBTI, depending on its bias condition. These two

phases are illustrated in Figure 2.11, assuming the substrate is biased at VDD. In Phase I, when

Vg =O (Vg s =−VDD), positive interface traps are accumulating.

Figure 2.11: Stress and recovery phases on transistor [57]

20

2.2. NBTI: Causes and Effects

This phase is usually referred as "stress" or "static NBTI".

In Phase II, when Vg =VDD (Vg s =O), holes are not present in the channel and no new interface

traps are generated, instead, H diffuses back and anneals the broken Si-H. As a result, the number

of interface traps is reduced during this stage and the NBTI degradation is recovered. Phase II is

usually referred as "recovery" and has a significant impact on the estimation of NBTI during the

dynamic switching.

Figure 2.12: Threshold voltage degradation during stress and recovery phases [57]

21

2. DEPENDABILITY ISSUES IN DIGITAL SYSTEMS: AN OVERVIEW

In a realistic circuit, the gate switches between 0 and VDD . For a PMOS transistor, the condi-

tion of Vg =VDD removes NBTI stress and anneals interface traps. The degradation of Vth on the

PMOSFET devices causes changing on the behavior of the gates. First of all, NBTI degrades the

drain current of the transistor, and this causes a decrease of rising time of the gates.

The degradation in delay shows a power dependency to time with a fixed exponent of 1/6. Several

method are studied at gate-level to decrease the delay degradation, in example transistor resizing

of only the pull-up side of the gate, sleep mode with lower VDD , power-gating like VDD clamping

with virtual supply voltage etc.

The drain or on current is important in analog and digital circuits. In digital circuits, with MOS-

FETs being switches, charging and discharging capacitors, higher drain current leads to faster

capacitor charging and higher frequency operation.

The delay time is

td = C |VDD |
ID

= 2LC

Wµe f f COX (VDD −Vth)2 (2.1)

where C is the capacitance and VDD the supply voltage [59].

NBTI stress leads to le f f reduction and Vth increase, both giving delay time increases. As we can

see in the equation, the circuit impact will be greater for lower operating voltage, because of the

reduced Vg −V th, so the impact is predicted to increase in new technology nodes.

2.2.2 Effects on SRAM memories

Considering SRAM memories, the NBTI induces a degradation of the robustness of the cells (i.e.,

their capability to safety store a bit). A good metric to qualify the effect of NBTI in a memory cell

is the Static Noise Margin (SNM), i.e., the minimum DC noise voltage necessary to change the

stored value [12].

Figure 2.13 above shows a 6T cell with the wordline, bitlines , and internal nodes. During a read

operation, the bitline BL is discharged through the access transistor and the pull down transistor

which causes the voltage at node Q to rise. In order for the cell to maintain its state, it is neces-

sary that the voltage at Q not rise above the trip point of the inverter formed by M3 and M4. The

voltage difference between this inverter trip point and the voltage at node Q is the read SNM of

the cell.

SNM can be computed as the length of the side of a maximum square nested between the two

voltage transfer characteristic (VTC) curves (i.e., for each back-to-back inverters) of SRAM cell.

Simple simulation has shown that SNM of an SRAM cell can degrade with time under NBTI [37].

SNM of SRAM is particularly important during two operations, that is, the HOLD (i.e., stand-by

mode) and READ phases. When the word line is turned off and cell is holding the data, HOLD

SNM can be computed. During the HOLD phase the cell state is relatively insensitive to the vari-

ation in the threshold of PMOS transistors due to NBTI.

The smaller the SNM is, the lower the reliability of the cell becomes. Unfortunately, the Vth shift

22

2.2. NBTI: Causes and Effects

Figure 2.13: 6 Transistor SRAM cell

induced by NBTI causes an SNM degradation, which in turn reflects itself on the stability of the

cell. Because of the symmetric layout of the cell, the Vth shift is maximum if the stored value’s

zero-probability is near to 0 or 1. Clearly, the best case happens when the stored value is ‘0’ for

the 50% of the time, which means that both pMOS transistors age in the same way.

Figure 2.14 depicts the relationship between the read failure probability and the signal probabil-

ity. As predicted, failure probability becomes higher when the signal probability is unbalanced.

23

2. DEPENDABILITY ISSUES IN DIGITAL SYSTEMS: AN OVERVIEW

Figure 2.14: Read failure probability with different static probablityes [37]

24

You do not really understand

something unless you can explain it

to your grandmother.

Albert Einstein C
H

A
P

T
E

R

3
FPGA ARCHITECTURE AND DYNAMIC PARTIAL

RECONFIGURATION

Field Programmable Gate Arrays (FPGAs) are integrated circuits designed to be config-

ured by the user (hence field-programmable) one or multiple times. Configuration is

generally specified using a hardware description language that is an input to synthesis

tool that creates a binary configuration file. This file can be loaded through a configuration port

to the FPGA device. This semiconductor device is thus not restricted to a specific hardware func-

tion, but the user can freely implement any logical function that can be performed by an ASIC, by

properly configuring the FPGA. Designers must then properly evaluate when to adopt an FPGA

in their design or rather select an ASIC-based design flow.

FPGA based systems are usually characterized of:

• low non recurrent engineering, due to low development and tool costs;

• reconfigurability and rapid prototyping, allowing to verify and validate hardware imple-

mentation in a fast and accurate way ;

• simpler and faster design cycle, since tools are managing placing, routing in a fast and

accurate way allowing the faster TTM as well;

• limited resources, fixed according to the chosen FPGA device;

• higher power consumption.

On the other hand, ASIC systems are usually characterized by:

• lower recurrent engineering, since for high volume designs, unit costs are very low;

• higher performances, in terms of speed and power efficiency;

25

3. FPGA ARCHITECTURE AND DYNAMIC PARTIAL RECONFIGURATION

• high design flexibility, without any limit in number and kind of resources;

• very difficult design and long design time, due to floor planning, routing that must be

checked and validated.

At the highest abstraction level and at the earliest design phase, it basically comes down to a

scalability versus a flexibility question. ASICs are advantageous when it comes to high port den-

sity applications. FPGAs are advantageous when it comes to feature velocity with a shortened

time-to-market requirement.

Clearly, in the time-to-market driven era, FPGA market share is constantly increased, with 3 ma-

jor players sharing the big pot: Xilinx, Altera and Actel, as shown in Figure 3.1.

In the following, Section 3.1 will highlight the different FPGA families currently available in the

Figure 3.1: FPGA market share in recent years

market, while Section 3.2 will focus on the most widely adopted FPGA type, the SRAM-based FP-

GAs that allows the adoption of Dynamic Partial Reconfiguration, carefully explained in Section

3.3.

3.1 FPGA Families

A first distinction of FPGAs can be made based on where configuration is stored on-chip. FPGA’s

configuration can be either volatile or non volatile, and one have advantages respect to other.

Modern FPGAs adopt one of these three methods to storage configuration:

26

3.1. FPGA Families

• FLASH-based: flash-based FPGAs use flash memory as a primary resource for configu-

ration storage, and doesn’t require SRAM; this technology has an advantage of being less

power consumptive and is also more tolerant to radiation effects;

• ANTIFUSE-based: antifuse-based FPGAs can be programmed only on "burned" to con-

duct current. The antifuses are normally open circuit and, when programmed, form a

permanent, passive, low-impedance connection, leading to the fastest signal propagation.

They provides excellent protection against design pirating and cloning;

• SRAM-based: configuration data is stored in Static RAM memory cells. Since SRAM is

volatile and can’t keep data without power source, such FPGAs must be configured upon

start-up. The SRAM cells maintaining configuration require about 6 to 7 MOS per connec-

tion; these extra transistors take up extra silicon and increase area. Moreover the exter-

nal memory needed to load configuration data on the internal SRAM requires extra board

space which increases board and component cost to the overall system. The main advan-

tage is the possibility to re-program FPGA at any time and configuration time is smaller

than other solutions such Flash-based.

Table 3.1 lists the main features of the three different main FPGA families, comparing them and

assessing their main features.

Table 3.1: Comparison among FPGA families

Feature Antifuse-based Flash-based SRAM-based

Volatility Non-volatile Non-volatile Volatile
Technology Previous nodes Previous nodes State-of-art
Re-programmability No Yes, but limited Yes, infinite
Area occupation Low Medium High
Programmability Speed Slow NA Fast
Security High High Limited
Power Consumption Low Medium Medium
Rad Hardness Yes No No

Further then being distinguished according to the configuration methodology, there are two

main architectures for FPGAs internal architecture, namely fine-grained and coarse-grained. A

fine-grained architecture consists of a large number of small logic blocks (e.g. transistors, small

macro cells) that allow the user to configure each block to act as any 3-input function, such as a

primitive logic gate (AND, OR, NAND, etc.) or a storage element.

A coarse-grained architecture consists of a smaller number of larger and more powerful logic

blocks, such as flip-flops and Look-Up Tables. A fine-grain array has many configuration points

27

3. FPGA ARCHITECTURE AND DYNAMIC PARTIAL RECONFIGURATION

to perform very small computations, and thus requires more data bits during configuration. The

fine-grain programmability is more amenable to control functions, while the coarser grain blocks

with arithmetic capability are more useful for data-path operations. An important consideration

with regard to architectural granularity is that fine-grained implementations require a relatively

large number of connections to connect small blocks. In coarse-grained devices the amount of

connections into the blocks decreases compared to the amount of functionality they can support.

This is important because interconnections are usually the major cause of signal delays and will

strongly affect design timing performances.

3.1.1 Antifuse-based FPGAs

As aforementioned, antifuse-based FPGAs can be programmed only once by "burning" the con-

nections as required at design phase. Figure 3.2 shows how connections are available in the first

use of the FPGA device. All the possible links are actually left unconnected. In order to program

Figure 3.2: Unprogrammed antifused connections [44]

the FPGA device at performing the needed function, some of the available links are set up, by

applying pulses of relatively high voltage and current to the device’s inputs. This process will

convert the insulating amorphous silicon in conducting poly-silicon. After the device has been

properly programmed, it will look like the one pictured in Figure 3.3

Systems implemented exploiting such technology will feature relatively high speed and low power

requirements. The primary advantage of anti-fuse programming technology is its low area. With

metal-to-metal anti-fuses, no silicon area is required to make connections, decreasing the area

overhead of programmability.

However, this decrease is slightly offset by the need for large programming transistors that supply

28

3.1. FPGA Families

Figure 3.3: Programmed antifused connections [44]

the large currents needed to program the antifuse.

On the other hand, the achieved level of flexibility is really low, since they can be programmed

only once. Furthermore, since anti-fuse-based FPGAs require a non-standard CMOS process,

they are typically well behind in the manufacturing processes that they can adopt compared to

other technologies. Furthermore, the fundamental mechanism of programming, which involves

significant changes to the properties of the materials in the fuse, leads to scaling challenges when

new IC fabrication processes are considered [40]. The main field in which these devices are used

is the military one, either thanks to the intrinsic rad-hardness (they are relatively immune radi-

ation effects like SEEs) and high level of security (their configuration data is buried deep inside

them, making it almost impossible to reverse-engineer the design [44]).

3.1.2 Flash-based FPGAs

Several families of devices use Flash memory to hold FPGA configuration information. Flash

memory is non-volatile array and can only be written a finite number of times, since it worn-out

quite fast. The non volatility of Flash memory means that the data written to it remains when

power is removed.

Flash memories technology is based on the use of floating gate transistor, as shown in Figure 3.4.

In its unprogrammed state, the floating gate is uncharged and doesn’t affect the normal operation

of the control gate. In order to program the transistor, a relatively high voltage is applied between

the control gate and drain terminals. This causes the transistor to be turned hard on, and ener-

getic electrons force their way through the oxide into the floating gate in a process known as hot

(high energy) electron injection. When the programming signal is removed, a negative charge

29

3. FPGA ARCHITECTURE AND DYNAMIC PARTIAL RECONFIGURATION

Figure 3.4: Floating Gate transistor [44]

remains on the floating gate. This charge is very stable and will not dissipate for more than a

decade under normal operating conditions [44].

The programming circuitry, such as the high and low voltage buffers needed to program the cell,

contributes an area overhead not present in other FPGA devices. However, this cost is relatively

modest as it is amortized across numerous programmable elements. In comparison to antifuse,

an alternative non-volatile programming technology, Flash-based FPGAs are reconfigurable and

can be programmed without being removed from a printed circuit board.

The stored charge on the floating gate inhibits the normal operation of the control gate and, thus,

distinguishes those cells that have been programmed from those that have not. This means we

can use such a transistor to form a memory cell. Drawbacks to using Flash memory to store FPGA

configuration information stem from the techniques necessary to write to it. As mentioned, Flash

memory has a limited write cycle lifetime and often has slow write speeds. The number of write

cycles varies by technology, but is typically hundreds of thousands to millions. Additionally, most

Flash write techniques require higher voltages compared to normal circuits, so they require addi-

tional off-chip circuitry or structures such as charge pumps on-chip to be able to perform a Flash

write. Another disadvantage of flash-based devices is that they cannot be reprogrammed an infi-

nite number of times, due to charge build-up in the oxide that eventually prevents a flash-based

device from being properly erased and reprogrammed.

On the other hand, they do not require extra storage or hardware to program at boot-up. In

essence, a Flash-based FPGA can be ready immediately [28].

30

3.2. SRAM-based FPGAs

3.2 SRAM-based FPGAs

SRAM memory are the most widely adopted storage element for current FPGA technologies, since

it provides fast and infinite reconfigurations at very low price. This is due to the fact that SRAM

cells are made with the same CMOS technology on FPGA logic, thus simplifying the production

process.

On the other hand, SRAM means that, once a value has been loaded into an SRAM cell, it will

remain unchanged unless it is specifically altered or until power is removed from the system. So,

configuration data will be lost when power is removed from the system, so these devices always

have to be reprogrammed when powered on, thus requiring another non-volatile memory array

to store configuration information to be loaded at start-up. Furthermore, if compared with the

other aforementioned technologies, SRAM cell is large and dissipates significant static power be-

cause of the leakage current.

Altera Stratix or Xilinx Virtex families are examples of coarse-grained SRAM-based FPGAs. More

specifically, Xilinx and Altera FPGAs are modular tile-based devices. No matter which device is

chosen, the FPGA consists of the same basic building blocks tiled over and over again. In Xilinx

FPGAs they are called CLBs (i.e., Configurable Logic Blocks), while in Altera devices are named

ALM (i.e., Adaptive Logic Modules).

Altera FPGAs internal architecture is made up of logic array blocks, called LABs. LABs are made

up of ALMs that can be configured to implement logic, arithmetic, and register functions. Each

LAB consists of ten ALMs, various carry chains, shared arithmetic chains, control signals, a local

interconnect, and register chain connection lines. The local interconnect transfers signals be-

tween ALMs in the same LAB. The direct link interconnect enables the LAB to drive into the local

interconnect of its left and right neighbours. Register chain connection transfers the output of

the ALM register to the adjacent ALM register in the LAB [4]. Internally, each ALM features 8-

inputs with four registers, as shown in Figure 3.5.

Figure 3.6 shows the internal architecture of a CLB, adopted in Xilinx devices. that is the smallest

piece of logic from the perspective of the interconnect structure. In the most recent Xilinx tech-

nology, each slice contains 4 Look Up Tables (LUT) and 8 flip-flops; only some slices can use their

LUTs as distributed RAM. Each LUT can be configured as either one 6-input LUT (64-bit ROMs)

with one output, or as two 5-input LUTs (32-bit ROMs) with separate outputs but common ad-

dresses or logic inputs [73]. Each LUT output can optionally be registered in a flip-flop. Four such

LUTs and their eight flip-flops as well as multiplexers and arithmetic carry logic form a slice, and

two slices form a configurable logic block (CLB) (see Figure 3.7). Four of the eight flip-flops per

slice (one per LUT) can optionally be configured as latches. The slice also contains extra multi-

plexers (MUXFx and MUXF5) to allow a single slice to be configured for wide logic functions of

up to eight inputs. A handful of other gates provide extra functionality in the slice, including an

XOR gate to complete a 2-bit full adder in a single slice, an AND gate to improve multiplier imple-

31

3. FPGA ARCHITECTURE AND DYNAMIC PARTIAL RECONFIGURATION

Figure 3.5: Adaptive Logic Modules architecture [4]

Figure 3.6: Configurable Logic Block architecture [69]

32

3.3. Dynamic Partial Reconfiguration

Figure 3.7: Slice architecture [69]

mentations in the logic fabric, and an OR gate to facilitate implementation of sum-of-products

chains. Each slice connects to the general routing fabric through a configurable switch matrix

and to each other in the CLB through a fast local interconnect.

Modern SRAM-based FPGAs, further then CLB or ALM, features special purpose architectural

building blocks to enhance overall performances. These building blocks are designed to give

users special bricks, like Block RAMs, clocking technology, DSP slices, SelectIO technology (for

Xilinx devices), to perform ad-hoc tasks at relatively high performances.

3.3 Dynamic Partial Reconfiguration

SRAM-based FPGA technology provides the flexibility of on-site programming and re-programming

without going through re-fabrication with a modified design, as pointed out in Section 3.2. In the

33

3. FPGA ARCHITECTURE AND DYNAMIC PARTIAL RECONFIGURATION

aforementioned technology, Dynamic Partial Reconfiguration (DPR) takes this flexibility one step

further, allowing the modification of an operating FPGA design by loading a partial configuration

file, usually referred as partial bitstream. While a full bitstream file is intended to configure the

whole FPGA, thus writing the information all along the configuration memory, partial BIT files

can be downloaded to modify reconfigurable regions in the FPGA, only. This process is carried

out without compromising the integrity of the applications running on those parts of the device

that are not being reconfigured, both the static portion of the FPGA and the possible other recon-

figurable modules that are not undergoing the reconfiguration process.

Figure 3.8: Dynamic Partial Reconfiguration - Basic Idea

As shown in Figure 3.8, the function implemented in the Partition is modified by download-

ing one of several Partial Bitstreams into the Internal Configuration Access Port (ICAP). The logic

in the FPGA design is divided into two different types, reconfigurable logic and static logic. The

dark yellow area of the FPGA block represents static logic, while the blank portion labelled Par-

tition represents the reconfigurable logic. The static logic remains operational and is completely

unaffected by the reconfiguration process. The reconfigurable logic is configured according to

the contents of the partial bitstream file that has been downloaded. There are many reasons why

the ability to time multiplex hardware dynamically on a single FPGA device is advantageous, like:

• Reducing the size of the FPGA device required to implement a given function by time mul-

tiplexing them, with reductions in cost and power consumption;

34

3.3. Dynamic Partial Reconfiguration

• Providing flexibility in the choices of algorithms or protocols available to an application,

depending on the requirements;

• Enabling new techniques in design security

• Improving FPGA-based system fault tolerance, like fine-grained scrubbing;

• Accelerating configurable computing by implementing on-demand hardware accelerators;

In addition to reducing size, weight, power and cost, Dynamic Partial Reconfiguration enabled

and will enable new types of FPGA designs that are impossible to implement without it. Xilinx

provides a clear design flow to be followed during the design of a partially reconfigurable project.

As shown in Figure 3.9, implementing a partially reconfigurable FPGA design is similar to imple-

menting multiple non-reconfigurable designs, sharing some common logic among them. Parti-

tions are actually used to ensure that the common logic between the multiple designs is identical.

The appropriate netlists, described in HDL language, are implemented in each design to gener-

ate the full and partial bitstreams for that specific configuration. The static logic from the first

implementation is shared among all subsequent design implementations. Each Reconfigurable

Module is then synthesized independently from the others in a bottom-up fashion. This means

that a separate netlist is written for each Partition, and no optimizations are done across these

boundaries, ensuring that each portion of the design is synthesized independently. This can be

done through the use of independent projects. For each module, I/O insertion must be disabled,

as the ports of these modules (in most cases) do not connect to package pins, but to the static

logic above it. The static modules can be synthesized all together to generate one single netlist,

or individually to generate multiple static netlists. Afterwards, the static and reconfigurable mod-

ules are merged, and the Reconfigurable Partition definitions denote the interfaces between the

static and reconfigurable logic.

The Partial Reconfiguration software implements a full design containing static logic and one Re-

configurable Module for each Reconfigurable Partition. Each implementation is done in context.

This gives the tools a complete set of information for resource usage, global signals, design con-

straints, and other requirements. To implement all Reconfigurable Modules, you must choose a

subset of all possible Reconfigurable Module combinations and implement them as unique de-

signs. Each unique combination is called a Configuration. Each Reconfigurable Partition can be

optionally set as a black box, leaving a "blanking" bitstream as a Reconfigurable Module ("blank-

ing" bitstreams effectively "erase" all reconfigurable logic and routing while the static logic and

routes in that region continue to operate). Xilinx’s approach to DPR design first requires partition

the system, at design-time, into static and reconfigurable modules. Each reconfigurable module

must then be binded to a predefined reconfigurable portion of the FPGA. Each reconfigurable por-

tion can be composed of one or more frames. The frame is therefore the smallest reconfigurable

region [71].

35

3. FPGA ARCHITECTURE AND DYNAMIC PARTIAL RECONFIGURATION

Figure 3.9: Partial Reconfiguration software flow [71]

36

3.3. Dynamic Partial Reconfiguration

In particular, on the contrary of older Virtex devices, in Virtex-4 and newer versions the frame

has a fixed size which depends by device architecture. For instance, in Virtex-4 each configura-

tion frame spans the height of a single row (i.e., a fraction of 16 Control Logic Blocks (CLBs) [66]).

Xilinx’s EDA tools generate separate configuration files (called partial bitstream or partial bit file)

for each module to be mapped into a specific reconfigurable portion. The partial reconfiguration

process can be then activated at run-time by loading a partial bitstream inside the FPGA through

dedicated configuration port (see Figure 3.10). Any of the following configuration ports can be

used to load the partial bitstream: SelectMAP, Serial, BPI and SPI (Virtex 7 series only), JTAG, or

ICAP (Internal Configuration Access Port). ICAP is usually the best choice thanks to its higher

bandwidth (3.2 Gbps).

The ICAP protocol is identical to SelectMAP and is described in the Configuration User Guide

Figure 3.10: Partial Bitstream download [71]

for the FPGA device. The ICAP library primitive can be instantiated in the HDL description of

the FPGA design, thus enabling analysis and control of the partial bitstream file before it is sent

to the configuration port. The partial BIT file can be downloaded to the FPGA device through

general purpose I/O or gigabit transceivers and then routed to the ICAP in the FPGA fabric. The

ICAP must be used, with an 8-bit bus only, for Partial Reconfiguration for encrypted 7 series and

Virtex-6 partial BIT files. Reconfiguration through external configuration ports is not permitted

when encryption is used.

A partial bitstream file can be downloaded to the FPGA device in the same manner as a full con-

37

3. FPGA ARCHITECTURE AND DYNAMIC PARTIAL RECONFIGURATION

figuration. An external microprocessor determines which configuration file should be down-

loaded, where it exists in an external memory space, and directs the partial bitstream file to a

standard FPGA configuration port such as JTAG, SelectMAP or serial interface. The FPGA device

processes the partial BIT file correctly without any special instruction that it is receiving a partial

bitstream. It is common to assert the INIT or PROG signals on the FPGA configuration interface

before downloading a full bitstream file. This must not be done before downloading a partial

bitstream file, as that would indicate the delivery of a full file, not a partial one. Any indication

to the working design that a partial BIT file will be sent (such as holding enable signals and dis-

abling clocks) must be done in the design, and not by means of dedicated FPGA configuration

pins. If the design does not include a soft/hard-core microprocessors such as Microblaze or Pow-

Figure 3.11: Reconfiguration by mean of external microprocessor [71]

erPC [62][68], a user-designed reconfiguration manager is required to load the partial bitstream

through the configuration port.

Virtex family devices offers two different ways of implementing partial reconfiguration:

• partition-based: is preferred when the reconfiguration involves replacement of entire mod-

ules, since the reconfiguration is made by downloading the whole amount of information

to be stored in the internal configuration memory;

• difference-based: is adopted when the reconfiguration process targets just small changes of

some design parameters, such as single Look Up Tables (LUTs), since the partial bitstream

stores the addresses and the new values of the memory location to be modified, only.

38

3.3. Dynamic Partial Reconfiguration

In both cases, the generated partial bit file has no header information and it contains just frame

address, configuration data, a final checksum value, and dummy words (i.e., NO-OP).

In the sequel of the section some technical details about the dynamic partial reconfiguration,

supported in current Virtex devices (i.e., Virtex-4, Virtex-5, Virtex-6, Virtex-7) are provided.

The configuration control logic consists of a packet processor and a set of control registers. The

packet processor dispatches data from the configuration interface (e.g., ICAP) to appropriate reg-

isters. The reconfiguration process starts when the packet processor receives the Synchronization

word (Table 3.2). After it, the bitstream words aim at indexing and writing the frame address reg-

ister (FAR). Configuration data are then flushed inside the FPGA and CLBs are programmed in

according to the data logic. After that, the bitstream CRC signature is compared with the value

computed by the built-in CRC module. The reconfiguration process ends when the last word,

the Desynchronization command, is processed. If no problems occur, the reconfigured module

is available, otherwise, the CRC_ERROR flag in ICAP Status Register is asserted. The reader may

refer to [71] for additional information.

Table 3.2: Partial Reconfiguration command sequence
Partial Bitstream word (hex) Explanation

FFFFFFFF Dummy word
AA995566 Synchronization word

........
30002001 Write 1 word to FAR reg.
xxxxxxxx Frame Address

........

........ x configuration data words

........
30000001 Write 1 word to CRC reg.
xxxxxxxx CRC value

........
0000000D Desynchronization command
20000000 NO-OP

To reconfigure a single frame, Xilinx PlanaheadTM Tool [67] generates a partial bit file com-

posed of 1,067 32-bit words. The total amount of words to address the specific frame is about

2% (i.e., 21 words). The remaining 98% is composed of data logic, CRC signature, and control

words. In addition to suitable code for programming CLBs, the data logic comprises a bitmask

for programming switch matrix blocks. The switch matrix is a crucial block allowing CLBs to ac-

cess routing resources.

Since at design-time routing resources are opportunely allocated by Xilinx PlanaheadTM Tool to

reach the fastest interconnections among static modules, also routing resources physically lo-

cated into reconfigurable areas could be exploited (i.e., place&route of static modules have the

highest priority). It implies that when the dynamic reconfiguration of a module is performed,

39

3. FPGA ARCHITECTURE AND DYNAMIC PARTIAL RECONFIGURATION

switch matrix modules are opportunely programmed to right allocate routing resources. Nowa-

days, Xilinx Tools do not enable to set constraints for reserving switch matrix blocks only for

reconfigurable logic. Summarizing, static, system-level, links can route through reconfigurable

partition while routes within reconfigurable modules cannot go outside [71].

40

The world is moving so fast these

days that the man who says it can’t

be done is generally interrupted by

someone doing it.

Elbert Hubbard C
H

A
P

T
E

R

4
ENHANCING DEPENDABILITY OF DYNAMICALLY

PARTIALLY RECONFIGURABLE SYSTEMS

Modern safety critical systems are based on hardware redundancy. In the case of

hardware redundancy the system is provided with more hardware components

(e.g. channels) than it would need if the hardware were fault-free. Duplication

in the form of self-checking pairs (duplex systems) and Triple Module Redundancy are classical

examples of redundancy techniques, with 2 and 3 channels respectively. This led clearly to an

area occupation in the selected device that is double or triple with respect to the non-redundant

solution.

The enhanced flexibility featured by FPGA-based systems enable the adoption of more sophisti-

cated techniques to achieve the desired dependability level. This chapter will list a set of Design

for Dependability (DfD) techniques to be adopted in partially and dynamically reconfigurable

systems. The first two methodologies’ goal is to decrease the probability of having faults, due to

SEEs, during the dynamic reconfiguration process itself. Section 4.1 lists the features of Depend-

able Dynamic Partial Reconfiguration, that is based on adding signatures in the partial bitstream

to check that correct data are written in the configuration memory [17]. Section 4.2 identify a

solution to misconfiguration, by storing a compressed partial bitstream internally to the FPGA to

rapidly reconfigure a wrongly configured partition [16].

The last two solutions exploit DPR to mitigate aging effects, due to NBTI, in FPGA-based systems.

The methodology addressed in Section 4.3 is based on continue reconfiguration to decrease ag-

ing effects in configuration memory [19], while the approach of Section 4.4 dynamically change

the working frequency to avoid faults due to aging of FPGA internal logic [18].

41

4. ENHANCING DEPENDABILITY OF DYNAMICALLY PARTIALLY RECONFIGURABLE SYSTEMS

4.1 Dependable DPR with minimal Area & Time overheads on Xilinx FPGAs

As carefully explained in Section 3.3, configuration information (i.e., partial bitstream) can be

stored inside the FPGA or in an external memory. Let us suppose that the partial bitstream is

stored in an off-chip memory (RAM or Flash), in addition to the hypothesis of fault-free inter-

nal logic. If a corrupted bitstream (i.e., soft errors on external links) is loaded into the FPGA,

errors can be localized in the address part or the data part of the bitstream. If the address part

is corrupted, the static portion of the design could be damaged, thus requiring an overall FPGA

reconfiguration. The time overhead caused by the full reconfiguration may be unacceptable in

time-critical applications such as hard real-time scenarios. The full reprogramming may also im-

pact high-dependable applications due to the disruptive consequences on the static portion of

the design.

On the contrary, if errors are localized in the data part of the bitstream, Xilinx points out that a

faulty reconfigured module will be instantiated. To fix this issue, Xilinx suggests to perform again

a DPR in the same reconfigurable area [71]. An intensive fault injection campaigns, proved that

this is true only under specific conditions. In fact, if links between static modules are routed

through the reconfigurable area, a full reconfiguration of the FPGA could be required. For in-

stance, if interconnections between the Reconfiguration Manager (RM) and the Memory Con-

troller (MC) cross the reconfigurable area, a faulty DPR could damage these links, isolating the

RM. The RM would therefore be unable to communicate with MC to read the partial bitstream.

In general, for critical applications that do not tolerate full FPGA reconfiguration, Xilinx proposes

the approach presented in next section.

4.1.1 Xilinx approach

The problem of dependable partial reconfiguration has been addressed by Xilinx in the Partial

Reconfiguration User Guide [71], where a Partial Bitstream CRC Checking is suggested.

The main idea is to split the original partial bit file into blocks, and for each block to calculate a

single word CRC signature. Finally, the partial bit file is reassembled, combining the blocks and

their corresponding CRC signatures, as shown in Figure 4.1).

At reconfiguration time, whenever a new block is loaded from the external memory, the CRC sig-

nature is recalculated by a dedicated hardware component, and the block is stored into a BRAM

inside the FPGA.

When the whole block has been transferred from the external memory, the reconfiguration man-

ager compares the received CRC signature with the calculated one (Figure 4.2).

If the CRC comparison is successful, the block can be sent to the ICAP and the related portion of

the frame reconfigured. Otherwise, the reconfiguration manager must reload the block from the

external memory.

This implementation requires a CRC evaluator, a Finite State Machine (FSM) for the control of

42

4.1. Dependable DPR with minimal Area & Time overheads on Xilinx FPGAs

Figure 4.1: Xilinx solution - Bitstream generation

Figure 4.2: Xilinx Solution - Loading process

the reconfiguration process (i.e., a Reconfiguration Manager) and a set of BRAM(s) to buffer the

data.

Depending on the available FPGA resources, the designer need to choose the best block size, that

impacts on both reconfiguration time and internal memory occupation.

On the one hand, when increasing the number N of blocks (i.e., when decreasing the number of

words per block), a higher number of CRC signatures must be stored, leading to an increase of

bitstream size. At the same time, the memory occupation becomes smaller, since the required

buffering capability equals the block dimension.

On the other hand, when decreasing the number of blocks, fewer CRC signatures must be stored

in the bitstream, thus decreasing the total amount of words in the external memory. However,

during the CRC checking process, more words must be stored in the BRAM inside the FPGA, thus

increasing the area occupation.

43

4. ENHANCING DEPENDABILITY OF DYNAMICALLY PARTIALLY RECONFIGURABLE SYSTEMS

The total reconfiguration time is due to two contributions:

TX−C RC = Tr ead +Tbl ock (4.1)

where:

• Tr ead is the time required to load the bit file from the external memory:

Tr ead = K +N

min(f IC AP , fMem)
(4.2)

where K is the bitstream dimension in terms of 32 bit words; N is the number of CRC sig-

natures in terms of 32 bit words; f IC AP is the working frequency of the ICAP; fMem is the

memory working frequency.

• Tblock is the time spent loading the buffered block from BRAM to the ICAP:

Tbl ock = K /N

f IC AP
(4.3)

where K /N is the block dimension in terms of 32 bit words.

Using this model, it is possible to evaluate how the reconfiguration time in Xilinx solution is influ-

enced by the block dimension. Figure 4.3 plots the reconfiguration time as a function of the block

dimension K /N . This evaluation has been performed with different bitstream file dimensions (#

frames involved in the reconfiguration).

Figure 4.3 shows the reconfiguration time considering a 100 MHz working frequency for both

ICAP and external memory. Note that, with a block dimension of a single word (N=K), one CRC

signature for every word is required. In this case, Tr ead becomes the most relevant term, but no

BRAM is required for buffering.

The same time overhead occurs when a block is as long as the bitstream (N=1). While there is just

one CRC signature, the whole bistream must be buffered before being sent to the ICAP, resulting

in high BRAM occupation. This significantly increases Tbl ock .

From Figure 4.3, designers can identify the optimal block size. As an example, when dealing with

a 1 frame reconfigurable area, the bitstream is 1,067 words long, and the optimal block size is 32

words.

4.1.2 Proposed Methodology

Despite the solution proposed by Xilinx is fairly comprehensive, it may implies significant time

and area overheads. In the sequel we propose a methodology that reduces these overheads, by

protecting just the critical part of the partial bitstream. Some ad-hoc Design for Dependability

(DfD) rules are also introduced.

44

4.1. Dependable DPR with minimal Area & Time overheads on Xilinx FPGAs

0 2000 4000 6000 8000 10000

20

40

60

80

100

120

140

160

180

200

BLOCK DIMENSION (K/N) [WORDS]

T
X

−
C

R
C

 [u
s]

1 Frame
3 Frames
5 Frames
7 Frames

Figure 4.3: Reconfiguration time of Xilinx solution

4.1.2.1 Partial bitstream file splitting

As aforementioned, the partial bit file is composed of three main parts. The first part contains

the address and control information. The second includes the data for the reconfiguration in the

selected frame(s). The last part is the built-in ICAP CRC checksum.

It is straightforward that, in terms of dependability, the most critical part is the first one, since it

defines the portion of the FPGA to reconfigure. In fact, if an error occurs in an address or control

information, a static portion of the FPGA could be unintentionally reconfigured and the system

could become inoperative.

The proposed approach deeply protects this portion of the partial bitstream that contains the

most critical words, letting the rest unprotected. In the original partial bit file, the identified

critical words are globally 21, for both control and address. This means that, in our approach,

only 21 CRC signatures are generated. Thus, the final bitstream file is generated, adding the CRC

signatures for critical words, as shown in Figure 4.4.

At reconfiguration time, the critical words are checked, while the non-critical words are loaded

45

4. ENHANCING DEPENDABILITY OF DYNAMICALLY PARTIALLY RECONFIGURABLE SYSTEMS

Figure 4.4: Our software solution

from the external memory and directly sent to the ICAP, without any time overhead or buffering,

as shown in Figure 4.5.

The proposed solution requires a CRC evaluator and a Reconfiguration Manager to control the

Figure 4.5: Our Hardware Solution

reconfiguration process, while no BRAMs are required.

The reconfiguration time with the proposed CRC checking is

TOU R−C RC = K +C

min(f IC AP , fMem)
(4.4)

46

4.1. Dependable DPR with minimal Area & Time overheads on Xilinx FPGAs

where K is the bitstream dimension in terms of 32 bit words; C is the number of critical words;

f IC AP is the working frequency of the ICAP; fMem is the memory working frequency.

Figure 4.6 plots the ratio TX−C RC /TOU R−C RC , which proved to be always >1. Therefore, the pro-

posed solution is always faster then the Xilinx one.

0 2000 4000 6000 8000 10000
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

BLOCK DIMENSION (K/N) [WORDS]

T
X

−
C

R
C

 /
T O

U
R

−
C

R
C

1 Frame
3 Frames
5 Frames
7 Frames

Figure 4.6: Comparison between proposed solution and Xilinx solution

Despite the proved time and area occupation advantages of the proposed solution, to assure a

high dependability of the reconfiguration process, we have to guarantee that an error in the non-

checked part of the bitstream file will not lead to a fault in the system. The jeopardy is that some

static connections are routed in the reconfigurable area, and, due to a faulty reconfiguration pro-

cess, the link between two points could be broken. This goal is achieved by fulfilling the following

Design for Dependability rules:

1. potential critical links must not cross any reconfigurable area

2. connection inside critical modules must not cross (i.e., be routed through) reconfigurable

areas.

47

4. ENHANCING DEPENDABILITY OF DYNAMICALLY PARTIALLY RECONFIGURABLE SYSTEMS

4.1.2.2 DfD#1: Critical links protection

To ensure a dependable reconfiguration process, critical connections must be protected. These

include:

• External-Memory to Memory Controller links;

• Memory Controller to Reconfiguration Manager links;

• Reconfiguration Manager to ICAP links.

In order to guarantee that these links do not cross the reconfigurable area, after the automatic

routing performed by the synthesis tool, the layout must be checked and some links manually

re-routed, if required.

The rationale of this DfD rule is that Xilinx Design tools do not allow to specify this kind of con-

straints at design time.

4.1.2.3 DfD#2: Critical modules protection

The second DfD rule imposes that all critical modules must be protected.

In systems which use partial reconfiguration, since bitstreams are loaded from the external mem-

ory, all modules involved in the communication between the external memory and the ICAP

must be considered critical (see Figure 4.7). In addition, also design specific modules could be

considered critical. Their integrity can be preserved by constraining critical modules in prede-

fined physical region called partitions. Xilinx PlanAhead tool enables the user to manually place

a module in a specific area, guaranteeing that all the specified hardware and the related connec-

tions are inside the physical regions.

4.1.3 Experimental results

This section reports a set of experiments performed to validate the proposed methodology and

to compare its performance with the Xilinx solution.

The experimental setup includes a Leon3 [24] based SoC, implemented on a Xilinx ML403 demo

board, equipped with a Xilinx Virtex 4 FPGA device and 64 MB of DDR SDRAM [63]. The SoC con-

tains a reconfigurable area in which it is possible to dynamically load two modules, namely the

APBUART and the GPTIMER from Gaisler Research IP Library [2]. Both modules require a recon-

figurable area composed of 2 frames. The SoC also includes an ad-hoc reconfiguration manager

connected to the AMBA bus and an internal timer able to measure the partial reconfiguration

time. The reconfiguration manager is able to:

• address the external memory, loading bitstream files without any CPU intervention (Direct-

Memory-Access);

48

4.1. Dependable DPR with minimal Area & Time overheads on Xilinx FPGAs

Figure 4.7: Critical connections and cores

• perform DPR through ICAP;

• perform the CRC check;

• automatically manage the whole reconfiguration process, even in presence of errors.

The synthesis of the overall design has been performed using Xilinx ISE Design Suite 14.4. The

Leon3 processor works at 66 MHz, the ICAP controller and, the DDR SDRAM at 100 MHz.

4.1.3.1 Xilinx approach implementation

The Xilinx protection methodology has been implemented using a parallel CRC-32 to minimize

the CRC latency. The selected polynomial is 0x90022004 which guarantees Hamming distance

equal to 6 [38].

For each considered reconfigurable module a partial bit file of 1,969 32-bit words has been gen-

erated.

We evaluated the reconfiguration time and the required area considering the following block

sizes: 4, 16, 32, 44, 64, 128, 256, 512 32-bit words. Figure 4.8 shows the relation between the

reconfiguration time and the block size. The solid line plots the reconfiguration time calculated

using Equation 4.1 while the dots report the measured reconfiguration time for the 8 considered

block sizes. The graph confirms that the considered mathematical model provides a good esti-

mate of the configuration time and can be used to identify the best block size for a given design.

According to Figure 4.8 the optimum configuration for the Xilinx solution is a block of 64 32-bit

words with a reconfiguration time of 63.72 µs. With this architecture, the synthesized reconfigu-

ration manager requires 290 slices and 1 BRAM.

49

4. ENHANCING DEPENDABILITY OF DYNAMICALLY PARTIALLY RECONFIGURABLE SYSTEMS

0 100 200 300 400 500 600
60

62

64

66

68

70

72

74

76

78

80

BLOCK DIMENSION (K/N) [WORDS]

T
X

−
C

R
C

Calculated
Measured

Figure 4.8: Reconfiguration time with 2 Frames

4.1.3.2 Proposed approach implementation

Differently from the Xilinx solution, the proposed approach is designed to protect 16-bit critical

words. A smaller CRC can therefore be adopted. We implemented a parallel CRC-16 with poly-

nomial equal to 0x968B which guarantees Hamming distance equal to 7 [39].

The two presented DfD rules have been applied to the proposed design. Partitions have been

created using Xilinx PlanAhead to protect the SoC critical modules (i.e., Reconfiguration Man-

ager (RM) and Memory Controller (MC)). To ensure that the processor keeps running also after a

faulty reconfiguration, the Leon3 has been constrained in a specific region, also (see Figure 4.9).

This introduces a minimal degradation (1.2%) in the maximum working frequency.

Finally, all critical connections have been checked, in order to assure that they do not cross the

reconfigurable area, and only 2 links were manually re-routed using the Xilinx FPGA Editor Tool

(see Section 4.1.2.2).

The synthesized reconfiguration manager requires 295 slices and no BRAMs. A fault free recon-

figuration requires 61.78 µs.

50

4.1. Dependable DPR with minimal Area & Time overheads on Xilinx FPGAs

Figure 4.9: PlanAhead Device View

51

4. ENHANCING DEPENDABILITY OF DYNAMICALLY PARTIALLY RECONFIGURABLE SYSTEMS

Table 4.1: Area occupation and reconfiguration time of different implementations

Solution
Block Size CRC BRAM RM Reconfig. Time

[bit] [#] [#] [# slices] [us]
w/o CRC 0 0 0 197 (3.60%) 61.04

Proposed Approach 1x16 42 0 295 (5.39%) 61.78
Xilinx 64 x 32 31 1 290 (5.30%) 63.72
Xilinx 1 x 32 1,969 0 290 (5.30%) 77.88
Xilinx 1,969 x 32 1 8 290 (5.30%) 73.49

4.1.3.3 Comparison

Table 4.1 compares the two analysed solutions, in terms of area occupation and fault free re-

configuration time. The assets of the proposed solution are no BRAM occupation and a shorter

reconfiguration time compared to the Xilinx solution, with a very small are overhead in the con-

figuration manager (increase of 1.7% of slices) due to a more complex Finite State Machine. The

reported reconfiguration times, computed with the model presented in Section 4.1.2, are related

to:

• 2 frames reconfigurable area (1,969 words)

• 1506 Mbit/s throughput of DDR SDRAM.

For sake of completeness, Table 4.1 also provides information about the worst cases of the Xilinx

solution, and a CRC free DPR system.

So far the performance comparison has considered the fault free DPR time, only. The rest of this

section will compare DPR performance in case of faults in the bitstream, which have been in-

jected in the words of the data portion, only. This condition is conservative, since it represents

the worst-case condition for the proposed solution. In fact, when applying Xilinx’ solution, if a

faulty block is loaded, the error is detected as soon as the CRC of the block is checked. The block

is immediately reloaded, thus introducing a time overhead equal to the block loading time. In

the proposed solution, if an error occurs in a critical word, it is immediately detected enabling

the system to reload the corrupted word. If the error instead occurs in the data portion, it will be

detected only at the end of the reconfiguration process, during the ICAP CRC check. In this case

the full DPR process must be restarted since the reconfigurable area has been corrupted, thus

introducing a higher overall reconfiguration time overhead.

The time overhead introduced by errors in the loaded blocks for the two considered solutions is

therefore influenced by the DPR rate, and by the word error probability observed when loading

bitstream blocks. Figure 4.10 , Figure 4.10 and Figure 4.12 analyse the difference in system activ-

ity time spent for DPR in the two solutions over a one day observation period for different DPR

rates and word error probabilities, thus enabling an easy comparison of the two solutions.

52

4.1. Dependable DPR with minimal Area & Time overheads on Xilinx FPGAs

Figure 4.10: Difference of DPRs time in 1 day - 2 Frames

Figure 4.10 analyses the case of a 2 frames reconfigurable area, i.e., a partial bit file of 1,969 32-bit

words. The experiments show that the proposed technology outperforms the Xilinx solution in

all working conditions enabling a significant improvement in the overall reconfiguration time.

Figure 4.11 performs a similar analysis, but considering a larger reconfigurable area composed of

4 frames. Also in this case, the proposed approach should be preferred.

Figure 4.12 performs a similar analysis, but considering a larger reconfigurable area composed

of 8 frames, i.e., a partial bit file of 11,040 32-bit words. In this case, when the word error prob-

ability increases over 10−6, the Xilinx solution should be preferred. This is due to the additional

reconfiguration process required in our solution whenever data words are corrupted. Neverthe-

less, decreasing the error probability or the number of reconfigurations per day, the proposed

methodology is the best one.

53

4. ENHANCING DEPENDABILITY OF DYNAMICALLY PARTIALLY RECONFIGURABLE SYSTEMS

Figure 4.11: Difference of DPRs time in 1 day - 4 Frames

Figure 4.12: Difference of DPRs time in 1 day - 8 Frames

54

4.2. ZipStream: improving dependability in Dynamic Partial Reconfiguration

4.2 ZipStream: improving dependability in Dynamic Partial Reconfiguration

The solution proposed in Section 4.1 guarantees, also for faulty reconfigurations, that the rest of

the system (i.e., static portion) continues to function. Nevertheless, it introduces an amount of

latency due to the adopted buffering mechanisms that, in some cases, is not acceptable.

In addition, the recovery mechanism is not described by Xilinx, and the choice is left to the user.

A widely used approach consists in reading again the bitstream and trying to reconfigure again

with the same bit file. This process must be handled by a reconfiguration manager and leads to a

very long reconfiguration time. Moreover, it does not assure that the reconfiguration process will

finally ends properly.

In fact, if the bitstream read from the external memory is definitely corrupted, the reconfigura-

tion process will always be stopped.

A widely used more dependable solution requires to store the bitstream inside the FPGA. Since

the BRAMs of the device are protected by Error Correction Codes (ECCs), the bitstream will be

safely stored. Nevertheless, this will come at a cost in terms of memory occupation, that in mod-

ern SoPCs is a really critical resource. An effective solution is to compress the data to be stored,

in order to reduce the memory occupation.

The next section presents an overview of compression algorithms, taking into account the com-

plexity required for the hardware implementation.

4.2.1 Compression Algorithms overview

A compression algorithm aims at decreasing the size of an original array of data, involving en-

coding information. The achieved compression can be either lossy or lossless.

Lossy algorithms reduce the dimension of the array by eliminating marginal information. Usu-

ally, a lossy compression achieves a high compression rate, but the original data can not be re-

constructed. Examples of lossy compressions are MPEG2, JPEG and MP3 [46].

Lossless compression algorithms allow the original array to be reconstructed from the compressed

data. Lossless data compression is usually based on the statistical model of the input data, ex-

ploiting redundancy to compress the original data. Therefore, the achieved compression rate is

closely related to the statistics of the data to be compressed.

Two main lossless encoding algorithms are used: Huffman Coding and Arithmetic Coding. In

both cases, the most frequently used characters are coded by fewer bits, while less frequently oc-

curring characters are coded by more bits. This led to fewer bits used in total.

Huffman coding [10] is the most well-known and widely used variable-length code. It separates

the input data into symbols (choosing their lengths) and replaces each symbol by a code.

Arithmetic coding, instead, encodes the entire message into a single number. Arithmetic coding

[41] achieves high compression rates for particular statistical models, whereas it implies higher

computational complexity. Huffman compression is simpler and faster, but produces poor re-

55

4. ENHANCING DEPENDABILITY OF DYNAMICALLY PARTIALLY RECONFIGURABLE SYSTEMS

sults for models that deal with uniform symbol probabilities. It provides very high compression

ratios when input data are very redundant.

Another kind of compression algorithm, based on the characteristics of the data to be com-

pressed, is the Run-length encoding (RLE) [10]. In RLE, sequences of the same value are stored as

a single data and the number of occurrences in the sequence.

4.2.2 ZipStream Methodology

ZipStream is a novel methodology to increase the level of dependability in reconfigurable FPGA

systems by internally storing as backup a special compressed bitstreams. The solution is based

on storing in the FPGA a compressed partial bitstream for each reconfigurable partition. When a

corrupted bitstream (i.e., checked by the ICAP built-in CRC) is read from the external memory, at

the end of the reconfiguration the static part of the system may be damaged). In order to restore

in a very short time the static system functionalities, an internally stored black-box [67] bitstream

configures the corrupted reconfigurable partition.

Since the main goal is to assure the proper functioning of the system, the compressed bitstream

will reconfigure the target partition with a black-box module, able to ensure the static connec-

tions passing through the reconfigurable partition to be correctly restored.

The black-box partial bitstreams, generated by the Xilinx PlanAhead tool, encompass just the in-

formation of the static part of the reconfigurable partition, since there is neither logic nor nets

associated with this partition. The main peculiarity of this special bitstream is that it embeds a

lot of data redundancy exploitable for an efficient compression.

In general, a partial bitstream contains information items related to the logic and routing re-

sources present in the associated reconfigurable partition. A black-box partial bitstream carries

just the information about the static connections of the design which routes through the targeted

reconfigurable partition. Since it does not contain any information associated with the logic re-

sources, it includes long sequences of zeros. Since the ICAP CRC check does not occur until

the end of a reconfiguration process, a faulty bitstream loaded from the external memory may

damage the static portion of the design, including connections associated to the reconfiguration

controller. In this case, the system will not be able to restore the faulty partition by a black-box

module. Thus, to make the ZipStream methodology effective, a Design-for-Dependability (DfD)

rule must be adopted at design time.

In addition, the features of the black-box partial bitstreams enable the use of an ad-hoc designed

compression algorithm based on the Huffman encoding (see Section 4.2.2.1), whose decompres-

sor requires very low hardware resources.

The ZipStream approach consists of three different steps:

• apply the optimal Compression algorithm to the partial bitstreams in software;

• design the Hardware Decompressor to be implemented in hardware;

56

4.2. ZipStream: improving dependability in Dynamic Partial Reconfiguration

• apply the DfD design rule to the system design.

4.2.2.1 Compression Algorithm

The partial bitstream file is a stream of data to be downloaded in the ICAP, composed of hundreds

of 32-bit words. To compress these data, a combination of two different algorithms has been used

to achieve a high compression rate.

Since the bitstreams to be compressed are characterized by many sequences of zeros, the first

applied algorithm was the Run-Length Encoding (RLE).

The RLE encodes a sequence of consecutive zeros by a binary number. Obviously, the insertion

of 1-bit flag to distinguish normal symbol or encoded symbol is required. This encoding is based

on splitting the stream of bits in symbols. All symbols have the same length in terms of number

of bits. The length clearly has a great impact on the compression ratio, since the symbol proba-

bility changes with the symbols’ length. In order to enhance the flexibility of the methodology,

the software compressor is able to automatically calculate the symbol length to achieve the best

compression rate. To do this, the RLE algorithm is applied with three different symbol lengths

(e.g., 8, 16 and 32 bits). The set of lengths has been chosen to better fit the data in the hardware,

since the decompressor should save these data in a BRAM, 8-bit words addressable.

After applying the RLE algorithm, the software generates the compressed bitstreams, using the

best symbol length configuration.

Afterwards, the Huffman encoding is applied on the RLE encoded bitstreams. Huffman coding

has been chosen by evaluating the hardware resources needed in the decoder for both Huffman

and Arithmetic coding. In fact, the complexity of the Huffman decoder is definitely lower than

the Arithmetic one.

The Huffman encoding process consists of two steps: Huffman tree construction and Single side

Growing Huffman encoding.

The Huffman tree construction implements the following algorithm: occurrences of all words are

evaluated, then the array of words is sorted in descending order of frequency, in order to correctly

generate the Huffman tree. This frequency-sorted binary tree is then used to assign the symbols

to the words in the standard Huffman encoding. The more frequent is the word, the shorter will

be the assigned code.

Nonetheless, since these data must be stored inside the FPGA BRAMs, the trade-off between per-

formances and storage occupation need to be considered carefully. Considering the hardware

implementation, the data structures should not be too complex to reduce the logic area occupa-

tion.

In this context, the Single-side Growing Huffman (SGH) tree [27] proved to be the most efficient

in terms of memory occupation [13]. The reader may refer to [13] for more information.

The previously constructed Huffman tree is translated into a SGH tree. In the proposed method-

57

4. ENHANCING DEPENDABILITY OF DYNAMICALLY PARTIALLY RECONFIGURABLE SYSTEMS

ology the SGH tree coding process is fully computed by software, providing as output the com-

pressed bitstream. The translation table must be stored inside the FPGA internal memory. The

memory occupation has been reduced thanks to a smart approach based on the special features

of the SGH table. In fact, it is easy to group the code words depending on the number of the prefix

ones. This introduces the possibility to decode the code words in a hierarchical way (see Section

4.2.2.2 and Section 4.2.3).

The hierarchical decoding is done in two different steps. Code word groups can be simply iden-

tified by using hardwired logic, while symbols decoding is done exploiting a Look-Up-Table ap-

proach. As example, when symbols length is 8 bits, and the code length is 12 bits, the original

memory size needed to store the LUT is 4 KB. In our solution, the LUT size is only 128 B.

After the coding algorithm outputs the code word for each symbol, the Look-Up-Table (LUT)

ROM is generated to store the data in the FPGA.

4.2.2.2 Hardware Decompressor

The decompressor (or decoder) is hardware implemented in the device logic. The decompressor

performs the Huffman decoding on the input code words, and then the RLE, if necessary, pro-

viding in output the original bitstream data. Figure 4.13 shows the architecture of the hardware

decoder.

Initially, the 16-bit value of the REG C register, that represents the number of already decoded bits

of the input packet, is 0. The 16-bit packet received in input is stored in REG B register. The packet

is passed directly to the LUT ADDR DECODER, without performing the shift operation. The LUT

ADDR DECODER decodes the group which the code word belongs to, by counting the number of

leading 1 in the code word. After identifying the group, the LUT ADDR DECODER generates the

address for the LUT ROM, which contains the SGH table.

The LUT ROM outputs the symbol associated to the input code word and the relative code length.

The symbol is then passed to the RUN-LEN DECODER, while the code length is accumulated by

the 16-bit ACCUMULATOR and the result is stored in the REG C register. The value of this register

controls the BARREL SHIFTER shift operations.

The BARREL SHIFTER module shifts the input packet of the number of bits indicated by REG C,

flushing the already decoded bits. In this way, only the undecoded bits appear at the input of the

LUT ADDR DECODER.

In case there is an overflow in the ACCUMULATOR, it means that a codeword is split between two

consecutive packets, so the next packet is received in REG B register, while the previous packet is

moved to the REG A register.

REG A and REG B values are concatenated and input to the BARREL SHIFTER. The described op-

erations are repeated recursively until no more input packets are received.

The output symbol from the LUT ROM is finally decoded by the RUN-LEN DECODER, if neces-

58

4.2. ZipStream: improving dependability in Dynamic Partial Reconfiguration

Figure 4.13: Decompressor architecture

sary. This decoder checks the flag bit in symbols. Whenever the flag is asserted, it implies that this

symbol has to be decoded by the RUN-LEN DECODER. The RUN-LEN DECODER read the binary

value of the symbol and output a sequence of consecutive zeros with a length equal to that value.

The output of the RUN-LEN DECODER represents the decoded words of the bitstream, that can

be passed to the ICAP interface exploiting the reconfiguration controller.

The operations of the hardware decompressor are managed by the reconfiguration controller.

The controller is directly connected to the ICAP interface to download the bitstream with correct

timing.

At run time, when a reconfiguration request is received, the controller read an external stored bit-

stream in order to reconfigure a partition. If an error at the end of the reconfiguration process is

detected by the ICAP, the controller starts reading the compressed black-box bitstream from the

internal BRAM of the FPGA. Then, it manages the decoding process and it provides the decoded

words to the ICAP interface.

4.2.2.3 Design-for-Dependability rule

As mentioned above, a corrupted partial bitstream, read from the external memory, can led to a

system damage. To avoid the corruption of the connections of the modules used to restore the

59

4. ENHANCING DEPENDABILITY OF DYNAMICALLY PARTIALLY RECONFIGURABLE SYSTEMS

correct behaviour of the static part of the system, a simple DfD rule must be adopted.

The rule aims at enclosing all the aforementioned connections in such a way that they can-

not be routed trough a reconfigurable partition. This can be achieved by including in a non-

reconfigurable partition all the critical blocks:

• Reconfiguration Controller (RC)

• ICAP

• BRAMs, that store the black-box bitstreams

• Decompressor

This rule ensures that all connections between these blocks, that are necessary after a faulty re-

configuration, do not pass through the faulty reconfigured partition. Thus, the correct function-

ing of these modules is guaranteed also after a faulty reconfiguration.

Figure 4.14 shows an example of how these blocks can be protected. The highlighted block on

the top of the device represents the reconfigurable partition. The non-reconfigurable partition,

in the middle of the device, includes the Reconfiguration Controller, the Hardware Decompres-

sor, and the BRAM that stores the black-box bitstream associated to the reconfigurable partition.

The ICAP cannot be included in a partition, thus it is advisable to verify that the few connections

between this interface and the RC do not pass through the reconfigurable partition.

4.2.3 Experimental results

The ZipStream methodology is composed by the Huffman software encoder and the hardware

decoder. First of all, many partial bitstreams were generated using Xilinx PlanAhead Tool v14.2,

targeting Virtex 4 XC4VFX12-FF668-10C FPGA. The design includes the Leon3 soft-core [24] and

many different reconfigurable partitions.

Six different reconfigurable partition sizes (i.e., from 1 to 6 frames) have been tested. The black-

box module has been placed in 10 different positions in the device, in order to have 10 different

partial bitstreams for each partition.

To correctly encode the bitstream file and to find the solution that guarantees the best compres-

sion ratio, several compression algorithms have been tried. First, black-box partial bitstreams are

encoded with the standard Huffman algorithm (Huffman 32, 16 and 8 in Figure 4.15 and Figure

4.16), splitting in different word length configurations: 32 bits, 16 bits, 8 bits. Then, a combina-

tion of Huffman and Run-length encoding is used to compress the bitstreams (Huffman+RLE 32,

16 and 8 in Figure 4.15 and Figure 4.16).

Figure 4.15 and Figure 4.16 shows the compression rate in different scenarios. The graph plots

average compression ratio, between the 10 partial bitstreams considering 6 different partition di-

mensions. The combination column, in Figure 4.16, shows the average compression rate in the

60

4.2. ZipStream: improving dependability in Dynamic Partial Reconfiguration

Figure 4.14: Example of protecting the critical blocks

50 different bitstreams.

The compression rate is computed as the ratio of compressed data plus the LUT (i.e., SGH tree)

size over the original data.

Easily to conclude from Figure 4.15 and Figure 4.16 that, when word length configuration for

Huffman encoding is larger than 8 bits, the overhead of Run-length encoding contributes a por-

tion in the encoded bits and does not bring any benefit. However, the combination of Huffman

encoding and Run-length encoding has a good impact when bit length is 8 bits. On overall, the

compression rate is around 22% in all cases, it means that we could save 78% of storage size. The

best compression rate that can achieved by the proposed solution is 19%, and the best choice is

the combination of Huffman code and Run-length encoding with a word length of 8 bits.

The maximum working frequency of the decompressor is 163.55 MHz, with an area occupation

of 189 slices (i.e., 3% of the device), including the reconfiguration controller.

Thanks to this implementation, since the ICAP works at 100 MHz, the decoder is able to provide

61

4. ENHANCING DEPENDABILITY OF DYNAMICALLY PARTIALLY RECONFIGURABLE SYSTEMS

Figure 4.15: Compression rates for streams 0, 1 and 2

Figure 4.16: Compression rates for streams 3, 4, 5 and average

62

4.2. ZipStream: improving dependability in Dynamic Partial Reconfiguration

a 32-bit word each clock cycle, i.e., with the same throughput required by the configuration port,

reaching the highest reconfiguration data throughput.

Finally, to prove the effectiveness of the ZipStream methodology different faulty bitstreams have

been stored in an external memory and loaded to the ICAP. The internal 32 bit CRC module, which

polynomial is 0x8F6E37A0, is able to detect 3 faults in each bitstream [38]. In all cases the recon-

figuration controller was able to restore the proper function of the static portion of the system,

after the error notification asserted by the ICAP built-in CRC.

63

4. ENHANCING DEPENDABILITY OF DYNAMICALLY PARTIALLY RECONFIGURABLE SYSTEMS

4.3 NBTI Mitigation by Dynamic Partial Reconfiguration

4.3.1 Proposed Methodology

The proposed method is a Design for Dependability (DfD) technique aimed at extending the

FPGA device life by reducing the effects of the NBTI on the SRAM configuration memory.

It takes advantage of the unused hardware resources by allocating functions to be imple-

mented uniformly into all available resources. To be applied, the proposed method needs un-

used resources. Clearly, the effective usable portion of the FPGA is reduced to only a half of the

available resources, while the resources allocated to a single function (e.g., assigned to the imple-

mentation of an IP-core) are doubled, time-multiplexing their usage.

Resources are then periodically switched between two statuses: “work” and “rest”. In work

status they are normally operated (i.e., they implement the function specified at design time); in

the rest status they are, and need to be, unused. Nevertheless, not using resources is not enough

to prevent them from suffering the NBTI effects: for this reason, in the rest status, the unused

resources are properly configured to lower the effects of the aging phenomenon.

In particular, the rest status is designed to minimize the impact of the NBTI on the SRAM

configuration memory. To minimize the NBTI effect in SRAM cell, each bit of the memory has

to store complementary values for equal times. Therefore, in the rest status, the whole SRAM

content should be the complementary of the one stored in the work state. Furthermore, the time

spent in rest and in work statuses must be the same. The changing of the SRAM content implies

that a DPR is performed.

In order to assure that the function of the system is anyway carried out, in each couple of

resources assigned to the same sub-function at least one of them has to be in work status. Since

the resources working status has to overlap for a certain time, the static probability of the contents

is slightly higher (or lower, depending if considering ‘1’ or ‘0’ probability and the specific memory

cell) than 50%. To ensure the correctness of the methodology, the following three Design for

Dependability rules should be fulfilled.

4.3.1.1 DfD#1: Static connection avoidance

Usually, Place and Route (PAR) tools, generate some (long) static connection crossing different

portions of the FPGA. These static connections are controlled by some of the configuration mem-

ory bits.

The proposed methodology requires to flip the whole memory content. However, these static

connections may be unintentionally broken if all the configuration memory bits are flipped.

To avoid such threats:

• the whole FPGA is partitioned into several partitions, one for each sub-function instance

(counting also all their replica);

64

4.3. NBTI Mitigation by Dynamic Partial Reconfiguration

• setting proper options, while synthesizing the design, statical connections are forbidden to

cross such partition boundaries [17].

4.3.1.2 DfD#2: Using different interfaces

Since the whole configuration memory content must be flipped, all partitions of the FPGA have

to change. Therefore, the programmable logic cannot contain static portions.

If all the instances of a module use the same communication ports (i.e., the same hardware),

some configurable logic will be statically configured (so fixed values inside the corresponding

memory bits), conflicting with the above statement.

To solve this issue, each instance of a module should use its own ports toward the external

world. There are then different chances on how the external world should interface with the

FPGA:

• the external user system (i.e., the system the FPGA is interfaced with) should provide the

double of the minimum required number of ports and connect to each instance of a mod-

ule in a FPGA with dedicated ports (Figure4.17(a));

• exploit an external bus (not laying in the configurable area) to connect the corresponding

module ports and possibly, the ports of all the modules (Figure 4.17(b)).

The former requires doubling the pins, so the related costs may be too high. Also, it would

imply that the external system should make data flow alternating through two sets of I/O inter-

faces (e.g., IN-OUT and IN’-OUT’ of Figure4.17(a)). In the latter, instead, the external system has

only one set of I/O interfaces, so pin-associated costs and input/output management complexity

are reduced. Further, the hypothesis to have an external bus connecting to many different ports

of a programmable area is quite likely true, as it is an actual implementations where FPGA logic

is used as hardware accelerators.

4.3.1.3 DfD#3: Smart external controller

A controller is of course needed to manage the DPR. The controller cannot be implemented in the

programmable logic, because it would imply static configuration of the FPGA. Clearly, in order to

assure this, the DPR controller must be implemented outside the FPGA device, so that it will not

use programmable logic.

The controller has to decide when to reconfigure each module. To guarantee the correct be-

haviour of the overall system, the controller can just reconfigure modules when they are idle.

Therefore, the controller needs to interface itself with the external user system to catch when the

module to be reconfigured is unused. When this happens, it will have to reconfigure (through

DPR) the module’s instance, which was previously in rest status, to work status, and vice-versa

(switching the instance from work status to rest status).

65

4. ENHANCING DEPENDABILITY OF DYNAMICALLY PARTIALLY RECONFIGURABLE SYSTEMS

(a) Dedicated interface

(b) Bus interface

Figure 4.17: Possible connection schemes

This controller, cannot be implemented in the reconfigurable logic of the FPGA as it would

imply static connections passing across different partitions’ boundaries which are potentially

damaged during partial reconfiguration of a module. For this reason, an external controller

should be used.

If a (micro)processor is involved in the design and enough computation power is available,

the controller’s functions can be allocated to the former: using an internal timer the processor

could simply generate the correct times for work and rest and drive.

4.3.2 Case study

The proposed method has been implemented and applied to an existing application in order to

assess its correct work. The considered case study is the use of a Zynq™-7000 [64] EPP by Xilinx

66

4.3. NBTI Mitigation by Dynamic Partial Reconfiguration

to implement an embedded system having two IP-core modules.

Figure 4.18: Zynq™Architecture

The Zynq™-7000’s architecture perfectly applies to the conceived method. As a matter of fact,

as shown in Figure 4.18, it includes a Dual Arm Cortex™-A9 MPCore processor, equipped with

its own memory controllers, I/O logic, AMBA switches and some programmable logic. More in

detail, the programmable logic is a Kintex™-7 (or Artix™-7) FPGA. According to Section 4.3.1.2,

AMBA is used to deal with communication between the FPGA and the external system.

The function of the controller, described in Section 4.3.1.3, was here executed by the on-chip

processor in time-sharing with the main program execution. To efficiently implement the con-

troller functions, internal facilities like timer counter and DMA controller were used. Moreover,

problems related to the controller to external system communication are solved easily because

they are physically the same entity.

The processor, beside running the main application’s program, by using multiprogramming,

concurrently runs the code to implement the controller. This is made easier by using timer coun-

ters and interrupt controller to obtain the required time intervals in the states switching. Further-

more, DMA controller is used to transfer the bitstreams from the memories to ICAP controller.

67

4. ENHANCING DEPENDABILITY OF DYNAMICALLY PARTIALLY RECONFIGURABLE SYSTEMS

Reconfiguration control procedures are inserted in the real-time interrupt (generated by timer

counters) service routines, in such a way that they cannot be stopped by the application software

and so preventing hazards derived from running the application while switching the states (i.e.,

while driving the partial reconfiguration).

Hereafter an example of the operation of the system will be shown. Let us assume that the

first IP-core has two instances, named IP1 and IP1’, and the same is for the second, that has IP2

and IP2’ instances. Each instance is contained in a dedicated partition, in order to assure that

no static connection lays in different modules’ partitions, as explained in Section 4.3.1.1. Let us

consider that the system is initially configured in the state (IPx, IPx’)= (work, rest) for each IP-core,

as shown in Figure 4.19(a). Please note that the greyed portions of the FPGA represent modules

in rest status: they are configured with bitstreams (BS1′ and BS2′), i.e., the content of the SRAM

configuration memory, which are respectively obtained by bit-wise inverting that ones which are

used in work status (BS1′ and BS2′).

(a) State: (work, rest) (b) State: (rest, work)

Figure 4.19: Graphic representation of IP-core states within the FPGA

After a certain time, the timer counter expires and triggers an exception. This makes the CPU

act as the controller of the DPR: IP1’ and IP2’ are reconfigured with the work state bitstreams

(BS1′ and BS2′), while IP1 and IP2 are reconfigured with the inverted bitstreams, BS1 and BS2,

leading the FPGA in the state (rest, work) (Figure 4.19(b)): then new data now flow to and from

these reconfigured modules. After a time delay, similar to the first one, everything repeats in the

opposite way: the system goes again to (work, rest) state. Everything is periodically repeated over

time so that each module’s instance stays in the two states for equal times. This leads the con-

68

4.3. NBTI Mitigation by Dynamic Partial Reconfiguration

figuration memory’s bits to have a stored value equal to ‘0’ for 50% of the time, which minimizes

the degradation due to NBTI.

Please note that the two IP-cores not necessarily switch at the same time (as shown in the

Figure 4.19). The switching frequency of each module was chosen to be compatible with the

foreseen idle times of the cores.

4.3.3 Experimental results

To quantify the benefits of the proposed solution, the variation over time of the SNM in SRAM

cells has to be considered. Further, a low SNM value negatively influences the dependability.

Since the measure cannot be performed over time easily, a study using cell library models has

been done. STMicroelectronics’ 45 nm standard cells library was used because the 28 nm stan-

dard cells library, that is used in Xilinx 7 family [70], is not available: this does not invalidate the

benefits lead by the proposed method as with 28 nm only the magnitude and speed of degrada-

tion over time changes. The reported data are evaluated at a temperature T = 25°C, VDD = 1.1V

and channel width WpMOS = 0.21µm.

Figure 4.20: Signal Noise Margin degradation in function of time (measured in years) and static
probability (probability to have ‘1’ in a SRAM cell)

Figure 4.20 clearly shows that the SNM of the cell decreases (worsens) during the years, but, with

69

4. ENHANCING DEPENDABILITY OF DYNAMICALLY PARTIALLY RECONFIGURABLE SYSTEMS

a static probability of 0.5, which is achieved using the proposed methodology, the decrease is

considerably less than with any other probability.

70

4.4. SATTA: a Self-Adaptive Temperature-based TDF awareness methodology for dynamically
reconfigurable FPGAs

4.4 SATTA: a Self-Adaptive Temperature-based TDF awareness methodology

for dynamically reconfigurable FPGAs

In a complex FPGA-based SoPC, high clock frequency and precise timing optimization are cru-

cial to guarantee high performance and throughput. Designers try to push systems’ working fre-

quency to its limit, which is mostly settled by the maximum path delay of the design. Proper

set-up (Tsetup) and hold (Thold) times at the input of each flip-flop must be guaranteed in order to

sample stable signals, thus avoiding metastable states and sampling of wrong values belonging

to previous or following clock cycles.

Faults due to incorrect sampling caused by timing issues are in general referred to as Transition

Delay Faults (TDFs). Figure 4.21 shows a typical TDF example in which the signal fed to a sam-

pling register violates the set-up time.

Figure 4.21: Example of Transition Delay Fault. A signal connected to the input of a register or
flip-flop violates the set-up time changing its value in correspondence to the clock rising edge
and thus increasing the probability of sampling a wrong value.

TDFs are often caused by non-functional parameters such as process variations, voltage fluc-

tuation, high temperature and aging. Aging effects, such as NBTI and HCI may deteriorate the

system’s timing during its lifetime (see Section 2.2) High temperature is another significant TDF

cause. It magnifies aging effects such as NBTI and HCI and, furthermore, it directly impacts the

transistors’ delay by increasing their threshold voltage. Park et al. [49] experimentally demon-

strated that working frequency penalty triplicates when changing the operating temperature from

25 °C to 125 °C. Solutions targeting TDFs avoidance and detection have been deeply studied in

ASICs. Dynamic Frequency Scaling (DFS) [22] consists in dynamically decreasing the system’s

working frequency when the path delay increases. TDFs are avoided by keeping a guard-band

on the set-up time. On the other hand, Dynamic Voltage Scaling (DVS) [14, 15] relies on increas-

ing the voltage source to increase the drain current, thus compensating the performances losses.

Another approach to increase drain current capability consists in modifying the body bias volt-

age, as in [23]. DVS and DFS have also been merged to maximize their mitigation efficiency [53].

71

4. ENHANCING DEPENDABILITY OF DYNAMICALLY PARTIALLY RECONFIGURABLE SYSTEMS

Adapting ASIC approaches to FPGA-based systems is non-trivial, due to the fixed FPGA internal

architecture that restricts the set of available design solutions. A set of works propose the use of

sensors based on shadow registers with clock skewed with respect to the primary one in order

to detect delay variations [6, 43, 56]. [6] proposes a sensor for detecting late transitions due to

aging effects in FPGAs. The sensor is designed in order to be inserted in parallel at the endpoint

of the critical path and exploits two flip-flops wit a positive clock phase to detect late transitions.

One of the main drawbacks of this sensor is that it enables to detect TDFs when they arise and

therefore it requires complex recovery strategies that usually imply stalling the system. Differ-

ently from [6], [43] proposes to use negative clock skew to detect delay variations thus enabling

to identify paths that are reaching a critical delay level before actual faults arise. The goal of the

proposed technique is to accurately and precisely characterize the register-to-register delays of a

large number of otherwise unobservable combinational paths at test-time. Even if not explicitly

defined for FPGA designs, the method has been applied for the characterization of a FPGA based

test case. A similar idea has been presented in [56], where a similar sensor is employed to detect

the likelihood of TDFs occurrence in selected critical paths. Despite we recognize that the use of

sensors based on shadow registers with clock negatively skewed with respect to the primary one

is a very efficient method to detect delay variations, in these publications, no counteractions at

system level are presented to exploit the gathered information at run-time to avoid TDFs occur-

rence in FPGA designs. Furthermore, these solutions are characterized by a constant monitoring

of the observed paths, thus incurring in sensor self-aging and power waste due to clock duplica-

tion, if used for run-time monitoring of FPGA aging. Being aware of the TDF main causes and

considering the models beyond their occurrences are crucial to efficiently tackle the problem of

TDF avoidance. Nonetheless, static probability of signal values and temperature profile of a sys-

tem depend on the actual workload and on the environmental conditions [74]. They are therefore

hard to estimate at design time [5]. This forces designers to take worst-case decisions when se-

lecting the system’s working frequency.

This methodology tries to overcome these limitations presenting SATTA, a design solution able

to exploit run-time device temperature information to predict delay variations and to smartly

activate temperature sensors, thus reducing power overhead. Furthermore, SATTA manages the

dynamic reconfiguration of the system’s working frequency, taking into account the delay depen-

dency on the temperature and the transitory nature of aging phenomena (due to signal probabil-

ities and temperature profiles). The proposed methodology has the potential to efficiently avoid

TDFs, guaranteeing a graceful degradation of system’s performance when required, but restoring

or boosting it in absence of critical conditions. A manager, implementing the proposed method-

ology, is introduced in this paper, in order to easily apply the methodology to FPGA-based SoPCs.

72

4.4. SATTA: a Self-Adaptive Temperature-based TDF awareness methodology for dynamically
reconfigurable FPGAs

4.4.1 SATTA sensors organization and architecture

SATTA implements a TDFs avoidance strategy based on the monitoring of the delay of those sig-

nals routed through the critical paths of the FPGA design. Two main events may arise:

1. whenever, due to increased temperature and/or aging effects, the delay of a critical path

approaches the set-up sampling time limit, the system’s clock frequency is lowered;

2. whenever, due to decreased temperature and/or recovery from aging effects, the critical

path delay decreases, the system’s clock frequency is slowly increased again.

A set of hardware modules are required to efficiently implement this monitoring activity and

the related reaction policies. These modules are designed exploiting a set of features commonly

available in modern reconfigurable devices, thus minimizing area, power and performance over-

heads. Resorting to widely spread FPGA functionalities enables easy implementation on all mod-

ern dynamically reconfigurable FPGAs, such as the newest Xilinx Virtex [70] or Altera Stratix [3]

FPGAs.

Figure 4.22 graphically summarizes the overall SATTA architecture. It includes:

• One or more Temperature sensors. They measure the temperature of the device and provide

this information to the manager that exploits it to estimate the system’s path delay status.

• One or more TDF sensors. A TDF sensor is able to monitor the delay of a given path as-

serting a warning signal whenever it increases to a level that may compromise the correct

sampling of the information.

• A CLK Generator. It generates the set of clock signals (i.e., CLK1 and CLK2) required by the

TDF sensors to properly operate. It enables to dynamically change the phase relationship

between CLK1 and CLK2. This feature is exploited by the manager to measure the actual

delay in the observed paths. Moreover, it can dynamically modify the frequency of the

main system’s clock (CLK1) at run-time, exploiting FPGA Dynamic Partial Reconfiguration

(DPR). This enables to adapt the system to the temperature and aging conditions, avoiding

TDFs while maximizing the performance.

• A Manager, that collects information acquired from the sensors (i.e., TDF sensors and Tem-

perature sensors) and issues proper reconfiguration commands for the CLK Generator with-

out interrupting the system’s tasks.

Details about the implementation of each block are provided in the next sections.

73

4. ENHANCING DEPENDABILITY OF DYNAMICALLY PARTIALLY RECONFIGURABLE SYSTEMS

!!FPGA

TDF!SENSOR

TDF
FF

FF

Temperature
Sensor

CLK Generator

WARNING

TDF
FF

FF

Temperature
Sensor

Manager

WARNING

CRITICAL!PATH

FF1

FF2

CLK1

CLK2

Figure 4.22: SATTA overall architecture. TDF detection and mitigation is implemented inserting
in the design: (i) a set of temperature sensors, (ii) a set of TDF sensors, (iii) a clock generator, (iv)
and a global manager.

4.4.1.1 Temperature Sensor

Temperature has a strong impact on aging effects and on TDFs in general. An increase of the

FPGA temperature would, on the one hand, heighten the path delay and, on the other hand,

raise the transistor’s threshold voltage due to NBTI.

Figure 4.23 plots the trend of a path delay in a Virtex 4 device, depending on the die temperature,

using the temperature model provided by Xilinx, extracted with the aid of the timing analysis tool.

Figure 4.23 shows an increase of more than 300 ps when the operating temperature raises from

0°C to 85°C. Similar effects are also experimentally measured on different devices such as 45 nm

Spartan 6 and 28 nm Artix 7 devices [50, 51]. Device temperature must therefore be monitored,

and gathered information must be exploited to predict the delay behavior and to take proper

countermeasures.

Both Altera and Xilinx FPGAs include a built-in temperature sensor diode. However, this

74

4.4. SATTA: a Self-Adaptive Temperature-based TDF awareness methodology for dynamically
reconfigurable FPGAs

Figure 4.23: Example of a critical path delay variation w.r.t. temperature in Virtex 4 Devices

diode is located in a fixed position of the die and is unable to provide measures related to a spe-

cific path. Following [26], SATTA exploits the built-in temperature diode as a reference sensor

and a ring oscillator with odd number of inverters (i.e., 11 inverters mapped on different FPGA

slices) as an approximated temperature sensor. This structure has several advantages: (i) it does

not require device dependent hardware features, (ii) it enables to measure temperature with a

reasonable area occupation and accuracy, and (iii) it enables to instantiate several sensors in the

device, monitoring the temperature in the area in which the controlled critical path is routed.

Looking at Figure 4.23, it is worth to highlight here that the temperature can be measured with

an uncertainty in the measure of some degrees without introducing significant errors in the cor-

responding delay estimation. This enables us to strongly reduce the number of cycles required

to obtain a measurement from the ring oscillator. Therefore, differently from [26] that uses 217

measurement cycles, SATTA can perform measurements with a drastically reduced number of

cycles (i.e., few tens of cycles are sufficient to have a measure suitable for the SATTA purposes).

If the available hardware resources are very limited, the reference diode alone can still be used

to evaluate the temperature in the device. In this case, temperature information provided by the

diode refers to the die temperature. Even if it is less specific, this information can still be used

to evaluate the overall temperature at which the device works. It is important to highlight here

that sensors are subject to aging as well. Therefore, the temperature should not be constantly

measured to avoid both sensor self-aging and to decrease power consumption.

If more built-in temperature sensors spread on the FPGA will be available in next generation

75

4. ENHANCING DEPENDABILITY OF DYNAMICALLY PARTIALLY RECONFIGURABLE SYSTEMS

devices, they can be exploited to obtain fast and accurate temperature measurements and to

save area dedicated to ring oscillators used as temperature sensors. Nevertheless, these sensors

require the use of built-in analog-to-digital converters available on the FPGA. These converters

represent limited resources often required to interface the FPGA with external devices. Ring os-

cillators remain a viable general solution whenever these resources must be allocated to different

tasks related to the system’s mission.

4.4.1.2 TDF Sensor

Once the most critical paths of the design have been identified, a TDF sensor for each critical path

is inserted. The TDF sensor is a special block able to monitor the delay of a path. Each critical

path includes several levels of combinational logic and is delimited by two memory elements

(e.g., flip-flops) working at the system’s clock frequency. The TDF sensor replaces the flip-flop

placed at the end of the selected critical path.

Following previous works [43, 56] we exploit a sensor based on a shadow flip-flop clocked with

a negative clock skew with respect to the main system’s clock. The sensor is composed of two flip-

flops (FF1 and FF2) and a 1-bit XOR gate (Figure 4.22). It is connected to the selected path and

clocked with two different clock signals. Since the two flip-flops are clocked with two different

clock signals, they sample the critical path output at two different times (see Figure 4.24). FF1 is

clocked at the system’s clock CLK1 and its output is connected to the rest of the system. Instead,

FF2, clocked at CLK2, acts as a warning sensor. CLK2 is a replica of CLK1 shifted with a negative

phase, in order to sample the data before CLK1.

Figure 4.24: Behavior of the TDF sensor

The output of the two flip-flops is compared using the XOR gate and a warning signal is as-

serted if the two sampled values differ. This happens if the sampled signal stabilizes too close to

76

4.4. SATTA: a Self-Adaptive Temperature-based TDF awareness methodology for dynamically
reconfigurable FPGAs

the rising edge of the system’s clock, indicating that the path delay is increasing due to tempera-

ture variations, aging effects, or presence of glitches.

Setting a negative phase between CLK1 and CLK2 is pivotal to obtain fault avoidance. When

the path delay increases, metastability conditions arise in FF2 first. If timely detected, the SATTA

Manager can take the proper countermeasures to prevent that the path timing degrades at a level

in which also FF1 is compromised generating an error in the system. The way this countermea-

sures are implemented will be better detailed in the next sections.

To increase the accuracy of the TDF sensor, FF1 and FF2 must be placed close to each other in the

design, thus avoiding timing differences that may cause erroneous TDFs warnings. Differently

from previous approaches [56], that rely on post-placement manipulation to add the desired reg-

ister by hand, we designed a procedure to easily add TDF sensors at RTL level while respecting

this constraint (see Section 4.4.2 for details on the sensors insertion methodology).

4.4.1.3 CLK Generator

The CLK Generator is responsible for generating both the main system’s clock CLK1, and the neg-

ative shifted clock CLK2. These two signals are generated using reconfigurable Phase Locked Loop

(PLL) hard-macros available in modern FPGAs [3, 70].

Reconfigurable PLLs have two main characteristics: (i) they can be configured at run-time,

thus enabling to adapt the system’s clock frequency and the clock phase difference according to

the Manager requests, and (ii) they enable the generation of multiple clock signals. Nevertheless,

the main problem of these PLL hard-macros is that, in general, they must be reset after each re-

configuration. To avoid any interruption of the system’s operation, two PLLs are therefore used.

Figure 4.25 shows the internal architecture of the CLK Manager implemented in a Xilinx 7 Series

FPGA [70] (similar considerations and architectures also apply for Altera FPGAs). It includes two

Xilinx Mixed Mode Clock Managers (MMCM) hard-macros and two clock multiplexers [72]. Each

MMCM can synthesize one or more clock signals starting from a reference input clock. Each out-

put clock signal can have independent frequency and phase relationship with respect to other

outputs.

In the proposed CLK Manager architecture, each MMCM generates two clock signals (CLK11/CLK12

for MMCM1 and CLK21/CLK22 for MMCM2).

At system’s start-up, MMCM1 is selected as main clock source and therefore CLK11 is used as

main system’s clock while CLK12 represents the negative shifted secondary clock, required by the

TDF sensors.

Whenever the Manager detects a warning from one of the TDF sensors, it reconfigures MMCM2

through its Dynamic Reconfiguration Port (DRP) [70]. The reconfiguration process sets new clock

frequency parameters, while the first MMCM is still operating with the current frequency.

When the dynamic reconfiguration of MMCM2 is completed, it is activated and the clock mul-

77

4. ENHANCING DEPENDABILITY OF DYNAMICALLY PARTIALLY RECONFIGURABLE SYSTEMS

CLK Generator

M
U

X
M

U
X

MCCM1

MCCM2

CLK1

CLK2

REF
CLK

CLK11

CLK12

CLK21

CLK22

SEL

DRP

DRP
DRP

Figure 4.25: Clock Generator internal architecture

tiplexers are both switched to modify the system’s clock frequency, therefore setting MMCM2 as

clock source. Similar operations are performed, alternatively switching the role of MMCM1 and

MMCM2, whenever a new reconfiguration is required. The inactive MMCM is powered down to

reduce the power consumption of the clocking network.

It is important to highlight that the switching between the two clock sources exploits the hard

macro BUFGMUX of Xilinx FPGAs [72], that is able to avoid metastability problems. It eliminates

the need to stall the system clock, thus interrupting the system operations. The reader may refer

to [72] for more information and detailed time diagrams of the BUFGMUX behavior.

The proposed CLK Generator architecture represents an improvement with respect to the

scheme presented in [56], in which two clock generators are used, as well. The main difference

between the two architectures is that in [56] the system clock and the auxiliary clock are gener-

ated by two different clock managers, thus introducing uncertainty in the clock phase difference.

Since the two clock managers are placed in different portions of the FPGA, process variations

and temperature gradients can cause different skew and jitter effects between the two clock sig-

nals. The CLK Generator architecture presented in this paper does not incur in power penalty

with respect to [56]. In fact, only a single MMCM is active during the normal operation, while

both MMCMs are turned-on only during a short transient phase (i.e., few tens of clock cycles for

78

4.4. SATTA: a Self-Adaptive Temperature-based TDF awareness methodology for dynamically
reconfigurable FPGAs

reconfiguration).

4.4.1.4 Manager

The Manager coordinates the activities of all the described blocks (i.e., TDF sensors, temperature

sensors, and CLK generator) according to the Algorithmic State Machine (ASM) reported in Figure

4.26.

At the beginning, in the RESET state the system is initialized. The most important parameters

managed by this block are:

• CLK_FREQ: represents the actual working frequency of the system;

• CLK_PHASE: is the actual phase relationship between the two clocks in output from the

Clock Generator, evaluated as the ratio between the skew of CLK1 and CLK2 and their pe-

riod;

• TEMP: represents the actual measured device temperature;

• TIMER_VALUE: represents the timeout period of an internal timer used to switch on the

monitoring procedure.

The value of the different constants and thresholds (i.e., INIT_FREQ, INIT_PHASE,∆CLK_DWFREQ)

depends on the specific design and user specifications, and must be customized taking into ac-

count synthesis parameters (see Section 4.4.3).

Starting from its IDLE state, the Manager is activated at regular intervals by an internal timer

(TIMER_VALUE and TIMER_END represent the timeout period and the flag, which is set at the

end of this period). Each time the manager is switched-on (i.e., each time the timer reaches its

time-out value) all temperature sensors are activated and, based on their readings, a new value

of TIMER_VALUE is computed (TEMP_S state). If multiple temperature sensors are instantiated,

only the highest temperature value is taken into account for TIMER_VALUE computation.

Basically, the temperature and TDF sensors activation period depends on: (i) the actual operating

frequency of the circuit, (ii) the operating temperature, and (iii) the temperature variation speed.

The sampling period must always respect the condition that the maximum increment of the path

delay between two consecutive readings must not exceed the phase relationship delay between

the two clocks sourcing TDF sensors (i.e., CLK1 and CLK2) according to the following equation:

T I MER_V ALU E :∆τ= τ(t +T I MER_V ALU E)−τ(t) <
Clock skew︷ ︸︸ ︷

C LK _PH ASE ·TC LK 1 (4.5)

where∆τ is the maximum increment in the path delay between two sensors activations, TC LK 1 is

the actual clock period of the system, and CLK_PHASE is the actual phase relationship, evaluated

as the ratio between the skew of CLK1 and CLK2 and their period. This condition ensures that,

79

4. ENHANCING DEPENDABILITY OF DYNAMICALLY PARTIALLY RECONFIGURABLE SYSTEMS

TIMER_END==1

IDLE

TEMP_OLD=TEMP
TEMP=READ_TEMP()

TEMP_S

WARNING=READ_TDF()

WARNING==1

TDF_S

CLK_FREQ=CLK_FREQ+
 -ΔCLK_DWFREQ
CLK_PHASE=INIT_PHASE
CLK_DPR(CLK_FREQ,CLK_PHASE)

DWFREQ_S

SWITCH_MUX()

CLK_SWITCH

RST

1

0

0

1

CLK_FREQ=INIT_FREQ
CLK_PHASE=INIT_PHASE
CLK_PHASE_STEP=0
TEMP=0
TIMER_VALUE=0

RESET

END_DPR==1

CLK_DPR

1
0

CLK_FREQ=CLK_FREQ+
 +ΔCLK_UPFREQ(CLK_PHASE_STEP)
CLK_PHASE=INIT_PHASE
CLK_PHASE_STEP=0
CLK_DPR(CLK_FREQ,CLK_PHASE)

UPFREQ_S

CLK_PHASE=CLK_PHASE+
+1/(256*CLK_FREQ)

PHASE_SHIFT(CLK_PHASE)

UPPHASE_S

END_SHIFT==1

PHASE_SHIFT

1

0

WARNING==1

PHASE_TDF

1

0

WARNING=READ_TDF()

CLK_PHASE_STEP--

TEMP>TEMP_OLD1

TIMER_VALUE=SET_TIMER
_AGING(TEMP)

0

TIMER_VALUE=SET_TIMER
(TEMP)

CLK_PHASE_STEP++

Figure 4.26: ASM describing the behavior of the Manager

between two sensor readings, the increment of path delay will not cause an actual TDF.

However, before computing the new TIMER_VALUE (TEMP_S state), the new value of tempera-

ture is compared with the last measured temperature (TEMP_OLD). The case TEMP>TEMP_OLD

represents the worst condition for the system, since an increase of temperature has immediate

impact on the delay variation. The temperature sensor must therefore be activated at short in-

tervals to guarantee proper adaptation of the system without incurring in transition delay faults.

Differently, if TEMP<=TEMP_OLD, the delay increment can be only generated by aging effects,

whose impact is in general much slower than temperature variation effects. Larger activation in-

tervals for the temperature sensors can thus be setup. The SET_TIMER and SET_TIMER_AGING

functions compute the new value of the timer based on the sign of ∆Temp=TEMP-TEMP_OLD

80

4.4. SATTA: a Self-Adaptive Temperature-based TDF awareness methodology for dynamically
reconfigurable FPGAs

and on the actual temperature value (i.e., TEMP in Figure 4.26).

As aforementioned, the circuit temperature variation speed directly impacts on the timer sam-

pling period. However, this parameter strongly depends on the device technology, on the circuit

implemented in the FPGA device, and on the actual workload. To extract this parameter, the user

should measure how the temperature profile of the circuit changes during a representative ex-

ecution time interval [26]. If this information is not known, the designer can choose to adopt

sampling periods that are orders of magnitude higher than the time constant with which the

temperature changes (tenths of a second, or seconds, depending on the aforementioned param-

eters).

In particular, we adopt a linear function for both positive and negative ∆Temp (i.e., SET_TIMER

and SET_TIMER_AGING functions), according to Figure 4.27(a) and Figure 4.27(b).

The difference between the two functions is the value of the sampling period (TIMER_VALUE),

which spans, in the operating temperature range (0-85°C), from 1 kHz to 100 kHz and from 10

Hz to 1 kHz for positive and negative ∆Temp, respectively. In both cases, the higher is the tem-

perature, the higher will be the sampling frequency (i.e., TIMER_VALUE). Moreover, the lower

sampling frequency in the case ∆Temp<=0 leads to a saving in SATTA modules power consump-

tion, with respect to the case ∆Temp>0.

After TIMER_VALUE computation, the manager enters the TDF_S state in which all TDF sensors

are enabled. The outputs of all TDF sensors are OR-ed, and if at least one sensor issues a warn-

ing condition (DWFREQ_S state) the system’s clock frequency (CLK_FREQ) is lowered by a given

step (∆CLK_DWFREQ) and the phase difference between the two clocks of the CLK generator

(CLK_PHASE) is set to a predefined value (INIT_PHASE). A DPR command is therefore issued to

the CLK Generator (CLK_DPR state) to change the operating frequency. When the configuration

is complete, the CLK Generator multiplexers are switched (CLK_SWITCH state) and the Manager

returns to the IDLE state, waiting for a new sampling cycle.

If no warning signal is raised, the Manager investigates the possibility of increasing the phase

difference between the two clocks (i.e., the TDF sensor one and the standard one) in order to un-

derstand which is the maximum frequency the system can actually support. In this procedure,

composed of the UPPHASE_S, the PHASE_SHIFT, and the PHASE_TDF states, the Manager tries

to increase the phase difference between the two clocks generated by the CLK Manager up to a

limit in which a warning is issued. This is obtained by iteratively increasing CLK_PHASE. In our

specific Xilinx implementation of the Manager, the phase is increased of 1/256 of the actual sys-

tem’s clock period at every iteration (it is the phase resolution limit of the MMCM). As soon as a

warning signal is detected, in the PHASE_TDF state, the limit has been already exceeded, so the

previous value of CLK_PHASE_STEP is used to modify the working frequency (UPFREQ_S state).

The new boosted clock frequency is therefore computed according to the following equation:

C LK _F REQ = C LK _F REQ

1− C LK _PH ASE_ST EP
256

(4.6)

81

4. ENHANCING DEPENDABILITY OF DYNAMICALLY PARTIALLY RECONFIGURABLE SYSTEMS

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

110	

0	 5	 10	 15	 20	 25	 30	 35	 40	 45	 50	 55	 60	 65	 70	 75	 80	 85	 90	

TI
M
ER

_V
AL

U
E	
[k
Hz

]	

Temperature	 [°C]	

SET_TIMER	 func>on	

ΔTEMP>0	

(a) SET_TIMER function

0	

200	

400	

600	

800	

1000	

1200	

0	 5	 10	 15	 20	 25	 30	 35	 40	 45	 50	 55	 60	 65	 70	 75	 80	 85	 90	

TI
M
ER

_V
AL

U
E	
[H
z]
	

Temperature	 [°C]	

SET_TIMER_AGING	 func?on	

ΔTEMP≤0	

(b) SET_TIMER_AGING function

Figure 4.27: Sampling periods with respect to temperature

82

4.4. SATTA: a Self-Adaptive Temperature-based TDF awareness methodology for dynamically
reconfigurable FPGAs

The CLK_PHASE_STEP decrement (before leaving the PHASE_TDF state) is necessary in order to

increase the working frequency in a dependable way, leaving a margin with respect to the actual

maximum working frequency (Equation 4.6).

4.4.2 SATTA integration methodology

In order to gather information and manage reconfigurations, SATTA needs to define a set of de-

sign rules to properly automate both sensors insertion and system integration. Figure 4.28 high-

lights the overall SATTA integration flow.

RTL$Circuit$
Descrip/on

Synthesis,$
Place$&$Route

(ISE$14.6)

Timing$Analysis
(FPGA$Editor)

Cri/cal$Paths$
Iden/fica/on

Physical$
Constraints$Extr.

(FPGA$Editor)

Sensors$
Placement
Constraints

N_TDF

N_TEMP

SATTAHDL
Inser/on

Synthesis,$
Place$&$Route

(ISE$14.6)

TDF$
AWARE$
CIRCUIT

Constraints$
File

FPGA$model

TCL$Script

N_TDF

Figure 4.28: SATTA integration flow. It enables to automate the insertion of all sensors and struc-
tures required to implement the TDF detection and compensation.

SATTA integration starts from the synthesis and implementation of the RTL model of the tar-

get system given a target FPGA. After the placement and routing phase, each design path is ana-

lyzed in order to calculate the slack (i.e., the difference between the clock period and the actual

path delay) using a timing analysis tool (e.g., PlanAhead or FPGA Editor tools for Xilinx FPGAs).

For instance, the timing analyzer tool embedded in Xilinx PlanAhead can generate a text tim-

ing report (.twr) containing the slack information for each path with respect to the maximum

allowable delay (i.e., the clock period). In particular, for each path are also listed the source and

destination Flip-Flops (FFs). Figure 4.29 shows a snippet of the timing analysis output file ex-

tracted using the Xilinx Timing Analyzer tool, highlighting the lines containing the slack values

for the analyzed paths. It is worth to note that each destination FF (e.g., S_30 and S_reg29 in

Figure 4.29) can be associated to several design paths. In this case, paths with the same destina-

tion FF present different source-destination delays since they are sourced by different FFs (i.e.,

B_reg_4, B_reg_10 and A_reg_7 in Figure 4.29) spread on the FPGA physical area (thus leading to

different logic and routing delays).

83

4. ENHANCING DEPENDABILITY OF DYNAMICALLY PARTIALLY RECONFIGURABLE SYSTEMS

Figure 4.29: Example of a timing analysis report generated using the Xilinx Timing Analyzer tool.

A script can automatically parse the .twr file to extract all values contained in the Slack (setup

path) lines, annotating also the source and the destination points, to identify the related paths

in the design. The lower is the slack, the more a path is critical. The selection of the most criti-

cal paths can be done by analyzing the distribution of the slack values with respect to the clock

period (see Section 4.4.3 for some distribution examples and how critical paths can be selected).

The number of identified critical paths (presenting different destination FFs) defines the num-

ber of TDF sensors needed to protect the circuit against transition delay faults (N_TDF value in

Figure 4.28).

Afterwards, physical placement and routing information of the implemented original design

are extracted and stored as a user physical constraint file (.ucf). This task can be performed ex-

ploiting, for instance, the Xilinx FPGA Editor tool. This tool is able to read the implemented

design netlist and to extract the placement information for each LUT and FF used in the FPGA

device. Figure 4.30 shows a snippet of the .ucf file, where each design resource is allocated to a

84

4.4. SATTA: a Self-Adaptive Temperature-based TDF awareness methodology for dynamically
reconfigurable FPGAs

LUT or a FF in a slice.

Figure 4.30: Example of User Constraints File (.ucf) extracted running Xilinx FPGA Editor tool
after design implementation.

Xilinx FPGAs are arranged in columns and rows of Configurable Logic Blocks (CLBs), in which

several slices are available. Each slice is numbered and uniquely identified by a couple of coordi-

nates (X-Y) [69], and includes several LUTs and FFs. As an example, in Figure 4.30, the A_reg_13

register is allocated in a FF inside the Slice X80Y91.

This placement information is used in the last implementation phase to force the synthesis

and implementation tools to keep the circuit implementation constant, thus avoiding changes in

the path delays. The physical constraint file is also used, along with the FPGA model file, to extract

(i) the number of temperature sensors (N_TEMP in Figure 4.28), and (ii) placement constraints

for both TDF and temperature sensors.

The FPGA model file contains information about the physical organization of Configurable

Logic Blocks (CLBs) and slices inside a specific FPGA device. By merging the information of the

FPGA slices organization and the one contained in the physical constraint file, it is possible to

automatically search for free slices in which sensors can be placed. More specifically, to ensure

good path delay monitoring capabilities, the FF2 of a TDF sensor must be placed in a slice as near

as possible to the original circuit FF (i.e., FF1) associated with the selected path.

Although temperature sensors should be placed as near as possible to those FFs, some con-

siderations and optimizations can be done. In fact, the number of temperature sensors to insert

in the circuit depends on relative distances between the TDF sensors inserted in the design, and

on the target measure accuracy. However, as already mentioned in Section 4.4.1.1, SATTA does

not need a highly accurate temperature measure. Thus, if two or more TDF sensors are physi-

cally located close to each other, they can be grouped together. A single temperature sensor can

85

4. ENHANCING DEPENDABILITY OF DYNAMICALLY PARTIALLY RECONFIGURABLE SYSTEMS

be employed to measure their temperature value, thus reducing the total number of required

temperature sensors. This leads to a significant decrease of both power consumption and hard-

ware overhead, wasted by the ring oscillators. As in [26], the maximum zone that a temperature

sensor is charged to monitor is 10x10 FPGA CLBs. This means that, if one or more critical paths

are enclosed in a 10x10 CLBs square, a single temperature sensor can be associated to them.

Once the number of required sensors and their associated placement constraints are com-

puted, the HDL description of the circuit is modified to include SATTA modules and sensors. The

different thresholds exploited by the Manager to perform its activities are selected by resorting to

the knowledge of the circuit functionality (see Section 4.4.3).

Finally, the modified circuit is re-synthesized, placed, and routed using the Constraints file, in

order to obtain the final implementation of the TDF aware circuit. Obviously, the Constraints file,

includes both sensors and original circuit implementation constraints.

In each step of Figure 4.28, tools used when dealing with Xilinx FPGAs are listed in brackets. It is

worth to note that all steps enclosed by the dashed line can be automated using a tcl script.

4.4.3 Experimental results

In order to evaluate the effectiveness of the proposed methodology, in both highly and lowly

pipelined FPGA-based digital systems, SATTA has been applied on several circuit designs: (i) a

LEON3-based SoC, including the LEON3 processor [24] and several peripherals, such as memory

controllers, UARTs, and debug units, (ii) an AES decoder core [47], and (iii) an AMBER a25 ARM-

compatible processor [48].

The LEON3-based SoC has been implemented on a Xilinx Virtex 6 device (XC6VLX240T-1FF1156),

while the other circuits on a Virtex 7 FPGA device (XC7VX485T-2FFG1761C). Table 4.2 shows syn-

thesis results of the stand-alone original designs, obtained using Xilinx Vivado™ Design Suite

v2013.3.

Table 4.2: Synthesis Results

Look-Up Tables Registers Crit. path delay Max. frequency
Leon3-based SoC 12,225 10,834 12.54 ns 79.74 MHz

AES 1,335 429 4.99 ns 200.40 MHz
AMBER 8,230 3,002 17.39 ns 57.50 MHz

Following the SATTA insertion methodology presented in Section 4.4.2, for each implemented

circuit path delays and slack distributions have been extracted. Figure 4.31 shows the slack dis-

tribution for each circuit. The figure reports, for each circuit, the number of paths (y axis) with

a delay comprised within a given range with respect to the most critical path that sets the clock

period (x axis). One can notice that few paths are very close to the clock period (range of 2% or

5%). Looking to these distributions, the user can choose how many paths can be considered as

86

4.4. SATTA: a Self-Adaptive Temperature-based TDF awareness methodology for dynamically
reconfigurable FPGAs

"critical", thus requiring the TDF sensor insertion. As an example, if a 5% range is considered, the

designer assumes that, during the whole lifetime of the device, the maximum increase of delay,

caused by both aging effects and temperature variations, on the unmonitored paths (i.e., paths

with slack higher than 5%), never exceeds the delay of the most critical path of the circuit.

Figure 4.31: Paths slack distribution. The y axis represents how may paths have a delay included
in a range of the nominal clock period identified on the x axis.

In the sequel, for the sake of brevity, experimental setup and simulation results will be given

for the Leon3-based SoC design, only, while area overhead results, after applying the proposed

methodology, will be provided for all the considered test cases.

By analyzing the slack distribution of the Leon3-based SoC design (Figure 4.31), assuming

that the circuit will operate for one year, aging phenomena will cause an increment of paths de-

lay of no more than 2% [55], and the device temperature variations will cause a maximum delay

increment of 3% (e.g., from 25 °C to 75 °C following the model reported in [51]). All paths whose

slack is less or equal than 5% of the clock period are therefore good candidates to be monitored

and protected against TDFs. In this case study, the number of chosen paths is equal to 15, while

all the other paths are not monitored since TDFs are not likely to appear in such paths.

Afterwards, the original design is modified and the 15 TDF sensors are automatically inserted,

replacing the final FFs of the selected critical paths. Figure 4.32 shows that the optimal num-

ber of temperature sensors that should be inserted is equal to 3, since the 15 critical paths can

be grouped into three proximity sub-sets (i.e., 10x10 CLBs square, as explained in Section 4.4.2).

In Figure 4.32, white arrows show critical paths logical connections, from the starting point to

the endpoint, while yellow circles represent the area in which each temperature sensor must be

87

4. ENHANCING DEPENDABILITY OF DYNAMICALLY PARTIALLY RECONFIGURABLE SYSTEMS

placed. In this case study the maximum group dimension (i.e., maximum distance between end-

points in terms of FPGA CLBs) is equal to 9 CLBs.

Figure 4.32: Leon3-based SoC critical paths and temperature sensors floorplan

The initial system’s frequency (INIT_FREQ) has been set at the reference value provided by the

synthesis tool considering worst-case temperature and voltage conditions (i.e., 79.74 MHz). The

negative phase relationship between CLK1 and CLK2 (i.e., INIT_PHASE), has been chosen as the

minimum possible (i.e., 1/256) of the initial system clock period (i.e., 311 ns), while CLK_DWFREQ

has been set equal to 1/256 of the synthesis frequency (i.e., 0.3 MHz), minimizing the perfor-

mance loss when scaling down frequency.

Afterwards, the modified system has been synthesized and implemented, including all sen-

sors and SATTA modules. Table 4.3 shows the area occupancy of the single blocks involved in the

SATTA methodology.

Table 4.3: SATTA synthesis results

LUTs Registers Block-RAMs XADC MMCM BUFGMUX
TDF sensor 2 2 - - - -

CLK Generator - - - - 2 2
Temperature sensor 53 35 - 1 - -

Manager 488 63 1 - - -

88

4.4. SATTA: a Self-Adaptive Temperature-based TDF awareness methodology for dynamically
reconfigurable FPGAs

Figure 4.33: SATTA LUTs and FFs overhead when applied to the Leon3-based SoC case study

Figure 4.33 to Figure 4.35 show the resources overhead (in terms of LUTs and FFs) when ap-

plying SATTA to the five presented case studies, varying the selected slack threshold (i.e., 0%, 2%,

and 5%). The x-axis also reports the number of required TDFs and temperature sensors. The

number of TDF sensors is extracted by looking at Figure 4.31, while te number of temperature

sensors is extracted looking to the physical layout of the implemented circuit (as done in the

Leon3-based SoC case).

Looking at the results, one can notice that the area overhead introduced by the SATTA is in the

range of 4-7% for large designs such as the Leon3-based SoC, while it becomes very large when

applied to small modules such as the AES design. SATTA is therefore better suited for complex

designs, like SoCs or processors.

The area overhead introduce by SATTA is due to two contributions highlighted with different

textures in Figure 4.33 to Figure 4.35: (i) a constant part represented by the Manager and CLK

Generator and (ii) a design-dependent part, which strongly depends on the number of sensors

to be inserted. As depicted in Figure 4.33 to Figure 4.35, the variable hardware overhead can be

reduced by selecting a lower threshold when looking to the paths slack distribution. It is worth

noting that selecting a 0% slack threshold means that only the most critical path of the design is

monitored.

Looking to the Leon3-based SoC case study, the insertion of SATTA modules causes an in-

crease of resources usage of 4.9%, in terms of LUTs, and 1.2%, in terms of FFs, with a slack thresh-

89

4. ENHANCING DEPENDABILITY OF DYNAMICALLY PARTIALLY RECONFIGURABLE SYSTEMS

Figure 4.34: SATTA LUTs and FFs overhead when applied to the AES case study

Figure 4.35: SATTA LUTs and FFs overhead when applied to the AMBER case study

90

4.4. SATTA: a Self-Adaptive Temperature-based TDF awareness methodology for dynamically
reconfigurable FPGAs

old equal to 5%. A single FPGA internal Block-RAM memory is used to store the functions im-

plemented by the Manager as look-up tables. An Analog-to-Digital Converter (i.e., XADC FPGA

internal hard macro) is also required to measure the temperature from the internal reference

diode. Nonetheless, just one input channel is employed, leaving available other channels to be

used for other purposes. The CLK Generator employs 2 MMCMs and 2 clock multiplexers (i.e.,

BUFGMUX), but the actual overhead is of 1 MMCM, since one is already present in the original

design in order to provide the system clock signal. A small timing overhead on the monitored

path delay is present as well. This overhead is due to the insertion of the TDF sensor (composed

of two FFs, instead of one FF present in the original design) in the path. In this case-study, the

insertion of the TDF sensor leads to a 45 ps increase of the path delay, resulting in a minimal

decrease of the maximum working frequency. However, this increase on the critical path delay

is design and technology-dependent. Looking to the other case-studies, this increase attests in

the range of 32-65 ps. Moreover, it is important to highlight that in all considered case studies, it

was possible to insert the FF2 of each TDF sensor into a CLB adjacent to the one containing the

related FF1 (as mentioned in Section 4.4.2).

Regarding power consumption, the initial unmodified design consumes 5.47 W. After the inser-

tion of the SATTA modules, there is a power increase of 124 mW, mainly due to the additional

MMCM hard macro and to the additional clock net, while the additional logic’s power waste is

negligible. This leads to a power overhead of 2.2% with respect to the unmodified design. It is

worth noting that a power comparison with [56], which implemented a TDF sensor along with

the clock generation network, is not possible since the used technologies are quite different. The

Xilinx Virtex 6 and Virtex 7 FPGA devices used in this work are built on a 40 nm and 28 nm pro-

cess technology, respectively, while the Xilinx Spartan-3AN device used in [56] is built on a 90 nm

process technology.

To verify the proper working of the aging manager in the system, the post place and route de-

sign (generated by the synthesis tool) has been simulated using Modelsim® SE 10.0c. The effects

of temperature and aging on path delays have been emulated inserting parametric delays in the

post place and route HDL simulation model. Delays are automatically read from a text file at

different times. These delays increase during the execution time, thus emulating the effects of

temperature variations. The higher the temperature is, the greater is the delay, following the

models reported in [50, 51], in which the path delay increases linearly of 5% when spanning the

full operating temperature range (0-85 °C). Figure 4.36 plots the operating frequency profile when

the temperature profile changes over time.

In Figure 4.36 the temperature increases linearly from 25 °C to 85 °C in 45 seconds. Then, after a

constant period, it decreases linearly and, finally, it remains stable around 50 °C. At power-up, the

working frequency quickly grows compared to its initial value (Synthesis Frequency in Figure 4.36)

since the real temperature profile decreases the path delay, that was calculated in worst-case con-

ditions during the synthesis process. This therefore improves the system’s performance. When

91

4. ENHANCING DEPENDABILITY OF DYNAMICALLY PARTIALLY RECONFIGURABLE SYSTEMS

Figure 4.36: Simulated operating frequency trend with temperature variations

the temperature starts to increase, the working frequency is adapted by the Manager, decreasing

its value by CLK_DWFREQ when a warning signal is raised. Obviously, when the temperature

reaches the worst case condition (i.e., 85 °C), the operating frequency approaches the synthesis

frequency. A soon as the worst case is reached, the working frequency remains stable since, even

if no TDF warnings are detected, the Manager is not able to increase the frequency. This is due to

the fact that the Manager recognizes a warning signal after a single CLK_PHASE increment (see

Figure 4.26).

Whenever the temperature decreases (from 70 seconds in Figure 4.36), the working frequency is

then adapted following the behaviour explained in Section 4.4.1.4.

92

E quindi uscimmo a riveder le stelle

Dante Alighieri

C
H

A
P

T
E

R

5
CONCLUSIONS

The research activity carried out during the PhD program aimed at the development and the as-

sessment of innovative methodologies to increase dependability of FPGA-based systems.

FPGAs flexibility and low non-recurrent engineering cost has risen the demand of such devices.

This pushed FPGA vendors to adopt latest technology nodes, historically used mainly for high-

end processors, to meet user needs. New issues in terms of devices dependability risen, as pointed

out in Chapter 2.

During the initial phases of the research, reconfigurable devices have been deeply studied and

analysed. As reported in Chapter 3, SRAM-based FPGAs have been chosen as most promising

platform for future technology trends. Dynamic Partial Reconfiguration has been identified as a

powerful instrument that, if properly exploited, could enhance system dependability.

The first outcome of the research has been the development of an innovative methodology for a

dependable partial reconfiguration process, assuring a good level of dependability with marginal

impact on performances. The proposed methodology featured low impact on reconfiguration

time, and does not affect the static portion of the FPGA, even in presence of faulty bitstream files

due to SEEs, as evaluated in Section 4.1.

An alternative and orthogonal methodology, presented in Section 4.2 enhances the dependabil-

ity of the system by storing a compressed bitstream inside the device as backup. This partial

bitstream guarantees the proper behaviour of the whole system by reconfiguring the partition

with a blank module, that perhaps correctly routes the static connections through the reconfig-

urable partition, recovering from potential SEUs in the configuration memory.

Section 4.3 present a methodology to mitigate the NBTI effect in SRAM based FPGA. Exploit-

ing consecutive DPRs is possible to achieve the 50% probability of having ’0’ in the configura-

tion memory bits. The proposed approach comprises three different DfD rules to assure that all

the SRAM configuration memory’s bits age the same. Thanks to this solution, the configuration

memory of the device will have the minimum effect of aging during the whole device lifetime.

The main contribution of the research activity has been the development of SATTA, a Self-Adaptive

93

5. CONCLUSIONS

Temperature-based TDF Awareness methodology to compensate for path delay variations due to

both variation of temperature and aging effects in complex SoPCs, which features are explained

in Section 4.4. The SATTA manager, supported by a reconfigurable and efficient clock manager

module, is able at run-time to optimize the system frequency avoiding TDFs while optimizing the

performance. Moreover, the manager optimizes the use of all SATTA sensors in order to minimize

their self-aging. The application of SATTA on a set of real designs clearly proved the effectiveness

of this approach especially when applied to large real designs that incur in very low overheads.

Eventually, the full SATTA design pipeline has been easily automated by means of a set of TCL

scripts. This represents an additional and valuable result for the easy exploitation of this method-

ology in real design flows.

94

LIST OF SYMBOLS AND ACRONYMS

Due to the large number of symbols used in this thesis to support the description of

covered material, we provide the following list of symbols and abbreviations. This

list is intended to help the reader identify the meaning of a given symbol or acronym

in a fast and easy way.

ADC Analog to Digital Converter

ASET Analog SET

ASIC Application Specific Integrated Circuit

ALM Arithmetic Logic Modules

COTS Commercial Off The Shelf

CMOS Complementary MOS

CLB Configurable Logic Block

CPU Central Processing Unit

CRC Cycle Redundancy Code

DDR Double Data Rate

DFD Design for Dependability

DSET Digital SET

DPR Dynamic Partial Reconfiguration

DRAM Dynamic RAM

EM Electro Migration

EDA Electronic Design Automation

FIT Failure In Time

FET Field Effect Transistor

95

5. CONCLUSIONS

FF Flip Flop

FPGA Field Programmable Gate Array

HCE Hot Carrier Effects

IC Integrated Circuit

ICAP Internal Configuration Access Port

IP Intellectual Property

ITRS International Technology Roadmap for Semiconductor

JTAG Joint Test Action Group

LET Linear Energy Transfer

LUT Look-Up Table

MOS Metal Oxide Semiconductor

MAP Microwave Anisotropy Probe

MBU Multiple Bit Upset

NBTI Negative Bias Temperature Instability

PAR Place and Route

RAM Random Access Memory

RLE Run Length Encoding

SoC System on Chip

SoPC System on Programmable Chip

SOI Silicon Over Insulator

SBU Single Bit Upset

SEB Single Event Burnout

SEGR Single Event Gate Rupture

SEL Single Event Latch-up

SET Single Event Transient

96

SEEs Single Event Upsets

SEFI Single Event function interrupts

SER Soft Error Rate

SNM Static Noise Margin

SRAM Static RAM

TDDB Time Dependent Dielectric Breakdown

TDF Transition Delay Fault

TTM Time To Market

VHSIC Very High Speed Integrated Circuits

VHDL VHSIC Hardware Description Language

97

BIBLIOGRAPHY

[1] Actel Corporation. Effects of Neutrons on Programmable Logic Űa white paper, December

2002.

[2] Aeroflex Gaisler. GRLIB IP Core User Manual, 1.1.0 edition, January 2012.

[3] Altera Corporation. Stratix V Device Overview, sv51001 edition, 2012.

[4] Altera Corporation. Cyclone V Device Overview, cv-51001 (ver 2013.05.06) edition, May 2013.

[5] A. Amouri and M. Tahoori. High-level aging estimation for fpga-mapped designs. In Field

Programmable Logic and Applications (FPL), 2012 22nd International Conference on, pages

284–291, 2012.

[6] Abdulazim Amouri and Mehdi Tahoori. A low-cost sensor for aging and late transitions de-

tection in modern FPGAs. In Field Programmable Logic and Applications (FPL), 2011 Inter-

national Conference on, pages 329–335, September 2011.

[7] J. Autran, S. Semikh, D. Munteanu, S. Serre, G. Gasiot, and P. Roche. Soft-Error Rate of Ad-

vanced SRAM Memories: Modeling and Monte Carlo Simulation. Numerical Simulation -

From Theory to Industry, 2012.

[8] R. Baumann. The impact of technology scaling on soft error rate performance and limits to

the efficacy of error correction. In Electron Devices Meeting, 2002. IEDM ’02. International,

pages 329–332, Dec 2002.

[9] R. C. BAUMANN. Soft errors in commercial integrated circuits. International Journal of High

Speed Electronics and Systems, 14(02):299–309, 2004.

[10] Hephaestus Books. Articles on Coding Theory, Including: Huffman Coding, Run-Length En-

coding, Bch Code, Hamming Code, Hamming Distance, Reed "Solomon Error Correction, Pre-

fix Code, Binary Symmetric Channel, Unary Coding, Low-Density Parity-Check Code. Hep-

haestus Books, 2011.

[11] Stephen Buchner and Dale McMorrow. Single event transients in linear integrated circuits.

In IEEE Nuclear and Space Radiation Effects Conferenc, 2005.

[12] A. Calimera, E. Macii, and M. Poncino. Analysis of nbti-induced snm degradation in power-

gated sram cells. In Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International

Symposium on, pages 785–788, June 2010.

99

BIBLIOGRAPHY

[13] Yuh-Jue Chuang and Ja-Ling Wu. An SGH-tree based efficient huffman decoding. In Proc.

of the Joint Conference of the Fourth International Conference on Information, Communica-

tions and Signal Processing, and Fourth Pacific Rim Conference on Multimedia, volume 3,

pages 1483–1487, 2003.

[14] S. Das, D. Roberts, Seokwoo Lee, S. Pant, D Blaauw, T. Austin, K. Flautner, and T. Mudge. A

self-tuning dvs processor using delay-error detection and correction. Solid-State Circuits,

IEEE Journal of, 41(4):792–804, 2006.

[15] Shidhartha Das, Carlos Tokunaga, Sanjay Pant, Wei-Hsiang Ma, Sudherssen Kalaiselvan,

Kevin Lai, David M. Bull, and David T. Blaauw. RazorII: In situ error detection and correction

for PVT and SER tolerance. Solid-State Circuits, IEEE Journal of, 44(1):32–48, January 2009.

[16] S. Di Carlo, G. Gambardella, T. Huynh Bao, M. Indaco, P. Prinetto, D. Rolfo, and P. Trotta.

Zipstream, improving dependability in dynamic partial reconfiguration. In Design and Test

Symposium (IDT), 2013 8th International, pages 1–6, Dec 2013.

[17] S. Di Carlo, G. Gambardella, M. Indaco, P. Prinetto, D. Rolfo, and P. Trotta. Dependable dy-

namic partial reconfiguration with minimal area amp; time overheads on xilinx fpgas. In

Field Programmable Logic and Applications (FPL), 2013 23rd International Conference on,

pages 1–4, Sept 2013.

[18] S. Di Carlo, G. Gambardella, P. Prinetto, D. Rolfo, and P. Trotta. Satta: a self-adaptive

temperature-based tdf awareness methodology for dynamically reconfigurable fpgas. In

ACM Transactions on Reconfigurable Technology and Systems (TRETS), 2015.

[19] Stefano Di Carlo, Salvatore Galfano, Giulio Gambardella, Daniele Rolfo, Paolo Prinetto, and

Pascal Trotta. NBTI mitigation by dynamic partial reconfiguration. In Electronics Conference

(BEC), 2012 13th Biennial Baltic, pages 93–96, October 2012.

[20] P.E. Dodd and L.W. Massengill. Basic mechanisms and modeling of single-event upset in

digital microelectronics. Nuclear Science, IEEE Transactions on, 50(3):583–602, June 2003.

[21] P.E. Dodd, M.R. Shaneyfelt, J.A. Felix, and J.R. Schwank. Production and propagation of

single-event transients in high-speed digital logic ics. Nuclear Science, IEEE Transactions

on, 51(6):3278–3284, Dec 2004.

[22] M. Fukazawa, M. Kurimoto, R. Akiyama, H. Takata, and Makoto Nagata. Experimental eval-

uation of digital-circuit susceptibility to voltage variation in dynamic frequency scaling. In

VLSI Circuits, 2008 IEEE Symposium on, pages 150–151, 2008.

[23] H. Fuketa, M. Hashimoto, Y. Mitsuyama, and T. Onoye. Adaptive performance compensa-

tion with in-situ timing error predictive sensors for subthreshold circuits. Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on, 20(2):333–343, 2012.

100

Bibliography

[24] J. Gaisler. A portable and fault-tolerant microprocessor based on the SPARC v8 architecture.

In Dependable Systems and Networks (DSN), 2002. International Conference on, pages 409–

415, June 23–26, 2002.

[25] G Groeseneken, R. Degraeve, B. Kaczer, and P. Roussel. Challenges in reliability assessment

of advanced cmos technologies. In Physical and Failure Analysis fo Integrated Circuit, 2007.

IPFA 2007, 14th International Symposium on the, 2007.

[26] Markus Happe, Andreas Agne, and Christian Plessl. Measuring and predicting temperature

distributions on FPGAs at run-time. In Reconfigurable Computing and FPGAs (ReConFig),

2011 International Conference on, pages 55–60, November 2011.

[27] R. Hashemian. Memory efficient and high-speed search huffman coding. Transactions on

Communications, 43:2576–2581, 1995.

[28] S. Hauck and A. DeHon. Reconfigurable Computing: The Theory and Practice of FPGA-based

Computation. Systems on Silicon Series. Morgan Kaufmann, 2008.

[29] D.F. Heidel, P.W. Marshall, J.A. Pellish, K.P. Rodbell, K.A. LaBel, J.R. Schwank, S.E. Rauch, M.C.

Hakey, M.D. Berg, C.M. Castaneda, P.E. Dodd, M.R. Friendlich, A.D. Phan, C.M. Seidleck,

M.R. Shaneyfelt, and M.A. Xapsos. Single-event upsets and multiple-bit upsets on a 45 nm

soi sram. Nuclear Science, IEEE Transactions on, 56(6):3499–3504, Dec 2009.

[30] C.M. Hsieh, P.C. Murley, and R.R. O’Brien. Dynamics of charge collection from alpha-

particle tracks in integrated circuits. In Reliability Physics Symposium, 1981. 19th Annual,

pages 38–42, April 1981.

[31] V. Huard, M. Denais, and C. Parthasarathy. {NBTI} degradation: From physical mechanisms

to modelling. Microelectronics Reliability, 46(1):1 – 23, 2006.

[32] International Electrotechnical Commission. IEC 61508 Second Edition: Functional Safety of

Electrical/Electronic/Programmable Electronic Systems, 2010.

[33] International Organization for Standardization. ISO 26262 First Edition: Road vehicles Ů

Functional safety, 2011.

[34] ITRS. International Technology Roadmap for Semiconductors - Process Integration, Devices,

and Structures (PIDS), 2013.

[35] Pradip Bose Jude A. Rivers Jayanth Srinivasan, Sarita V. Adve. The impact of technology

scaling on lifetime reliability. In Conference on Dependable Systems and Networks, 2004.

[36] Tejas Jhaveri, Andrzej Strojwas, Larry Pileggi, and Vyachelav Rovner. Enabling technology

scaling with "in production" lithography processes. volume 6924, pages 69240K–69240K–10,

2008.

101

BIBLIOGRAPHY

[37] Kunhyuk Kang, M.A. Alam, and K. Roy. Characterization of nbti induced temporal perfor-

mance degradation in nano-scale sram array using iddq. In Test Conference, 2007. ITC 2007.

IEEE International, pages 1–10, Oct 2007.

[38] P. Koopman. 32-bit Cyclic Redundancy Codes for internet applications. In Dependable

Systems and Networks (DSN), 2002. International Conference on, pages 459–468, December

2002.

[39] P. Koopman and T. Chakravarty. Cyclic Redundancy Code (CRC) polynomial selection for

embedded networks. In Dependable Systems and Networks (DNS), 2004. International Con-

ference on, pages 145–154, July 2004.

[40] Ian Kuon, Russel Tessier, and Jonathan Rose. Fpga architecture: Survey and challenges.

Foundamental Trends in Electronic Design Automation, 2:135–253, 2008.

[41] Glen G. Langdon. An introduction to arithmetic coding. IBM J. Res. Dev., 28:135–149, 1984.

[42] J.-C. Laprie. Dependable computing and fault tolerance : Concepts and terminology. In

Fault-Tolerant Computing, 1995, Highlights from Twenty-Five Years., Twenty-Fifth Interna-

tional Symposium on, pages 2–, Jun 1995.

[43] Jie Li and J. Lach. Negative-skewed shadow registers for at-speed delay variation charac-

terization. In Computer Design, 2007. ICCD 2007. 25th International Conference on, pages

354–359, Oct 2007.

[44] C. Maxfield. FPGAs: World Class Designs. World Class Designs. Elsevier Science, 2009.

[45] Kaizad Mistry, C Allen, C Auth, B Beattie, D Bergstrom, M Bost, M Brazier, M Buehler, A Cap-

pellani, R Chau, et al. A 45nm logic technology with high-k+ metal gate transistors, strained

silicon, 9 cu interconnect layers, 193nm dry patterning, and 100% pb-free packaging. In

Electron Devices Meeting, 2007. IEDM 2007. IEEE International, pages 247–250. IEEE, 2007.

[46] Joan L. Mitchell, William B. Pennebaker, Chad E. Fogg, and Didier J. Legall, editors. MPEG

Video Compression Standard. Chapman & Hall, Ltd., London, UK, UK, 1996.

[47] OpenCores. Aes (rijndael), 2009.

[48] OpenCores. Amber arm-compatible core, 2013.

[49] Sang Phill Park, Kunhyuk Kang, and Kaushik Roy. Reliability implications of bias-

temperature instability in digital ICs. Design & Test of Computers, IEEE, 26(6):8–17, Novem-

ber 2009.

102

Bibliography

[50] P. Pfeifer and Z. Pliva. On measurement of impact of the metallization and fpga design to

the changes of slice parameters and generation of delay faults. In Field Programmable Logic

and Applications (FPL), 2012 22nd International Conference on, pages 743–746, 2012.

[51] Petr Pfeifer and Zdenek Pliva. On measurement of parameters of programmable micro-

electronic nanostructures under accelerating extreme conditions (xilinx 28nm xc7z020 zynq

fpga). In Field Programmable Logic and Applications (FPL), 2013 23rd International Confer-

ence on, pages 1–4, 2013.

[52] S.K. Saha. Modeling process variability in scaled cmos technology. Design Test of Computers,

IEEE, 27(2):8–16, March 2010.

[53] T. Sato and Y. Kunitake. A simple flip-flop circuit for typical-case designs for dfm. In Quality

Electronic Design, 2007. ISQED ’07. 8th International Symposium on, pages 539–544, 2007.

[54] Minal Sawant. Single event effects complicate military avionics system design. COTS Jour-

nal, 2012.

[55] Suresh Srinivasan, Ramakrishnan Krishnan, Prasanth Mangalagiri, Yuan Xie, Vijaykrishnan

Narayanan, Mary Jane Irwin, and Karthik Sarpatwari. Toward increasing FPGA lifetime. De-

pendable and Secure Computing, IEEE Transactions on, 5(2):115–127, April 2008.

[56] M.D. Valdes-Pena, J. Fernandez Freijedo, M.J.M. Rodriguez, J.J. Rodriguez-Andina, J. Semiao,

I.M. Cacho Teixeira, J.P. Cacho Teixeira, and F. Vargas. Design and validation of config-

urable online aging sensors in nanometer-scale fpgas. Nanotechnology, IEEE Transactions

on, 12(4):508–517, 2013.

[57] R. Vattikonda, Wenping Wang, and Yu Cao. Modeling and minimization of pmos nbti effect

for robust nanometer design. In Design Automation Conference, 2006 43rd ACM/IEEE, pages

1047–1052, 2006.

[58] Fan Wang and V.D. Agrawal. Single event upset: An embedded tutorial. In VLSI Design, 2008.

VLSID 2008. 21st International Conference on, pages 429–434, Jan 2008.

[59] Wenping Wang, Shengqi Yang, S. Bhardwaj, S. Vrudhula, F. Liu, and Yu Cao. The impact of

nbti effect on combinational circuit: Modeling, simulation, and analysis. Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on, 18(2):173–183, Feb 2010.

[60] H. Watanabe, K. Matsuzawa, and S. Takagi. Scaling effects on gate leakage current. Electron

Devices, IEEE Transactions on, 50(8):1779–1784, Aug 2003.

[61] F. Wrobel, J.-M. Palau, M.-C. Calvet, O. Bersillon, and H. Duarte. Simulation of nucleon-

induced nuclear reactions in a simplified sram structure: scaling effects on seu and mbu

cross sections. Nuclear Science, IEEE Transactions on, 48(6):1946–1952, Dec 2001.

103

BIBLIOGRAPHY

[62] Xilinx. MicroBlaze Processor Reference Guide, 2004.

[63] Xilinx. ML403 Evaluation Platform, v2.5 edition, May 2006.

[64] Xilinx. Zynq-7000 All Programmable SoC Overview, ds190 (v12.3) edition, October 2014.

[65] Dagan White Xilinx. Considerations Surrounding Single Event Effects in FPGAs, ASICs, and

Processors, v1.0.1 edition, March 2012.

[66] Xilinx Corporation. Virtex-4 FPGA User Guide, December 2008.

[67] Xilinx Corporation. PlanAhead User Guide, ug632 (v11.4) edition, 2009.

[68] Xilinx Corporation. PowerPC Processor Reference Guide, January 2010.

[69] Xilinx Corporation. 7 Series FPGAs Configurable Logic Block, ug474 (v1.4) edition, November

2012.

[70] Xilinx Corporation. 7 Series FPGAs Overview, ds180 (v1.14) edition, 2012.

[71] Xilinx Corporation. Partial Reconfiguration User Guide, ug702 (v12.3) edition, October 2012.

[72] Xilinx Corporation. 7 Series FPGAs Clocking Resources, ug472 (v1.8) edition, 2013.

[73] Xilinx Corporation. 7 Series FPGAs Configurable Logic Block, ug474 (v1.5) edition, 2013.

[74] Kenneth M. Zick and John P. Hayes. On-line sensing for healthier fpga systems. In Proceed-

ings of the 18th annual ACM/SIGDA international symposium on Field programmable gate

arrays, FPGA ’10, pages 239–248, New York, NY, USA, 2010. ACM.

104

ACKNOWLEDGEMENTS

This thesis represents the culmination of three years of research. During this period

many persons gave me suggestions and encouraged me. From all these persons I re-

ceived a kind support, and for this reason I would like to thank all of them.

First of all, I wish to thank my advisor Prof. Paolo Prinetto, from Politecnico di Torino, that

gave me the opportunity to start my research activity in his active and dynamic group. This work

would not be possible without his precious suggestions. I wish to thank Prof. Stefano di Carlo,

from Politecnico di Torino. His scientific driving guide helped me to find the right direction for

my research activity. I wish to thank him also for gave me a real helpful hand during my whole

research career.

It has been a pleasure, during the past years, to cooperate with the guys working in Lab.6.

Daniele, Pascal, Salvatore and Alessandro, thanks to you for all the good time spent together. It

has been an honour sharing with you this experience. I cannot forget to thank Davide and Diego,

the revival lunches always inspired and motivated me so hard.

With the working weeks going on, Fridays evening have been always the major release of

stress. That’s why I have to thank my football team, U.S. Frazioni, for all the matches played

together, both in the football field and outside.

This thesis is also the result of the experience I had during my time spent in ABB Corporate

Research in Billingstad. In this sense I would like to thank two persons that have spent more than

six months working with me and sharing their vision about scientific research: Frank Reichen-

bach and Trond Løkstad. With them and all the other persons of the Wireless and Embedded

system group, I shared my experience, not only the work.

I would like also to thank people from the Technical University of Cluj-Napoca: many thanks,

I passed beautiful moments with you.

A special thought is dedicated to Francesca, she has always been there for me, helping, sus-

taining, listening and caring about me. Many thanks my Love.

And last, but not least, I would like to really thank my mum Lidia, my dad Rosario, my brother

Davide with Samantah and my grandma Iuccia, for they unconditional love and patience. Even

if they can not understand all the parts of my work, they always share all my problems, giving an

unlimited and invaluable support. They always encouraged me during this adventure.

105

	List of Figures
	List of Tables
	Introduction
	Dependability issues in digital systems: an overview
	Single Event Effects
	Physical causes
	Single Event Transient in digital logic
	Single Event Upset in SRAM

	NBTI: Causes and Effects
	Effects on digital logic
	Effects on SRAM memories

	FPGA architecture and Dynamic Partial Reconfiguration
	FPGA Families
	Antifuse-based FPGAs
	Flash-based FPGAs

	SRAM-based FPGAs
	Dynamic Partial Reconfiguration

	Enhancing dependability of dynamically partially reconfigurable systems
	Dependable DPR with minimal Area & Time overheads on Xilinx FPGAs
	Xilinx approach
	Proposed Methodology
	Partial bitstream file splitting
	DfD#1: Critical links protection
	DfD#2: Critical modules protection

	Experimental results
	Xilinx approach implementation
	Proposed approach implementation
	Comparison

	ZipStream: improving dependability in Dynamic Partial Reconfiguration
	Compression Algorithms overview
	ZipStream Methodology
	Compression Algorithm
	Hardware Decompressor
	Design-for-Dependability rule

	Experimental results

	NBTI Mitigation by Dynamic Partial Reconfiguration
	Proposed Methodology
	DfD#1: Static connection avoidance
	DfD#2: Using different interfaces
	DfD#3: Smart external controller

	Case study
	Experimental results

	SATTA: a Self-Adaptive Temperature-based TDF awareness methodology for dynamically reconfigurable FPGAs
	SATTA sensors organization and architecture
	Temperature Sensor
	TDF Sensor
	CLK Generator
	Manager

	SATTA integration methodology
	Experimental results

	Conclusions
	Bibliography

