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INTRODUCTION

Mars is a hard place to reach. While there have been many notable success stories in getting

probes to the Red Planet, the historical record is full of bad news.

Counting all Soviet/Russian, U.S., European, and Japanese attempts, more than half of Mars mis-

sions have failed. Just to mention some examples, Korabl 11, Korabl 13, Kosmos 419, Phobos 1

Orbiter, Mars Observer, and Phobos-Grunt/Yinghuo-1 represent the main missions failed during

the trip to Mars because of collisions with space debris in orbit around Earth.

The success rate for actually landing on the Martian surface is even worse, roughly 30 percent.

This low success rate must be mainly credited to the Mars environment characteristics. In the

Mars atmosphere strong winds frequently breath. This phenomena usually modifies the lander

descending trajectory diverging it from the target one. Moreover, the Mars surface is not the best

place where performing a safe land. In fact, it is pitched by many and close craters and huge

stones, and characterized by huge mountains and hills (e.g., Olympus Mons is 648 kilometres in

diameter and 27 kilometres tall). For these reasons a mission failure due to a landing in huge

craters, on big stones or on part of the surface characterized by a high slope is highly probable.

Some examples of these failures are the landers of Mars 2, Mars 6, Mars Polar Lander, and Beagle

2.

In the last years, all space agencies have increased their research efforts in order to enhance

the success rate of Mars missions. In particular, the two hottest research topics are: the active

debris removal and the guided landing on Mars.

The former aims at finding new methods to remove space debris exploiting unmanned space-

crafts. These must be able to autonomously: detect a debris, analyse it, in order to extract its

characteristics in terms of weight, speed and dimension, and, eventually, rendezvous with it. In

order to perform these tasks, the spacecraft must have high vision capabilities. In other words, it

must be able to take pictures and process them with very complex image processing algorithms

in order to detect, track and analyse the debris.

The latter aims at increasing the landing point precision (i.e., landing ellipse) on Mars. Fu-
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1. INTRODUCTION

ture space-missions will increasingly adopt Video Based Navigation systems to assist the entry,

descent and landing (EDL) phase of space modules (e.g., spacecrafts), enhancing the precision of

automatic EDL navigation systems. For instance, recent space exploration missions, e.g., Spirity,

Oppurtunity, and Curiosity, made use of an EDL procedure aiming at following a fixed and pre-

computed descending trajectory to reach a precise landing point. This approach guarantees a

maximum landing point precision of 20 km. By comparing this data with the Mars environment

characteristics, it is possible to understand how the mission failure probability still remain really

high.

A very challenging problem is to design an autonomous-guided EDL system able to even more

reduce the landing ellipse, guaranteeing to avoid the landing in dangerous area of Mars surface

(e.g., huge craters or big stones) that could lead to the mission failure. The autonomous be-

haviour of the system is mandatory since a manual driven approach is not feasible due to the

distance between Earth and Mars. Since this distance varies from 56 to 100 millions of kilometres

approximately due to the orbit eccentricity, even if a signal transmission at the light speed could

be possible, in the best case the transmission time would be around 31 minutes, exceeding so the

overall duration of the EDL phase.

In both applications, all the algorithms must guarantee self-adaptability to the environmen-

tal conditions. Since the Mars (and in general the space) harsh conditions are difficult to be

predicted at design time, these algorithms must be able to automatically tune the internal pa-

rameters depending on the current conditions.

Moreover, real-time performances is another key factor. Since a software implementation of

these computational intensive tasks cannot reach the required performances, these algorithms

must be accelerated via hardware.

For this reasons, this thesis presents my research work done on advanced image processing

algorithms for space applications and the associated hardware accelerators. My research activ-

ity has been focused on both the algorithm and their hardware implementations. Concerning

the first aspect, I mainly focused my research effort to integrate self-adaptability features in the

existing algorithms. While concerning the second, I studied and validated a methodology to ef-

ficiently develop, verify and validate hardware components aimed at accelerating video-based

applications. This approach allowed me to develop and test high performance hardware acceler-

ators that strongly overcome the performances of the actual state-of-the-art implementations.

In addition to this introduction chapter, the sequel of the thesis is organized in four main

chapters.

Chapter 2 starts with a brief introduction about the story of digital image processing, starting

from the first picture taken in space to the current sophisticated image processing systems. How-

ever, the main content of this chapter is the description of space missions in which digital image

processing has a key role. A major effort has been spent on the missions in which my research

activity has a substantial impact. In particular, for these missions, this chapter deeply analizes
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and evaluates the state-of-the-art approaches and algorithms. The reported information allow

the reader to become more familiar with the image processing algorithms applied in space and

to understand their level of complexity.

Chapter 3 analyzes and compares the two technologies used to implement high performances

hardware accelerators, i.e., Application Specific Integrated Circuits (ASICs) and Field Program-

mable Gate Arraies (FPGAs). Thanks to this information the reader may understand the main rea-

sons behind the decision of space agencies to exploit FPGAs instead of ASICs for high-performance

hardware accelerators in space missions, even if FPGAs are more sensible to Single Event Upsets

(i.e., transient error induced on hardware component by alpha particles and solar radiation in

space). Moreover, this chapter deeply describes the three available space-grade FPGA technolo-

gies: One-time Programmable, Flash-based, and SRAM-based. For each of them a comprehen-

sive explanation of their internal architecture is reported, highlighting the pros and cons of each

technology. In order to better understand the differences among these technologies, a compar-

ison in terms of speed, available resources and robustness is reported. Eventually, this chapter

presents the main fault-mitigation techniques against SEUs that are mandatory for employing

space-grade FPGAs in actual missions.

Chapter 4 describes one of the main contribution of my research work: a library of high-

performance hardware accelerators for image processing in space applications. The basic idea

behind this library is to offer to designers a set of validated hardware components able to strongly

speed up the basic image processing operations commonly used in an image processing chain.

In other words, these components can be directly used as elementary building blocks to easily

create a complex image processing system, without wasting time in the debug and validation

phase. It must be mentioned that, during the development of these components, the design ef-

fort has not just focused on the achieved performances in terms of resources usage and speed,

but also in the integration of self-adaptability features to the environmental conditions.

This library groups the proposed hardware accelerators in IP-core families. The components

contained in a same family share the same provided functionality and input/output interface.

This harmonization in the I/O interface enables to substitute, inside a complex image process-

ing system, components of the same family without requiring modifications to the system com-

munication infrastructure. However, in addition to the analysis of the internal architecture of

the proposed components, another important aspect of this chapter is the methodology used to

develop, verify and validate the proposed high performance image processing hardware accel-

erators. This methodology, that can be freely applied in the design and validation of every kind

of hardware accelerators, involves the usage of different programming and hardware description

languages in order to support the designer from the algorithm modelling up to the hardware im-

plementation and validation.

Chapter 5 presents the proposed complex image processing systems. In particular, it exploits

a set of actual case studies, associated with the most recent space agencies needs, to show how

3
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the hardware accelerator components can be assembled to build a complex image processing

system. In addition to the hardware accelerators contained in the library, the described complex

system embeds innovative ad-hoc hardware components and software routines able to provide

high performance and self-adaptable image processing functionalities. To prove the benefits of

the proposed methodology, each case study is concluded with a comparison with the current

state-of-the-art implementations, highlighting the benefits in terms of performances and self-

adaptability to the environmental conditions.
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DIGITAL IMAGE PROCESSING: A LONG HISTORY TO

REACH SPACE APPLICATIONS

Photography has a long history started in 1826 when Joseph Nicephore Niepce created a pho-

tomechanical reproduction of an engraving of the Cardinal Georges d’Amboise through heliog-

raphy process (Figure 2.1) [24]. This can be considered the first photo taken in the world.

Figure 2.1: Photoetching of an engraving of Cardinal Georges D’Amboise

Since the heliography process requires up to 8 hours of exposure to provide an acceptable re-

sult, Louis Daguerre, the associate of Joseph Nicephore Niepce, in 1839 invented the metal-based

daguerreotype process (Figure 2.2) [24]. This process provides excellent quality pictures, for that

period, requiring an exposure time of just one minute.

The metal-based daguerreotype process soon had some competition from the paper-based calo-

type negative and salt print processes invented by Henry Fox Talbot [12]. Subsequent innovations

reduced the required camera exposure time from minutes to seconds and eventually to a small

fraction of a second; the introduced new photographic media were more economical, sensitive or
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Figure 2.2: Edgard Allan Poe daguerrotype picture

convenient, including roll films for casual use by amateurs; and made it possible to take pictures

in natural color as well as in black-and-white.

Roll film dominated the early years of photography. In the 1880’s George Eastman [115] founded

Kodak and made photography available to all persons. Photography attracted virtually everyone

on the planet, and a vast variety of cameras were created, from Brownies [116] and disposables

to Hasselblads [88] and Leicas [167]. A look at the fantastic colours permanently captured in 70-

year-old Kodachrome images (Figure 2.3) leads easily and correctly to the conclusion that film is

a near-perfect medium for the storage of images.

Figure 2.3: Kodachrome image example

The first picture taken is space environment date back to 1964, when Ranger 7 [159] (i.e., the

first fully successful mission of the Ranger Program aiming at reaching the Moon surface) sent the

first picture, taken at an altitude of 2,110 km, on 31st of July 1964 at 13:08:45 UT. Then, during the

descending phase, it took and successfully sent to Earth 4,308 high resolution images. Ranger 7

was not equipped with standard roll film cameras, but with more sophisticated Vidicon cameras
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[174]. The main components of these cameras was the Vidicon tube (Figure 2.4, a cathode ray

tube in which the cathode ray was scanned across a target which was illuminated by the scene to

be taken).

Figure 2.4: Vidicon tube

In particular, Ranger 7 was equipped with six Vidicon cameras (2 wide angle and 4 narrow angle

cameras) organized in two self-contained channels, to reach the greatest reliability and proba-

bility of obtaining high-quality video pictures. Figure 2.5 shows the organization of the cameras

system in the Ranger 7 lander.

Figure 2.5: Ranger 7 camera system

Hasselblad from 1966 started to develop a group of roll film-based camera suitable for space

applications [89]. This development process had the most important success in the Apollo 11

mission [149], in which the Hasselblad 500EL/M(Figure 2.6) was used by Neil Armstrong to cap-

ture the first human walk on the Moon surface.

The commercial introduction of computer-based electronic digital cameras in the 1990s soon

revolutionized photography. During the first decade of the 21st century, traditional film-based

photochemical methods were increasingly marginalized as the practical advantages of the new
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Figure 2.6: Hasselblad 500EL/M camera

technology became widely appreciated and the image quality of moderately priced digital cam-

eras was continually improved.

This improvement in quality can be appreciated in the digital space camera, as well. In fact,

analysing pictures taken by modern digital cameras involved in space missions (Figure 2.7) the

high quality and the fidelity of the captured scenes became evident.

In addition to the increase of quality, digital images introduced the possibility to perform the

so called Digital Image Processing (DIP). Basically, DIP manipulates digital images to enhance

the image quality or to extract useful information from the processed image.

DIP operations can be grouped into seven different steps:

1. Image Acquisition aims at acquiring a digital image. In other words, the scene in front of

the camera is first sampled in the spatial domain, and then discretized in the brightness

domain. In this way the scene is translated in a 2D matrix composed of a set of rows and

columns of pixels (i.e., the basic element composing a digital image). The number of rows

and columns, that defines the image resolution, depends on the spatial domain sampling.

The range of possible value of each pixel, that defines the pixel resolution, is related to the

adopted brightness quantization.

2. Image preprocessing improves the image quality to increase the accuracy of successive

processing steps. There are a plenty of image preprocessing operations, examples are im-

age filtering [104] and image enhancement [130]. There is not a fixed sequence of prepro-

cessing operations able to provide the best results, but the operations to be applied must

be properly select depending on the next image processing steps.

3. Image segmentation aims at partitioning an input image into regions. It enables to ease

the DIP problem focusing the processing effort on segments of more interest, only.

4. Image representation converts digital images in a format suitable for computer processing.

It usually adds some information to the 2D matrix composing the input image, such as

8



(a) comet 67P/Churyumov-Gerasimenko
taken by NAVigation CAMera (NAVCAM)
[161] during Rosetta mission [7]

(b) Deployed solar wings with the Radar
open below of the Sentinel 1 orbiter [66]
taken by the Digital Space Micro-Camera
[181]

(c) First high-resolution color mosaic from
NASA Curiosity rover [150] taken by the
Mastcam [158]

(d) Curiosity’s Heat Shield [150] taken dur-
ing the descending phase on Mars by the
MARs Descent Imager (MARDI) [157]

Figure 2.7: Examples of picture taken by modern digital space cameras

the number of rows and columns, and the bit used to represent each pixel (i.e., bit-per-

pixel(bpp) resolution), to allow computers to properly read the image content. There are

a plenty of different image formats (for an exhaustive list of these formats you can refer to

[220]).

5. Image registration aims at extracting features that result in some quantitative information

of interest, or features, that are basic for differentiating one class of objects from another.

It is also called dimensional reduction since it reduces the information contained in the

image, allowing to focus the processing effort of the consecutive steps just on the extracted

features. The features extraction methods can be of different types, going from the low-

level ones (e.g., Edge detectors [46], Corner detectors [30], etc.) to the shape-based one (e.g.,

Blob detectors [44], Template matcher [15], etc.).

6. Image recognition merges information extracted from the image registration and segmen-
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tation to assign a label to an image region based on the information provided by its de-

scriptors. Pixels belonging to the same region has a common characteristic, so they can be

labelled in the same way. For this reason image recognition is also called image labelling

[178]. The main goal of this operation is to locate object and boundaries in the image, like

in medicine to identify tumours or other pathologies, or in video surveillance for pedes-

trian and car detection.

7. Image interpretation aims at assigning a meaning to an ensemble of recognized objects or

features. This final step is always performed at the end of the image processing chain, in

order to analyse the information extracted from the previous image processing steps.

Differently from human visual system, DIP can work on different wavelength domains: from

Infra-red to visible light, and from Ultraviolet ray to X-rays. However, in this thesis only the visible

light will be taken into account, since the presented research works are related to the processing

of images created from the reflection of visible light.

In the last years, DIP has been deeply used in space applications. The main applications in

which DIP has a key role are:

• Earth observation

• Space cartography

• Satellite attitude control

• Rover navigation

• Video-Based Navigation (VBN) landing system

• Active space debris removal

• Image compression

Next sections provide an overview on the importance of DIP in the reported space applications.

More detailed information are provided for the last three applications (i.e., VBN landing system,

Active space debris removal, and Image compression) since my research activity has been mainly

focused on them.

2.1 Earth observation

Earth observation is the gathering of information about planet Earth’s physical, chemical and bi-

ological systems via remote sensing technologies supplemented by earth surveying techniques,

encompassing the collection, analysis and presentation of data [65]. Its main purpose is a sci-

entific study of the Earth and human life evolution. However, nowadays it is becoming more
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and more important due to the dramatic impact that modern human civilization is having on the

Earth, and the need to minimize negative impacts along with the opportunities Earth observation

provides to improve social and economic well-being.

Earth observation is one of the most important application of DIP in space. In fact, during an

Earth observation mission, an artificial satellite revolving around the earth takes a set of pictures

that must be first pre-processed to remove haze, cloud and sensor induced defects, and then

must be processed to automatically extract useful information concerning the Earth and human

life evolution. These information are extracted exploiting all the potentiality of DIP since used

sensors exploits the full light spectrum.

According to the NASA classification [160], Earth observation can be split in five macro-areas,

depending on the application target:

• Atmosphere: it envelops all the applications concerning the Earth atmosphere monitoring.

One of the most important monitoring action concerns the Carbon Monoxide concentra-

tion in the atmosphere. This is of particular importance because this gas is causing global

warming and air pollution.

Another relevant monitoring concerns clouds. In fact, clouds have the ability to warm and

cool the Earth surface. So their analysis allows scientist to better understand the climate

evolution and changes.

Eventually, the last kind of monitoring concerns the measurement of water vapor concen-

tration and of rain fall distribution, that allows scientists to predict catastrophic floods.

• Energy: it embraces all missions targeting the measurement of the Earth temperature. Sci-

entists use these measurements to monitor the evolution of global warming. The main

targets of these missions are land and sea temperature

However, this area includes also mission measuring the Albedo (i.e., relative amount of

light that a surface reflects compared to the total sunlight that falls on it) and the Earth

reflectance amount, two factor strongly influencing Earth temperature.

• Land: it integrates all studies associated with the analysis and evolution of the Earth sur-

face from the morphological point of view. The most important application of this area is

Land topography. Land tomography allows us to make maps of the Earth surface features.

Topographic maps show the location, height, and shape of features like mountains and val-

leys, rivers, even the craters on volcanoes. Moreover, the applications grouped in this area

have also land monitoring purposes. Some examples of these applications are active fire

localization, the measurement of snow cover and snow water equivalent (i.e., the millime-

tres of water you would get if you converted all of that snow to liquid water), and vegetation

index.
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• Life: it covers all the applications associated with life. For example, with land cover classifi-

cation scientists use satellites to make maps of many different things on Earth to help them

understand how our world and life are changing. Judging by what the land surface looks

like, scientists organized Earth into different categories (e.g., cities, farm lands, forests,

deserts, etc.). Another important application is chlorophyll concentration measurement,

that basically measures floating plants live in the ocean. These plants, called phytoplank-

ton, are an important part of the ocean’s food chain because many animals (such as small

fish and whales) feed on them. Scientists can learn a lot about the ocean by observing

where and when phytoplankton grow in large numbers.

• Ocean: it embraces all applications concerning oceans monitoring. The most important

monitoring activity performed on oceans are: Sea ice concentration and snow extent, that

observes changes in the floating ice on the sea to predict oceans level growth, Bathymetry,

that continuously performs an elevation map of the oceans floor to monitor its evolution

along years, and Sea surface salinity measurement, to study the water cycle and ocean cir-

culation, both of which are important for Earth climate analysis.

2.2 Space cartography

Scientist effort is continuously focused on the Space cartography, so the study of the Milky way

and of the galaxy in general. This study is particularly important because allows to understand

the origin of celestial body and of our planet as well, but also to discover new planets composing

our galaxy.

Originally, this study was completely performed on the Earth exploiting observatories equip-

ped with powerful telescopes. However, in the last year the need of increasing the precision in

the star cataloguing and the ability to discover new planets, moved telescopes from Earth to the

space. For this reason, new satellites and spacecraft have been launched to observe space envi-

ronment. The last two missions targeting space cartography are NASA Kepler [155] and ESA Gaia

[4] (Figure 2.8).

Kepler mission is specifically designed to survey our region of the Milky Way galaxy to dis-

cover hundreds of Earth-size and smaller planets in or near the habitable zone and determine

the fraction of the hundreds of billions of stars in our galaxy that might have such planets. In or-

der to accomplish this task, the Kepler satellite is equipped with a photometric instrument that is

basically a Schmidt telescope [185]. This instrument is composed of an array of 42 Charge Couple

Devices (CCDs), each one with 2,200 x 1,024 pixels [154]. The unique DIP operation performed

on board aims at reducing the size of images to be stored. Basically, just the pixels where there

are stars brighter that a threshold are stored. Each month the stored pictures are sent to Earth to

be analysed.
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(a) ESA Gaia mission (b) NASA Kepler mission

Figure 2.8: Space cartography missions

Instead, the Gaia mission aims at creating a 3D map of the Milky Way and at helping us to

understand the origin and the evolution of our galaxy. This satellite has been launch on 19th

December 2014, and is planned to spend 5 years in orbit. During these years, Gaia rotates on its

axis while orbiting around the Sun. Thanks to two telescopes focusing light on a single billion-

pixel digital sensor, it is possible to create a map of stars at a very high resolution. In particular,

this digital sensor is composed of 106 CCDs, each consisting of more than eight million pixels,

making Gaia camera boasts almost one billion pixels, so the largest focal plane ever flown in

space [6].

Gaia mission makes a higher use of DIP w.r.t. the Kepler one. In fact, since the complete set of

acquired images is huge and cannot be sent to Earth, the on-board image processing system is

able to automatically process these images and extract a lot of astronomic data (e.g., star position)

and star properties (e.g., age and temperature) at a very high precision.

The extremely sophisticated Gaia instruments will allow to create a one billion star catalogue, in

which the precision of the star location is 200 times higher than the one contained in the currently

used star catalogue created by the ESA Hipparcos satellite [5].

2.3 Satellite attitude control

In order to guarantee a proper functioning of a satellite, the control of its position and orientation

in the space (i.e., its attitude) is fundamental. For this reason the Attitude & Orbit Control System
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(AOCS) (i.e., the system aiming at continuously controlling and correcting the satellite attitude)

[8] is a key element for the success of satellite operations.

An AOCS is composed by a plenty of sensors, like Star tracker, Magnometer, Gyroscope, and actu-

ators, like Trusters, Spin stabilization, and Momentum wheel. In particular, a Star tracker, one of

the most important sensors for absolute attitude definition, makes an extensive use of DIP.

A Star tracker is composed of a camera, that takes pictures to stars surrounding the satellite,

and an on-board image processing system. This system analyses stars contained in the acquire

image by characterizing all the possible triangular patterns that can be defined among them.

Finally, the absolute attitude is defined by comparing the characterized patterns with the ones

contained in the star catalogue stored on-board. For more detailed information about the pat-

tern matching operation, the reader may refer to [121]. This method ensures a high accurate

attitude control involving simple image processing operations.

2.4 Rover Navigation

A rover involved in a space exploration mission is commonly equipped with two sets of cameras:

scientific cameras, used to take images useful to scientists to study the explored planet, and en-

gineering cameras, used to automatically and/or manually control the rover navigation on the

planet surface.

Engineering cameras are stereo-vision systems (i.e., a system emulating the human vision

system to perform a 3D reconstruction starting from the digital images acquired from a couple

of digital cameras) taking gray-scale images. In the past, these stereo-vision images have been

sent to the Earth, analysed and used to plan the rover path to perform safe movement on the

planet surface. Instead, in the last NASA Exploration mission, i.e., the Curiosity rover mission

[150], the navigation system has been equipped with a high computational capability enabling

the autonomous movement of the rover.

The Curiosity rover navigation system is composed of two main vision equipments: (i) Navi-

gation Camera (Navcam) and (ii) Hazard avoidance camera (Hazcam) [151].

The former is a camera ensuring unmanned navigation without interfering with scientific instru-

ments. It is composed of two pair of stereoscopic black-and-white systems, in which each camera

has a 45 degree field of view and uses visible light to capture stereoscopic 3D imagery. The ac-

quired images (Figure 2.9) are on-board processed to reconstruct the 3D representation of the

planet surface in front of the rover.

The latter is made up of a set of photographic cameras mounted on the front and back of the

rover. Each camera, sensible to visible light, returns black-and-white images with a resolution of

1,024 x 1,024 pixels. Images acquired by these cameras (Figure 2.10) are automatically processed

on-board to map all potential hazards on the planet surface surrounding the rover.
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Figure 2.9: Curiosity Navcam image example

Figure 2.10: Curiosity Hazcam image example

Combining the information provided by Navcam and Hazcam, on 27th August 2014, Curiosity

became the first rover able to perform an autonomous navigation on the Mars surface. In partic-

ular, Curiosity has been able to autonomous drive of about 43 meters in one day of navigation.

This allows the reader to understand the extreme complexity of the DIP operations performed by

this system.

2.5 Video-Based Navigation (VBN) landing system

During a space exploration mission, one of the most dangerous and tricky phase is the landing

of the rover, or spacecraft in general, on the target planet. The landing system must guarantee

a soft and safe land on the planet surface to avoid damages to the on-board instruments, that

could lead to a mission failure. For this reason, engineers put a lot of efforts in the research of

innovative landing systems able to both reduce to the minimum both the probability of mission

failures, and the landing ellipse (Chapter 1).
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The current state-of-the-art landing system is the one developed by NASA and used dur-

ing the Curiosity mission [150]. Since this mission targets the exploration of the Mars surface,

a planet protected by an atmosphere like the Earth, the instruments guaranteeing a safe land

on the planet do not operate just on the proximity to the planet surface, but already when the

spacecraft is approaching the entrance in the Mars atmosphere. For this reason, as described

in Chapter 1, these instruments are grouped in the so called Entry Descent and Landing (EDL)

system.

The Curiosity EDL system is mounted on the Curiosity spacecraft (Figure 2.11).

Figure 2.11: Curiosity spacecraft [150]

This spacecraft is composed of two main elements: Cruise stage and Aeroshell. The former aims

at carrying the Aeroshell in the proper position on the top of Mars atmosphere, while the latter at

carrying and protecting the Curiosity rover during the EDL phase.

In the sequel, a detailed description of the operations performed by Curiosity EDL system is

reported [172].

When the spacecraft reaches the proper position on the top of the Mars atmosphere, the sep-

aration between Cruise stage and Aeroshell takes place (Final approach phase in Figure 2.12), and

the EDL system starts its operations.

In the past, spacecrafts point the tip of the cone-shaped heat shields of the spacecraft (i.e.,

nose) in the direction of their motion; then they spun around their symmetry axes, and their

paths were controlled by the whim of Mars’ atmosphere. Differently, Curiosity Aeroshell performs

a non-ballistic atmospheric entry. It despins, slowing from 2 revolutions per minute to halt at a

specific orientation. Then, it rotates to point the tip of its nose in the direction of its travel. Just

before entry, it releases two 75-kilogram tungsten masses, called Cruise Balance Masses (CBMs),

from one side of the capsule. This operation tips the nose downward by about 20 degrees.

At this point, as shown in Figure 2.13, the Aeroshell faces the Mars atmosphere border and enters

in it.

In the Entry phase, the Aeroshell just proceeds in the direction set after the CMBs release.

16



2.5. Video-Based Navigation (VBN) landing system

Figure 2.12: Curiosity EDL phase - Step 1 [150]

In this phase, all on-board instruments are protected against the high temperature due to the

friction with the atmosphere border (approximately 2,100 degrees Celsius) by an heat shield.

During the parachute release, two additional manoeuvres are done.

The first, called Straighten Up and Fly Right (SUFR) manoeuvre, is done by releasing six 25 kg

Ejectable Mass Balance Devices (EBDMs) to re-center the center of mass to pre-entry conditions.

The second is done by performing a 180 degrees azimut turn to re-align the nose of the Aeroshell

to the ground surface.

When the parachute is completely deployed, the heat shield is released. From this point the Ter-

minal Descent Sensor (TDS) radar is activated. This instrument is a pulsed-Doppler system [180]

that enables to accurately estimate the speed and attitude of the spacecraft during the descend-

ing phase by exploiting six independent radar beams. These information are used by the Guid-

ance Navigation and Control (GNC) system to correct the descending trajectory and follow the

target one. The correction of the descending trajectory is done using 8 thrusters, called Mars

Lander Engines (MLEs), mounted on the borders of the Descend stage (Figure 2.11).

When the parachute slowed the vertical descending speed to 100 m/s, the Descent stage is sepa-

rated from the Backshell, and it continues the guided descend trajectory.

Eventually, at an altitude of 7.5 m the rover is safely landed on the Mars surface by the Sky

Crane system. This system allows to pose the rover on the ground without requiring airbags to

protect the rover integrity.

The described Curiosity EDL system enabled to reduce the landing ellipse to 20 km. This

high-precision delivery opened up more areas of Mars for exploration and potentially allowed
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Figure 2.13: Curiosity EDL phase - Step 2 [150]

scientists to roam where they have not been able to before.

However, this benefit in landing accuracy came with an increased overall spacecraft mass. For

this reason an emerging and promising idea is to substitute the TDS radar with a VBN system. A

VBN system is able to compute the speed and attitude of a moving object by simply processing a

stream of acquired images. Thus, this solution could allow to replace the heavy pulsed-Doppler

system with a camera and a DIP board.

More in detail, a VBN system extracts geometrical information from a set of real-time sampled

image frames. A video-based system can be constructed exploiting two different approaches:

Relative Navigation and Absolute Navigation. The former provides the relative speed and position

of the spacecraft by comparing consecutive images acquired during the descending phase. The

latter compares taken images with an internal atlas of the planet surface in order to define the

absolute position of the spacecraft with respect to the atlas reference system.

Differently from the Absolute Navigation, the Relative Navigation requires to know the abso-

lute speed and position of the spacecraft at the beginning of the autonomous navigation to pro-

vide absolute measures in output. However, this is not a critical limitation since in every space

exploration mission the lander (i.e., the module that practically reaches the planet surface) is re-

leased by the carried module whose position is well know during the separation from the lander.

Instead the main limitation of the Absolute Navigation is the requirement of an atlas of the

target planet. In fact, this approach is only suitable for planets already visited or analyzed (i.e., the

atlas has been constructed during a previous mission). For this limited applicability, the space
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agencies decided to reduce the research effort in this approach to focus the research activity on

relative navigation systems that potentially allow to autonomously navigate also on planet never

visited before (i.e., no preliminary information on the planet to be visited are required).

In the next sections a deep analysis of the approaches and algorithms used for the relative

and absolute navigation is provided. In particular, in these sections a big effort has been spent

to highlight the pros and cons of different approaches, and the complexity of the exploited algo-

rithms.

2.5.1 Relative Navigation

Relative Navigation is composed of two activities, named Feature Extraction and Matching (FEM),

and Motion Estimation (ME), respectively. During FEM, each frame is processed to detect those

pixels that represent features of interest for the image (e.g., corners or edges of surfaces). The

detected features are then compared to extract those that can be recognized in two consecutive

images (matching points). Eventually, the ME algorithms analyze the detected matching points

and estimate the relative position and orientation of the camera (fixed with respect to the moving

object). To increase accuracy, ME algorithms require that matching points be very accurately dis-

tributed across the entire frame [127]. While ME algorithms are not computationally intensive,

FEM algorithms require high computation capability to guarantee high frame rates and therefore

high accuracy.

The following sections report a detailed analysis of the most important feature extractors and

matchers used for VBN.

2.5.1.1 Feature extractors

Feature extraction is the most complex activity performed by FEM algorithms. It is a special

form of dimensionality reduction, since it enables the reduction of the number of variable to be

considered. In fact, this process reduces the overall set of pixels composing the input image to

a vector containing a set of information (e.g., pixel coordinate, neighbourhood pixels descriptor,

strenghtness of the features, etc.) for each pixel representing a feature.

The most used feature extractors for VBN are the Low-level ones [64]. This kind of extractors

are classified depending on the parameter considered as features. The most important classes

are:

• Edge Detectors: they identify points in a digital image at which the image brightness changes

sharply or, more formally, has discontinuities. They are mainly used in image mosaicking,

image registration, image segmentation, and image labelling. The most exploited edge de-

tectors are Canny Edge Detector [28], Marr-Hildreth operator [132], and Differential Edge

Detector [208].
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• Corner Detectors: they extract pixels representing the intersection between two edges. They

are commonly used for motion detection, image registration, video tracking, image mo-

saicking, panorama stitching, 3D modelling and object recognition. The most important

and used corner detectors are Beaudet [18], SUSAN [188] and Harris [86].

• Blob Detectors: they detect regions in a digital image that differ in properties, such as

brightness or color, compared to areas surrounding those regions. They are exploited in

3D modelling, object recognition, object tracking, and image segmentation. The most widely

used ones are Laplacian of Gaussian [119], Difference of Gaussian [216], and Determinant

of the Hessian [122].

• Scale-invariant feature detectors: they identify a set of features which are invariant to image

translation, scaling, and rotation, partially invariant to illumination changes and robust

to local geometric distortion. These methods, differently from the ones in the previous

groups, provide a descriptor for each feature, characterizing the feature and its surrounding

pixels, that ease the feature matching process. These methods have the same applications

of Corner Detectors, but they are able to provide a higher robustness. In some applications,

the most important ones are Scale-Invariant Feature Transform (SIFT) [128] and Speeded

Up Robust Features (SURF) [17].

Among these algorithms the most used in VBN are: Harris corner detector, Scale-Invariant

Feature Transform (SIFT), and Speeded Up Robust Features (SURF).

2.5.1.1.1 Harris corner detector

The Harris corner detector is an interest point detector, popular due to its strong invariance to:

rotation, illumination variation, and image noise [163]. Basically, this detector provides a math-

ematical method that allows to define if a pixel belongs to a corner or not.

As shown in Figure 2.14, considering a small windows of pixels, if the pixel in the center of

the windows belongs to a corner, a small movement of the window leads to a great change in the

appearance of neighbourhood pixels.

Figure 2.14: Basic idea for corners definition
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In general, an image can be made up of flat region, corner or edges. The result obtained by

applying the proposed idea on these three cases (Figure 2.15) can be summarized as in Table 2.1.

(a) flat region (b) edge (c) corner

Figure 2.15: Application of the Harris corner detector basic idea

Table 2.1: Result of the Harris corner detector basic idea applied to flat regions, edges and corners
in a digital image

Type of image region Obtained result

Flat region
No changes in the appearance of neighbourhood pixels
in all directions

Edge
No changes in the appearance of neighbourhood pixels
along the edge direction

Corner
Great changes in the appearance of neighbourhood pixels
in all directions

Exploiting the local auto-correlation function of a signal (i.e., the mathematical operator that

measures the local changes of the signal with patches shifted by a small amount in different di-

rections), the Harris corner detector allows to mathematically define in which of these three cases

a pixel is. In particular, it defines a factor called Corner Response function that is big iff the cur-

rently considered pixel represent a corner in the image. Equation 2.1 shows how to compute this

factor.

R(x, y) = Det (N (x, y))−k ·Tr 2(N (x, y)) (2.1)

where Det(X) is the determinant of matrix X, Tr(X) is the trace of matrix X, k is a correction factor

equal to 0.04, and N(x,y) is the second-moment matrix, defined as follow:

N (x, y) =
(

L2
x Lx Ly

Lx Ly L2
y

)
(2.2)

where Li is the spatial image derivative in the direction i.

Just pixels with a high value of R(x, y) can be considered valid features. Thus, to complete

the feature extraction task, this parameter must be compared with a threshold. The value of
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this threshold is commonly set depending on the expected image conditions in terms of noise,

illumination, and contrast.

2.5.1.1.2 Scale-Invariant Feature Transform (SIFT)

Scale-Invariant Feature Transform (SIFT) has been proposed by D. Lowe in 1999. This algorithm

provides strong invariant features to illumination variations, noise, scale modifications, and ro-

tations.

SIFT is composed of four main steps: (i) Scale space extrema detection, (ii) Keypoints localiza-

tion, (iii) Orientation computation, and (iv) Keypoint descriptors extraction.

Scale space extrema detection is the first operation performed on the input image. First, it

requires to create the scale space associated with the input image. This task is accomplished by

creating the scale image pyramid (Figure 2.16).

Figure 2.16: Scale image pyramid example

This pyramid is composed of different octaves (rows in Figure 2.16). Images populating an octave

represent different scale level. They are obtained by blurring the first image of the octave with a

Gaussian blurring function (Equation 2.4) with an increasing variance (σ2). Instead, to pass from

one octave to the next one the height and width of the first image composing the previous octave

must be divided by two. For the sake of completeness, Equation 2.3 shows how to compute the

pixel values of the first image composing the second octave.

L(x, y,σ) =G(x, y,σ)∗ I (x, y) (2.3)

where L(x, y,σ) is the pixel value of the first image in the second octave, ∗ is the convolution

mathematical operator, I (x, y) is the input image pixel value, and G(x, y,σ) is the Gaussian blur-

ring function defined as:

G(x, y,σ) = 1

2πσ2 e−
(x2−y2)

2σ2 (2.4)

The scale space extrema detection is completed by approximating the Laplacian of Gaussian

(LoG) through the Difference of Gaussian (DoG). DoG are defined among images composing each

octave and defining the pixel representing an extrema (minimum or maximum) in the created

pyramid in a neighbourhood pixels window. Basically, the DoGs are computed by algebraically
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subtracting pixel by pixel each consecutive couple of image composing an octave, as shown in

Figure 2.17.

Figure 2.17: DoG computation example

The extrema search in the neighbourhood pixels window is done, as in Figure 2.18, by comparing

each pixel in an image with its 8 neighbours as well as with the 9 neighbourhood pixels, in the

next and previous scale (i.e., the next and previous images in the current octave). If the pixel is an

extrema (i.e., a maximum or a minimum among the 26 neighbourhood pixels) it is selected as a

keypoint and it is stored together with the associated scale.

Figure 2.18: Pixel comparison for extrema definition

Keypoint localization aims at refining the defined extrema (i.e., keypoints). Basically, this op-

eration eliminates unstable keypoints from the final list by finding those that have low contrast

or are poorly localized on an edge. Low contrast keypoints are detected by simply comparing the

keypoint intensity with a threshold. Instead, keypoints lying on an edge are detected by com-

puting the Hessian function, associated to the currently considered pixel, and comparing its two

eigenvalues. Since an edge is characterized by a large principal curvature across its direction but
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a small one in the perpendicular one, and the Hessian function eigenvalues are proportional to

these two principal curvatures, when the eigenvalues differ too much the keypoint lies on an edge

[237].

Orientation computation aims at assigning a consistent orientation to the keypoints based

on local image properties. This information added to each keypoint ensures to reach a rotation

invariance. The orientation is defined through the gradient magnitude (m) and the gradient ori-

entation (µ), that can be computed as show in Equation 2.5 and 2.6, respectively.

m(x, y) =
√

(L(x +1, y)−L(x −1, y))2 + (L(x, y +1)−L(x, y −1))2 (2.5)

µ(x, y) = t an−1 (L(x, y +1)−L(x, y −1))

(L(x +1, y)−L(x −1, y))
(2.6)

Eventually, Keypoint descriptor extraction is done by measuring the local image gradients at

the selected scale in the region around each keypoint. These are transformed into a representa-

tion that allows for significant levels of local shape distortion and change in illumination. The

local gradient data, used above, is also used to create keypoint descriptors. The gradient infor-

mation is rotated to line up with the orientation of the keypoint and then weighted by a Gaussian

with a variance of 1.5 multiplied by the keypoint scale. These data are then used to create a set of

histograms over a window centred on the keypoint. Keypoint descriptors typically use a set of 16

histograms, aligned in a 4x4 grid each with 8 orientation bins, one for each of the main compass

directions and one for each of the mid-points of these directions. This process results in a feature

vector containing 128 elements.

For more detailed information about SIFT, readers may refer to [128].

2.5.1.1.3 Speeded Up Robust Features (SURF)

Speeded Up Robust Features (SURF) is a feature detector and descriptor proposed by Herbert Bay

in 2008 [17], that provides the same robustness guaranteed by SIFT (Section 2.5.1.1.2), but in-

creasing the timing performance. This algorithm follows the same flow executed by SIFT, but it

changes the way to perform some of the required steps.

Differently from SIFT, SURF uses a Hessian-based blob detector to find interest points. In par-

ticular, SURF performs non-maximal-suppression of the determinants of the Hessian matrices.

The determinant of a Hessian matrix expresses the extent of the response and is an expression of

the local change around the area [17].

Since the Hessian matrix is composed of the image second order derivative along the x, y and

xy directions, and the convolutions is very costly to calculate, the derivatives computation is ap-

proximated and speeded-up with the use of Box filter and integral images [17].

Box filters are approximated kernel to compute the second order derivative along the x, y and
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xy directions. Figure 2.19, from left to right, shows the approximation of second order Gaussian

kernels (Figure 2.19(a)) with Box filters (Figure 2.19(b)) for the derivative computation along the

x, y ans xy direction.

(a) Second order Gaussian kernels

(b) Box filters

Figure 2.19: Approximation of second order Gaussian kernels with Box filters (gray areas repre-
sents zero factor, black ones -1 factors, and white ones +1 factors)

To boost up the execution speed the convolution computation with Box filters, SURF oper-

ates on integral images.

An integral image allows to speed up the sum of pixels in a rectangular region. In particular, the

time cost to compute this sum is independent from the rectangular region size. To better under-

stand this concept, it is necessary to define the process to compute an integral image. Equation

2.7 reports the general formula to compute pixel values composing an integral image.

I I (x, y) = I (x, y)+ I I (x −1, y)+ I I (x, y −1)+ I I (x −1, y −1) (2.7)

where I I (i , j ) and I (i , j ) are the pixel value in the (i , j ) position of the integral and input image,

respectively.

If a pixel required by Equation 2.7 falls outside the image, its value must be set to zero. For a better

comprehension, Figure 2.20 shows an example of integral image computation.

Eventually, the sum of pixels in a rectangular region can be computed as shown in Equation 2.8

xb∑
x=xa

yb∑
y=ya

I (x, y) = I I (xb , yb)− I I (xa −1, yb)+ I I (xb , ya −1)+ I I (xa −1, ya −1) (2.8)

where (xa ,ya) and (xb ,yb) represent the upper-left and bottom-right corners of the rectangular

region, respectively.
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(a) Input image (b) Integral image

Figure 2.20: Integral image computation example

Thus, independently from the rectangular region size, the pixel sum can be computed with just

four add operations. As in the integral image computation, if one of the pixel values required by

Equation 2.8 falls outside the image, its value must be set to zero. For the sake of completeness,

Figure 2.21 shows two examples of pixel sum computation.

(a) Rectangular region on the image border

(b) Rectangular region on in the middle of the image

Figure 2.21: Pixel sum computation example

Another important benefit provided by the combination of Box filters and integral image con-

cerns the constant computational cost of the convolution with increasing kernel size. For this

reason, to create the scale space in a time efficient way, in SURF, instead of scaling the picture

size while maintaining the size of the kernel constant (as in SIFT), the size of the image is main-

tained constant among octaves while the kernel size is increased (Figure 2.22).

Another difference between SURF and SIFT concerns the way to compute feature descriptors.
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Figure 2.22: Scale space creation with the traditional and the SURF approach

Instead of using gradients as in SIFT, SURF exploits Haar wavelet responses along the x and y

directions [17]. Basically, around each feature is defined an interest area as big as the feature

scale multiplied by 20. The interest area is divided into 16 subareas that are described by the

values of a wavelet response in the x and y directions. These components are computed as a

convolution between Haar kernels (Figure 2.23) and the interest area, exploiting the speed-up

provided by integral images and Box filters.

(a) Wavelet component
along y

(b) Wavelet component
along x

Figure 2.23: Haar kernels for wavelet components computation (black areas represent a -1 factor,
and white ones a +1 factor)

The interest area are weighted with a Gaussian function centred on the interest point to give some

robustness against deformations and translations. For each subarea a vector is defined, based on

5x5 samples, as shown in Equation 2.9.

v = {∑
δx,

∑
δy,

∑|δx|,∑|δy |}, (2.9)

where δx and δy are the Haar wavelet responses along x and y direction, respectively.

Eventually, the sixteen vectors are concatenated to create the feature descriptor. Since each

vector is 4 components long, a SURF feature descriptor contains 64 elements.

For more detailed information about SURF, the reader may refer to the original paper pub-

lished in [17].

27



2. DIGITAL IMAGE PROCESSING: A LONG HISTORY TO REACH SPACE APPLICATIONS

2.5.1.2 Feature matchers

In VBN applications, feature matching is a fundamental step since it ensure to create the corre-

spondence among features in two consecutive images.

Feature matchers for VBN applications can be grouped into two main categories [2]:

• Area-based matchers

• Features-based matchers.

The following sections provide a deep analysis of these two categories, highlighting the main

characteristics and involved algorithms.

2.5.1.2.1 Area-based matchers

Area based matching methods determine the correspondence between two image areas (refer-

ence windows) according to the similarity of their pixel values.

The main issue for applying this kind of matchers concerns the definition of the reference

windows location. Commonly, to solve this issue, reference windows are centred on the extracted

image features, and the difference between the two windows is computed to define whether the

features match or not.

The similarities between the two image areas can be quantified exploiting many algorithms.

The most used ones are Sum of Absolute Difference (SAD), Sum of Square Difference (SSD), Cross-

Correlation (CC), and Normalized Cross-Correlation (NCC).

Sum of Absolute Difference (SAD) is the simplest approach. As shown in Equation 2.10, it just

sums the absolute differences between the two image templates.

S AD =
M∑

i=0

N∑
j=0

|I1(x f 1 + i , y f 1 + j )− I2(x f 2 + i , y f 2 + j )| (2.10)

where M and N are respectively the height and width of the reference windows, I1 and I2 are the

two consecutive images, and (x f 1, y f 1) and (x f 2, y f 2) are the feature coordinates in the first and

second image.

Sum of Square Difference (SSD) sums the square differences between the two image tem-

plates. Equation 2.11 reports the formula to compute SSD.

SSD =
M∑

i=0

N∑
j=0

(I1(x f 1 + i , y f 1 + j )− I2(x f 2 + i , y f 2 + j ))2 (2.11)

Adding the square differences, instead of the absolute ones, allows to strongly discriminate the

disparity between the two image reference windows.

Since the SAD and the SSD formulas quantify the distance between the two image reference win-

dows, just when the result of these computations is lower than a certain value the two features

can be considered as a valid match.
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Differently from SAD and SSD, the two correlation methods (CC and NCC) provide similarity

measurement. Thus, instead of quantifying the differences between the reference windows, CC

and NCC provide high values when the considered image template are close to each other. Thus,

just when this value is higher than a threshold the computed match can be considered as valid.

Equations 2.12 and 2.13 are used to compute CC and NCC, respectively.

CC =
M∑

i=0

N∑
j=0

I1(x f 1 + i , y f 1 + j )∗ I2(x f 2 + i , y f 2 + j ) (2.12)

NCC =
M∑

i=0

N∑
j=0

I1(x f 1 + i , y f 1 + j )∗ I2(x f 2 + i , y f 2 + j )√∑M
i=0

∑N
j=0(I1(x f 1 + i , y f 1 + j ))2 ∗∑M

i=0

∑N
j=0(I2(x f 2 + i , y f 2 + j ))2

(2.13)

Comparing the complexity of these two formulas, it can be immediately noted that NCC is char-

acterized by a higher complexity, while CC requires a similar computational cost of SAD and SSD.

From the accuracy point of view, correlation methods provide high performances than SAD

and SSD [240] [74]. In particular, NCC is even more robust than CC, since, normalizing the corre-

lation value with the values contained in the two reference windows, is practically insensible to

illumination condition variations between the two consecutive images.

Eventually, since these methods use a fixed reference windows are not able to provide accurate

results when high rotations or scale variations are present between the two consecutive images.

2.5.1.2.2 Features-based matchers

Differently from Area-based approaches, Features-based matchers require feature descriptors as

input (Sections 2.5.1.1.2 and 2.5.1.1.3). Thus, they cannot be used with features extractors that

provide in output just feature locations (e.g., Harris corner detector in Section 2.5.1.1.1).

Basically, these methods search among the set of feature descriptors, extracted from two consec-

utive images, the most similar one.

Feature descriptors matching can be done in different ways. In the sequel the most important

methods are reported .

The simplest one quantify the distance by summing the differences among components of

two feature descriptors. Commonly, this task is done exploiting the SSD (Equation 2.11. Another

common approach is the computation of the euclidean distance between features descriptors. In

both cases, the computation must be performed for all the feature descriptors of the two consec-

utive images, and just the couples having the distance lower than a certain value can be consid-

ered valid matches. For this reason these methods, also called brute force approaches, are really

timing consuming especially when the feature descriptors dataset is big.

In order to reduce the computation time, advanced methods, that make use of special kind

of data structure allowing to split the feature descriptors dataset into smaller hyper-boxes, have

been invited. The most efficient methods makes use of k-d trees [186] as data structure.
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In general, differently from the Area-based matchers, Features-based matchers, when work on

descriptors that are scale and rotation invariant (e.g., the ones extracted with robust extractors

like SIFT (section 2.5.1.1.2) and SURF 2.5.1.1.3)), are efficient even in presence of strong rotation

and scale modification between the two consecutive images. However, they are more time con-

suming since the number of elements composing a feature descriptor is higher than the number

of pixels composing an image reference window used in Area-based matchers. Thus, the number

of operations to verify if a feature couple is a valid match is higher.

2.5.2 Absolute Navigation

As opposed to relative navigation, which depends on a unique origin or previous motion informa-

tion to locate the current position of a space craft, absolute navigation computes the location of

a space craft without a unique origin point or previous motion information using only the avail-

able terrain information. In other words, it extracts the spacecraft position referred to a general,

fixed, coordinate system.

The basic approach consists in extracting some kind of information, from the images taken

by the spacecraft, characterizing the landing zone and trying to match these information with

the ones stored in a reference database.

In order to ensure the proper definition of the absolute position, the database stores the infor-

mation related to a planetary surface portion wider than the target landing area.

Existing approaches for Video-Based Absolute Navigation can be classified into three main

groups:

• Orbiter-assisted

• Shape-based

• Crater-based.

The Orbiter-assisted approach [169] is depicted in Figure 2.24. It requires the presence of an

orbiter, or satellite, equipped with a high resolution camera. As shown in Figure 2.24, the Field

of View (FoV) of the spacecraft camera must be completely covered by the FoV of the orbiter

camera.

The picture taken by the Orbiter has the purpose of reference image. The reference database is

created by extracting features from this image. The image taken by the spacecraft is firstly scaled

and rectified according to the orbiter attitude, provided by the Inertial Measurement Unit (IMU)

(i.e., a module equipped in every spacecraft involved in a space exploration mission), in order to

align the picture with the one taken by the orbiter (i.e., after rectification the two pictures lie on

the same plane). After that, features are extracted from the rectified picture, and compared with

the database. After features matching, since the orbiter position is known, the absolute position
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Figure 2.24: Orbiter-assisted Absolute Navigation

of the spacecraft can be defined with respect to the orbiter reference system.

This method has a lot of benefits, since it provides a good precision, it does not require specific

landmark on the planet surface, it does not require an internal database, and it is not susceptible

to different illumination conditions, since the compared pictures are acquired at the same time.

However, the method is based on two main hypothesis that are not feasible for the majority of

space exploration missions. In particular, it requires:

• the presence of an orbiter that monitors the overall descending phase of the spacecraft;

• a permanent communication channel between the two entities, that is not always guaran-

teed during the spacecraft descending phase.

The Shape-based and Crater-based [33] approaches are both based on a pre-computed refer-

ence database.

In the former, the information composing the database are landmarks templates, characterized

by an absolute position w.r.t. a reference system. The image rectification is performed to align the

acquired pictures with the one composing the surface atlas (in the sequel called atlas image). This

task is accomplished by exploiting the current attitude and altitude of the descent module. After

image alignment, regions of interest (i.e., landmarks) are extracted from the spacecraft picture,

and they are compared with the reference database to find the most robust match. Commonly,

the matching task is done by extracting from the spacecraft acquired images a set of image tem-

plate containing region of interest. These templates are then stepped over the atlas image to find

the regions having the higher number of pixels in common, and so to find a valid matches. Even-
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tually, after the matching task, from the absolute position characterizing the matched database

template, it is possible to define the absolute position of the spacecraft.

As it can be noted from this brief description, Shape-based methods involves simple operations

and work for different kind of landmarks. However, they are not able to provide good precision

when the planet surface contains landmarks with similar shape, and, in addition, they are not

invariant to the spacecraft attitude.

The crater-based approach exploits a similar method but it exclusively uses craters as land-

marks. The crater matching can be commonly done in two different ways: Conic-pair Invariants

matching [118] or Cross-correlation matching (Section 2.5.1.2).

In the former, for each possible pair of craters in the acquired pictures and in the atlas image,

an invariant operator, called conic-pair invariant, is defined. This operator allows to create a

signature, invariant to geometrical transformation, identifying each couple of craters. Thanks to

the invariance of this operator, the matching can be done without knowing the attitude of the

spacecraft in the atlas reference system. Thus, the spacecraft image rectification can be avoided.

However, this methods presents an important drawback, being efficient only if the planet surface

is picked by a high number of craters.

Instead, in the cross-correlation matching, for each crater detected in the acquired image, a sur-

rounding image template is extracted. This template is then stepped over the atlas image in order

to find a crater match through the cross-correlation operation (Section 2.5.1.2). The main positive

aspect of this approach concerns the required simple operations that allow to limit the execution

time. However, this methods is not able to provide acceptable performance when the atlas im-

age and the acquired images have different photometric properties (i.e., illumination, contrast,

etc.). Moreover, this method is not invariant to the spacecraft attitude, it can find a lot of fake

matches when different craters have similar structure, and it requires a huge dataset to store the

atlas image.

Even if Shape-based and Crater-based approaches have some drawbacks, they are preferred

to the Orbiter-assisted ones since they present less critical limitations.

Analyzing the literature, a lot of these methods have been presented.

[146] proposes a VISion aided Inertial NAVigation (VISINAV) system. It is an hybrid relative

and absolute navigation system for planetary landing applications. It utilizes both information

extracted from an IMU and pictures acquired from an imaging camera. The visual measurements

are combined in an optimal fashion with measurements from an IMU, to produce estimates of

the spacecraft position and attitude during EDL.

As aforementioned, this system does not implement a pure absolute navigation approach, since

it combines the extraction and matching of two types of features: mapped landmarks (i.e., craters

whose global coordinates can be inferred from a map) and opportunistic features. Just the former

are related to the absolute navigation, while the latter represent the features used in the standard

relative navigation computation described in section 2.5.1.1.
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Taking into account just the absolute navigation part of VISINAV, the landmarks matching is done

with a cross-correlation based crater matching, optimized to reduce the required computation

time. In order to avoid to step the crater templates over the overall atlas image, a Fast Fourier

Transform (FFT) map matching forego the actual landmarks matching. This added task allows

to rapidly approximate the horizontal position of the spacecraft w.r.t. the atlas reference system.

This approximation, even if not really accurate, enables to create a searching window inside the

atlas image that strongly reduces the searching area of potential landmark matches.

However, this approach, even if it provides a really high execution speed, it embeds all the draw-

backs of the cross-correlation based crater matching.

In [32] an approach based on the Conic-pair Invariants matching is proposed. This work in-

creases the robustness of the matching task by comparing, in addition to the conic-pair invariant

associated with each crater couples, a set of peculiar crater attributes. In particular, to remove

potential fake matches identified by the basic method, this work compares also the radius and

the orientation of each detected craters. This improvement allows to increase the robustness of

the Conic-pair Invariants matching, but, at the same time, it increases the size of the reference

database, resulting in a higher memory requirement.

[34], in order to even more increase the matching robustness, exploits in parallel the Conic-

pair Invariants matching and Cross-correlation matching, plus the so called context based match-

ing [57]. This considers the positions and sizes of a set of craters found in an image. Their con-

stellation usually forms a unique pattern, which could be used to identify the correspondences

between the acquired images during the descending phase and the atlas image. Basically, this

approach randomly selects three craters in the acquired image. These three craters have to form

a triangle in order to avoid an ill conditioned problem. Knowing the attitude and altitude of the

spacecraft (provided by the IMU), the epipolar geometry (Section 2.6.1) can be generated and

used, together with the size and shape of each crater to find the corresponding crater triplets in

the atlas and spacecraft images.

The combination of these techniques provides a great increase in the accuracy, but at the same

time, it strongly increase the execution time. In fact, the main drawback of this techniques is the

huge time required to find valid matches, that is not compatible with the timing performance re-

quired by an absolute navigation system. In addition, the memory requirements are higher than

the previously presented methods, since the internal atlas must contain the information required

by all of the three exploited matching approaches.

Eventually, [195] proposes a hardware infrastructure that implements an innovative crater-

based absolute navigation . This solution aims at identifying each landmark (i.e., craters) through

a characterizing point, and then applying the same approach used in Planar triangle-based (PT)

Star trackers [36]. PT Star trackers are used to define the attitude of a satellite depending on which

stars are within the satellite camera field of view. The basic steps performed by a PT Star tracker

are: (i) develop a triangle from a combination of three stars, (ii) characterize the triangle with
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its area and polar moment, and, eventually, (iii) compares the extracted area and polar moment

with the database of all possible star triangles in order to find a match.

In this approach the characterizing points associated with landmarks act as stars.

The proposed method can be split in two main tasks: Reference database development, to be

performed off-line, and Absolute position estimation, executed at run-time. The database de-

velopment task is carried out by creating a surface map of the landing zone. The surface map

can be obtained by stitching a set of images taken by satellites orbiting around the target planet.

Then, landmarks, i.e., craters, are extracted and the associated characterizing points are defined.

Characterizing points are defined in terms of centroids of the detected craters, and the associated

absolute position. In addition to centroids, the database contains the set of all possible triangles

(among all centroids), defined by the triangle surface area, perimeter and polar moment.

This approach strongly reduces the database size, w.r.t. existing methods. In this approach the

database requires three numeric values for each triangle, plus the absolute position of each cen-

troid, instead of an image template for each landmark.

The Absolute position estimation is a sequence of consecutive operations to be performed on

the input image at run-time. First, the images acquired by the spacecraft, during the descend-

ing phase, are pre-processed to reduce the level of noise and enhance the overall quality. Image

pre-processing mainly consists of noise filtering (e.g., by applying a Gaussian filter [81]) and recti-

fication, needed to align the plane of the acquired spacecraft image with the plane of the images

used for the database development. The rectification process is essential in order to apply the

Planar Triangle-based Star tracking algorithm, that in general, does not take into account the

spacecraft attitude because stars can be considered as point at an infinite distance. On the other

hand, during the descending phase, craters, and consequently the associated centroids, changes

their relative position in the camera field of view depending on the spacecraft attitude.

These pre-processing operations ensure to increase the performances of the following image pro-

cessing algorithms.

After image pre-processing, craters are extracted. This operation can be accomplished by us-

ing image segmentation [191]. This kind of algorithm provides better results with respect to a

standard edge detector (e.g., Canny [28]), since it does not require information about the sun el-

evation and it is more robust to illumination condition variations.

If less than three craters are extracted, the star tracking approach cannot be applied and a new

picture must be acquired. Otherwise, each extracted crater is characterized by the centroid.

Exploiting the altitude information, provided by a LIDAR sensor (commonly equipped on space-

crafts involved in space exploration missions), the absolute distance among centroids is com-

puted. Then, all possible triangles are defined, and characterized by the area, perimeter and

polar moment. Finally, these information are compared with the ones stored in the database to

find potential matches. The matching task is very simple since it consists of searching numerical

values in the pre-computed database table. Matches are used to compute the absolute position
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of the spacecraft by exploiting the absolute position of the centroids composing the matched tri-

angles.

However, even if this approach solves many issues in terms of memory requirement and execu-

tion speed, it requires to land on a surface picked by at least three craters, making this approach

not suitable for every landing site.

From this analysis of the current state-of-the-art, it can be noted that an efficient way to solve

all the issues characterizing the absolute navigation system has not yet been found. Thus, a huge

research effort must still be spent on this topic. However, as already mentioned at the beginning

of this chapter, the space agencies are reducing their research efforts on this approach in favour

of relative navigation approaches.

2.6 Active Space Debris removal

The challenge of removal of large space debris, such as spent launcher upper stages or satellites

having reached the end of their lifetime, in low, medium, and geostationary earth orbits, is al-

ready well-known. It is recognized by the most important space agencies and industries as a

necessary step to make appreciable progresses towards a cleaner and safer space environment

[68, 148]. This is a mandatory condition for making future space-flight activities safe and feasible

in terms of risks. Space debris, defined as non-functional objects or fragments rotating around

or falling on the earth [100], are becoming a critical issue. Several studies and analysis have been

funded in order to identify the most appropriated approach for their removal. Recent studies

demonstrated that the capability to remove existing space debris, over preventing the creation

of new ones, is necessary to invert the growing trend in the number of debris that lie in orbits

around the Earth. Nowadays, the focus is on specific space debris, weighting about 2 tons and

spanning about 10 meters [170]. This class of orbiting debris is the most dangerous for aircrafts

and satellites, representing a threat to manned and unmanned spacecrafts, as well as a hazard on

Earth, because large sized objects can reach the ground without burning up in the atmosphere. In

case of collision, thousands of small fragments can potentially be created or even worst they can

trigger the Kessler syndrome [112]. An example of this class of debris is the lower stage of solid

rocket boosters, such as the third stage of Ariane 4, the H10 module, usually left from European

Space Agency (ESA) as space orbiting debris [23, 67].

The basic procedure for removing a space debris consists of three steps. The first phase is

the debris detection and characterization, in terms of size, shape profile, material identification,

and kinematics. The second phase, called non-collaborative rendez-vous, exploits the informa-

tion gathered from the first phase in order to identify the best approach (e.g., trajectory) to cap-

ture the identified debris. Finally, in the capture and removal phase, depending on the on-board

functionalities of the chaser satellite, the debris is actually grappled, de-orbited from its position,

and safely guided during the descending phase on the Earth atmosphere. [110, 244].
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Concerning this basic solution, many different approaches to perform the aforementioned steps

have been proposed (e.g., e.Deorbit [20], CleanSpace One [131], Sling-Sat Space Sweeper [142],

and Solar Sail [94]).

The goal of these missions is to study sophisticated imaging sensors for an autonomous debris

characterization, and advanced capture systems.

Several capture mechanisms are being studied in parallel to minimise mission risk. Throw-nets

[221] have the advantage of scalability, a large enough net can capture anything, no matter its

size and attitude. Tentacles [221], a clamping mechanism that builds on current berthing and

docking mechanisms, could allow the capture of launch adapter rings of various different satel-

lites. Harpoons [221] work no matter the target’s attitude and shape, and do not require close

operations. Robotic arms [95] are another option.

In addition to the basic active space debris removal approach, other potential procedures have

been proposed. For example, the Japanese Aerospace Exploration Agency proposed [107] the us-

age to use an electrodynamic tether whose current would slow down the speed of satellites or

space debris. Slowing the satellite speed would make it gradually fall closer to Earth, where it will

burn up. Instead, Space Debris Elimination (SpaDE) [84] would push satellites into a lower orbit

by using air bursts within the atmosphere. Debris pushed on the lower orbit will slowly decay

entering in Earth atmosphere, where they will burn up.

A design proposal from Daniel Gregory of Raytheon BBN Technologies in Virginia [45] would use

a balloon or high-altitude plain to send the bursts out.

However these two proposals have a common drawback. Since debris are also of big size, the

complete burst of them due to the impact with the Earth atmosphere cannot be guaranteed. For

this reason, since the descending trajectory of the decaying object cannot be predicted a priori,

the space debris can hit the Earth surface even in populated areas. Thus, the basic debris removal

approach is currently the preferred one.

My research activity on this topic has been mainly focused on the imaging sensors to com-

pute the autonomous characterization of space debris. In order to collect the required informa-

tion about the object to be removed, three main operations must be performed: (i) the debris

three-dimensional shape reconstruction, (ii) the definition of the structure of the object to be

removed and the identification of the composing material, and (iii) the computation of the kine-

matic model of the debris. In particular my activity focuses on the first of these three phases.

Since space applications impose several constraints on allowed equipments in terms of size,

weight, and power consumption, many devices commonly used for 3D object shape reconstruc-

tion cannot be used when dealing with space debris removal (e.g., laser scanners [200] and LI-

DARs [111]). Moreover, the chosen device should be passive, not only for power constraints, but

also because passive components are more robust against damages caused by unforeseen scat-

tering of laser light.

The easiest (and probably cheapest) device suitable for space missions is a digital camera acquir-
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ing visible wavelengths. Either based on CCD or CMOS technology, power consumption of digital

cameras is affordable as well as the further processing of provided images.

Digital cameras can be used for 3D shape reconstruction exploiting several techniques. The most

used and effective techniques to compute a 3D model starting from visible light images are: (i)

Stereo-vision systems and (ii) Shape from Shading. Next sections report a deep analysis of these

two techniques.

2.6.1 Stereo-vision system

A stereo-vision system mimics the human visual system with two (or more) points of view, and

provides in output the so called dense map: an image that point out the distance from the ob-

server of each pixel composing the input image.

This section provides a survey of the state-of-the-art procedures able to reconstruct a dense

map, providing dense and full 3D reconstructions of objects from multiple views.

A common stereo-vision system is made up of two cameras, watching at the same scene, that em-

ulate the human binocular vision. These two cameras have a fixed distance called inter-camera

distance. The output of a stereo-vision system is a couple of images (stereo images) that provide

the left and right side view of the scene in front of the system.

Figure 2.25 shows how a point in the 3D space is reproduced in the stereo images.

Figure 2.25: Stereo-vision system

A point P (x, y, z) in 3D space is seen by the left view, which we will call the left image, as a pro-

jection point PL(xL , yL). This point is located where the line between the left camera focal point

(OL) and P (x, y, z) intersects the image plane of the left image. The same consideration can be

done for the right view, identifying the PR (xR , yR ) projection point.

In order to translate the content of the stereo vision images in the 3D space, the pixels composing

in the left view image must be matched with the one in the right side image. Then, knowing the

intrinsic and extrinsic parameters characterizing the system, the locations of the matching pixel

can be translate as the P (x, y, z) point in 3D space.
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In order to ease the matching process, epipolar geometry is used. Figure 2.26 shows the epipo-

lar geometry applied on the point P (x, y, z). The basic element of the epipolar geometry is the

Figure 2.26: Epipolar geometry application

epipole. In a stereo vision system there is an epipole for both the left and right view. To identify

the location of these points is necessary to draw a line connecting the left and right camera focal

points. The line connecting each epipole to the projection point in the same image plane is called

epipolar line. Given both the cameras intrinsic and extrinsic parameters, we can generate, start-

ing from the epipolar line in the left image, the corresponding epipolar line in the right image.

Since matching pixels can be located only on correspondent epipolar lines, the search space of

matching point is reduced, from the overall image, to the pixels lying on the epipolar line.

In order to understand how to practically compute dense map of objects, in the sequel are re-

ported the main steps to be performed. These steps could be grouped into two main categories

or "phases of execution": (i) calibration, one shot phase, and (ii) effective dense map computing,

real-time phase.

2.6.1.1 Calibration

As aforementioned, the matching process based on the epipolar geometry requires, for each pixel

in the left image, to calculate the corresponding epipolar line in the right image. In order to re-

duce the time required to find these correspondences, it is possible to transform the images in

such a way that the epipolar lines are parallel and horizontal. Thus, each corresponding pixels

in the transformed images are on the same pixel line. This transformation reduces the research

space from 2D to 1D [87].

The image transformation process is called rectification and is reached with the application at

run-time on both stereo images of rectification matrix, output of calibration phase.

Camera calibration defines the pose estimation of a camera in terms of interior and exterior ori-

entation parameters. The term pose estimation in computer vision refers to the determination

of the camera position and orientation using correspondence of 3D reference points.
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This task can be accomplished using a technique computing the camera position and orientation

with regards to a known object using 4 or more coplanar feature points. Commonly, in order to

have artificial coplanar feature points, the known object is represented by a chessboard, but it is

also possible to extract natural feature points from images with a scale-invariant feature trans-

form algorithm.

The higher is the number of extracted features, the greater will be the accuracy of the dense map,

but, at the same time, the higher will be the time to compute the calibration.

2.6.1.2 Dense map computing

This second real-time phase is composed of different steps: (i) application of rectification matri-

ces, (ii) search and match of features on epipolar lines, and (iii) distance estimation.

• Rectification

This first mandatory step aims at projecting the two stereo images onto a common image

plane. It corrects image distortion by transforming the image into a standard coordinate

system. This translation is performed exploiting the rectification matrices provided by the

calibration step. Applying this matrix to the two stereo images, epipolar lines associated

with matching pixels will be parallel and horizontal. In general this image transformation

involves simple operations, but it is a time-consuming step, since it requires to move pixels

taking them from one place in the original image and locating them in another position in

the new rectified image.

For the sake of completeness, Figure 2.27 shows an example of image rectification.

• Search and match of features

This second step aims at finding the matches between the features extracted from the left

and right images. Literature proposes a series of methods to solve this problem that can be

grouped in: feature-based and block-based.

The former methods extract characteristic points in the images (e.g., corners, edges, etc),

called features, and then try to match the extracted features between the two acquired im-

ages [182, 199]. Instead, block-based methods consider a window centered in a pixel in one

of the images and determine correspondence by searching the most similar window in the

other image [31, 147].

Nowadays, the research community focused more on block-based methods. They provide

a complete, or semi-complete, dense map, while feature-based methods provide depth in-

formation of some points, only [38]. However, block-matching algorithms [38, 206, 217,

243] being, in general, more complex than feature-based algorithms, lead to longer execu-

tion times.
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(a) Input stereo images

(b) Rectified stereo images

Figure 2.27: Image rectification example

• Distance Estimation

This steps aims at locating the matched features in the 3D space. The Distance between the

observer (i.e., two cameras composing the stereo-vision system) and the feature location

in the 3D space can be computed exploiting the dense stereo approach.

Starting from the corresponding features, or windows, and the stereo camera parameters,

such as the distance between the two cameras and their focal length, the depth map can

be extracted trough triangulation [14].

Looking at Figure 2.28, knowing the focal length of the two cameras, the depth Di of a fea-

ture point Pi , i.e., the distance between the point and the baseline b of the stereo camera,

can be computed as:

Di = f ·b

x1,i −x2,i
(2.14)

where x1,i and x2,i represent the x-coordinates of the considered matched feature Pi in the

two acquired images, and f is the focal length of the two cameras.

From these information, the dense map can be computed, in which points closer to the

camera are almost white whereas points further away are almost black. Points in between

are shown in gray-scale, which get darker the further away the point gets from the camera.

Figure 2.29 shows an example of dense map.

As can be noted from te reported example, this method is able to provide accurate results
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Figure 2.28: Trigonometric for Distance Estimation from Disparity

(a) Input image (b) Dense map

Figure 2.29: Dense map example

just in the points of the image characterize by a lot of texture, or, in general, strong contrast

variation. Instead, the part of the object that are mainly textureless are considered at the

same distance, resulting in a flat object surface.

2.6.2 Shape-from-Shading

When dealing with monochromatic and texture-less objects, under several assumptions, Shape-

from-Shading (SfS) algorithms are the most recommended [92]. Contrary to stereo-vision meth-

ods, SfS algorithms exploit information stored in pixel intensities in a single image. Basically,

these algorithms deal with the recovery of shape from a gradual variation of shading in the im-

age, that is accomplished by inverting the light reflectance law associated with the surface of the

object to be reconstructed [92].

Commonly, SfS algorithms assume as reflectance model the Lambertian Law [238]. In the last
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years, algorithms based on other more complex reflectance laws (e.g. Phong model [239], Oren-

Nayar model [166]) have been proposed. However, the introduced complexity requires a high

computational power, leading to very low performances in terms of execution times. Nonethe-

less, the surface of the biggest debris (e.g., Ariane H10 stage) are characterized by an almost uni-

form surface, that can be effectively modeled with the Lambertian model. For these reasons, in

the following we will focus on the analysis of the most important SfS algorithm based on the Lam-

bertian law.

These SfS algorithms can be classified in three main categories: (i) methods of resolution of Par-

tial Differential Equations (PDEs), (ii) optimization-based methods, and (iii) methods approxi-

mating the image irradiance equation [60, 238].

The first class contains all those methods that receive in input the partial differential equation

describing the SfS model (e.g., Eikonal Equation [92]), and provide in output the solution of the

differential equation (i.e., the elevation map of the input image).

In the years, several approaches of resolution, based on different mathematical tools, have been

tested. The Characteristic Strips Expansion one [91] considers the shape to be reconstructed as

an integral along a set of convergent straight lines. However, this proposed assumption is valid iff

the surface of the object to be reconstructed follows fixed photometric characteristics. Moreover,

these approaches face two other main issues. The former concerns the inherent defect of error

accumulation, that is typical of every method of integration-based resolution approach. Instead,

the latter concerns the boundary conditions on which the solution starts (i.e., the determination

of the characteristic lines).

Many other approaches base the solution of the SfS differential equation model on the Power

Series Expansion [62]. These methods start from the assumption that the brightness function

associated with the object surface is analytical. Since real images are not analytical, this assump-

tion makes this algorithms effective on synthetic images, only.

The Level Set Method [114] splits the solution of the SfS model into two steps. First, it performs an

initialization phase in order to define the singular points (i.e., points with locally minimal depth),

and then this partial solutions are merged according to certain rules based on differential geom-

etry to obtain the global solution. Among these methods, the most effective ones are called fast

marching methods [245]: they allow to accurately reconstruct the shape, but require a very high

execution time.

Eventually, the approaches based on the Approximation of Viscosity Solutions (AVS) [61] are able

to properly solve the SfS model, but they do not provide always the maximal solution (i.e., this

leads to the well-known convex-concave ambiguity problem [29]). In order to overcome this is-

sue, Sagona et al. in [61] ensures to find the maxima solution by minimizing an a priori de-

fined error function. Basically, this approach iterates until the error function is lower than a fixed

threshold.

The Optimization-based methods include all the algorithms that compute the shape by min-
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imizing an energy function based on some constraints on the brightness and smoothness [238].

Basically, these algorithms iterate until the cost function reaches the absolute minimum [194].

However, in some of these algorithms, in order to ensure the convergence and reduce the exe-

cution time, the iterations are stopped when the energy function is lower than a fixed threshold

[43], not guaranteeing accurate results.

Finally, the third class includes all the SfS methods that make an approximation of the image

irradiance equation at each pixel composing the input image. These methods, thanks to their

simplicity, allow to obtain acceptable results, requiring a limited execution time [3].

2.7 Image compression

In the last years the number of cameras mounted on satellites, spacecrafts and rovers increased

more and more, leading to a higher number of images to be sent on ground. The first impact of

this is the need of a higher bandwidth, storage space, and transmission time in order to deal with

the increased amount of data. A more and more adopted solution for reducing the data size is the

usage of data compression algorithm. Thus, the need for data compression, and, in particular,

for image compression, has increased at a very high rate.

Image compression can be classified into two types: Lossy and Lossless compression tech-

niques.

In Lossless compression there is no information loss and the image can be decompressed obtain-

ing exactly the original one. Main applications are Medical imagery, video-based navigation, and

drive assistant.

Instead, in Lossy compression loss and missed information is bearable, so, the output of these

algorithms is more suitable for application that does not require to extract peculiar and precise

information from the compressed image (i.e., features, edges, etc.).

Comparing the provided performance, from the one hand lossless methods cannot provide enough

compression ratio (i.e., the ratio between the size of the original image and the compressed one),

from the other hand, lossy methods can reduce to much the quality of the image making it use-

less.

Another possible classification takes into account the information on which the image com-

pression is performed. In other words, if the image compression is performed considering the

information contained in the current image, only (Intra-Frame Compression), or in a set of previ-

ous images, as well (Inter-Frame Compression).

The Intra-Frame Compression algorithms are exploited in all those fields in which a frame stream

is not available (e.g., earth observation and digital picture archive). Example of these image com-

pression algorithms are: JPEG-LS [101], JPEG2000 [198], FELICS [93], CALIC [223], and CCSDS-

LDC [204].

Instead, Inter-Frame Compression category involves all the algorithms used in video compres-
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sion, like H.264 [175], MPEG4, and AVCHD [189]. Comparing the maximum compression rate

of these two algorithm families, the Inter-Frame Compression family provides a compression

rate extremely higher than the Intra-Frame Compression one. However, this advantage strongly

decrease with a decreasing frame rate (i.e., the number of frame composing a second of video

stream). In particular, the threshold to decide which kind of algorithm family prefer is commonly

set to 10 frame-per-second (fps).

Since the pictures commonly acquired by satellite, spacecraft, and rovers that are useful for

scientific analysis are single-shot image or occasionally image stream with a low frame rate, the

most important and exploited family of image compressor is the Lossless Intra-Frame Compres-

sion.

In the last years a lot of studies have been performed to compare the performance of the Loss-

less Intra-Frame Compression algorithms [184] [219] [234]. Analyzing in details these studies, it is

possible to depict that the algorithm that provide the highest compression rate, for both color or

gray-scale images, are the JPEG-LS, JPEG2000, and CCSDS-LDC.

Another important parameter to select the best algorithm to compress images acquired by

satellite, spacecrafts, and rovers is the complexity. This parameter allows to quantify the required

resources to implement an algorithm, that are limited in all space missions and in particular in

space exploration missions (e.g., Mars mission). The complexity has been evaluated comparing

the area occupation of the current state-of-the-art implementations associated with the afore-

mentioned best Intra-frame lossless algorithms. Table 2.2 reports the area occupation in terms

of Logic Elements (LEs, i.e., a logic element in an FPGA/CPLD device is defined as a storage el-

ement (Flip-Flop), plus a Look-Up Table (LUT)), and Digital Signal Processors (DSPs). For the

sake of completeness, in Xilinx Virtex 4 FPGAs (Section 3.3) each Slice is composed of two Logic

Elements.

Table 2.2: Lossless Intra-Frame area occupation comparison

Algorithm LEs DSPs

JPEG2000 [10] 13,500 -

CCSDS-LDC [235] 11,806 8

JPEG-LS [113] 8,616 -

In Table 2.2 the area occupation of the algorithms that can be efficiently implemented on an

FPGA device. As one see, the lowest area occupation (i.e., complexity) is provided by the JPEG-

LS, that demonstrates that its low algorithm complexity can be directly translated in low hard-

ware resources usage. This low resources usage is of particular importance in space exploration

missions, in which the constraints in terms of resources usage and weight are really stringent.

Another important feature of this algorithm is the near-lossless compression. This last pe-
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culiarity ensures to act on the input parameters in order to increase more and more the com-

pression rate while introducing a loss of information that is lower than the one introduced by the

lossy compression algorithms (Section 5.3.2).

The rest of this chapter deeply describes and analyzes the operations required by the JPEG-LS

algorithm (Section 2.7.1).

2.7.1 JPEG-LS Algorithm

JPEG-LS is the latest ISO/ITU-T87 standard for lossless/near-lossless coding of still images. The

main procedures for the lossless and near-lossless encoding process are shown in Figure 2.30.

Figure 2.30: JPEG-LS main procedures

This compression algorithm is composed of three main procedures: (i) Context Modeller, (ii) Reg-

ular Mode, and Run Mode.

The Context Modeller defines if the pixel to be compressed belongs to a flat image region or

not. A flat image region is define as a region of equal pixels, for the lossless compression, or a

region of pixels with a maximum difference in the intensity value equal to N E AR, in the near-

lossless compression. The N E AR parameter allows to tune the trade-off between the achieved

compression level and the introduced loss of information in the input image. In fact, from the

one hand, since the compression of a flat region ensures to reach higher compression level [101],

increasing the value of the N E AR parameter bigger flat image regions can be found, and so the

size of the compressed image can be strongly reduce. On the other hand, since all pixels belong-

ing to a flat region are decompressed with the same intensity value, a higher N E AR parameter

value leads to embed in the same flat image region pixels with highly different values, and so in-

crease the error on the decompressed image.

The Context Modeller to efficiently define if a pixel start a flat region makes use of adjacent pixels

to the current one. In particular, as shown in Figure 2.31, the exploited adjacent pixels are the

ones in the west (Ra), north-west (Rc), north (Rb), and north-east (Rd) position with respect to

the current pixel to be encoded (I x).

In particular, these adjacent values are used to compute local gradients D1, D2, and D3 as in
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Figure 2.31: Reconstructed samples position

Equation 2.15, 2.16, and 2.17, respectively.

D1 = Rd −Rb (2.15)

D2 = Rb −Rc (2.16)

D3 = Rc −Ra (2.17)

If the local gradients are all zero, for lossless compression, or their absolute values are less than

or equal to the N E AR parameter, for the near lossless compression, I x is consider the starting

pixel of a flat region and Run mode procedure is activated, otherwise the Regular mode one is

activated.

Moreover, before starting the execution of the selected procedure, the Context Modeller quantizes

D1, D2, and D3. The quantization provides in output a quantized context for each local gradient

(i.e., Q1 for D1, Q2 for D2, and Q3 for D3).

These three values are mapped, on a one-to-one basis, to produce the final context value (context )

associated with I x. The mapping procedure is not defined by the standard, but the final value of

the context must be in the range [0:364].

In the C/C++ implementation of the JPEG-LS, that can be freely downloaded from [102], it is

proposed to speed-up the context quantization and mapping by mean of four Look-up Tables

(LUTs): vLU T 1, vLU T 2, vLU T 3, and C l assM apvLU T . In particular, the vLU T x, is pointed by

the Dx value to obtain the Qx context, where x can be 1, 2, or 3.

The sum of the three quantized contexts (Q_sum) is used to point the C l assM apvLU T to obtain

C l assM apcontext , that is used to compute the final value of context .

As aforementioned, the Regular Mode module operates just when I x is not the starting pixel

of a flat image region. This module internally stores four statistic parameters for each possible

context value (i.e., each one of these parameter is a 365 cells vector, since the context value can

be in the range [0:364]). These parameters are: the accumulator of the magnitudes of previous

prediction errors ÎŚ, the bias variable B , which accumulates the error values, the prediction error
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correction parameter C , and the context occurrences counter N .

The Regular Mode module, to define the compressed bitstream associated with I x, performs four

consecutive operations. First, it executes the Prediction task, in which a median edge detector

is used to predict the value of the current pixel (P x). As show in Equation 2.18 this operation is

done exploiting the adjacent pixels used for the gradients computation (i.e., Ra, Rb, Rc, and Rd).

P x =


mi n(Ra,Rb), if Rc ≥ max(Ra,Rb)

max(Ra,Rb), if Rc ≤ mi n(Ra,Rb)

Ra +Rb −Rc, otherwise

(2.18)

This operation is followed by the Prediction Error task, in which P x is corrected using the value

of the bias cancellation variable C pointed by context . Moreover, the error value is clamped in

an appropriate range to increase the efficiency of the coding process.

Before the actual compression task, the prediction error is mapped (i.e., Error Mapping task in

Figure 2.30) by performing modulo reduction and quantization operations.

The Regular Mode module ends its operations by encoding the mapped prediction error (i.e.,

Error Encoding task in Figure 2.30) to define the compressed bitstream associated with I x. This

encoding procedure is done using the Golomb coding [80]. This kind of coding technique has

been selected since it is really efficient on small values, like the ones associated with the mapped

prediction error.

First, the Golomb coding variable k is computed according to the A and N statistical parameters,

as shown in Equation 2.19

f or (k = 0;(N [context ] << k) < A[context ];k ++) (2.19)

where context is the final context value defined by the Context Modeller.

Then, the mapped prediction error is encoded using an optimal codes for a Two Sided Geomet-

ric Distribution (TSGD) [138], based on Golomb codes, and the defined compressed bitstream is

provided in output. Eventually, the Regular Mode module updates the values of the A, B , C , and

N statistical parameters associated with context .

The Run Mode procedure operates when I x is the starting pixel of a flat image region. This

procedure computes three consecutive operations. First, it defines the length of the current flat

region executing the Run scanning task in Figure 2.30. This task requires to run inside the I x im-

age row until the end of the flat image region is found. Basically, it reads subsequent pixel values,

in the same image row, until it finds a pixel value different from I x, in the lossless compressing,

or a pixel whose difference with I x is higher than N E AR, in the near lossless compression. This

pixel value is called Run interruption sample, and it identifies the end of the current image flat

region. It must be precise that if this pixel value has not been found when the end of the current

image row is reached, the flat image region is anyway considered concluded.
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The Run Mode module defines the compressed bitstream to be provided in output by encoding

both the defined flat image region size and the Run interruption sample. The former is encoded

exploiting an efficient technique, called block-MELCODE encoding [165]. Instead, the latter is

compressed using the Golomb coding as in the Regular Mode module. Eventually, also in this

case, the the values of the A, B , C , and N statistical parameters are updated.

For more detailed information about the operations performed by JPEG-LS algorithm, the

reader may refer to Appendix A.
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3
FIELD PROGRAMMABLE GATE ARRAY FOR SPACE: A

FLEXIBLE WAY TO ACHIEVE HIGH-PERFORMANCE

In the last decades the increasing demand of computational intensive tasks performed at real-

time performance makes the software execution on microprocessor inefficient. The only way

to reach the required performance is the off-loading of these time-critical tasks on dedicated

hardware devices, exploiting the so-called hardware acceleration.

The implementation of these hardware accelerators can be commonly done exploiting Ap-

plication Specific Integrated Circuits (ASICs) [187] or Field Programmable Gate Arrays (FPGAs)

[209].

ASICs are non-standard integrated circuits that are designed for a specific use or application.

These devices are designed starting from an architecture description in a Hardware Description

Language (HDL) [79] that is directly synthesized, exploiting cell libraries and design rules, on sil-

icon [1].

Instead, FPGAs are programmable devices that enable to skip the silicon design since the de-

scribed architecture is synthesized to program an already verified and characterized device. Ba-

sically, an FPGA device internally embeds user logics (e.g., registers, look-up table, on-chip mem-

ory, arithmetic resources, etc.), plus a configuration layer that can be programmed by the de-

signer to properly interconnect the internal logics and implement the desired architecture.

Due to these main differences, FPGAs and ASICs provide various values to designers, and

they must be carefully evaluated before choosing any one over the other. While FPGAs used to

be selected for lower speed/complexity/volume designs in the past, today’s FPGAs easily push

the 500MHz performance barrier. Moreover, they provide unprecedented logic density increases

and a host of other features, such as embedded processors, DSP blocks, clocking, and high-speed

serial at ever lower price points. For these reasons, FPGAs are a compelling proposition for almost

any type of design.

FPGAs and ASICs offer different benefits to the designer. From the one hand, ASICs provide
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full custom capability, since these devices are designed from the scratch starting from system

specifications, and, consequently, free choices on the desired form factor (i.e., the size, configu-

ration, or physical arrangement of a hardware object). From the other hand, FPGAs ensure a high

flexibility, fast time-to-market, and low Non-Recurrent-Engineering (NRE) costs.

The NRE costs are extremely lower for the FPGA technology for two main reasons. First, FP-

GAs require a simpler design cycle, removing the complex and time-consuming floorplanning,

place and route, timing analysis, and mask/re-spin stages of the project since the design logic is

synthesized to be placed onto an already verified and characterized device. Second, they com-

pletely avoid foundry costs associated with the mask development, since the silicon of the FPGA

device is already designed and it has just to be programmed with the desired architecture.

Due to this high NRE cost, ASICs can reach competitive single device price just for high-volume

production. Instead, FPGAs are preferred when just few devices must be produced.

Since in space applications a custom hardware accelerator is commonly designed for just one or

few missions, in the last decade space agencies start to prefer FPGAs instead ASIC for different

applications and missions.

Moreover, as stated in [77], thanks to the large amount of hardware resources embedded in

modern FPGAs, digital designers can use these components to perform not only familiar logic

functions, but also tasks that were formerly handled at the board level by separate, dedicated

parts. Large re-programmable devices eliminate the need for components such as Phase Lock

Loops (PLLs), voltage translation buffers, and memories when on-chip storage resources are not

sufficient. This high level of integration allows designers to reduce overall system power require-

ments and cut costs.

However, since FPGA devices are highly susceptible to Single Event Upset (SEU) [215], not

all FPGA technology can be directly used in space environment. Actually, three space-qualified

FPGA technologies are available:

• One-Time-Programmable FPGAs

• Flash-based FPGAs

• SRAM-based FPGAs.

These three technologies are deeply described and analyzed in Section 3.1, 3.2, and 3.3, respec-

tively. Moreover, Section 3.4 briefly describe techniques to hardened design implemented in

FPGA against SEUs.

3.1 One-Time-Programmable FPGAs

One-Time-Programmable (OTP) FPGAs are devices that can be just programmed once and then

are able to maintain the configuration also at power-off. This is possible since in these devices
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the configuration is hold by an antifuse metal layer.

The unique family of OTP FPGAs that is space-qualified is the Microsemi RTAX-S/SL [41] [141].

In these FPGAs the user logic and the configuration layer are split in two different layers. In par-

ticular, the configuration layer is a metal-to-metal antifuse programmable interconnect element

that resides between the upper two layers of metal (Figure 3.1). The antifuse connections are

Figure 3.1: Configuration layer in Microsemi RTAX-S/SL FPGAs [141]

usually open and when are programmed compose a low-impedance interconnection among the

different metal layers. The low impedance nature of this interconnection ensures to reach very

high communication speed.

Moreover, the metal-to-metal antifuse programmable interconnect element does not occupy sil-

icon area in the user logic layer, making possible the sea-of-modules architecture. As shown in

Figure 3.2, this kind of architecture ensures to fully exploit the silicon area without wasting space

for the routing resources.

In particular, the user logic layer is composed of two basic elements: R-cell and C-cell.

The former is a register hardened against SEUs triple redundancy to achieve a Linear Energy

Transfer (LET) threshold of greater than 60MeV −mg /cm2 [141]. The triplication is obtained by

inserting three master-slave latch pairs in which the three outputs of the master and slave side are

majority voted in order to apply the fault tolerant technique. In order to avoid fault accumulation,

each master-slave latch is equipped with a feedback that, in case of fault, restore the correct value

in the latch. Moreover, during the floorplan of the user logic layer, the location of the three pairs

of master-slave latches is defined to avoid that a single ion induces a SEU in more than one latch.

For the sake of completeness, Figure 3.3 shows the difference between a standard R-cell (Figure

3.3(a)) and its SEU-hardened version (Figure 3.3(b)).
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Figure 3.2: Comparison of the user logic layer between common FPGA and sea-of-modules ar-
chitectures [141]

(a) Standard R-cell (b) SEU-hardened R-cell

Figure 3.3: R-cell comparison [141]

The C-cell is a combinatorial block able to implement up to 4,000 5-input combinatorial func-

tions. In addition, this cell is equipped with a dedicated carry logic for improving the perfor-

mance of arithmetic functions.

Internally to the Microsemi RTAX-S/SL FPGA, an R-cell is packed together with two C-cells,

two Transmit (TX), and two Receive (Rx) routing buffers inside a Cluster. A couple of Clusters

composes a SuperCluster (Figure 3.4). Moreover, each SuperCluster contains a Buffer used to

minimize system delays when high fanout logic functions are implemented combining different
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SuperClusters.

Figure 3.4: SuperCluster internal architecture [141]

Thanks to the modularity of the internal architecture, during synthesis the user defined architec-

ture can be fine-grained split among SuperClusters and their internal elements, allowing to reach

high performances and a fast design flow.

Figure 3.5 shows the chip-level architecture of Microsemi RTAX-S/SL FPGAs. It can be noted

Figure 3.5: Example of an Microsemi RTAX-S/SL FPGA chip level architecture [141]

that the chip is composed of different Core Tiles, each Core Tile contains a lot of SuperClusters,

plus a certain amount of SRAM blocks. The number of SuperClusters and SRAM blocks change

depending on the selected FPGA, more detailed information are provided in [141].

Each SRAM block is 4,608 bits in size. However, the designer can freely configure these storage

elements, both in terms of aspect ratio and read/write port width, depending on its needs. More-

over, each SRAM block contains a First In First Out (FIFO) control unit [201], allowing the design

53



3. FIELD PROGRAMMABLE GATE ARRAY FOR SPACE: A FLEXIBLE WAY TO ACHIEVE

HIGH-PERFORMANCE

of FIFO buffers without wasting C-cells inside SuperClusters. As well as SRAM blocks, a FIFO can

configured in terms of depth (if the required depth exceeds the storage elements contained in a

single SRAM block, the FIFO is implemented concatenating different blocks) and control signals

(i.e., EMPTY, ALMOST EMPTY, FULL and ALMOST FULL [201]).

Since SRAM blocks are not rad-hardened by design, if the developed system must work in an

environment characterized by high energy particles, two mitigation techniques can be easily ap-

plied. The former is an Error Detection and Correction IP-core (CoreEDAC [140]), already devel-

oped by Microsemi, that can be directly connected to the storage element to be protected. The

latter is a scrubbing IP-core, integrable in the aforementioned CoreEDAC IP-core, that ensures

the data integrity while the memory block is not used through a memory scrubbing approach

[183].

Eventually, the chip-level architecture of Microsemi RTAX-S/SL FPGAs (Figure 3.5) is com-

pleted by I/O structures. The flexible nature of I/O structures allows designers to apply mixed-

voltage configurations of input and output pins. Each I/O structure can be programmed to work

in different operational modes, i.e., single-ended, differential-ended and voltage-referenced. This

flexibility enables to support a lot of different communication standards.

The I/O structures are organized in I/O clusters (Figure 3.6), each containing two I/O modules,

four RX modules, two TX modules, and a buffer (B) module [141]. Each I/O module is composed

of an input register, an output register, and an enable register. All of these registers are hardened

against SEU with the same mitigation technique used in R-cell [141].

Figure 3.6: I/O cluster internal architecture

After the internal architecture analysis, it can be noted that Microsemi RTAX-S/SL FPGAs pro-

vide a lot of already implemented fault-mitigations techniques against SEUs. For these reasons in

the last years this kind of FPGAs have been extensively used by space agencies both on satellite,

working in the Low Earth Orbits (LEOs), and spacecraft, involved in space exploration missions.

Figure 3.7 shows some examples of the missions in which these FPGAs have been used.

3.2 Flash-based FPGAs

Flash-based FPGAs, differently from OTP FPGAs (Section 3.1), are reprogrammable devices in

which the configuration is held by a flash-based infrastructure. Basically, the user logic contained

in the FPGA is interconnected to obtain the desired architecture through a routing network im-

plemented with flash-based switches [236]. Since the configuration is stored exploiting a flash
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Figure 3.7: Missions explointing Microsemi RTAX-S/SL FPGAs

technology, this kind of FPGA is able to be Live At Power-Up (LAPU). In other words, the FPGA

can be switch-off without losing the internal configuration.

The unique vendor that offers space-grade flash-based FPGAs is Microsemi with the Mi-

crosemi RT ProAsic FPGA family [40] [139]. In this FPGA family the configuration is stored re-

sorting to an advanced flash-based 130 nm LVCMOS process [202] with 7 layer of metal.

A key aspect of the Microsemi RT ProAsic FPGAs configuration infrastructure is the so-called

Flash*Freeze technology [139]. This technology is able to completely shut down the dynamic

power consumption, while retaining FPGA memories and registers content, without the need of

switching off the system clock and related distribution network. To ease the power management

in the design, the user can quickly switch on and off the Flash*Freeze mode (i.e., in less than 1 µs)

by driving a dedicated FPGA pin. Thanks to this features, this kind of FPGAs is able to reduce the

dynamic power consumption by 40% and static power consumption by 50% w.r.t. other FPGA

technologies.

The user logic in Microsemi RT ProAsic FPGAs, differently from the configuration infrastruc-

ture, is implemented using standard CMOS technology. The basic element composing the user

logic is the VersaTile [139]. Each VersaTile, as shown in Figure 3.8, can be configured in order to

implement: all 3-input combinatorial functions, a latch with clear or set, a D-type flip-flop with

clear or set, or Enable D-type flip-flop with clear or set.

Moreover, each VersaTile is equipped with nine VersaNets. A VersaNet is an element allowing

a minimum skew distribution of the clock signal, or a minimum delay communication among

VersaTiles composing a combinatorial network with high fanout.

Figure 3.9 shows the chip-level architecture of Microsemi RT ProAsic FPGAs. It can be noted
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(a) 3-input combinatorial
function

(b) D-type flip-flop (c) Enable D-type flip-
flop

Figure 3.8: VersaTile configurations [139]

Figure 3.9: Chip-level architecture of Microsemi RT ProAsic FPGAs [139]

that in addition to VersaTiles and the management unit for the Flash*Freeze technology, Mi-

crosemi RT ProAsic FPGAs contains:

• Clock Conditioning Circuitries (CCCs)

• Advanced I/O modules (Pro I/Os)

• RAM blocks

• User non-volatile Flash ROM.

Six CCCs are contained in every Microsemi RT ProAsic FPGA. Each CCC is equipped with a

configurable Phase Locked Loop (PLL) [11], that allows designers to generate a custom clock fre-

quency starting from an input clock reference. The frequency of the generated clock signal must
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be in the 0.75-250 MHz range, while the input input clock reference in the 1.5-250 MHz range.

From these data it is possible to understand that the maximum operating frequency of a design

implemented in the Microsemi RT ProAsic FPGA is 250 MHz. Moreover, CCCs are equipped with

sophisticated control circuitry ensuring to minimize the jitter and vary the phase of the generated

signal. Eventually, the location of CCCs (four located at the FPGA corners, and two at the mid left

and right FPGA side, see Figure 3.9) minimizes the skew associated with the clock distribution.

Advanced I/O modules provide a flexible management of I/O interfaces. In fact, they supports

different voltages (i.e., 1.2, 1.5, 1.8 and 2.5 V), and a plenty of I/O standards (i.e., single-ended,

differential, voltage-referenced), enabling a great adaptability of these FPGA to different commu-

nication links.

RAM blocks provide on-chip memory resources to the designer. These blocks can be pro-

grammed to support a variable aspect-ratio, that must not exceed the available storing resources

in a bank (i.e., 4,608 bits). Each module has an independent read and write port in which the

port width can be independently configured. Moreover, RAM blocks are equipped with a FIFO

control unit that enables the implementation of a FIFO buffer without wasting VersaTiles. This

control unit is fully customizable to implement different FIFO lengths and FIFO control signals

configurations. Obviously, to implement high sized FIFO buffers different RAM blocks can be

cascaded.

User non-volatile Flash ROM is a peculiar resource of Microsemi RT ProAsic FPGA (i.e., FPGAs

based on other technology do not contain this kind of resource). This kind of resource can be re-

ally useful for designers especially when modules composing the developed system requires fixed

configurations (e.g., Internet protocol addressing, Device serialization and/or inventory control,

etc.). The Flash ROM size is limited to 1 kbit, and its content can be just modified at design time

through a Joint Test Action Group (JTAG) programming interface, but can be read back via direct

FPGA core addressing.

By comparing the internal architecture of Microsemi RT ProAsic and Microsemi RTAX-S/SL

FPGAs, it can be immediately noted that the former do not provide SEU-hardened components.

For these reasons, designers are in charge of applying SEU mitigation techniques (Section 3.4)

depending on the flight-critical nature of the application.

Table 3.1 compares the available resources between the RT3PE3000L [139] and RTAX4000S/SL

[141]. These two FPGAs are the biggest devices of the Microsemi RT ProAsic and Microsemi RTAX-

S/SL FPGA families, respectively. In order to perform the comparison of the available user logic,

the total amount of R-cells and C-cells in the RTAX4000S/SL must be sum, since each VersaTile

of the RT3PE3000L can be configured both as a register or combinatorial function. Moreover, it

must be noted that C-cells are more efficient than VersaTile when configured as combinatorial

function, since the former are able to implement 5-input combinatorial functions, while the lat-

ter just 3-input ones. After these considerations, it can be depicted that the available user logic is

almost the same in the considered devices. However, some advantages in favour of the Microsemi
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Table 3.1: Comparison of RT3PE3000L and RTAX4000S/SL internal resources

RT3PE3000L RTAX4000S/SL

User logic 75,264 (VersaTile)
20,160 (R-cells)
40,320 (C-cells)

Embedded RAM/FIFO 504 kbits 540 kbits
Embedded Flash ROM 1 kbits -

Embedded Clock Control Circuitries 6 -
Maximum User I/Os 620 840

RTAX-S/SL family still remain, since the registers in these FPGAs are already SEU-hardened by de-

sign, while in Microsemi RT ProAsic FPGAs hardening techniques must be applied wasting user

logic.

The Embedded RAM/FIFO resources are almost the same in both devices, and Microsemi, as for

the space-grade OTP FPGAs (Section 3.1), provides an EDAC IP-core [140] to protect RAM blocks

against particles induced effects. Thus, no differences on the volatile memory resources can be

appreciated between the two considered FPGAs. The same consideration can be done for the

I/Os.

The main advantages provided by the Microsemi RT ProAsic FPGAs is the higher level of flex-

ibility. In fact, differently from the Microsemi RTAX-S/SL family, Microsemi RT ProAsic FPGAs are

reconfigurable and they embed configurable CCCs allowing multi-clock domains design without

requiring external devices (e.g., PLLs). Moreover, as aforementioned, the Microsemi RT ProAsic

FPGAs are the only FPGAs equipped with a Flash ROM module.

About the configuration layer, the flash-based technology exploited in Microsemi RT ProAsic

FPGAs is immune to SEU effects, so no mitigation techniques must be applied on the configura-

tion memory .

Thanks to the advantages concerning the flexibility, Microsemi RT ProAsic FPGAs are currently

used on the International Space Station (Figure 3.10(a)) [153], and it has been successfully used

in two NASA missions: the Interface Region Imaging Spectrograph (IRIS, Figure 3.10(b)) [152], and

LADEE Lunar Atmosphere and Dust Environment Explorer (Figure 3.10(c)) [156]

3.3 SRAM-based FPGAs

Differently from OTP (Section 3.1) and Flash-based (Section 3.2), SRAM-based FPGAs are repro-

grammable devices that lose their configuration when are powered-off, since the configuration

layer is implemented through a volatile memory (SRAM memory). For this reason, to properly

work these devices require an external non-volatile memory storing the configuration needed to

program the FPGA at power-up.
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(a) International Space Station (b) IRIS

(c) LADEE Lunar Orbiter

Figure 3.10: Missions explointing Microsemi RT ProAsic FPGAs

The main vendor offering space-grade SRAM-based FPGAs is Xilinx [99]. Figure 3.11 shows the

Xilinx space-grade FPGAs roadmap.

Figure 3.11: Xilinx space-grade FPGAs roadmap
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As can be noted the actual state-of-the-art architectures are the Xilinx Virtex 4 QV [225], and

Xilinx Virtex 5 QV [228] families.

The main difference between these two families is the Rad-Hardened By Design (RHBD) fea-

ture of the Xilinx Virtex 5 QV family. In Xilinx Virtex 5 QV FPGAs both the configuration memory

and the internal registers (i.e., user logic and I/O registers) are rad-hardened by design against

SEUs. Basically, the rad-hardness against SEUs is obtained exploiting dual-node latches ap-

proach that provide nearly 1,000 times the SEU hardness of the standard cell latches.

Another main difference concern the CMOS technology. In fact, Xilinx Virtex 4 QV FPGAs

make use of the 90 nm Copper CMOS process, Xilinx Virtex 5 QV FPGAs the 65 nm Copper CMOS

one. This difference allows to slightly boost up the speed performance in Xilinx Virtex 5 QV family

from 400 MHz (i.e., the maximum operating frequency of Xilinx Virtex 4 QV FPGAs) to 450 MHz.

The basic elements composing the user logic in these two families is the Slice. Figure 3.12

highlights the differences in the Slice internal structure between the two families.

(a) Xilinx Virtex 4 QV Slice (b) Xilnx Virtex 5 QV Slice

Figure 3.12: Comparison of Slice internal structure

It can be noted that Xilinx Virtex 4 QV FPGAs embeds smaller Slices than Xilinx Virtex 5 QV FP-

GAs. Just two registers (Rs) and two Look-Up Tables (LUTs) are present in the Xilinx Virtex 4 QV

Slice. Moreover, Xilinx Virtex 5 QV Slice provides 6-input LUTs (LUT6, i.e., these LUTs can be

also configured as two 5-input LUTs, during synthesis, to increase the efficiency), while Xilinx

Virtex 4 QV Slice just 4-input LUTs (LUT4). Concerning the other Slice resources the two family

are equivalent.

Internally, slices are grouped in Configurable Logic Blocks (CLB). In Xilinx Virtex 4 QV family

four Slices compose a CLB, instead in Xilinx Virtex 5 QV one just 2 Slice are required. Every CLB

integrates internal fast interconnect and connects to access general routing resources.

The routing resources in space-grade Virtex families is provided through General Routine Ma-

trix (GRM) or direct connection among CLBs. A GRM is an array of routing SRAM-based switches

implemented in the aforementioned rad-hardened technology. Figure 3.13 shows the intercon-

nections between GRM and CLB.
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Figure 3.13: Xilinx Virtex FPGAs routing infrastructure

Each GRM provides connections to other GRMs through a North, East, South or West -side link,

plus a direct connection to the closest CLB. Moreover, to increase the interconnection capabil-

ity, CLBs are equipped with a direct connection to the left and right -side CLBs, plus a feedback

connection to provide a loop-chain among internal LUTs. This routing infrastructure ensures a

minimum delay for both short (through direct connections) and long (through GRMs) connec-

tions.

In addition to CLBs and GRMs, the internal architecture of space-grade Xilinx Virtex FPGAs

is composed by four other components:

• Block RAM (BRAM)

• Clock Management Tile (CMT)

• Extreme Digital Signal Processor (DSP48E)

• High-performance parallel SelectIO bank.

BRAMs are configurable true dual-port SRAM memory blocks, so each memory port can be

used in both write or read mode. Each BRAM is able to work up to 360 MHz, and is 36 kbit in

size, but can be also used as two separate block of 18 kbit. The write/read port size can span

from 1 bit width up to 36 bits width, for true dual-port memory, or 72 bits, for simple dual-port

memory (i.e., one port used in write mode and one in read mode). BRAMs embed control logic to

operate as FIFO buffer, also. This control unit is fully customizable to implement different FIFO

lengths and FIFO control signals configurations. Moreover, each BRAM has a dedicated cascade
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routing, that allows to reach high performance when more than one BRAM must be used to build

a big memory block. Eventually, as in space-grade OTG and Flash-based FPGAs, there is an Error

Correcting Code (ECC) to mitigate SEU effects.

CMT provide the most flexible and highest-performance clock management for FPGAs. Each

CMT integrates two Digital Clock Managers (DCM) and one PLL. A DCM is a digital device that

together with the PLL is able to perform clock distribution delay compensation, clock multipli-

cation/division, coarse-/fine-grained clock phase shifting, and input clock jitter filtering.

DSP48Es are modules containing a 25x18 multiplier (in Xilinx Virtex 5 QV FPGAs) or a 18x18

multipler (Xilinx Virtex 4 QV FPGAs), plus a 48 bits accumulator for Multiply-And-Accumulate

(MAC) operations. Moreover, they contain dedicated links among them in order to create cascade

connections useful to implement high-performance arithmetic and digital signal processing op-

erations, without wasting user logic resources. However, these components are not rad-hardened

by design, so designer must apply SEU mitigation techniques on them.

High-performance parallel SelectIO banks support different voltage levels (i.e., 3.3V, 2.5V,

1.8V, 1.5V, and 1.2V), and a plenty of I/O standards (i.e., single-ended, diffential, voltage-referenc-

ed), that enables a great adaptability of these FPGAs to different communication links. Each bank

contains input/output registers, rad-hardened by design, that can operate in both Single Data

Rate (SDR) or Double Data Rate (DDR) modes. Moreover, they contain Per-bit deskew circuitry

allowing for programmable signal delay internal to the FPGA. Per-bit deskew flexibly provides

fine-grained increments of delay to carefully produce a range of signal delays. This is especially

useful for synchronizing signal edges in source-synchronous interfaces [37].

In order to perform a comparisons with other space-grade FPGA technologies (presented in

Sections 3.1 and Section 3.2), Table 3.2 shows the internal resources of the two biggest FPGAs

of the Xilinx Virtex 4 QV (i.e., Xilinx Virtex 4-QV XQR4VLX200 [225]) and Xilinx Virtex 5 QV (i.e.,

Xilinx Virtex 5-QV XQR5VFX130 [228]) families.

Table 3.2: Comparison of Xilinx Virtex 4-QV XQR4VLX200 and Xilinx Virtex 5-QV XQR5VFX130
internal resources

XQR4VLX200 XQR5VFX130

User logic
178,176 (LUT4s) 81,920 (LUT6s)

178,176 (Registers) 81,920 (Registers)
Embedded RAM/FIFO 6,048 Kbits 10,728 Kbits
Embedded Flash ROM - -

Clock Management Tiles 6 6
Maximum User I/Os 960 836

In order to properly compare these two FPGAs, one must remember that XQR4VLX200 FPGA is

not rad-hardened by design, so all the internal resources must be protected through the SEU-
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mitigation techniques presented in Section 3.4. Thus, just a portion of the internal resources can

be used to provide new functionalities, while the other must be used to mitigate the particles

induced effects. After this consideration, it can be noted that XQR5VFX130 beats, in terms of

amount of available resources, XQR4VLX200 on every kind of internal resources.

As can be seen by comparing data reported in Table 3.2 and Table 3.1, space-grade Xilinx Vir-

tex FPGAs provide a higher number of logic resources than OTP and Flash-based FPGAs. More-

over, space-grade Xilinx Virtex FPGAs allow to reach highest performances in terms of speed.

However, the main deawback of space-grade Xilinx Virtex FPGAs is the configuration memory.

In fact, even if in Xilinx Virtex 5 QV FPGAs the configuration logic is rad-hardened by design,

SRAM-based configuration memory is less robust against SEU-induced effects than Flash-based

and antifuse-metal technologies.

A fault in the configuration memory have disruptive consequence on the FPGA-based system,

since this fault can completely change the implemented architecture leading to persistent error

in the system. To tolerate this kind of faults efficient mitigation techniques have been proposed

in the last years. A brief overview of these techniques is reported in Section 3.4.

Since the memory configuration drawback can be efficiently solved, in the last years space-

grade Xilinx Virtex FPGAs have been tested in different missions (e.g. JPL MSPI MicroSAT and

Materials International Space Station Experiment (MISSE)). To further demonstrate the actual

interest of space agency in space-grade Xilinx Virtex FPGAs, Figure 3.14 shows the future missions

in which these FPGAs will be used.

Figure 3.14: space-grade Xilinx Virtex FPGAs next missions
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3.4 SEUs mitigations techniques

Space environment is extremely harsh for integrated circuits due to the presence of cosmic rays

and alpha particlesn [109]. Phenomena caused by these elements on integrated circuits can be

grouped in five categories:

• Total Dose

• Dose Rate

• Displacement Damage

• Single Event Latch-up (SEL)

• Single Event Upset (SEU).

Table 3.3 briefly describes effects at functional and device -level caused by these phenomena.

Table 3.3: Radiation effects description

Effect type Functional effect Device level effect

Total Dose
Permanent device damage Trapped positive charge results
due to ions over in depletion and causes
device life leakage paths

Dose Rate
Data loss or permanent device Generated photocurrent can
damage due to X-rays and cause transient, latch up or
gamma rays burnout effects

Displacement Damage
Permanent device damage Degradation in semiconductor
due to energetic neutrons lattice leads to electrical
or protons parameter degradation

SEL
Instantaneous device PNPN path triggered into high
latch-up due to current state at least requires
single ion power down

SEU
Instantaneous data loss Single memory bit or flip-flop
due to single ion state toggles due to ion charge

SEU is the most probable phenomena on FPGA devices. For this reason, this section is fo-

cused on the mitigation techniques against SEU induced effects.

As aforementioned, the configuration layer in OTP and Flash-based FPGAs is totally immune to

SEU. Instead, in space-grade Xilinx Virtex FPGAs (Section 3.3) the SRAM-based switches com-

posing the configuration layer are highly susceptible to SEU.

A SEU in an SRAM-based FPGA can flip the value of a bit associated with the configuration layer

or with the user logic.
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A flip in the configuration layer can have disruptive consequences, since it can change routing

among logic resources or change the combinatorial function implemented in a LUT [225] [228].

Fortunately, in reality, designs only uses a small fraction of the total resources in an FPGA. No

design ever uses every capability of every element in the entire device. Thus, an SEU probably will

not affect the functionality of the design. Xilinx data, which has been confirmed by independent

customer testing, shows that typically less than 30% of all configuration bits are used in any one

design. However, even with high resource utilization, the actual rate of SEU impacting design

operation is often less than 10% and is typically less than 5% [105]. This means that just few bits

stored in the configuration memory can lead to a persistent error if flipped. As demonstrated in

[55], Xilinx tools allows to easily define and extract the location of these essential bits (i.e., the

configuration bits that might cause a specific customer design to malfunction). Moreover, Xilnx

provides to designers and already implemented and validated IP-core, called Soft Error Mitigation

(SEM) IP core [227], that allows to automatically detect and classify the SEU-induced bit-flip. If

the flip happened in a essential configuration memory location, the IP-core correct the flipped

bit. The IP performs the correction and classification in the background so that the system does

not need to stop, increasing availability considerably.

To get a more fine grain control on the SEU mitigation process, the designer can use one of the

well-known scrubbing techniques, as the one presented in [90].

Instead, a SEU affecting a bit associated with the user logic can lead to the corruption of the

content of a RAM block, or the toggle of a register content. These two effects can be more or less

persistent depending on the upgrading rate of the memory and registers content.

As reported in Sections 3.1, 3.2 and 3.3, the most efficient and effective way to protect BRAM

blocks in every FPGA technology is the usage of an ECC associated with each word contained in

the memory. For this reason for every space-grade FPGA, vendors embed or provide an IP-core

to support the ECC computation.

FPGAs are devices containing a plenty of registers, so the probability that a SEU affects the

content of these elements is really high. Thus, in space applications, all the registers used in the

design must be protected against SEUs.

The most common technique is the Triple Modular Redundancy (TMR). The basic TMR approach

is a hardware redundancy technique requiring the triplication of each register and then to major-

ity vote the value of the output (Figure 3.15). This mitigation technique is able to tolerate a single

fault on the redounded registers.

However, this basic approach has two main drawbacks. The former concerns the fault accumu-

lation. In fact, if a SEU occurs on a register, the value of that register remains faulty until it is

overwritten. For this reason, if the content of the faulty register is not overwritten and another

of the redounded register is affected by a SEU, this approach is not able to provide in output a

fault-free value. The latter concerns the single point of failure represented by the voter. In fact if a

SEU corrupts the logic composing the voter, this technique provides an erroneous output value.
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Figure 3.15: TMR basic approach

To deal with the first limitation, the TMR technique has been improved as shown in Figure 3.16.

Figure 3.16: TMR improved approach

In this improved approach the majority voted output, that is assumed to be correct, is feedback

to the redounded registers and the one containing a value different from the majority voted one

is immediately overwritten with the fault-free value.

While the second limitation is solved by triplicating the voter as well.

The mitigation approach exploiting both of these improvements is called Functional Triple Mod-

ular Redundancy (FTMR) [76]. FTMR provides a highly reliable system, but it introduces an over-

head of 3.2x in terms of logics resources usage and 10% timing performance degradation [71].

To reduce the introduced overhead many different TMR techniques have been proposed, start-

ing from the ones based on time-based modular redundancy (i.e., the redundancy is achieved by

repeating the execution of the operations of the module to be redounded) [126], to the one that

directly operate to the internal architecture of the FPGAs [120]. The detailed analysis of these

techniques is out of the scope of this section, so for further information reader may refer to the

cited documents.

By analysing the internal architecture of the different space-grade technologies, it can be im-

mediately noted that Microsemi RTAX-S/SL FPGA already integrates rad-hardened registers ex-

ploiting the FTMR. Thus, designers must not take care of applying mitigation techniques to the

implemented design. Instead, Microsemi RT ProAsic and space-grade Xilinx Virtex FPGA con-
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tain just simple registers. For this reason, designers must manually apply FTMR to every used

register in order to implement a SEU tolerant architecture. Since the manual insertion of the

FTMR technique can be really time consuming, in the last years vendors developed tools able

to automatically apply FTMR to internal registers. In particular, the two design suites offering

this feature are: Synopsys Synplify Pro [193], and Xilinx TMRTool [97]. The main difference be-

tween these two tools is that the former is FPGA vendor independent, while the second is able

to deal just with Xilinx FPGAs. On the contrary, Synopsys Synplify Pro is able to apply triplication

on registers, only, while Xilinx TMRTool triplicates the combinatorial logic, as well, to increase

even more robustness against particle induced effects. For the sake of completeness, Figure 3.17

shows an example of the FTMR applied to both registers and combinatorial logic.

Figure 3.17: Xilinx TMRTool mitigation technique example [97]

A particular remark has to be performed concerning the hardening techniques for Finite State

Machine (FSM). Since TMR at least introduces a 3x increase in resources usage, an alternative

technique to hardening FSM against SEU is the ECC based technique. Unlike TMR where an

FSM is simply replicated entirely, ECCs redundantly encode the FSM state variables. These ECC-

based techniques can be grouped in two main categories: (i) Explicit Error Correction, and (ii)

Implicit Error Correction techniques [145].

Explicit Error Correction requires to encode each state variable and add a circuity able to de-

tect and correct error in the encoded variable. This detection and correction circuitry is added

between the logic computing the next state variable value and the register storing the actual state

(Figure 3.18).

Thanks to this modification to the FSM architecture, each time a SEU affects the logic computing

the new state variable or the register storing the actual state, it is possible to detect the fault and

avoid a wrong execution flow or to go in unexpected state.
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Figure 3.18: Explicit Error Correction hardening technique example

Implicit Error Correction, unlike explicit error correction, does not use additional hardware

as error correction circuitry. Infact, to prevent that a SEU becomes a failure, the next state logic

is expanded to include all the faulty state values that are a Hamming code distance of one away

from the valid state value. The major advantage of this technique is that there is no need for addi-

tional error correcting logic. However, with the added states, the next state forming logic is more

obtuse than in its original un-encoded form. "Don’t cares" in the state logic are reduced because

the set of invalid and valid codewords must be handled instead of just the valid codewords. The

same principles must be applied to the output forming logic to ensure the output correctness.
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FPGA-BASED ACCELERATORS LIBRARY FOR IMAGE

PROCESSING IN SPACE

According to the Moore Law, in the years the size of transistor has been shrunk more and more,

allowing semiconductor industries to achieve impressive density of Very Large-Scale Integrated

(VLSI) circuits [103]. In order to maintain under control the increased level of complexity, design

engineers improved the design methodologies and techniques following the evolution of VLSI

circuits. This evolution moved hardware systems from System-on-Board (SoB) to System-on-

Chip (SoC). This innovation allowed to integrate in the same chip all the functionalities required

by the hardware system, with an important increase in the performances and a reduction in the

power consumption. However, this new methodology did not bring just benefits. In fact, with

the increased integration of SoC, the test and validation of the implemented circuit has become

more and more complex, time consuming, and expensive.

In order to exploit the benefit provided by SoC, while limiting the complexity of the circuit

validation, an emerging methodology proposes to combine on a single chip predesigned and

preverified blocks, often called Intellectual Property (IP) cores, or virtual components, obtained

from internal sources, or third parties.

The jointly use of SoC and IP-core approaches enables a huge increase in the hardware system

productivity. In fact, SoC designers, rather than design and validate each of these components,

can focused their efforts in just the integration of these IP-cores in a single chip to implement

complex functions, strongly reducing the design time. Thus, the design engineer is just involved

in the interconnection of the IP blocks to the communication network, in the implementation

of the Design For Testability (DFT) techniques [173], and in the usage of methodologies to verify

and validate the overall system-level design.

In order to provide the same benefits to the space hardware engineers, this chapter presents a

library of FPGA-based IP-cores for advanced image processing in space applications. It has been

decided to set up this library, since in the market there are a lot of libraries containing IP-cores for
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image processing [39, 98], but no one of them is tailored, in terms of algorithm self-adaptability

and low hardware resources usage, to meet all the constraints required by space applications.

All the IP-cores contained in the library target the FPGA technology in order to accomplish the

trend of all space agencies to use this kind of devices to develop high performance hardware

accelerators for space (Chapter 3).

The library has been organized in different families depending on the IP-core functionality.

In particular, the contained families are:

• Image filters: it provides a set of IP-cores aiming at performing the image filtering task. In

particular, this family is composed of two main components:

◦ 2D convolver: the main IP-core composing this family is a 2D convolver. This IP-

core aims at providing a high-performance and area efficient implementation of the

2D-convolution. This operation is used to implement the most important image fil-

ters for blurring, sharpening, embossing, edge-detection, and noise reduction. In this

way, with just a single IP-core it is possible to provide the designer a plenty of func-

tionalities.

◦ Adaptive Image Denoiser IP-core (AIDI) [54]: it is an adaptive image noise filter. This

IP-core is of particular importance for space applications in which expected noise

cannot be predicted at design-time. In fact, this component is able to automatically

detect the level of noise affecting the input image, and boost the filtering parame-

ters according to it, in order to achieve the best performances independently to the

current image conditions.

• Image Histogram calculator: it contains just one IP-core that aims at computing the his-

togram associated with the input image. An image histogram is a graphical representation

of the tonal distribution in a digital image. This graph is of particular importance in image

processing, since it can be an useful tools to analyse the tonal distribution in the image to

perform brightness and contrast adjustment, but, also, to define the best threshold value

in edge detection, and image segmentation algorithms [82].

• Image Enhancers: it contains all the IP-cores aiming at enhancing the input image from

the contrast point of view. This operation is of particular importance in space applications

since, many times, image acquired in the harsh space environment are not well defined and

they need to be enhanced to highlight their texture and information. Processing enhanced

images, the performances of the following image processing steps are highly increased.

The Image Enhancement Techniques (IET) that better improve images from the contrast

point of view are those working in the intensity domain. Among these IET the ones that

proved to be the most effective ones are theHistogram Equalization (HE) and the Histogram

Stretching (HS) [123]. For these reasons, this library is composed of the following IP-cores:
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◦ Histogram Stretcher: it accelerates the execution of the Histogram Stretching tech-

nique.

◦ Histogram Enhancer: it accelerates the execution of the Histogram Equalization tech-

nique.

◦ Self-Adaptive Frame Enancher (SAFE) [51]: it is an IP-core able to automatically se-

lect and apply, on the input image, the best IET, between HE and HS, depending on

the current environmental and image conditions. The self-adaptability feature pro-

vided by this IP-core is of particular importance for space applications, in which the

environmental conditions cannot be predicted a priori.

• Features matchers: the IP-cores contained in this library computes in an efficient way the

most important area-based features matching algorithms (Section 2.5.1.2.1). These IP-

cores are of particular importance for space applications, since are the most used for the

features matching task in relative navigation systems (Section 2.5.1.2).

In particular this family is composed of four IP-cores:

◦ SAD: it accelerates the execution of the Sum of Absolute Difference (SAD) matching

technique (Equation 2.10).

◦ SSD: it accelerates the execution of the Sum of Square Difference (SSD) matching

technique (Equation 2.11).

◦ CC: it accelerates the execution of the Cross-correlation (CC) matching technique

(Equation 2.12).

◦ NCC: it accelerates the execution of the Normalized Cross Correlation (NCC) match-

ing technique (Equation 2.13).

In order to provide a highest flexibility to the designer, all the IP-core contained in the same

family are characterized by the same input/output interface. This feature ensures to easily re-

place, in a complex image processing chain, IP-cores of the same family without requiring modi-

fication to the communication infrastructure. Moreover, each IP-core can be customized exploit-

ing VHDL generic [232] in order to support different image sizes and resolutions.

The proposed IP-cores provide very high performances in terms of both low resources usage

and high speed. This is mainly due to a novel design methodology that allows to define a standard

way to map an image processing algorithm on an FPGA device in an efficient way. This design

flow supports the designer from the algorithm modelling and optimization, up to the highly op-

timized hardware design. The generality and flexibility of the proposed methodology makes it

suitable not just for space applications, but for all of those fields requiring high performance im-

age processors.

In addition to the design methodology, a verification and validation approach has been pro-

posed. It allows to easily validate both the algorithm and its hardware implementation, ensuring
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to discover programming bug in the algorithm model and/or design hardware errors as early as

possible.

In the sequel of this chapter a detailed description of the proposed design flow and verifica-

tion and validation methodologies is proposed. The last sections of this chapter deeply analyse

the content of each IP-core family, highlighting the internal architecture and the performances

of each IP-core.

4.1 IP-core design methodology

This section presents the proposed design methodology supporting the designer from the al-

gorithm modelling up to the system implementation. This methodology forces the designer to

apply algorithm and hardware design optimizations in the proper design flow stage, ensuring to

reach highly optimized IP-cores and to speed-up the overall design process.

Figure 4.1 shows the main steps composing this methodology.

Figure 4.1: IP-cores design flow

The first step to be done is the analysis of system specifications. Commonly, designers of com-

plex system receive as main inputs different documents that specify the requirements in terms

of functionalities, accuracy of the output results, interfaces, and performances in terms of speed

and area occupation. These requirements are usually embedded in the following documents: In-

terface Control Documents (ICDs), Design Requirement Documents (DRDs), and Design Require-

ments List (DRL). In high complex systems, the information contained in these documents are

integrated with Technical Notes (TNO), that provide additional technical constraints concerning

some peculiar parts of the system.
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As shown in Figure 4.1, after the system requirements analysis, it is possible to proceed with

the Algorithm Selection phase. This phase aims at comparing the requirements with the char-

acteristics of algorithms providing the needed functionality. It starts with the study and analysis

of literature to identify suitable algorithms for the target application. Then, it proceeds with the

execution of different tests on the identified algorithms, exploiting algorithm models and signifi-

cant image datasets (Section 4.2), and it ends with the selection of the algorithm which accuracy

and complexity is closest to the system requirements.

The selected algorithm is then characterized executing the Algorithm Characterization task.

This aims at tuning the internal algorithm parameters and, when needed, to modify parts of the

algorithm, in order to meet the requirements in terms of results accuracy.

As shown in Figure 4.2, this phase requires as inputs: an algorithm model (i.e., an algorithm de-

scription in a high level programming language, e.g., C/C++ codes or MATLAB scripts), and a

significant image dataset to properly characterize the selected algorithm.

Figure 4.2: Algorithm characterization flow

To ease the selection of the most suitable image dataset, on the web a lot of freely downloadable

datasets have been classified depending on the targeting image processing application (an exam-

ple of classification can be found in [73]). For some applications, in order to furtherly increase the

precision of the algorithm characterization, in the selected dataset are added a comprehensive

set of pictures, acquired in different environmental and image conditions (i.e., different contrast,

illumination, and blur conditions), representing the environment in which the algorithm has to

operate.

The core operation of the Algorithm Characterization phase is a loops that iteratively provides in
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input to the algorithm model the images composing the selected dataset, and extracts the output

results. The output results are parameters that objectively quantify the accuracy of the obtained

results. Some example of these parameters are the number of extracted features for a features

extraction algorithm (Section 2.5.1.1), or the Peak Signal to Noise Ratio (PSNR) [82] for a noise

filtering algorithm.

For each iteration the extracted parameters are compared with the requirements. If the obtained

results are aligned with the requirements, no modification are applied to the algorithm, other-

wise, the internal algorithm parameters are modified, and a new iteration started.

However, in some cases, a simple modification of the internal parameters cannot ensure to meet

the required performances, especially in terms of adaptability to the environmental and image

conditions. For this reasons, customization of some part of the algorithm are required to fulfil all

requirements.

The outcome of this phase is a customized version of the selected algorithm that completely fits

the system requirements.

Then, the customized algorithm model and the image dataset are provided in input to the

Hardware Characterization phase. The main purpose of this phase is the definition of the data

representation (i.e., data format and size) to be used in the hardware implementation.

Figure 4.3: Hardware characterization flow

This is a really important phase, since it can strongly affect both the result accuracy and the hard-

ware resources usage, especially when fractional numbers are involved in the algorithm compu-

tation.

The representation of fractional numbers in a hardware component can be obtained through ei-

ther the floating point or the fixed point formats. From the one hand, the selection of floating
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points representation allows to achieve really high accuracy but, at the same time, it increases

the complexity, and so the hardware resources usage. From the other hand, fixed point represen-

tation enables to reduce the hardware complexity, but it does not guarantee high precision for

every number range.

Since in space application high accuracy and low hardware resources usage are two key fac-

tors, the Hardware Characterization phase guides the designer in the selection of the data for-

mat (i.e., integer, floating point or fixed-point) and size (i.e., size of each data in terms of bit) to

achieve the same accuracy of the customized algorithm model, while maintaining the hardware

resources usage as low as possible.

To achieve this goal, as shown in Figure 4.3, a hardware model has to be created. This hardware

model, implemented as a MATLAB script, is a high level description of the algorithm exploit-

ing the same data representation that will be used in the hardware implementation. MATLAB

scripts have been selected since, differently from others high level programming and scripting

languages, provides the Fixed Point toolbox [134] that eases the modelling of computation in

fixed-point precision.

As for the Algorithm characterization, an iterative optimization task is done (Figure 4.3). At the

beginning, in the algorithm model, all data are represented involving the lowest precision repre-

sentation. Then, for each iteration, output results obtained providing the image dataset in input

to the algorithm and hardware models are compared to find differences. If no differences are

found, the data representation and format adopted in the hardware model can be considered

valid, otherwise the data representation is modified to slightly increase the representation accu-

racy, and a new iteration is done. This operation is repeated until the representation error has

been confined in the desired range.

The last phase of the proposed methodology, called Hardware implementation, guides the

designer in the mapping of the customized algorithm on an FPGA device, in order to obtain the

implemented hardware component. This phase receives in input the hardware model in order to

efficiently implement the customized algorithm in the FPGA device. During this implementation

phase, a particular effort has to be spent on the architectural decisions to ensure the maximiza-

tion of the timing performances, and so to meet the strict real-time constraint imposed by space

applications.

As can be noted from the reported description, the main outcomes of the proposed method-

ology are the Algorithm Model, the Hardware Model, and the Hardware Implementation. As will

be described in Section 4.2, these are three fundamental components to ease the verification and

validation of the implemented IP-cores.
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4.2 IP-core verification and validation methodology

The verification and validation methodology, to prove the correctness of the implemented IP-

cores is herein presented. The proposed approach requires in input the three main outputs of

the design methodology presented in Section 4.1: the Algorithm Model, the Hardware Model, and

the Hardware Implementation.

As shown in Figure 4.4, the verification and validation methodology is composed of two verifica-

tion steps and a final validation step.

Figure 4.4: Verification and validation methodology

Verification 1 aims at verifying the correctness of the Hardware Model. This operation basi-

cally compares the main outputs and all the internal values of the Hardware Model module with

the ones of the Algorithm model. An equivalence check is performed on the main outputs to ver-

ify the correctness of the proposed implementation, while the internal values are compared to

define the error introduced by the adopted data representation.

Verification 2 aims at verifying the correctness of the Hardware implementation. This oper-

ation is easily done by comparing the main outputs and all the internal values of the Hardware

Model and the Hardware implementation. This comparison is a simple equivalence checks, since

the compared modules exploit the same internal data representation and format.

Eventually, the verification and validation process is completed by checking the equivalence

among outputs of the Algorithm Model and the Hardware model. This last operation compares

also the error introduced by the internal data representation and format in the Hardware imple-

mentation with the one computed during Verification 1.

To increase the effectiveness of this methodology, the algorithm and hardware models should
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be described following the n-version programming paradigm [13], avoiding in this way the pres-

ence of common mode errors that could frustrate the correctness of the verification and valida-

tion task.

4.3 IP-core library

This section deeply analyses the IP-core families composing the proposed library. Since all IP-

cores have been designed and validated following the methodology presented in Section 4.1 and

4.2, for the sake of brevity these processes have not been reported in this section. Instead, the

description effort has been focused on the internal architecture analysis. In this way it is possible

to highlight the architectural optimization that ensure to fulfil the strict requirements imposed

by space applications. Moreover, at the end of the each architectural description, the achieved

performances are presented.

The next subsections group the architectural description following the same IP-core classifi-

cation used in the library, so each of them describes the IP-cores contained in a family.

4.3.1 Image filters

Image filters can be used for a plenty of image processing applications, spanning from the image

sharpening to image deblurring, and from edge-detection to image embossing. However, the

image filters family that is mandatory in every image processing chain is the image denoising

filters.

This kind of filters allow to reduce the level of noise affecting the input image. Providing this

filtered image in input to the rest image processing modules ensures more accurate results. Some

examples of applications getting a benefit from this filtering task are: features identification [86],

edge detection [28], and image registration [210].

One of the main reason above the importance of this filter family concerns the technology pro-

vided by modern Charge Coupled Device (CCD) sensors that suffers from noise. In fact, there

are many potential sources of noise in a CCD camera. Dark current, Shot Noise, Read Noise and

Quantization noise are just some examples [42]. CCD manufacturers typically combine these on-

chip noise sources, and express them in terms of a number of electrons Root Mean Square (RMS)

[70]. However, the level of noise in an image does not depend on the adopted sensor, only, but

on the environmental condition, as well. Noise estimation and removal are thus mandatory to

improve the effectiveness of subsequent image processing algorithms.

Noise sources are random in nature, their values must be handled as random variables, de-

scribed by probabilistic functions, and more in particular with noise models [22]. In fact, Dark

Current, proportional to the integration time and temperature, is modelled as a Gaussian dis-

tribution, Shot and Read Noise, caused by on-chip output amplifiers, are modelled as Poisson
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distributions, and, detector malfunction or hot pixels are modeled by an impulsive distribution

[222].

In most cases, all Gaussian and Poisson distributed noises are combined, approximating the im-

age noise with an equivalent additive zero-mean white Gaussian noise distribution, character-

ized by a variance σ2
n [213].

As aforementioned, the noise filtering task is performed by means of a 2D-convolution with

different kind of kernels [82]. However, while the impulsive noise can be removed in a relatively

simple way with this approach [136], Gaussian noise removal is a non trivial task, since, to be

more effective, the filter must be adapted to the actual level of noise in the image. Noise estima-

tion is therefore a fundamental task.

For these reasons, in this IP-core family, in addition to a highly efficient 2D-convolver IP-core,

Adaptive Image Denoiser Ip-core (AIDI) [54] has been included. AIDI is a hardware module that is

able to adapt the filtering parameters depending on the level of noise affecting the input image.

It first estimates the level of noise in the input image, and then applies an adaptive Gaussian

smoothing filter to remove the estimated Gaussian noise. The filtering parameters are computed

on-the-fly, adapting them to the level of noise of the current image. Furthermore, the filter uses

local image information to discriminate whether a pixel belongs to an edge in the image or not,

preserving it for subsequent edge detection or image registration algorithms.

The input and output interfaces of both IP-cores have been harmonized. These IP-cores gets

the input image flow pixel-by-pixel in a raster format, line-by-line from left to right and from top

to bottom, without any control or padding bit. The output is a flow in which the filtered values

are provided pixel-by-pixel.

The following sections highlight the internal architecture and performances of the IP-cores

contained in this family.

4.3.1.1 2D-convolver

In order to better comprehend the internal architecture of the proposed 2D-convolver, some pre-

liminary information about the 2D-convolution computation must be provided.

Equation 4.1 reports the formula to compute the 2D-convolution.

F I (x, y) =
N∑

i=0

N∑
j=0

I
(
δx + i ,δy + j

)∗K (i , j ) (4.1)

where FI(x,y) is the filtered pixel in position (x,y), N is the kernel dimension, K(i,j) is the kernel

factor in position (i,j) and δx and δy are described by (4.2).

δx,δy = x, y −
(

N −1

2

)
(4.2)

In order to efficiently map these operations on FPGA hardware resources, the architecture

reported in Figure 4.5 has been proposed.
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Figure 4.5: Gaussian Filter internal architecture

Input pixels are sent to the Smart Write Dispatcher (SWD), that stores them inside the Rows

Buffer (RB) before the actual convolution computation. RB is composed of a number of Block-

RAMs (BRAMs) (Section 3.3), each one able to store a full image row. The number of rows of

the buffer is dictated by the number of rows of the used kernel matrix (i.e., if the kernel is 7x7,

the number of BRAMs composing RB is 7). Rows are buffered into RB using a circular policy, as

reported in Figure 4.6. Pixels of a row are loaded from right to left, and rows are loaded from top

to bottom (from Figure 4.6(a) to Figure 4.6(c)). When the buffer is full, the following pixels are

loaded starting from the first row again (Figure 4.6(d)).

The Smart Reader Dispatcher (SRD) works in parallel with SWD, retrieving, from RB, a set of

consecutive image blocks with a size equal to the kernel one. This task is accomplished following

a sliding window approach on the image (Figure 4.7).

The SRD activity starts when a number of image rows equal to the kernel row number are loaded

in RB. At this stage, pixels of the central row can be processed and filtered. It is worth to remem-

ber here that, using a kernel matrix, a pixels border wide as the half of the kernel size of the image

is not filtered (i.e., with a 7x7 kernel, when the kernel is centred on the pixels in the 3 pixel wide

image border, some of the required pixels for the 2D-convolution computation are missing, since

the kernel is partially outside the image region), and related pixels are therefore discarded dur-

ing filtering. At each clock cycle, a full RB column is shifted into a pixels Sliding Window Buffer

(SWB) (Figure 4.7) with the same size of the kernel. Each storage element composing this buffer

is implemented with a register. After a number of clock cycles equal to the number of columns

composing the kernel, the first image block is ready for convolution. The Computation Stage (CS)

convolves it by the Kernel Mask and produces an output filtered pixel. At each following clock cy-

cle, a new RB column enters the SWB and a new filtered pixel of the row is produced.

While this process is carried out, new pixels continue to feed RB through SWD, thus imple-

menting a fully pipelined computation. When a full row has been filtered, the next row can be

therefore immediately analysed. However, according to the circular buffer procedure used to fill

RB, the order in which rows are stored changes. In order to understand this process in the sequel

an example taking into account a 7x7 kernel is reported. Let us consider Figure 4.8, in which rows

from 2 to 8 are stored in RB, with row 8 stored in the first position. Row 8 has to feed the last line
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(a) 1st row received (b) 2nd row received

(c) 7th row received (d) 8th row received

Figure 4.6: Smart Write Dispatcher operations. (i,j) indicates pixel coordinates

of the SWB. To overcome this problem, the SRD includes a dynamic connection network with the

SWB. This network guarantees that, while rows are loaded in RB in different positions, SWB is

always fed with an ordered column of pixels.

Eventually, the Computation Stage performs the matrix convolution using the MUL/ADD tree

architecture presented in [49]. The tree executes a set of multiplications in parallel and then adds

all the results. To properly perform this parallel computation, the Computation Stage contains

a number of multipliers equal to the number of elements composing the kernel (i.e., with a 7x7

kernel, 49 multiplier are used), and a balanced adder tree to sum these values in a pipelined

manner. Adders and multipliers must support fixed-point representation, because many kernels
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Figure 4.7: SRD behavior example. Pixel (4,4) is elaborated and filtered.

Figure 4.8: SRD behavior example. Pixel (5,4) is elaborated and filtered.

used in image processing contain fractional numbers.

The main benefits, as can be noted from the internal architecture description, are: (i) the IP-
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core does not require any access to the external memory to retrieve image pixels, since all the

required values are temporarily stored inside the core, and (ii) the proposed architecture allows a

pipeline computation without the need to stall the input pixels flow.

For the sake of completeness, Table 4.1 shows the area occupation, the timing performance

of the 2D-convolver implemented on a space-qualified Xilinx Virtex 4-QV XQR4VLX200 (Section

3.3). The data reported in the table are related to a configuration allowing to filter, with a 7x7

Gaussian kernel, an image composed of 1,024 x 1,024 pixels with a bpp resolution of 10 bit.

Table 4.1: Resources usage and power consumption of FEMIP implemented on a Xilinx Virtex
4-QV XQR4VLX200

FPGA Area Occupation Max.Freq.

Registers LUTs BRAMs [MHz]

696 (0.30%) 5,896 (3.31%) 7 (2.08%) 118.36

Since this core is able to operate in a fully pipelined manner, in this configuration, taking into

account the maximum working frequency, the input throughput can be boosted up to 112.88 fps.

4.3.1.2 Adaptive Image Denoiser IP-core (AIDI)

AIDI is a highly parallelized IP-core able to self-adapt the Gaussian filter to the current input

image.It applies the approach presented in [47], that can be mathematically formalized as follow:

σ2
f (x, y) =


k · σ2

n

σ2
OI (x,y)

if σ2
n <<σ2

OI (x, y)

k if σ2
n >>σ2

OI (x, y)
(4.3)

where σ2
f (x, y) is the variance of the Gaussian filter to be applied at the pixel of the input image

in (x,y) position, σ2
n is the estimated white Gaussian noise variance of the input image, k is a

constant equal to 1.5, and σ2
OI (x, y) is the local variance of the image without noise (i.e., noise

free image) in (x,y) pixel, that can be computed as:

σ2
OI (x, y) =σ2

N I (x, y)−σ2
n (4.4)

where σ2
N I (x, y) is the local variance associated with the noisy input pixel image.

Basically, this algorithm adapts the variance of the Gaussian filter (σ2
f (x, y)) pixel-by-pixel, in or-

der to strongly reduce the noise in smoothed image areas (i.e., low image local varianceσ2
OI (x, y)),

and to reduce the distortion in areas with strong edges (i.e., high σ2
OI (x, y)). In other words,

σ2
f (x, y) is increased in the first case and decreased in the second one. σ2

f (x, y) can range from

values near 0 to 1.5.

AIDI includes three main modules (Figure4.9): the Local Variance Estimator (LVE), the Noise

Variance Estimator (NVE) and the Adaptive Gaussian Filter.
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Figure 4.9: AIDI internal architecture

First, the input pixels feed the NVE and, in parallel, they are stored into an external memory.

The NVE, exploiting the algorithm presented in [196], computes the Gaussian noise variance

(i.e., σ2
n) affecting the input image. The selected algorithm involves highly parallelizable oper-

ations. It first requires to extract the strongest edges (or features) of the input image exploiting

the Sobel features extractor. This task is performed using two 2D convolutions [50] between the

input image and the Sobel kernels (Equation 4.5) [82].

Gx = I (x, y)∗


−1 −2 −1

0 0 0

1 2 1

 ,Gy = I (x, y)∗


−1 0 1

−2 0 2

−1 0 1



G = |Gx |+
∣∣Gy

∣∣ (4.5)

where I (x, y) is the pixel intensity in the (x, y) position of the input image, and G is the edge map

associated with the input image.

The strongest edges are then extracted by selecting the highest 10% values inside G . Finally, σ2
n

can be computed as:

σ2
n =

(
C · ∑

I (x,y)6=ed g e

∣∣I (x, y)∗N
∣∣)2

(4.6)

where N is the 3x3 Laplacian kernel [196] and C is a constant defined as:

C =
√
π

2
· 1

6(W −2)(H −2)
(4.7)

where W and H are the width and height of the input image, respectively (in our architecture

W = H = 1024).

When the computation of σ2
n is completed, the overall image is read out from the external

memory and provided in input to the LVE. The LVE computes the local variance associated with

each input pixel (σ2
N I (x, y)). The local variance of a pixel is defined as the variance calculated on
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an image window (i.e., patch) centred around the considered pixel.

To perform this task, LVE applies the following formula [192]:

σ2
N I (x, y) = S −

(
1

T

∑
(x,y)∈patch

I (x, y)

)2

(4.8)

where T is a constant equal to the number of elements in the patch (a 11x11 pixels patch has

been selected in our architecture to ensure an accurate local variance estimation), and S is equal

to:

S =
(

1

T

∑
(x,y)∈patch

I (x, y)2

)
(4.9)

Since LVE has a pipelined internal architecture, at each clock cycle it provides in output the

σ2
N I (x, y) and the related pixel values composing the patch.

The Adaptive Gaussian Filter receives the σ2
n computed by NVE, and the outputs of the LVE.

The filter computes equations (4.3) and (4.4), in order to find the best filter variance value (i.e.,

σ2
f (x, y)). After this computation, this module applies the Gaussian smoothing on the current

received pixel.

The Gaussian filtering operation is performed by means of a 2D-convolution on the input im-

age with a 11x11 pixels Gaussian kernel. The selected filter size allows to accurately represent

the Gaussian function with variance values in the selected range (i.e., (0, 1.5], as described be-

fore). The values of the Gaussian kernel are adapted pixel-by-pixel, depending on the computed

σ2
f (x, y), as described in Subsection 4.3.1.2.3.

In the following subsections all the hardware implementation details of the AIDI modules are

deeply analysed.

4.3.1.2.1 Noise Variance Estimator

The NVE module receives the input pixels flow and it provides in output the estimated white

Gaussian noise variance σ2
n affecting the image. The internal architecture of NVE is shown in

Figure 4.10.

Since NVE must perform operations involving patches the 2D-convolver, presented in Section

4.3.1.1, is exploited. In particular, this operation is adopted for computing the convolution in

Equation 4.6 and the Gx and Gy values. Since all of these operations requires the same input

and they are characterized by the same kernel size (i.e., 3x3), the modules managing the input in

the 2D-convolver (i.e., Smart Write Dispatcher, Row Buffer and Smart Read Dispatcher in Figure

4.5) have been grouped in the SIWB module, and shared among the Gx , Gy and the Laplacian

modules. For this reason these modules represent just the Computational Stage, implemented as

a MUL/ADD tree, to perform the actual 2D-convolution computation. It must be precised that,

since the Sobel kernel factors (Equation 4.5) can only be equal to 1, -1, 2 or -2, in order to reduce

the area occupation, the multipliers are replaced by a wire, a sign inverter, a shifter, and a sign

inverter & shifter, respectively.
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Figure 4.10: NVE internal architecture

The outputs of the Gx and Gy are then added together, through an adder, to find the G value

(Equation 4.5). The computed G is compared with a threshold in order to set the SE output only

if the current pixel is one of the 10% strongest features in the image.

The threshold value cannot be determined at design time since it strongly depends on the camera

and environment conditions. Thus, the TH_adpt module (Figure 4.10) is in charge of calculating

the initial threshold value and adapting it frame by frame, by simply applying Algorithm 1.

Algorithm 1 Adaptive Thresholding algorithm

N _t ar g et_ f eatur es ← 0.1∗ si ze(G)
Gap ← N _Sobel _ f eatur es − (N _t ar g et_ f eatur es)
O f f set ←Gap ∗ (0.5/3000)∗Cur r ent_T H
if Gap <−3000 || Gap > 3000 then

New_T H ←Cur r ent_T H +O f f set
else

New_T H ←Cur r ent_T H
end if

where N_target_features represents the strongest features in the input image (i.e., the 10% of the

complete image). Gap is the difference between the current number of extracted Sobel features

(N_Sobel_features) and N_target_features.

If the value of Gap is less than -3000 or more than 3000, the current value of the threshold (i.e.,

Current_TH) is incremented or decremented (depending on its value) by one Offset. The new

calculated value for the threshold (i.e., New_TH) represents the threshold to be provided in input

to the comparator for the next input image.

Since at high frame rates the image conditions between two consecutive frames are approxi-

mately the same, the threshold value calculated from the previous frame can be applied to the

current processed frame. This task is performed for every input frame, in order to maintain the

number of extracted features around N_target_features. Obviously, at startup the Current_TH

is initialized to a low value, and experiments using the hardware model of NVE, applied on the
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Affine Covariant Regions Datasets [164], have shown that TH_adpt need a maximum of 8 frames

to reach a stable threshold value.

The Laplacian output is provided in input to an accumulator (acc in Figure 4.10). This accu-

mulator is enabled only when SE provides in output a zero, in other words only when the current

processed pixel is not one of the 10% strongest features. In this way, when the complete image

has been received acc contains the value of the sum in Equation 4.6 (i.e.,
∑

I (x,y)6=ed g e

∣∣I (x, y)∗N
∣∣).

The following two multipliers conclude the computation of Equation 4.6. To ensure a minimal

error, the C constant needs to be represented in the 0.25 fixed-point format and, for the same

reason, the following multipliers maintain the same number of bits for the fractional part. The

estimated noise variance in output is then truncated to 12.25 fixed-point format. Thus, the NVE

is able to estimate Gaussian noise variance values up to 4,000.

Finally, to improve the timing performances of the NVE module, pipeline stages have been

inserted in the MUL/ADD trees and between the two output multipliers.

4.3.1.2.2 Local Variance Estimator

The LVE module receives in input the pixels read from the external memory, and it provides in

output σ2
N I (x, y), computed exploiting Equation 4.8. The internal parallel architecture of LVE is

shown in Figure 4.11.

Figure 4.11: LVE internal architecture

It is composed of three main blocks: the SIWB, the Mean2 and the S-comp.

Since both Mean2 and S-comp perform operations involving patches, the input pixels are

stored exploiting the same buffering approach adopted in the NVE module (i.e., SIWB explained

in Section 4.3.1.2.1). The only difference concerns the Row Buffer (Section 4.3.1.1), which is com-

posed of 11 BRAMs, because the LVE operations involve 11x11 pixels patches.
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The SIWB output pixels are provided in input to the Mean2 and the S-comp modules. Moreover,

the SIWB output pixels are also provided in output of LVE.

Mean2 computes the second term of Equation 4.8 (i.e.,
( 1

T

∑
(x,y)∈patch I (x, y)

)2
). The received

pixels are sent to the ADD tree, that computes the sum by means of a balanced tree composed of

7 adder stages, for a total amount of 120 adders. Finally, the output of the tree is sent to the two

following multipliers to complete the computation of the second term of Equation 4.8. To ensure

a high precision, the value of the 1/T constant and of the two multiplier outputs are represented

in fixed-point format, with 15 bit for the fractional part.

In parallel to the operations performed by Mean2, S-comp computes the S variable (Equation

4.8). The outputs of SIWB are provided in input to the MUL/ADD Tree. This tree is composed of a

multiplier stage (i.e., 121 multipliers), that computes the square of the pixels in the current patch,

and 7 adder stages (i.e., 120 adders), that compute the sum in Equation 4.9. In order to obtain the

S value, the output of the tree is multiplied by the 1/T constant.

Finally, the local variance σ2
N I (x, y) is computed as the difference between the output of the

S-comp module and the one of the Mean2 module, resorting to a subtractor.

Several pipeline stages have been inserted to improve the timing performances of the LVE

module. For this reason, since σ2
N I (x, y) must be provided in output with the associated patch,

the SIWB pixels are delayed in order to synchronize the LVE outputs.

4.3.1.2.3 Adaptive Gaussian Filter

The Adaptive Gaussian Filter receives the σ2
n , the σ2

N I (x, y), and the pixels in output from the

SIWB of the LVE (Section 4.3.1.2.2), and it outputs a filtered pixel each clock cycle. The internal

architecture of this module is summarized with Figure 4.12.

Figure 4.12: Adaptive Gaussian Filter internal architecture
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The Adaptive Gaussian Filter is composed of three main modules: the Filter Variance Estimator

(FVE), the Kernel Factors Selector (KFS), and the Gaussian Filter.

FVE computes σ2
f by applying Equation 4.3. The algorithm characterization phase (Section

4.1), performed using the Affine Covariant Regions Datasets [164], demonstrated that Equation

4.3 can be simplified to increase the performances exploiting Algorithm 2.

Algorithm 2 Modelled selection condition

if σ2
OI (x, y) < 2σ2

n then

σ2
f (x, y) ← k · σ2

n

σ2
OI (x,y)

else
σ2

f (x, y) ← k

end if

The selected model allows a very efficient hardware implementation of the selection condition

by simply adopting a shifter and a comparator (Figure 4.12). Then, σ2
f (x, y) is computed using a

pipelined divider and a multiplier and it is provided in input to KFS.

KFS aims at defining the Gaussian kernel factors associated with the current σ2
f (x, y). These

values cannot be computed in real-time, because the associated formula [82] is very complex and

time consuming, so they are precomputed and stored inside the IP.

Since each value ofσ2
f (x, y) (represented using 31 bit) has a different associated kernel of 121 fac-

tors (i.e., the size of the kernel used to perform the filtering task is 11x11 pixels), a huge amount

of data should be stored (231 · 121 kernel factors). In order to reduce the required memory re-

sources, in the proposed hardware implementation, the range of σ2
f (x, y) (i.e. (0, 1.5]) has been

discretized adopting a resolution of 0.1. In this way, the number of sets of 121 Gaussian kernel

factors has been limited to 14. Moreover, the required storage capability has been limited ex-

ploiting the symmetry of Gaussian kernel, also. Since Gaussian kernels are circularly symmetric

matrices, many factors inside them are equal to each others. Figure 4.13 shows an example of a

5x5 Gaussian kernel structure, in which the kernel factors to be stored have been highlighted.

Figure 4.13: Example of a 5x5 Gaussian kernel structure

Since in a 11x11 Gaussian kernel the number of distinct kernel factors is equal to 21, in the pro-
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posed hardware architecture the internally stored data for each σ2
f (x, y) has been limited to this

value.

For these reasons, KFS has been implemented as a cluster of 14 multiplexers, in which each mul-

tiplexer is driven by the same selection signal, whose value is defined by the current σ2
f (x, y). In

this way, the cluster of multiplexers is able to provide in output the 21 factors useful to represent

the Gaussian kernel associated with the current σ2
f (x, y). Finally, the multiplexer outputs are du-

plicated in order to reconstruct the complete set of 121 kernel factors for a given σ2
f (x, y).

The reassembled set of kernel factors are then provided in input to the the Gaussian Filter to-

gether with the input pixels from the SIWB, that are delayed to be synchronized with the kernel

factors.

Gaussian Filter computes the 2D convolution between the input pixel patch (i.e., Pixels from

SIWB in Figure 4.13) by means of a MUL/ADD tree composed of a multiplier stage (i.e., 121 mul-

tipliers) and 7 adder stages (i.e., 120 adders).

4.3.1.2.4 AIDI performances

To evaluate the hardware resources usage and the timing performances, the proposed architec-

ture has been synthesized, resorting to Xilinx ISE Design Suite 14.6 [229], on a space qualified

Xilinx Virtex 5 XQR5VFX130 (Section 3.3). Post-place and route simulations have been done with

Modelsim SE 10.1c [83].

Table 4.2 shows the resources utilization and the maximum operating frequency of each module

composing AIDI.

Table 4.2: AIDI performances on a Xilinx XQR5VFX130 FPGA device

Module
FPGA Area Occupation Max Freq.

LUTs BRAMs [MHz]

NVE 2,436 (2.97%) 3 (1.01%) 138.35

LVE 12,792 (15.62%) 11 (3.69%) 138.04

AGF 13,975 (17.06%) - (-%) 138.04

Total 29,203 (35.65%) 14 (4.70%)

To compare our architecture with the FPGA-based architectures for noise estimation and

static Gaussian filtering presented in [124] and [108], AIDI has been also synthesized on a Vir-

tex II FPGA [231].

Concerning the NVE module, it uses 3,202 LUTs and 3 BRAMs, while the real-time noise estima-

tor presented in [124] uses 4,608 LUTs, 72 BRAMs and 24 DSP elements.

Moreover, the proposed NVE achieves higher timing performance than [124]. In fact, the archi-

tecture presented in [124] is designed for real-time processing of 720x288 pixels images at 130

fps, while our NVE module is able to process frames characterized by a higher resolution (i.e., up
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to 1,024 x 1,024 pixels) at 136 fps.

The performances achieved by AIDI have been also compared with the architecture presented

in [108]. Regarding the area occupation on a Virtex II FPGA device [231], the proposed architec-

ture uses 37,695 LUTs and 24 BRAMs, whereas the FPGA-based static Gaussian filter presented

in [108] uses 22,464 LUTs, 39 BRAMs and 32 DSP elements. The higher logic resource occupation

(i.e., LUTs) of the proposed architecture is due to two main aspects. The former concerns the

kernel used to perform the filtering task, that in AIDI is 11x11 while in [108] is 7x7 (i.e., the 7x7

kernel size does not provide high filtering performance for high level of noise). The latter regards

the adaptivity provided by AIDI, that is not supported by [108]. Moreover, AIDI provides better

timing performance than [108]. In fact, AIDI is able to filter 1,024 x 1,024 pixels frames achieving

a maximum output frame rate of 68 fps, while [108] process 1,024 x 1,024 pixels images with a

frame rate of 48 fps.

In order to evaluate the improvements provided by AIDI w.r.t. a static Gaussian filtering ap-

proach, an evaluation campaign has been performed on the image dataset reported in Figure

4.14.

On these images, different levels of white Gaussian noise have been injected, spanning from a

noise variance of 100 to 4,000, exploiting the imnoise function provided by the MATLAB Image

Processing Toolbox [135]. Figure 4.15 shows some examples of the injected noise on an image.

The benefits provided by the adaptivity have been quantified computing the Mean Square Error

(MSE):

MSE = 1

H ·W
∑

(x,y)∈i mag e

(
I (x, y)− IF (x, y)

)2 (4.10)

where H and W are the height and the width of the input image, and I (x, y) and IF (x, y) are the

pixel intensities in the (x, y) position of the noise free and the filtered images, respectively.

Each noisy image has been filtered using: (i) a static 11x11 Gaussian filter (Static in Figure 4.16)

with a σ2
f equal to k, (ii) a MATLAB model of AIDI (Adaptive (SW) in Figure 4.16), involving the

double precision, and (iii) the AIDI hardware implementation (Adaptive (HW) in Figure 4.16),

which involves fixed-point representation. The graphs in Figure 4.16 plot the trends of the MSEs,

computed for each image composing the adopted image dataset (Figure 4.14), versus the vari-

ance of the injected noise. Figure 4.16 highlights two main aspects:

1. the error introduced by the fixed-point representation w.r.t. the double precision imple-

mentation can be neglected (Adaptive (SW) vs. Adaptive (HW) in Figure 4.16);

2. the MSE associated with the output of AIDI is always lower than the one affecting the out-

put of a static Gaussian filter (Adaptive (HW) vs. Static in Figure 4.16). Moreover, the bene-

fits increase for noise levels withσ2
n ≤ 1,000, while for higher noise levels, the improvement

decreases because the local variance of the image is greatly influenced by the noise, and so

it cannot be accurately computed.
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(a) Lena (b) Cameraman

(c) Mandrill (d) Mars

Figure 4.14: Image dataset exploited for the evaluation campaign

Finally, to prove the effectiveness of the proposed FPGA-based adaptive filter in preserving edges

w.r.t. a standard static Gaussian filtering approach, the images filtered with both methods have

been provided in input to a Laplacian edge detector. Figure 4.17(a) shows an example of image

affected by white Gaussian noise with σ2
n = 1,500, while Figure 4.17(b), Figure 4.17(c), and Fig-

ure 4.17(d) show the edges extracted from the non-filtered image, the filtered image with a static

Gaussian filter, and the image filtered with AIDI, respectively.

Despite the high injected noise, AIDI is able to filter the image without smoothing edges, improv-

ing the performance of the edge detector. Instead, the static Gaussian filter outputs a smoothed

image, in which edges are weakened and difficult to be detected.
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(a) σ2
n = 500 (b) σ2

n = 1500

(c) σ2
n = 2500 (d) σ2

n = 4000

Figure 4.15: Examples of injected level of noise

4.3.2 Histogram Calculator

As aforementioned, the histogram calculation is an important task for a plenty of image process-

ing operations. Thus, an efficient implementation of this operation enables a strong acceleration

of many image processing operations.

An image histogram, in accordance with its definition reported at the beginning of this chap-

ter, is a graph that counts the number of pixels in the image (vertical axis) that present a particular

intensity value (horizontal axis). Since the available tonal value in an image is defined by the bpp

resolution, the value on the horizontal axis are in the [0,2bpp ] range. Instead, the vertical axis can

contains values up to the number of pixels composing the input image (i.e., all the pixels in the

input image have the same value).

This family contains just one IP-core, the Histogram Calculator. This IP-core is equipped with

an interface able to provide in input four pixel values in parallel at the same time. This input par-

allelism allows to speed up the computation task.
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(a) Lena (b) Cameraman

(c) Mandrill (d) Mars

Figure 4.16: Mean Square Error

The provided outputs are the values associated with the Histogram Bars (HBs), that can be inter-

nally or externally buffered. For this reason, the output interface, in addition to the HB values,

provides the memory address where each HB value must be stored. Moreover, to ensure the syn-

chronization with other modules, one additional output bit is provided to communicate the end

of the histogram computation.

Thanks to this output interface, this module can be easily interconnected to a BRAM input port,

for an internal buffering, or to a Direct Memory Access (DMA) module to store the computed his-

togram in an external memory.

The parallel internal architecture of the Histogram Calculator is shown in Figure 4.18.

It is composed of 4 BRAM Buffers, 4 2-inputs adders, a 4-inputs adder, 4 2-to-1 multiplexers, 8

2-to-1 multiplexers and a Controller that manages the overall histogram computation process.

The histogram computation is performed in two steps. First, the Controller sets to zero the

reset signal. In this way input pixels act as addressing signal for the 4 BRAM Buffers. Buffers

are implemented as dual-port Block RAMs, provided by Xilinx FPGA Virtex architectures (Section

3.3). Each BRAM Buffer has a dimension to allow the storage of all bars composing the histogram.

Thus, the size of these buffers depends on the bpp resolution of the input image. Since a BRAM

in space-grade Xilinx FPGAs is composed with 512 words of 32 bit each. A single BRAM buffer is
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(a) (b)

(c) (d)

Figure 4.17: Laplacian Edge Extraction - (a) Noisy image in input (σ2
n = 1500) (b) Edges extracted

from noisy image (c) Edges extracted from the image filtered by a static 11x11 filter (d) Edges
extracted from image filtered by AIDI

able to support an input image with a bpp resolution up to 9 bit (i.e., the histogram is composed

of 29 = 512 bars). With higher resolution each buffer will be composed of more than one BRAM.

The input packets are split into 4 words, each representing a pixel value. Each received pixel

addresses the BRAM Buffer associated with its position in the input packet (e.g., the pixel in the

least significant part of the input packet addresses the BRAM Buffer 0). The value of the location

addressed by the input pixel value is read, incremented, and then rewritten in the same location

in a single clock cycle exploiting the dual-port nature of the buffer. In this way, each buffer row

acts as a counter. When an entire image is received, each buffer row contains a partial HB value.

In the second computation step, the partial HBs are merged to compute the image histogram.

BRAM Buffers are scanned starting from location 0. At each clock cycle, the 4 partial HB values

are read and summed. In this way, the final value of each HB is computed. After each location has

been read, it is forced to 0. This ensures that counters are reset to the initial conditions, allowing
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Figure 4.18: Histogram Calculator internal architecture

the computation of a new histogram.

In addition to HB values, the Histogram Calculator outputs the HA and the HD signals. The for-

mer represents the index associated with the output HB value, while the latter is asserted when

the histogram calculation task is completed. It must be mentioned that, in the case in which the

histogram must be stored in an external memory, to guarantee a proper storage the memory base

address must be added to HA.

The first computation step performed by the Histogram Calculator requires the number of

clock cycles needed to receive the input image, while the second step requires only 2bpp clock

cycles to read the buffers. Thus, the total number of clock cycles required by the Histogram Cal-

culator for computing the image histogram counts up to:

Ncl ock = Nr ow ∗Ncolumns

4
+2bpp (4.11)

where Nr ow s and Ncolumns are the number of rows and columns composing the input image.

For the sake of completeness, Table 4.3 shows the area occupation and the timing perfor-

mance of the Histogram Calculator implemented on space-qualified Xilinx Virtex 5-QV XQR5VFX130

(Section 3.3). The data reported in the table are related to a configuration that allows to compute
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the histogram of an image composed of 1,024 x 1,024 pixels with a bpp resolution of 8 bit.

Table 4.3: Histogram Calculator performances on a Xilinx Virtex 5-QV XQR5VFX130

FPGA Area Occupation Max Freq.

Slices DSP BRAMs [MHz]

265 (0.20%) - (-) 4 (0.67%) 74.29

The total number of clock cycles to compute the image histogram in this configuration is

262,400. Thus, the maximum sustainable throughput is 283.29 fps.

4.3.3 Image Enhancers

Image enhancement can be performed in intensity, spatial or frequency domains. Among the

available techniques, the ones that better improve images from the contrast point of view are

those working in the intensity domain. Histogram Equalization and Histogram Stretching [123]

proved to be two of the most effective Image Enhancement Techniques (IET).

Histogram Equalization (HE), in particular Linear HE, changes the intensity value of each

pixel to produce a new image with a more uniform image histogram (i.e., the image covers most

of the brightness dynamic range). A better distributed histogram increases the image contrast,

especially if the original image has close intensity values. The method is useful in images with

backgrounds and foregrounds that are both bright or both dark, since these images are charac-

terized by narrow and smoothed histograms.

The Histogram Stretching (HS) technique is based on redistribution of the pixel intensities to

spread their values on the entire spectrum of colors. It increases the contrast among pixels, but it

becomes ineffective when the input image features a wide histogram.

Both HE and HS are based on the statistics of the entire image, thus, after the image is an-

alyzed, a complete buffering of the image is needed to apply the transformation, leading to a

significant increase of memory occupation and latency.

Many FPGA implementations of image enhancement algorithms have been proposed: [190][9]

[117][72]. In [190] brightness control, contrast adjustment and histogram equalization FPGA im-

plementations are presented. Low area occupation is shown but the complete image (100 x 100

pixels) has to be internally stored.

In [9] a very efficient real-time HE technique is presented. The smart transformation function

is implemented thanks to 256 16-bit counters and a hierarchical decoder. This approach clearly

increases the resource usage. Furthermore, the complete image (256 x 256 pixels) is stored in a

64 kb ROM in the FPGA device.

[106] proposes a parallel HE technique. To speed up the histogram evaluation, the differential

histogram calculation is used.
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In [129] a simple contrast enhancement scheme is proposed, named AIVHE, for real-time image

processing. The gradual increment of the brightness controls the rate of contrast enhancement

by dividing the histogram in sectors.

[117] presents an Adaptive Histogram Equalization (AHE) algorithm: a method for the local con-

trast enhancement based on bilinear interpolation. The area occupation of the proposed AHE is

considerable and the noise in background homogeneous regions is amplified.

[72] presents an implementation of Contrast Limited Adaptive Histogram Equalization (CLAHE)

that limits the noise increment provided by AHE. The drawback is that a great amount of internal

memory is required to store data for the bilinear interpolation.

All of the aforementioned IP-cores do not provide self-adaptive features. To overcome this

limitation, in this family, in addition to two basic HE and HS hardware implementations, it has

been added an image enhancer able to automatically select the best enhancement technique

(i.e., HE or HS) to be applied depending on the current image and environmental conditions,

called SAFE.

Since both the HS and HE require to receive in input the image histogram, the IP-cores con-

tained in this family have an input interface, that can be directly connected to the Histogram

Calculator outputs (Section 4.3.2). In addition to these inputs, two additional inputs have been

added: BW and HW. These inputs, as described in Section 4.3.3.3, identify user-defined thresh-

olds used by SAFE to select the best image enhancement technique to be applied. Even if they

are just used by SAFE, in order to guarantee the interchangeability of IP-cores of the same family,

these inputs are present in the Histogram Stretcher and Histogram Enhancer IP-cores as well, but

they are left unused.

A common, really important, features of these IP-cores concerns the statistic on which the

enhancement techniques are based on. In fact, they avoids the internal buffering of the image,

because the enhancement is performed on the basis of tone statistics gathered from the previous

image (i.e., histogram associated with the previous processed frame). This approach introduces

a negligible error thanks to the limited differences between two consecutive frames, guaranteed

by the high frame rate reachable by these IP-cores.

In the following sections a detailed description of the internal architecture and performances

of each IP-cores is provided.

4.3.3.1 Histogram Stretcher

The Histogram stretching transformation function is reported in (4.12).

IStr etched (x, y) =C · (I (x, y)−mi n_HB) (4.12)

where IStr etched (x, y) is the stretched pixel intensity in the (x, y) position, I (x, y) is the pixel in-

tensity in the (x, y) position, mi n_HB is the minimum intensity in the previous image histogram,
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and C is a scale factor equal to:

C = 2bpp −1

max_HB −mi n_HB
(4.13)

In (4.13) max_HB is the maximum intensity value in the previous image histogram and bpp is

the pixel resolution. This transformation of the image histogram ensures to spread the tonal dis-

tribution of the input image to cover the complete tonal range made available from the image

bpp resolution. As demonstrated in Figure 4.19, this improved distribution strongly enhances

the contrast of the input image.

(a) Input image (b) Stretched image

Figure 4.19: Histogram stretching example

Figure 4.20 reports the internal architecture of the Histogram Stretcher IP-core.

This IP-core is internally composed of three main modules: Histogram Buffer, Histogram Stretcher

Controller, and Stretcher.

The Histogram Buffer is implemented using a BRAM, required to store the complete his-

togram. Each HB received from the Histogram Calculator (Section 4.3.2) is stored into a BRAM

row. During this phase, HD is 0, thus HA acts as an address signal for the data_in port.

When the entire histogram is stored, the HD input signal is asserted and the histogram analysis,

to compute the histogram width computation (i.e., the definition of the minimum and maximum

intensity value in the input image, i.e., min and max in Figure 4.20), can start.

The HW Stretcher Controller performs two tasks: it finds the minimum and the maximum

intensity values in the image histogram and it computes the histogram width. First, it scans the

Histogram Buffer to find the first non-zero value, that represents the minimum intensity value.

Then, the same operation is repeated in the reverse scanning order, to find the maximum inten-

sity value. When both the minimum and maximum intensity value have been found, the his-

togram analysis is finished.

Since the operation to find these two values in the worst case requires a number of clock cycles

equal to the number of bars composing the histogram, to ensure the synchronization with the
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Figure 4.20: Histrogram Stretcher internal architecture

input signals, the HA_done signal is always asserted after this amount of clock cycles.

Minimum and maximum values are eventually subtracted to calculate the histogram width (i.e.,

real_HW ).

Stretcher performs the operation shown in Equation 4.12. First, it computes the subtraction

between the received pixel values and the min_HB signal. In parallel, the C factor is computed.

To ensure a high precision in the division between 2bpp −1 (i.e., R in Figure 4.27) and real_HW

signal, the input signals of the divider are represented in the fixed-point format with 15 bit for

the fractional part. Instead, the integer part of these numbers is represented by a number of bit

equal to the bpp resolution.

Finally, the results of the subtractions and the C factor are multiplied exploiting 4 multipliers

working in parallel. The result of each multiplication is truncated in order to extract the integer

part that represents the value of the stretched pixel.

When the complete image is received and, so stretched, the HS_done is asserted, to communicate

that the histogram stretching task has been successfully computed.

For the sake of completeness, Table 4.4 shows the area occupation and the timing perfor-

mance of the Histogram Calculator implemented on space-qualified Xilinx Virtex 5-QV XQR5VFX130

(Section 3.3). The data reported in the table are related to a configuration that allows to stretch

the histogram of an image composed of 1,024 x 1,024 pixels with a bpp resolution of 8 bit.
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Table 4.4: Histogram Stretcher performances on a Xilinx Virtex 5-QV XQR5VFX130

FPGA Area Occupation Max Freq.

LUTs DSP BRAMs [MHz]

410 (2.00%) 4 (1.25%) 2 (0.67%) 72.69

4.3.3.2 Histogram Equalizer

The transformation function performed during HE is:

IE quali zed (x, y) = k ·
I (x,y)∑

j=0
HB j (4.14)

where IE quali zed (x, y) is the equalized pixel intensity in the (x, y) position, HB j is the value of the

j-th HB and k is equal to:

k = 2bpp −1

Nr ow ∗Ncol
(4.15)

This transformation allows to increase the occurrence of the low frequency intensity values, pro-

ducing in this way a highly contrasted image. To better understand this transformation, Figure

4.21 shows an example of histogram equalization.

(a) Input image (b) Equalized image

Figure 4.21: Histogram equalization example

Figure 4.22 reports the internal architecture of the Histogram Equalizer IP-core.

This IP-core is internally composed of three main modules: Histogram Buffer, Histogram Equal-

izer Controller, and Equalizer.

Until the histogram is not completely received, this module acts as the Histogram Stretcher

(Section 4.3.3.1).

When the histogram has been completely received, and so stored in the Histogram Buffer, the HD
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Figure 4.22: Histogram Equalizer internal architecture

signal is asserted, and the histogram analysis phase starts.

In this phase, Histogram Equalizer Controller scans the Histogram Buffer in order to compute the

HB_sum, that represents the value of the sum of the equalization transformation function (i.e.,∑I (x,y)
j=0 HB j in Equation 4.14).

In order to perform these tasks, an accumulator is exploited. To ensure a proper computation, the

size of this component is equal to the number of bit required for representing the total number

of pixels composing the image (i.e., the last HB_sum is equal to the number of pixel composing

the image). Four copies of each HB_sum are stored in HB_sum Buffer 1 and HB_sum Buffer 2.

These copies are finally used by the Equalizer to apply the transformation function shown in

Equation 4.14 on each input. The 4 input pixels address the 4 ports provided by the two buffers

in order to read out the associated sum value (i.e.,
∑I (x,y)

j=0 HB j in Equation 4.14. The 4 values

are then multiplied by the k constant (Equation 4.14). To ensures a very high precision, the k

constant is represented using the 0.15 fixed-point format.

For the sake of completeness, Table 4.5 shows the area occupation and the timing perfor-
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mance of the Histogram Equalizer implemented on space-qualified Xilinx Virtex 5-QV XQR5VFX130

(Section 3.3). The data reported in the table are related to a configuration that allows to enhance

the histogram of an image composed of 1,024 x 1,024 pixels with a bpp resolution of 8 bit.

Table 4.5: Histogram Equalizer performances on a Xilinx Virtex 5-QV XQR5VFX130

FPGA Area Occupation Max Freq.

Slices DSP BRAMs [MHz]

180 (0.88%) 4 (1.25%) 6 (2.01%) 72.69

4.3.3.3 Self-Adaptive Frame Enhancer (SAFE)

The HE and HS are really efficient techniques, but this efficiency is not valid for every kind of

image. In fact, as reported in Section 4.3.3, HE works better than HE on images with a narrow

and picked histogram. Instead, HE provides better performances in all other conditions (i.e.,

smoothed or wide histogram). These last two sentences are graphically justified in Figure 4.23

and Figure 4.24, respectively.

(a) Input image (b) Input image histogram

(c) Stretched image (d) Equalized image

Figure 4.23: Enhancement of a picture with a narrow and picked histogram
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(a) Input image (b) Input image histogram

(c) Stretched image (d) Equalized image

Figure 4.24: Enhancement of a picture with a wide and smoothed histogram

In order to cope with this issue, SAFE has been proposed. It is a highly parallelized FPGA-

based IP core able to select and apply the best image enhancement technique (i.e., HE or HS)

depending on the input image statistics.

SAFE is composed of two main blocks (Figure 4.25): the Histogram Analyzer and the Equalizer /

Stretcher.

Figure 4.25: SAFE internal architecture

The Histogram Analyzer analyses the image histogram in order to select the best IET to be

applied. It scans the histogram to find the minimum and maximum intensities and the maximum

difference between two consecutive bar values. By comparing this two quantities with the HW

and BW thresholds, it selects the best IET (Algorithm 3).

The Equalizer / Stretcher performs both HE and HS on the input image, but it provides in
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Algorithm 3 Histogram Analyzer operations

f ound ← F ALSE
max_BW ← 0
pr evi ous_HB ← HB(0)
for i = 0 → 255 do

if (HB(i ) 6= 0)∧ ( f ound = F ALSE) then
mi n_HB ← HB(i )
f ound ← T RU E

end if
actual _BW ←| HB(i )−pr evi ous_HB |
if actual_BW > max_BW then

max_BW ← actual_BW
end if
pr evi ous_HB ← HB(i )

end for
f ound ← F ALSE
for ((i = 255 → 0)∧ ( f i nd = F ALSE)) do

if HB(i ) 6= 0 then
max_HB ← HB(i )
f ound ← T RU E

end if
end for
r eal_HW ← max_HB −mi n_HB
if (r eal_HW < HW )∧ (max_BW > BW ) then

I ET ← HS
else

I ET ← HE
end if

output the image enhanced by the algorithm selected by the Histogram Analyzer.

In the following subsections all the implementation details of the SAFE modules are deeply

analysed.

4.3.3.3.1 Histogram Analyzer

The Histogram Analyzer receives in input HBs, HA and HD signals from the Histogram Calculator

IP-core. In addition, it receives the two SAFE input thresholds: BW and HW. This module extracts,

from the image histogram associated with the previous frame, all the information required to

calculate and select the best IET to be applied to the current frame. The internal architecture of

the Histogram Analyzer module is shown in Figure 4.26.

It is composed of three main components: the Histogram Buffer, the BW Calculator and the HW

Calculator.

The Histogram Buffer acts as namesake components in the Histogram Stretcher and Histogram

Enhancer. However, differently from the other two IP-cores contained in this family, in SAFE the
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Figure 4.26: Histogram Analyzer internal architecture

Histogram Buffer is implemented as a dual-port BRAM. This different architectural choice, as will

be described in the sequel, allows to parallelize the histogram analysis tasks.

When the entire histogram is stored, the HD signal is asserted and the histogram analysis

can start. During this phase, HW Calculator and BW Calculator work in parallel, exploiting the

dual-port nature of the Histogram Buffer.

The HW Calculator finds the maximum and minimum intensity value in the histogram, ex-

ploiting the same approach used in the Histogram Stretcher (Section 4.3.3.1). Minimum and max-

imum values are then subtracted to calculate the histogram width (i.e., real_HW ). This quantity

is then compared with HW threshold and, if it is greater, the HW_flag signal is asserted. The com-

paring task is performed exploiting a comparator with a parallelism equal to the bpp resolution

of the input image, and the entire process is managed by the HWC Controller.

The BW Calculator scans the Histogram Buffer in order to find the maximum difference be-

tween two adjacent HBs. This quantity is compared with the BW threshold and, if it is greater,

the BW_flag signal is asserted.
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In parallel to this task, BW Calculator computes the HB_sum exploiting the same process used by

the Histogram Enhancer(Section 4.3.3.2).

Finally, when the histogram scanning is completed, the BW Controller asserts the HAD signal.

The entire histogram analysis process requires just a number of clock cycles equal to the max-

imum intensity value in the image (2bpp ), since the histogram is composed of this number of HBs.

4.3.3.3.2 Equalizer / Stretcher

The Equalizer / Stretcher module receives in input, from the Histogram Analyzer, all the signals

required to perform the enhancement of the input image, and it provides the enhanced pixels.

The internal architecture is shown in Figure 4.27.

Figure 4.27: Histogram Equalizer and Stretcher internal architecture
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This module is composed of two HB_sum Buffers, the Equalizer and the Stretcher modules.

These components operate in the same way as the namesake ones contained in the Histogram

Stretcher and Histogram Equalizer IP-cores in order to compute the Equalized and Stretched pixel

values. However, just the pixels enhanced with the best enhancement technique are provided in

output.

This selection is done using a multiplexer in which the select signal is driven by the logic-and op-

erator between HW_flag and BW_flag. In this way, the stretched pixels are output if HW_flag and

BW_flag are asserted (i.e., the image histogram is narrow and very peaked), otherwise equalized

pixels are provided in output.

The Equalizer / Stretcher, for enhancing the input image, requires the number of clock cycles

needed to receive 1,024 x 1,024 pixels, plus 23 additional clock cycles to perform the C factor

computation, because the divider is not a combinatorial component. Thus, the overall number

of clock cycles required to enhance an image is equal to:

Nclock = Nr ow ∗Ncolumns

4
+23 (4.16)

4.3.3.3.3 SAFE performances

In this section the performances of SAFE in terms of speed, area occupation and accuracy on a

space qualified Xilinx Virtex 5-QV XQR5VFX130 (Section 3.3) are evaluated. All the data reported

herein concern a SAFE configuration for enhancing an composed of 1,024 x 1,024 pixels and with

8 bpp resolution.

Table 4.6 lists the area occupation on the target device, highlighting the resources usage of each

SAFE module.

Table 4.6: Resource Usage for Xilinx Virtex 5-QV XQR5VFX130

Module
FPGA Area Occupation Max Freq.

Slices DSPs BRAMs [MHz]

HA 219 (0.26%) - (-) 2 (0.67%) 75.28

E/S 434 (0.53%) 20 (6.25%) 4 (1.34%) 72.69

Total 653 (0.79%) 20 (6.25%) 6 (2.01%)

The maximum input frame rate that can be sustained by SAFE is related to the number of clock

cycles needed to analyse and enhance the input images. The time slot required between the ac-

quisition of two consecutive frames is equal to the time required to analyse the image histogram,

and to calculate the scale factor C for the image stretching. Since the maximum operating fre-

quency is equal to 72.69 MHz, the time required to accomplish these tasks is:

Texec =
NC LK _H A +NE quali zer /Str etcher )

fM AX
=
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= 256+262,167

72.69 M H z
= 3.61ms (4.17)

This execution time led to a maximum frame rate of 277 fps.

This result clearly shows that, in an images processing chain, SAFE far exceeds the typical frame

rate of 25 fps of the other building blocks, and of the camera, as well.

Post place and route simulations have been done using Modelsim SE 10.1c [83], and results have

been validated comparing them with the values obtained by a MATLAB model of the described

architecture. The validation involved a set of 50 images of planetary environments provided by

Thales Alenia Space company. Figure 4.28 and Figure 4.29 show examples of frames enhanced

by the two available algorithms. In Figure 4.28 the best result is achieved by applying the HS,

while in Figure 4.29 the HE should be preferred. Starting from the original frame shown in Figure

(a) Original (b) Histogram

(c) Stretched (d) Equalized

Figure 4.28: Test of frame enhancement (best results by HS)

4.28(a), the relative histogram is computed. As shown in Figure 4.28(b), in this case the histogram

is narrow and extremely peaked. Thus, a HS approach should be preferred, since it outputs an

image with high contrast (Figure 4.28(c)), with respect to the equalized one (Figure 4.28(d)).

By analysing the original frame shown in Figure 4.29(a) and the associated histogram (Figure

4.29(b)), one can notice that the histogram is smoothed and relatively wide. Thus, the HE will

give better results in term of image contrast, as can be inferred by visually comparing Figure

108



4.3. IP-core library

(a) Original (b) Histogram

(c) Stretched (d) Equalized

Figure 4.29: Test of frame enhancement (best results by HE)

4.29(d) and Figure 4.29(c).

After tuning HW and BW thresholds, the validation campaign has demonstrated that SAFE is

always able to select the best IET to be applied on the input frames. Moreover, comparisons

have been done between frames enhanced with SAFE (i.e., exploiting the information associated

with the previous frame), and frames enhanced with a standard approach (i.e., exploiting the

information of the associated histogram). This comparison showed that SAFE introduces just a

maximum error of 0,39% on the intensity of the pixels, w.r.t. the standard approach.

4.3.4 Feature Matchers

As described in Section 2.5.1.2, a fundamental step for relative VBN systems is the features match-

ing task. For this reason, Features Matchers family groups a set of high-performance IP-cores im-

plementing the most important area-based features matchers (Section 2.5.1.2.1). In particular

the features matchers contained in this family are: the Sum of Absolute Difference (SAD), Sum of

Square Difference (SSD), Cross-Correlation (CC), and Normalized Cross-Correlation (NCC).

The major common benefit of the proposed implementations is the complete independence

of the hardware resources usage from the image window used to find correspondent features

between the two images to be matched. This peculiarity ensures to increase the research window,
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so enhance the matching precision, without increasing the required resources.

To achieve this goal, the IP-cores of this family shares a common basic architecture (Figure 4.30).

Figure 4.30: Feature matcher internal architecture

The Features Matcher is able to communicate with three external buffers that can be freely

implemented inside the FPGA as BRAMs or as storage areas in an external memory. These buffers

aim at storing: the features associated with the images to be matched (Features 1 Buffer and

Features 2 Buffer), and the two images to be matched (Images Buffer).

The Correlation Controller scans the Frame 1 Features buffer and the Frame 2 Features and for

each couple compute the matching operation (SAD, SSD, CC, or NCC). The matching operation

is computed using the intensity of all pixels contained in the two pixels windows surrounding the

two features (i.e., matching windows). These values are loaded from the Images Buffer.

The matching window related to the first feature is loaded from the Features 1 Buffer into the

Patch Register, that is composed of a number of registers equal to the number of pixels com-

posing the matching window. Then, while the window associated with the feature of the second

image is loaded from Features 2 Buffer, the matching operation is computed "on-the-fly". Each

time a new pixel is received from the Images Buffer, it is computed the matching operation be-

tween this pixel and the corresponding one of the first image, that is already stored in the Patch

Register. This operation is performed by the Computation module that implements the desired

matching operation. This approach makes the area occupation of this module independent from

the correlation window dimension, making the designer free to select the more appropriate cor-

relation window without any area occupation penalty.

The matching operation results are thresholded, in order to eliminate fake-matchings. If the

obtained result identify a valid match (i.e., the procedure to identify a valid match changes de-

pending on the implemented matching operation (Section 2.5.1.2)), the coordinates of the corre-

lated features are stored inside the internal Matched Buffer, implemented exploiting BRAMs. The
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size of this buffer in terms of BRAMs depends on the maximum number of expected matched

features pairs, so the designer can freely configure this size depending on the target application.

Finally, since a feature of the first image can be correlated to several features of the second

image, only the match that has the highest probability to be valid is provided in output, ensuring

unique matched pairs and higher quality of matches. This final filtering operation is computed

by the Matches Filter module.

The described process is executed by every IP-core composing this family. The unique dif-

ferences among them are: the way in which the matching operation is compute, and the way to

consider valid a matched depending on the matching operation result. The following sections

provides a description of the Computational Module implementation for each IP-core.

4.3.4.1 SAD

As described in Section 2.5.1.2, Sum of Absolute Difference (SAD) based matcher is the area-based

features matching approach with the lowest complexity. For this reason, the associated hardware

implementation is the simplest one (Figure 4.31).

Figure 4.31: Internal architecture of the Computational Module implementing the Sum of Abso-
lute Difference based matching

According to Equation 2.10, this module receives in input the pixels, associated with the two

images to be matched, contained in the reference window. Each couple of received pixels is sub-

tracted. To take into account negative values from the subtraction, the pixels are internally repre-

sented with the complement 2 format. Each difference is then made positive by means of a com-

plement 2 absolute value computation (C2 mod component in Figure 4.31), and the accumulator

sum together these positive contributions. When all the pixels contained in the reference win-

dows have been received, the accumulator contains the SAD based matching result. This value is

finally compared with an internal threshold, and, if it is lower, it is provided in output as a valid

match (the valid match signal is asserted).

Thanks to the proposed implementation, the computation can be done in a pipelined way, with-

out introducing additional latency in the processing chain.
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Table 4.7 reports the area occupation and the speed of the proposed SAD based matcher IP-

core implemented on a space qualified Xilinx Virtex 4-QV XQR4VLX200 (Section 3.3). The re-

ported data refers to the IP-core configured to match features between two 1,024 x 1,024 pixels

images with a bpp resolution of 8 bit, based on a 11x11 reference window.

Table 4.7: SAD based Features Matcher performances on a Xilinx Virtex 4-QV XQR4VLX200

FPGA Area Occupation Max Freq.

Slices LUTs BRAMs DSPs [MHz]

700 (0.79%) 1,185 (0.67%) 5 (1.49%) - (-) 94.76

The reported data demonstrates how the simplicity of the SAD based matching operation is re-

flected in an extremely low area occupation.

4.3.4.2 SSD

The proposed Sum of Square Difference (SSD) based matcher IP-core implements Equation 2.11

in an efficient way. As shown in Figure 4.32, this module processes the received pixels in a similar

way to SAD based matcher. However, in order to make the difference values positive, it computes

the square value instead of the absolute one. This modification is accomplished by replacing the

mod C2 component with a multiplier receiving on both inputs the computed difference values.

Figure 4.32: Internal architecture of the Computational Module implementing the Sum of Square
Difference based matching

Table 4.8 reports the area occupation and the speed of the SSD based matched IP-core imple-

mented on a space qualified Xilinx Virtex 4-QV XQR4VLX200 (Section 3.3). The data refers to the

IP-core configured to perform the matching task based between two 1,024 x 1,024 pixels images

with a bpp resolution of 8 bit, based on a 11x11 reference window.

As can be noted from the reported data, the usage of the multiplier to make the computed dif-

ference positive leads to a higher area occupation than the SAD based matcher. The speed is the
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Table 4.8: SSD based Features Matcher performances on a Xilinx Virtex 4-QV XQR4VLX200

FPGA Area Occupation Max Freq.

Slices LUTs BRAMs DSPs [MHz]

743 (0.84%) 1,254 (0.70%) 5 (1.49%) - (-) 94.76

same in these two components, since the critical path is contained in the common architecture

part.

4.3.4.3 CC

As described in Section 2.5.1.2.2, the Cross-Correlation (CC) based matching approach uses a

different approach than the ones based on pixel differences (SAD and SSD based matching op-

erations). For this reason the internal architecture of this component (Figure 4.33) present two

main differences w.r.t. the two previously presented ones.

Figure 4.33: Internal architecture of the Computational Module implementing the Cross-
Correlation based matching

The former concerns the way to compute the matching results. In this component, according

to Equation 2.12, instead of subtracting the received pixels values, the corresponding inputs are

multiplied together. Then, the multiplication are sum by means of an accumulator.

Instead the latter is related to the way to discriminate a valid from an invalid match. In fact, as

already mentioned in Section 2.5.1.2.2, a correlation based matching provide a high result when

the probability that two features are correlated is really high. For this reason, in this component,

to properly define valid matches through the valid match signal, the matching result contained in

the accumulator is compared with an internal threshold by means of a higher-than comparator.

Table 4.9 reports the area occupation and the speed of the CC based matched IP-core imple-

mented on a space qualified Xilinx Virtex 4-QV XQR4VLX200 (Section 3.3). The data refers to the

IP-core configured to perform the matching task based between two 1,024 x 1,024 pixels images

with a bpp resolution of 8 bit, based on a 11x11 reference windows.

As can be noted, even if this architecture requires a component less than the SSD based matcher,
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Table 4.9: CC based Features Matcher performances on a Xilinx Virtex 4-QV XQR4VLX200

FPGA Area Occupation Max Freq.

Slices LUTs BRAMs DSPs [MHz]

734 (0.82%) 1,242 (0.70%) 5 (1.48%) - (-) 94.76

the area occupation is similar. This is mainly due to negligible area occupation resources us-

age associated with the mod C2 component. Concerning the speed, also in this case the critical

path is in the common part architecture, so the maximum working frequency is the same of the

difference based matchers.

4.3.4.4 NCC

As described in Section 2.5.1.2, Normalized Cross Correlation (NCC) based matcher is the area-

based features matching approach with the highest complexity. This is reflected in an extremely

more complex hardware architecture (Figure 4.34)than the previously presented matchers.

This IP-core is composed of two modules working in parallel: Num and Den. These two mod-

ules implement respectively the numerator and denominator of Equation 2.13.

Num performs the same operations done by the CC based matcher to obtain the matching

result.

Instead, Den, first, computes the two terms (i.e., T1 =∑M
i=0

∑N
j=0(I1(x f 1+ i , y f 1+ j ))2 and T2 =∑M

i=0

∑N
j=0(I2(x f 2 + i , y f 2 + j ))2) composing the denominator of Equation 2.13 by means of two

multipliers and two accumulators. Then, it multiplies together T1 and T2 values, and, finally,

the denominator value is obtained by compute the square root of the multiplication result (sqrt

module in Figure 4.34).

Table 4.10 reports the area occupation and the speed of the NCC based matched IP-core im-

plemented on a space qualified Xilinx Virtex 4-QV XQR4VLX200 (Section 3.3). The data refers to

the IP-core configured to perform the matching task based between two 1,024 x 1,024 pixels im-

ages with a bpp resolution of 8 bit, based on a 11x11 reference windows.

Table 4.10: NCC based Features Matcher performances on a Xilinx Virtex 4-QV XQR4VLX200

FPGA Area Occupation Max Freq.

Slices LUTs BRAMs DSPs [MHz]

1,817 (2.04%) 2,729 (1.53%) 6 (1.79%) 18 (18.75%) 83.57

The reported data demonstrates the really high complexity of this matching method, that is di-

rectly reflected in extremely higher area occupation. Moreover, differently from the previously
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Figure 4.34: Internal architecture of the Computational Module implementing the Normalized
Cross-Correlation based matching

presented architecture, in this component the computational module increase the critical path

duration, leading to a lower working frequency.
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5
COMPLEX IMAGE PROCESSING SYSTEMS IN SPACE

This chapter presents the proposed complex image processing systems for space applications.

These systems, result of strong collaboration between the academic world and the industries op-

erating in the space field, accomplish the current image processing needs of space agencies. They

are able to provide the required performances, in terms of hardware resources usage, speed and

accuracy, exploiting the FPGA-based hardware accelerators presented in Chapter 4. In addition

to these IP-cores, these systems embeds innovative ad-hoc hardware components and software

routines able to provide high performance and self-adaptable image processing functionalities.

These elements have not been inserted inside the library since they aim at solving specific task

that cannot be considered of general purpose as the functionality provided by the library com-

ponents.

In this chapter three main systems have been proposed to cover the needs of space agencies

in the video-based navigation, the active space debris removal, and the image compression. In

particular, Section 5.1 presents two hardware systems resulted from a strong collaboration with

Thales Alenia Space Italy, that allow to strongly accelerate the feature extraction and matching

task (i.e., one of the most computational intensive task of the relative video-based navigation),

while requiring limited hardware resources usage and providing high adaptability to environ-

mental conditions.

Section 5.2 proposes an innovative systems merging hardware components and software routine

to compute in real-time the debris characterization task (i.e., the first phase required by the active

space debris removal). This system has been realized in the framework of a strong collaboration

among Politecnico di Torino, Istituto Italiano di Tecnologia, and Eurix s.p.a..

Eventually, Section 5.3 presents the main outcomes of my visiting period at the European Space

and Technology Centre (ESTEC), that is the main research centre of the European Space Agency

(ESA). The developed system aims at efficiently mapping the JPEG-LS image compression al-

gorithm (Section 2.7.1) on an FPGA device to strongly enhance the timing performances of the

image compression performed during a space exploration mission.
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In the following sections, the internal architecture of each proposed system is deeply de-

scribed. Moreover, to highlight the benefits in terms of performances and self-adaptability to

the environmental conditions, a comparison of the proposed systems with the current state-of-

the-art implementations is provided.

5.1 FPGA-based hardware accelerators for Video-Based Navigation in space

applications

As described in section 2.5.1.1, a VBN system employed during an EDL phase must provide highly

accurate spacecraft speed and position. To ensure this precision, ME algorithms require very

accurate matching points distributed across the entire frame [127]. While ME algorithms are not

computationally intensive, FEM algorithms require high computation capability to guarantee

high frame rates and therefore high accuracy. Hence, very efficient hardware accelerators for this

task are mandatory.

The most efficient feature extractor for a VBN system, according to section 2.5.1.1, are: Harris

corner detector [86], SURF [17] and SIFT [128]). From the algorithmic point of view, SURF and

SIFT are probably the most robust solutions since they are scale- and rotation-invariant. This

means that features can be matched between two consecutive frames even if they have differ-

ences in terms of scale and/or rotation. However, due to their complexity (Section 2.5.1.1.2 and

2.5.1.1.3), hardware implementations are very resource hungry. As an example, [16] and [25] pro-

pose two FPGA-based implementations of the SURF algorithm. The architecture proposed in

[16] consumes almost 100% of the LUTs available on a medium sized Xilinx Virtex 6 FPGA, with-

out guaranteeing real-time performances. Similarly, the architecture proposed in [25] consumes

about 90% of the internal memory of a Xilinx Virtex 5 FPGA. It saves logic resources, but it is able

to real-time process images with a resolution limited to 640 x 480 pixels. Another example is pre-

sented in [233], where an FPGA-based implementation of the SIFT algorithm is presented. It is

able to real-time process 640 x 480 pixel images, consuming about 30,000 LUTs and 97 internal

DSPs in a Xilinx Virtex 5 FPGA. Comparing these data with the available hardware resources in

space-grade Xilinx Virtex FPGAs (Section 3.3), it can be immediately noted that no space is avail-

able to apply SEU mitigation techniques (Section 3.4) that are mandatory to use a Xilinx Virtex

FPGAs in space environment.

Instead, Harris corner detector provides a better trade-off between precision and complexity

[211]. Under the assumption of small differences between consecutive frames (i.e., high frame

rates or small camera displacements), its accuracy is comparable to SURF and SIFT, with a sig-

nificant lower complexity. This decrease in complexity can be immediately appreciated if the

reader compares the operations required by Harris corner detector (Section 2.5.1.1.1) with the

ones required by SURF (Section 2.5.1.1.3) and SIFT (Section 2.5.1.1.2). Since high frame-rates are

mandatory during the EDL phase to allow real-time correction of the descending trajectory, Har-
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ris is a very good candidate to implement a high-speed and low-area FEM accelerator block for

space-applications [58].

This chapter describes the results of my research work on VBN systems for space applications.

In particular, it presents FEMIP and Self-Adaptive FEMIP (SA-FEMIP). The former is a high per-

formance FPGA-based FEM IP-core based on the Harris algorithm and optimized for being used

in space EDL systems. The latter is an improved version of FEMIP that enables the self-adaptation

of the internal algorithm parameters. Self-adaptation is a key aspect to better optimize the FEM

algorithm to the environmental conditions, thus increasing the robustness with respect to noise

and variations of external conditions that are typical of the space environment.

An FPGA implementation has been preferred to follow the current trend that is replacing

ASICs with more flexible FPGA blocks in several mission critical applications [85].

Only few publications proposed FPGA-based implementations of the Harris algorithm. Benedetti

et al. [19] presented a very high speed hardware architecture (i.e., 30 fps output frame rate). How-

ever, their solution requires the parallel use of four FPGAs and is therefore not suitable for space-

applications.

Cabani et al. presented in [26] an interesting scale-invariant implementation of Harris. However,

area occupation is not well-optimized.

To the best of our knowledge, the state-of-the-art solution has been developed at the Univer-

sity of Dundee in the framework of the ESA NPAL Project [58]. It provides good performances in

terms of resources utilization and output frame rate (20 fps). Nonetheless, it requires an external

co-processor to perform the matching phase. The present IP-cores overcome these limitations,

proposing high performance FEM architectures able to increase the sustainable input frame rate

and the adaptability to the unpredictable environmental conditions of space environment, with

very limited hardware resources and without resorting to external co-processors.

The rest of this chapter deeply describe the internal architecture of FEMIP [53] and SA-FEMIP

[52], highlighting the benefits of the proposed solutions in terms of accuracy, timing performance

and hardware resources usage.

5.1.1 FEMIP

The overall FEMIP architecture is reported in Figure 5.1. It gets a 32-bit input stream representing

1,024 x 1,024 grey scale images with 10 bpp resolution, as provided by almost all space-qualified

CMOS cameras [70]. It provides a set of features that match between two consecutive images.

FEMIP internal structure includes three functional blocks: Gaussian Filter, Harris Features Ex-

tractor, Features Matcher.
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Figure 5.1: FEMIP complete chain

5.1.1.1 Gaussian Filter

The Gaussian Filter performs Gaussian smoothing [82] of the input image. It reduces the level

of noise in the image, improving the accuracy of the feature extraction algorithm. In our archi-

tecture, Gaussian filtering is performed via a 2D-convolution of the input image with a 7x7 pixels

Gaussian kernel mask [82]. A 7x7 kernel is enough to forcefully reduce the noise that strongly

affects images taken in space environments.

The 2D-convolution has been implemented in hardware exploiting the 2D-convolver pre-

sented in Section 4.3.1.1. Since this component has an input interface able to receive one pixel at

the time, an input controller has been added. This module receives the image flow through the

32-bit FEMIP input interface and unpacks it in order to reconstruct the original 10-bit pixel flow.

Obviously, the 2D-convolver has been configured in terms of internal buffers size and number

of algebrical components (i.e., multipliers and adders) to implement the 2D-convolution with

the required configuration. Thus, since a 7x7 pixel Gaussian kernel is needed, RB has been im-

plemented with 7 FPGA Block-RAMs (BRAMs), while the Sliding Window Buffer (SWB) is made

up of 49 10-bit registers. Eventually, the MUL/ADD tree implementing the Computation Stage

contains 49 multipliers and 6 adder stages, for a total of 48 adders. Adders and multipliers must

support fixed-point representation, because the used kernel values are fractional numbers. The

kernel content has been represented in the 0.15 format, assuring a minimal error introduced by

the fixed-point approximation (Section 5.1.1.4).

The output filtered pixels obtained from the 2D-convolver, represented in 10.15 bit format, are

sent both to the Harris Features Extractor and to an external memory via a second 32-bit output

interface. Storing filtered pixels in an external memory is mandatory since this information is

needed during the following features matching phase.

5.1.1.2 Harris Features Extractor

The Harris Features Extractor implements the Harris corner detection algorithm [86], and ap-

plies it on the filtered pixels received from the Gaussian Filter block. It outputs a set of extracted

features represented as: feature coordinates and the related R-factors (i.e., R(x,y)). For detail in-

formation about he Harris corner detector algorithm, the reader may refer to Section 5.1.1.2.
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Figure 5.2 shows the internal architecture of the Harris Features Extractor.

Figure 5.2: Harris Features Extractor internal architecture

The first two modules, LX and LY , compute the spatial image derivatives on the filtered im-

age in the horizontal and vertical direction, respectively. This operation is a 2D-convolution of

the filtered image with the 3x3 Prewitt kernel [82]. Equation 5.1 reports the Gx and Gy 3x3 Prewitt

kernels, useful to compute the image derivatives in the horizontal and vertical direction, respec-

tively.

Gx =


−1 0 +1

−1 0 +1

−1 0 +1

 ,Gy =


−1 −1 −1

0 0 0

+1 +1 +1

 (5.1)

Prewitt kernel factors are represented according to the 0.15 format, adding one extra bit in order

to use the 2’s complement representation, required to take into account negative factors. In or-

der to achieve high performance, these two modules implement the same pipelined architecture

exploited in the Gaussian Filter, with just two differences. First, the RB is adapted to the 3x3 di-

mension of Prewitt kernel. Six BRAMs, two for each filtered image row, are required to account for

the increased bit-per-pixel representation used after filtering. The RB is in common between LX

and LY modules. Second, the MUL/ADD tree only contains six 25x16 bit fixed-point multipliers

(just 6 values are different from zero in Prewitt kernels) and 3 adder stages, for a total amount of

6 fixed-point adders.

The next 29x29 bit multipliers compute the coefficients of the second-moment matrix, which

are required to calculate the Harris R-factor associated with each filtered image pixel (Equation

2.1).

The algorithm characterization (Section 4.1) performed on the Harris Features Extractor, high-
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lighted that the maximum values obtained during this computation can be represented resorting

to a 28.15 format. Thus, the output of 29x29 multipliers and of all following blocks of the Har-

ris Features Extractor (Figure 5.2), that implement Equation 2.1, can be truncated to this format,

resulting in a strong area reduction.

Finally, the 43-bit comparator at the output of this module applies a threshold on each com-

puted R-factor. It outputs just those features whose R-factor is greater than a given threshold

together with the coordinates of the associated pixel. This guarantees that only the features that

potentially represent a real corner are propagated to the next module.

The value of the threshold strongly depends on the image environment type (e.g., Mars or

Moon) and condition (e.g., brightness, noise or contrast). To increase adaptation, a self-adaptive

threshold is computed by the Adaptive Threshold Computation Module (ATHC) shown in Figure

5.2.

ATHC performs the thresholds adaptation routine reported in Algorithm 4 after the analysis of

each image, calculating the threshold to apply to the following image. It receives the number

of features extracted from the current image (NF) and the current threshold (TH), initialized at

0 at startup (i.e., all features are accepted). The number of selected features (NF) is compared

with the number of expected features (TF), in our specific test application set to 3,000. If the two

numbers are equal with a tolerance defined by δ the threshold is already optimized. If not, a new

threshold is computed adding Step to the current value of TH.

Algorithm 4 Threshold adaptation routine

Require: NF . Number of computed features
Require: TH . Current threshold

Const TF=3000 . Number of features to select
Const δ=50 . Tolerance
Disp=NF-TF
Step = Disp * (0.5/TF)*TH
if Disp<−δ OR Disp>+δ then

NTH=TH+Step
else

NTH=TH
end if
return NTH

Algorithm 4 computes the threshold for the next image based on information on the current im-

age. This is acceptable since, thanks to the high frame rate achievable by our architecture, con-

secutive frames show marginal differences. Obviously, at startup, ATHC needs some cycles to

output a valid threshold. During this phase, the Features Matcher is unable to produce useful re-

sults. However, an experimental campaign on a set of planetary images provided by ThalesAlenia

Space Italy S.p.a. (Verification Dataset in Section 5.1.1.4), highlighted that the maximum number

of frames required to reach a stable threshold is relatively small (13 frames). After this transitory

phase, TH becomes stable and the Features Matcher can start processing the extracted features,
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while ATHC continuously adjusts the threshold depending on the sampled images.

5.1.1.3 Features Matcher

The Features Matcher (Figure 5.3) receives the features extracted by the Harris Feature Extractor

and finds the set of features that match in two consecutive images.

Figure 5.3: Features Matcher internal architecture

This module adopts two different optimization strategies. The former concerns the matching

task, that is performed exploiting un-normalized Cross-Correlation. The un-normalized Cross

Correlation is a matching approach less robust to variations of environmental conditions than

the Normalized Cross-Correlation (NCC) one (Section 2.5.1.2.1). Although, in this context the

high frame rate leads to negligible differences in the conditions (e.g., brightness or contrast) of

two consecutive images. Thus, the usage of un-normalized Cross Correlation does not introduce

any error in the matching task. In addition, if compared to a NCC approach [241], it leads to a

very simple hardware implementation, providing a significant gain in FPGA resources utilization

and throughput.

The latter concerns the selection of potentially correlated features. Analysing the speed of a

space-module during the descending phase, and considering the high input frame rate used to

sample images, we identified that a feature can perform a maximum movement of 17 pixels be-

tween two consecutive images [203]. Thus, two features can be considered as potentially corre-

lated if they are both in a 35x35 pixel neighborhood between the two considered images. Cross-

Correlation is therefore computed on these features, only, reducing the computational load and

speeding up the matching task.

The Features Matcher receives feature coordinates and associated R-factor from the Harris

Feature Extractor, and stores them in the Features Buffer (FB), implemented as a group of BRAMs.

In our specific implementation, this buffer can store up to 3,500 features, using 14 internal BRAMs.

Whenever an entire image is processed and all features are stored in FB, the 3x3 Non-Max Sup-

pressor performs a preliminary filtering operation. For each feature, it scans a 3x3 pixels neigh-
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bourhood looking for close features. If they are found, the feature with the highest R-factor in this

region is marked as valid, while the others are marked as non-valid. To speed up this operation,

that would require a complete search into FB, we observed that, in our experimental campaign,

no more than 10 features per image row have been identified. Given this observation, considering

that features are obtained analysing the image row by row and then saved into FB, a neighbour

feature will be for sure stored in a (+20, -20) region of FB, centred on the considered feature. This

allows us to reduce the neighbour search space and therefore to dramatically decrease the exe-

cution time, without increasing area occupation.

All valid features are stored in the the NMS Buffer, that can store up to 1,000 filtered features

coordinates, using 4 BRAMs.

The NMS Buffer is composed of two sub-buffers (Frame 1 Features buffer and Frame 2 Features

buffer). These two buffers are alternatively used to internally store features associated with two

consecutive images, that must be analysed and matched. So that no external memory is required

to store these information.

The Correlation Controller scans the Frame 1 Features buffer and the Frame 2 Features buffer

looking for two correlated features. It compares the coordinates associated with a feature con-

tained in one of the two buffers with all the coordinates in the other buffer. Whenever two po-

tentially correlated features are found (i.e., their distance is no more than 17 pixels, as afore-

mentioned), their un-normalized Cross-Correlation is computed using the intensity of all pixels

contained in the two 11x11 pixels windows surrounding the two correlated features. These values

(previously stored by the Gaussian Filter) are loaded from the external memory.

A 11x11 pixels Cross-Correlation window size has been chosen for the hardware implementa-

tion after a test campaign on planetary image sequences, that simulate the descending phase of

a spacecraft. The internal implementation of this module follows the one presented in Section

4.3.4.3. In particular, for each pair of consecutive frames, the matched features have been saved

in order to evaluate the number of true and fake matches. Figure 5.4 shows the maximum rate of

fake matches, out of the number of total matches, that was observed between different images,

varying the size of the Cross-Correlation window. Results have been evaluated by mean of an

automatic script, able to detect fake matches between two consecutive images of the well-known

descending test-cases.

As can be seen in Figure 5.4, a window size greater than 11x11 pixels does not provide any sig-

nificant improvement on the quality of the matched couples. Furthermore, this implementation

provides more than 9x precision improvement, compared to the current state-of-the-art [58],

which is based on a 7x7 pixels window.

The 11x11 window related to the first feature is loaded into the Patch Register, that is composed

of 121 25-bit registers. Then, while the window associated with the feature of the second image

is loaded, the cross-correlation is computed "on-the-fly". Each time a new pixel is received from

the external memory, it is multiplied from the corresponding pixel of the first image, that is al-
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Figure 5.4: Fake matches on test images ranging different Cross-Correlation window size

ready stored in the Patch Register. This operation is performed by the Computation module that

contains a 25-bit multiplier connected to an accumulator. This approach makes the area occu-

pation of this module independent from the correlation window dimension, making the designer

free to select the more appropriate correlation window without any area occupation penalty.

Finally, the Cross-Correlation results are thresholded, in order to eliminate fake-matchings.

If the calculated Cross-Correlation value is higher than a given threshold, the coordinates of the

correlated features are stored inside the internal Matched Buffer, implemented as a single BRAM.

This buffer is able to store up to 512 matched features pairs. Moreover, since a feature of the

first image can be correlated to several features of the second image, only the match that has the

highest Cross-Correlation value (i.e., the highest probability to be correlated) is considered valid.

This ensures unique matched pairs, and higher quality of matches.

5.1.1.4 Experimental results

To evaluate the hardware resources usage and the timing performances, the proposed architec-

ture has been synthesized and implemented, resorting to Xilinx ISE Design Suite 14.6 [229], on

a space-qualified Xilinx Virtex 4-QV VLX200 (Section 3.3) that, together with the Xilinx Virtex

5-QV VFX130 (Section 3.3), represents the state-of-the-art architecture for space-qualified repro-

grammable FPGAs (Section 3.3). The reason to select the Xilinx Virtex 4 architecture instead of

the newer Xilinx Virtex 5 is twofold. First the SA-FEMIP architecture has been designed to be in-

tegrated and tested inside the Thales Alenia Space Avionic Testbench (ATB), i.e., a hardware infras-

tructure emulating the on-board computing platform of a spacecraft. The ATB is equipped with

a Gaisler Research GR-CPCI-XC4V development board [78]. This board integrates a Xilinx Vir-

tex 4 XC4VLX200VLX200 [226], which provides the same internal logic architecture of the space-

qualified version. Second, implementing FEMIP on a Xilinx Virtex 4 FPGA allowed us to perform

fair comparisons with other published architectures, thus highlighting the benefits of the intro-

duced improvements.
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Post place and route simulations have been done with Modelsim SE 10.1c [83].

Table 5.1 shows the performances of FEMIP in terms of area occupation, speed, and power

consumption. The power consumption of each module reported in Table 5.1 does not take into

account the contribution of the clock circuitry and the leakage. These contributions are included

in the overall power consumption.

Table 5.1: Resources usage and power consumption of FEMIP implemented on a Xilinx Virtex 4
XC4VLX200

Module
FPGA Area Occupation Max.Freq. Power

Registers LUTs BRAMs [MHz] [W]

FEMIP

GF 696 (0.30%) 5,896 (3.31%) 7 (2.08%) 118.36 0.064

HFE 1,106 (0.62%) 11,081 (6.22%) 6 (1.79%) 62.55 0.407

FM 2,432 (1.36%) 656 (0.37%) 19 (5.65%) 101.30 0.037

Total 4,234 (2.38%) 17,633 (9.89%) 32 (9.52%) 62.55 2.002

It can be noted that FEMIP occupies a limited portion of the internal FPGA resources. For this

reason, FEMIP leaves enough free space for the application of the SEU-mitigation techniques,

that are mandatory to use SRAM-based FPGAs in space applications(Section 3.4).

Table 5.2 compares the performances and the area occupation of FEMIP w.r.t. the actual

state-of-the-art implementation (FEIC) [58] [59]. Slices and Internal memory of FEIC are re-

ported for a Xilinx Virtex II device [231] (as in [59]), but the slice and memory architectures are

the same as in Xilinx Virtex 4 family devices. The reported data confirm the great improvements

of FEMIP, both in terms of resources usage and speed (i.e., frames per second (fps)). No compar-

ison about the power consumption has been reported, since this data is not public available for

FEIC.

Table 5.2: Resource Usage for Xilinx Virtex 4 XC4VLX200

Resource Usage Max. Speed

Slices Internal Memory [KB] [fps]

FEMIP 9,801 72 33

FEIC [59] 25,344 162.5 20

Improvements -61.3% -55.7% +65%

To verify the correctness of the implementation, a software model of FEMIP, written in MAT-

LAB, has been developed. The model reflects exactly the fixed-point data parallelism adopted

in the hardware implementation. Results extracted from hardware simulations have been com-

pared with the ones taken from the MATLAB simulation, and equivalence has been verified.
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Figure 5.5: R-factor relative error introduced by the fixed-point representation

Moreover, in order to validate the accuracy of the proposed architecture, a second MATLAB soft-

ware model of the complete FEMIP system has been implemented. It implements all the oper-

ations resorting to a double precision representation. Since the output of the Harris algorithm

is thresholded in order to extract features (Section 5.1.1.2), an error is introduced only if a pixel,

extracted in the MATLAB model, is not extracted in the hardware simulation, or vice versa. This

misbehaviour is due to the R-factors fixed-point hardware approximation. Thus, the represen-

tation error has to be evaluated on values close to the threshold. The maximum relative error

between the R-factors calculated by the FEMIP and those provided by MATLAB was evaluated for

45 images included in Affine Covariant Regions Datasets [164]. As reported in Figure 5.5, its value

is always lower than 0,006%.

Moreover, by comparing the extracted points in both software and hardware simulations, we ob-

served that, in the worst case, the representation errors led to ± 6 (out of 3,000) extracted points.

Such a small difference in the set of extracted features will not decrease the effectiveness of the

subsequent matching task.

Finally, in order to evaluate the overall performances of the proposed architecture, three param-

eters, namely Number of Extracted Matches (NEM), Spatial Distribution Percentage (SDP) and

Walsh Percentage (WP), were evaluated (as suggested in [211]) for an images dataset (i.e., Verifi-

cation Data-set) provided by ThalesAlenia Space Italy S.p.a..

The Number of Extracted Matches (NEM) represents the number of extracted matches between a

pair of images (i.e., a feature in the first image is identified also in the second image). While, the

Spatial Distribution Percentage (SDP) of extracted matches is a parameter useful to quantify the

distribution of the matched points on the image. To evaluate the SDP, the frame is divided into a

grid of 8 by 8 cells, each of them made up of 128 by 128 pixels. In order to measures how much

the extracted matching points are uniformly spread in the image, SDP is defined as:

SDP =

N∑
i=1

−pi log pi

log N
(5.2)
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where pi is computed as the number of matching points within an image cell (Section 5.1.2.2)

over the total number of extracted matching points in the frame, and N is the number of image

cells (i.e., 64).

Eventually, the Walsh Percentage (WP) is used to compare the matches extracted by the FEMIP

with the matches found by software using the Walsh transformations (the reader may refer to

[125] for more information about Walsh transform).

The higher is the value of these parameters, the more accurate will be the motion estimation task.

The Verification Data-set is composed of 89 image pairs covering different environmental con-

ditions (i.e. image quality), with different camera movement types, in a synthesized Mars envi-

ronment (Figure 5.6). Camera movement types include displacements of 1, 10 and 30 meters at

different altitudes (1,000 meters and 5,000 meters), angular rotations (0.5, 1 and 5 degrees), while

image quality types include the insertion of different levels of Salt-and-Pepper noise, blur, bright-

ness and contrast variations.

Figure 5.6: Conditions covered by the used verification image dataset

As can be seen from Figure 5.6 the test image pairs cover every combination between camera

movement types and environmental conditions. Thus, tests on displacements and rotations have

been repeated under different image quality conditions. Original images have been elaborated by

means of software IrfanView and MATLAB in order to modify their contrast, resolution, corrupted

pixels’ number and brightness. The Blur on the image has the effect to soften the image, creating

a blurry or fuzzy look. Starting from images synthesized in nominal conditions of illumination

and resolution (referenced as level 0), blur has been modified using IrfanView, which enables the

modification of the blur thanks to a slider control, moving between 0 to 99 (blurred image). The

contrast of an image measures the difference in brightness between light and dark areas. Thus,

contrast reductions can be used to simulate the fog effect. Contrast has been modified using Ir-

fanView, which enables the modification of the number of gray levels thanks to a slider control,
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moving between -127 (total grey) to 127 (black and white). For current tests, we exploited the

[−127÷0] part of the contrast control. Brightness has been also modified using IrfanView with

the same method, moving between -255 (total black) to 255 (total white). For current tests, we

exploited the [−255÷0] part of the contrast control. The illumination variations simulate differ-

ent Sun positions and, consequently, different shadows on the surface. Finally, Salt-and-Pepper

noise has been added to the image using the MATLAB function imnoise. Figure 5.7 shows four

examples of images included in the described dataset.

(a) Image with ideal environmental
conditions

(b) Image with Salt-and-Pepper noise
added

(c) Image with lower contrast (d) Image with lower brightness

Figure 5.7: Examples of images from the Verification Dataset provided by Thales Alenia Space
Italy S.p.a.

For the given dataset, the NEM is always greater than 200. Figure 5.8 shows the results for

SDP and WP. It illustrates that the matches are almost distributed on the entire image, and a good

portion of them covers the matches extracted by the Walsh Transform, that is considered a robust

matching algorithm [125]. Furthermore, Figure 5.8 depicts that for images taken in nasty envi-

ronmental conditions (i.e., indexes from 75 to 84) the WP decreases, indicating that only a subset

of the extracted matches are validated also by the Walsh method, but the SDP still continue to be

high.
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Figure 5.8: Spatial Distribution and Walsh Percentages Parameters resulting from the verification
campaign

Unfortunately, a comparison of these parameters with the ones associated with FEIC (i.e., the

current state-of-the-art) cannot be performed since the FEIC implementation is not public avail-

able.

For the sake of completeness, Figure 5.9 reports the matches extracted from two consecutive

Mars images. The lines depict the matched features between the two images.

Figure 5.9: Example of extracted matches from two consecutive frames of a synthesized Mars
Surface

5.1.2 SA-FEMIP

SA-FEMIP is an optimized FPGA-based self-adaptive FEM architecture based on the well known

Harris feature extractor algorithm [86]. This architecture extends the architecture of FEMIP (Sec-

tion 5.1.1)) by enabling self-adaptation of the parameters of the image noise filter and the feature

extraction algorithm. Self-adaptation allows to better optimize the FEM algorithm to the en-

vironmental conditions, thus increasing the robustness with respect to noise and variations of

external conditions that are typical of the space environment. Adaptation is obtained introduc-

ing very marginal overhead and guaranteeing high operational rates. This is achieved by resort-

ing to the Dynamic Partial Reconfiguration (DPR) capabilities of modern space-qualified FPGAs.
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Experimental results clearly show that SA-FEMIP enables increased accuracy and performance

compared to previous architectures, two key characteristics for the implementation of VBN sys-

tems for next generation space missions.

The input and output interfaces of SA-FEMIP are the same of the ones of FEMIP. In fact, it

receives a 32-bit input stream, representing a sequence of 1,024 x 1,024 grey scale frames with 10

bpp resolution, and it provides in output the set of matching points identified in the processed

frames.

The SA-FEMIP pipeline (Figure 5.10) includes three main functional blocks: the Reconfig-

urable Gaussian Filter, the Adaptive Harris Feature Extractor, and the Feature Matcher. Moreover,

SA-FEMIP includes an input/output interface to communicate with an external memory used to

temporarily store images filtered by the Reconfigurable Gaussian Filter and later required during

the feature matching step.

Figure 5.10: SA-FEMIP computational pipeline

The self-adaptability features of SA-FEMIP have been implemented in the Reconfigurable

Gaussian Filter and the Adaptive Harris Feature Extractor, while the he Feature Matcher is main-

tained unchanged with respect to FEMIP (Section 5.1.1.3).

In the following sections a detailed description of the implemented self-adaptability features,

and quantitative analysis of the obtained benefits is reported.

5.1.2.1 Reconfigurable Gaussian Filter

The Reconfigurable Gaussian Filter overcomes the main drawback associated with the fixed Gaus-

sian filter variance (σ2
f ) implemented in the FEMIP Gaussian filter (Section 5.1.1.1). A fixed Gaus-

sian filter variance works well if the noise level of the processed frames is known a priori. As an

example, a high filter variance is useful for high noise levels. Instead, for low noise levels the

images are over-smoothed, thus reducing the accuracy of the feature extraction and matching

modules [82]. To overcome this problem, the Reconfigurable Gaussian Filter exploits FPGA DPR

to adapt the varianceσ2
f frame-by-frame, based on the estimated noise affecting the input frame.

In literature, many works propose adaptive filters [179][242][48][207]. Among the proposed

approaches, those based on evolutionary algorithms are the most promising, in terms of timing

performances and hardware resources usage [56]. Nevertheless, they provide very good results
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if the processed images are similar to the one used during the training phase of the evolution-

ary algorithm. Instead, if the received image characteristics (e.g., illumination conditions, tonal

distribution, etc.) cannot be predicted, as in the harsh space environment, the filtering perfor-

mances become very poor [144] [143].

AIDI, presented in Section 4.3.1.2, proposes a Gaussian filter architecture able to self-adapt σ2
f

pixel-by-pixel depending on the noise level affecting the processed image. This approach en-

sures a higher level of adaptivity with respect to evolutionary filters. However, it wastes a lot of

hardware resources.

To overcome this issue, SA-FEMIP exploits FPGA DPR to provide filter adaptation while sav-

ing area and power consumption. Basically, the proposed approach estimates the level of noise

affecting the input image using the same algorithm adopted in AIDI (Section 4.3.1.2). The noise

level estimated for the current frame is used to select the filter variance that would guarantee

optimum filtering results. This filter variance is then used to filter the next input image, allowing

adaptation of the filter parameters frame-by-frame during the entire descending sequence. The

adaptation of the filter variance is achieved by reconfiguring the 49 constant multipliers required

to perform the convolution of the image with the Gaussian kernel (Section 5.1.1.1). This signif-

icantly saves hardware resources with respect to a solution that uses 49 generic multipliers in

which the Gaussian kernel constants are selected using multiplexers driven according to the se-

lected filter variance. Figure 5.11 shows the architecture implementing the proposed approach.

Figure 5.11: Reconfigurable Gaussian Filter hardware architecture

The Reconfigurable Gaussian Filter is composed of: (i) the Noise Variance Estimator (NVE),

(ii) the Reconfiguration Manager, and (iii) the Gaussian Filter.

The Gaussian Filter is implemented as described in Section 5.1.1.1 but, in order to enable its

reconfiguration, the 49 multipliers are enclosed in an FPGA reconfigurable module (RM in Figure

5.11). A reconfigurable module is a portion of an FPGA design that can be reconfigured at run-

time, without impacting the behavior of the rest of the design.

While the Gaussian Filter processes the input image, the NVE estimates the noise level. The
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Figure 5.12: Timing diagram of SA-FEMIP

NVE is implemented adopting an architecture similar to the one presented in AIDI (Section 4.3.1.2).

However, we compute here the noise standard deviation (σn) instead of the noise variance (σ2
n).

This change has not functional effects since σn is not actually used to perform calculations like

in [54] during the filtering process. When a full frame has been processed, the NVE provides the

current estimated σn to the Reconfiguration Manager.

The Reconfiguration Manager exploits this value to look-up into a bitstream address table and

to select the proper configuration for the multipliers inside the RM. The multipliers reconfigura-

tion is accomplished by reading the multipliers configuration bitstream from the external mem-

ory, choosing the configuration associated with the estimated standard deviation. The bistream

is then used to program the reconfigurable module of the FPGA resorting to the FPGA internal

Configuration Port (i.e., ICAP [230] in Xilinx FPGAs). It is worth to highlight here that using the

noise standard deviation instead of the noise variance strongly reduces the NVE area, avoiding

the multiplier required to compute σ2
n .

During the reconfiguration process, the Reconfiguration Manager must access the external

memory to retrieve the RM configuration bitstream. To avoid the stall of the processing chain,

this access must be scheduled when no other module requires information from the external

memory. As shown in the timing diagram of Figure 5.12, the external memory is accessed by the

Reconfigurable Gaussian Filter in write mode to store the computed filtered pixel values. As de-

scribed in Section 5.1.1.1, during this phase the Reconfigurable Gaussian Filter and the Adaptive

Harris Feature Extractor work in pipeline, while the noise variance is computed (Image Filter-

ing, Features Extraction and Noise Estimation activities in Figure 5.12). At the end of the feature

extraction, the NMS phase takes place, and, finally, the Feature Matcher performs the matching

phase where it accesses the external memory in read mode to retrieve the data needed to com-

pute the cross-correlation. It is worth noting that the Image Filtering and the Features Extraction

slots are not perfectly aligned due to the latency in loading the internal pipeline of the Reconfig-

urable Gaussian Filter. Looking at Figure 5.12, the external memory is always idle during the NMS

phase (ti dle in Figure 5.12). This time slot can be used to reconfigure the filter (R task in Figure
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5.12) without stalling the processing chain. This means that no timing overhead is introduced in

the feature extraction and matching task.

Finally, since for each value of σ2
f a configuration bitstream must be stored in the external

memory, the range of possibleσ2
f must be discretized according to the available external memory

space (Section 5.1.2.3 for detailed information about the size of each bitstream).

5.1.2.2 Adaptive Harris Feature Extractor

This section introduces the hardware architecture of the Adaptive Harris Feature Extractor (Fig-

ure 5.13), focusing on the novel thresholding approach that ensures to uniformly distribute the

extracted features on the input frame.

Figure 5.13: Adaptive Harris Features Extractor internal architecture

The first two modules of the Adaptive Harris Feature Extractor, Lx and Ly , compute the spatial

image derivatives of the filtered image in the horizontal (Lx ) and vertical (Ly ) direction, respec-

tively. This components have the same internal architecture as the namesake ones in FEMIP

(Section 5.1.1). Then, the Corner Response Calculator module computes the determinant and

the trace of the second-moment matrix N (x, y), which are required to calculate the Harris corner

response R(x, y) associated with each input pixel. Finally, the Adaptive Cell-based Thresholding

(ACTH) module thresholds the computed corner responses, asserting the val_feat signal when

the current processed pixel is above the threshold and therefore represents an actual feature.

Selecting a well distributed set of features within the frame improves the motion estimation

accuracy. In order to level the distribution of the extracted features on the processed frames, the

ACTH module splits the input image in 64 cells of 128x128 pixels each. It then tries to extract

the same number of features from each cell. This goal is achieved exploiting a local threshold

for each cell, instead of using a single global threshold for the overall image, as done in FEMIP

(Section 5.1.1). The chosen number of cells represents a good trade-off between accuracy and

memory requirements. As it will be discussed in Section 5.1.2.3, it ensures to uniformly cover the

input image and, at the same time, to avoid the introduction of a large number of cells that would

require a lot of memory to store the related information items.
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Algorithm 5 Adaptive Cell Thresholding approach
Require: NF[8,8] . # extracted features in each cell
Require: TH[8,8] . Threshold value of each cell
Require: TF[8,8] . # target features in each cell
1: Const N _cel l=64 . # of cell
2: Const δ=15 . Tolerance
3: Const LowT H=15 . Threshold lower bound
4: Const OT F =3000 . Overall # target features
5: Curr_EF=

∑
N F [i , j ] . Current overall # extracted features

6: LowTH_cell[8,8]=[0,...,0]
7: TF_slack=0
8: for i=0;i<8;i++ do
9: for j=0;j<8;j++ do
10: Disp=NF[i,j]-TF[i,j]
11: Step = Disp * (0.5/OT F )*TH[i,j]
12: if Disp<−δ then
13: new_TH[i,j]=TH[i,j]+Step
14: if new_TH[i,j]< LowT H then
15: new_TH[i,j]=TH[i,j]
16: LowTH_cell[i,j]=1
17: TF_slack=TF_slack + | Disp |
18: end if
19: else
20: if Disp>+δ then
21: new_TH[i,j]=TH[i,j]+Step
22: else
23: new_TH[i,j]=TH[i,j]
24: end if
25: end if
26: end for
27: end for
28: if TF_slack > 0 then
29: if TF_slack < N _cel l then
30: TF_slack_cell = 1
31: else
32: TF_slack_cell = b TF_slack ÷ N _cel lc
33: end if
34: for i=0;i<8;i++ do
35: for j=0;j<8;j++ do
36: if Curr_EF <=OT F then
37: if LowTH_cell[i,j]=0 then
38: new_TF[i,j]=TF[i,j]+TF_slack_cell
39: else
40: new_TF[i,j]=NF[i,j]
41: end if
42: else
43: if TF[i,j] = 0 then
44: new_TF[i,j]=TF[i,j]
45: else
46: new_TF[i,j]=TF[i,j]-1
47: end if
48: end if
49: end for
50: end for
51: end if
52: return (new_TH, new_TF)

The ACTH module analyzes information related to the current frame implementing the deci-

sion process described in Algorithm 5, and computes the local thresholds to use for the following

frame. The threshold adaptation process requires to know, for each cell composing the frame, (i)

the number of extracted features (N F ), (ii) the current threshold (T H) initialized at the highest

possible value at startup (i.e., no features are extracted), and (iii) the current number of expected

features (T F ). In our tests, T F has been initialized to 48 to fix the overall number of expected
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features per frame (OT F ) to about 3,000 features. This value limits the size of the internal buffer

used to store the extracted features in the Feature Matcher module. Since N F , T H and T F must

be defined for each cell of the frame, they are stored in the form of 8x8 matrices, with the matrix

elements associated with the defined frame cells.

Algorithm 5 can be split in two main parts. The former (from row 8 to 27) updates the cell thresh-

old values. For every cell (i , j ), it compares the number of extracted features N F [i , j ] with the

number of expected features T F [i , j ] (Di sp at row 10). If these two values differ no more than

a defined tolerance (i.e., the difference is contained in the range [+δ,−δ]) the threshold is not

changed (row 23). Otherwise, the threshold is updated adding Step to its current value (rows

13 and 21). One additional test is performed when the number of extracted features is lower

than the number of expected ones (from row 14 to 18). In particular, the updated threshold

(new_T H [i , j ]) is considered valid if it is higher than a lower bound value (LowT H). If not, the

threshold is not changed (row 15). This avoids to over-reduce the threshold value and to provide

in output weak features that could be potentially associated with the noise in the input frame. In

fact, if a cell represents a flat part of the planetary surface, a high value of the image gradient, and

consequently a high value of the computed corner response, is mainly due to the noise.

The second part of Algorithm 5 (from row 28 to 51) optimizes the number of features extracted

for each cell in order to obtain a total number of features for the frame as close as possible OT F .

To do that, it is worth to remember that all cells that reach the threshold lower bound cannot

further update their threshold. If, with this threshold, the number of extracted features for the

cell N F [i , j ] is lower than the number of expected features for the cell T F [i , j ] there is a certain

amount of features corresponding to | Di sp | that can be redistributed to other cells with thresh-

old higher than the lower bound. To exploit this, each cell with threshold lower than the lower

bound is marked through the LowT H_cel l [i , j ] flag (row 16) and the number of unused features

of these cells is accumulated in the T F _sl ack parameter (row 17) in order to be redistributed to

the other cells, according to the decision process described from row 28 to 51. The T F _sl ack rep-

resents the number of expected features that can be borrowed to the cells that have not reached

the threshold lower bound (i.e., LowT H_cel l [i , j ] = 0). The number of features to borrow to each

cell (T F _sl ack_cel l ) is computed dividing T F _sl ack by the number of cells composing the im-

age. To ensure a high number of extracted features, the algorithm always borrows at least one

feature to each cell with LowT H_cel l [i , j ] = 0 (rows 29 to 33). If the total number of extracted

features Cur r _EF is lower or equal to OT F (from row 36 to 41), if the cell has not reached the

threshold lower bound the number of expected features for the cell is increased of T F _sl ack_cel l

(row 38). Otherwise, it is left unchanged (row 40).

Using this approach, the total number of extracted features (Cur r _EF ) could increase more and

more due to the borrow mechanism, that increases the T F [i , j ] values. To allow a decrease of

the T F [i , j ] values, and so to maintain the overall number of extracted features around OT F , if

Cur r _EF exceeds OT F , the target feature value of each cell is decreased by 1 (from row 43 to 47).
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The hardware architecture of the ACTH module is shown in Figure 5.14.

Figure 5.14: Adaptive Cell-based Thresholding hardware architecture

It is composed of four main modules: (i) the Features Counter, (ii) the Thresholds & Target Features

Updater, (iii) the TH sh_vector, and (iv) the NF sh_vector.

The Thresholds & Target Features Updater module implements Algorithm 5, while the Fea-

tures Counter performs the actual thresholding of each corner response R(x, y) received from

the Corner Response Calculator (Figure 5.13). This module reads the thresholds associated with

each image cell (i.e., T H [i , j ] in Algorithm 5) that are stored in the TH sh_vector, and compares

them with the received corner responses, asserting the val_feat signal if R(x, y) is higher than the

threshold associated with the image cell containing the currently processed pixel.

Figure 5.15: TH and NF shifter vector hardware architecture

The TH sh_vector module is implemented as in Figure 5.15. It is composed of eight 8-positions

shift registers connected as circular buffers. Each shift register stores eight threshold values as-

sociated with a row of image cells (it is worth to remember that the image is split in 64 cells orga-
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nized in 8 rows with 8 cells each, and a threshold value is associated with each cell). The en signal

enables the 1-position right shifting operation, while the Sel signal selects which shift register

must be rotated. These two control signals are driven in order to provide in output the threshold

associated with the image cell of the currently processed pixel. Since the image is received in

a raster way, and each image cell is composed of 128x128 pixels, en is asserted for a clock cycle

every 128 received corner responses (i.e., whenever we move from a cell to the following one).

Instead, Sel selects the next shift register (i.e., the next row of image cells) after 128x1024 received

corner responses (i.e., whenever a complete row of image cells has been processed). To avoid

loosing the threshold values, during the thresholding phase each shift register composing the TH

sh_vector acts as a circular buffer through the multiplexer driven by the th_phase signal (Figure

5.14). Instead, during the thresholds updating phase, the content of the TH sh_vector is over-

written (exploiting the Data_in port) with new thresholds values computed by the Thresholds &

Target Features Updater module.

Simultaneously to the thresholding task, the Features Counter counts (through an accumu-

lator) the number of extracted features for each image cell (i.e., N F [i , j ] in Algorithm 5), and

stores these values inside the NF sh_vector. The NF sh_vector is implemented as the TH sh_vector

(Figure 5.15), and both modules share the input control signals. Whenever we move from the

current image cell to the next one, the content of the internal accumulator is stored inside the NF

sh_vector, and it is initialized with the output value provided by the NF sh_vector. At the end of

the operations described by Algorithm 5, a local reset is asserted to clear the content of the NF

sh_vector in order to prepare it for the next image processing cycle. All aforementioned control

signals are generated by the Controller module (Figure 5.14), which also coordinates the opera-

tions of all modules included in the ACTH.

5.1.2.3 Experimental Results

To estimate the hardware resources and the timing performances, the SA-FEMIP architecture has

been synthesized and implemented, resorting to Xilinx ISE Design Suite 14.6 [229], on a Xilinx

Virtex 4 XC4VLX200 [226]. The reasons for the selection of this device are the same of the ones

reported in Section 5.1.1.4. Post place and route simulations have been done using Modelsim SE

10.1c [83] to annotate the switching activities of internal nodes, and the Xilinx XPower Analyzer

has been exploited of power consumption estimation.

Table 5.3 compares the SA-FEMIP adaptive architecture with the FEMIP one (Section 5.1.1).

Comparison is performed in terms of area overhead by considering internal logic and memory

resources (i.e., registers, Look-Up Tables (LUTs), and Block-RAMs (BRAMs) (Section 3.3)). Per-

centages in Table 5.3 represent the used portion of the hardware resources available in the Xilinx

Virtex 4 XC4VLX200 [226]. It is important to point out that the synthesis of both FEMIP and SA-

FEMIP architectures has been forced to avoid the use of DSPs. The reasons for this choice will be
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better elaborated later in this section. Power consumption is analysed considering an operating

frequency of 60 MHz for both architectures.

Table 5.3 shows that SA-FEMIP FPGA occupation is around 10% for logic and memory resources,

Table 5.3: Resources usage and power consumption of FEMIP and SA-FEMIP, implemented on a
Xilinx Virtex 4 XC4VLX200

Module
FPGA Area Occupation Max.Freq. Power

Registers LUTs BRAMs [MHz] [W]

FEMIP

GF 696 (0.30%) 5,896 (3.31%) 7 (2.08%) 118.36 0.064

HFE 1,106 (0.62%) 11,081 (6.22%) 6 (1.79%) 62.55 0.407

FM 2,432 (1.36%) 656 (0.37%) 19 (5.65%) 101.30 0.037

Total 4,234 (2.38%) 17,633 (9.89%) 32 (9.52%) 62.55 2.002

SA-FEMIP

RF 939 (0.53%) 7,448 (4.18%) 10 (2.98%) 118.36 0.083

AHFE 1,362 (0.76%) 12,468 (7.00%) 6 (1.79%) 62.55 0.462

FM 2,432 (1.36%) 656 (0.37%) 19 (5.65%) 101.30 0.037

Total 4,733 (2.66%) 20,576 (11.55%) 35 (10.42%) 62.55 2.097

Overhead Total 499 (0.28%) 2,943 (1.66%) 3 (0.90%) 0 0.095

and the overhead w.r.t. FEMIP is less than 2%. This overhead is due to the additional modules

required to perform adaptation in the Reconfigurable Gaussian Filter (RF) described in Section

5.1.2.1 and the additional hardware required to implement the Adaptive Harris Features Extrac-

tor (AHFE) presented in Section 5.1.2.2. In particular, in the RF, the increased occupation is due

to the NVE and the Reconfiguration Manager modules. Instead, in the AHFE, the area overhead

is introduced by the usage of a more complex thresholding approach, with respect to the simple

one adopted in FEMIP. It is worth to highlight here that an effort has been placed to limit the reg-

isters overhead. The AHFE architecture strongly relies on shift registers structures to implement

the required vectors and matrices included in Algorithm 5. This kind of component can be effi-

ciently implemented in Xilinx FPGAs, exploiting the Xilinx SRL capability of the Look-Up Tables

(LUTs) (Section 3.3). This capability makes it possible to use LUTs as shift registers instead of a

chain of Flip-Flops, saving hardware resources. As an example, a single LUT, in a Xilinx Virtex 4,

can act as a 16x1-bit shift register avoiding a chain of 16 flip-flops.

The maximum operating frequencies of each module reported in Table 5.3 demonstrate that

no timing penalty is introduced in SA-FEMIP by the introduction of the adaptivity features.

The power consumption of each module reported in Table 5.3 does not take into account

the contribution of the clock circuitry and the leakage. These contributions are included in the

overall power consumption. By comparing the power consumption of SA-FEMIP with the one of

FEMIP a very limited overhead equal to 4.75% is observed. It is worth noting that the power con-

sumption of the RF module does not include the power used during the partial reconfiguration
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process. However, according to [21] the reconfiguration process consumes few tens of mW, only.

Eventually, the throughput, in terms of frames-per-second (fps), is the same (i.e., 33 fps) for

both FEMIP and SA-FEMIP.

In Table 5.4, the performances and the area occupation of SA-FEMIP have been compared

with FEIC [58] [59]. FEIC is a Feature Extraction and matching Integrated Circuit, based on the

Harris algorithm, that University of Dundee developed for the European Space Agency (ESA) in

the framework of the Navigation for Planetary Approach and Landing (NPAL) project. LUTs and

BRAMs used by FEIC are reported for a Xilinx Virtex II device [231] (as in [59]), but the internal

logic and memory architecture is the same as in Xilinx Virtex 4 family devices. The reported data

confirm the great improvements of the SA-FEMIP architecture, both in terms of resources usage

and throughput.

Table 5.4: Resource usage and throughput of FEIC and SA-FEMIP for a Xilinx Virtex 4 XC4VLX200

Resource Usage Max. Speed

LUTs BRAMs [KB] [fps]

SA-FEMIP 20,576 78.75 33

FEIC [59] 50,688 162.5 20

Improvements -59.4% -51.5% +65%

The low area occupation of SA-FEMIP allow designers to exploit the free hardware resources to

apply fault mitigation strategies to increase the reliability of the design, a key requirement in

space applications (Section 3.4). Even after the implementation of fault tolerance techniques,

space is also available to integrate in the same device additional FPGA-based IP-cores useful

to accelerate other computational intensive tasks performed during the descending phase (e.g.,

Hazard map computation [214]). This is very important considering the limited resources avail-

able in space applications.

As mentioned at the beginning of this section SA-FEMIP has been synthesized avoiding the

use of DSPs. This decision can now be better motivated. DSPs have the advantage of further re-

ducing the area occupation of FEMIP especially when multipliers are implemented. With the use

of DSPs the SA-FEMIP occupation would be reduced to 9,029 (5.06%) LUTs, 66 (68.75%) DSPs,

while the occupation of registers and BRAMs remains the same. Nevertheless, DSPs are limited

resources. With 66 DSPs required out of the 96 available in the Xilinx Virtex 4-QV VLX200 [226],

TMR techniques for this portion of the design would not be possible. Moreover, the intensive use

of DSPs increase the routing complexity introducing a 30% frequency penalty in the design.

SA-FEMIP has not been compared to [26], since [26] implements the multi-scale Harris detec-

tor (i.e., a rotation-invariant version of the Harris detector). [26] consumes a lot of hardware

resources, and implements a feature that is not actually required in EDL applications since rota-

tions between two consecutive images are limited [63].
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SA-FEMIP has been evaluated in terms of accuracy and robustness, exploiting an image dataset,

provided by Thales Alenia Space Italia s.p.a. company, that covers different landing zones (i.e.,

portions of the Mars surface), environmental conditions (i.e., image quality), and camera move-

ment types, in a synthesized Mars environment. Camera movement types include displace-

ments, up to 30 meters, at different altitudes (from 1,000 meters to 5,000 meters), and angular

speed (up to 2.5 ◦/s, in accordance to [63]), while image quality types include the injection of

different levels of Gaussian noise, blur, brightness and contrast variations. This dataset is an

improved version of the Verification Data-set presented in Section 5.1.1.4, that contains image

sequence representing actual descending sequences on the Mars surface.

According to [63], the robustness has been evaluated exploiting two parameters: (i) Number of

Extracted Matches (NEM), and (ii) Spatial Distribution of Points (SDP) (Section 5.1.1.4).

Figure 5.16 shows the SDP results obtained from FEMIP and SA-FEMIP by providing in input

the images composing the aforementioned dataset. Thanks to the adaptive cell-based threshold-

ing approach, SA-FEMIP outperforms FEMIP results in every test case (i.e., Test Index). In partic-

ular, the improvements are very high (from Test Index 0 to 76) when the input images represent

a landing zone characterized by few small rugged regions. This is visually highlighted in Figure

5.17 that depicts the matching points extracted by FEMIP (Figure 5.17(a)) and SA-FEMIP (Figure

5.17(b)). Each figure shows two consecutive input images with lines connecting the features that

match in the two images.

Figure 5.16: SDP results for FEMIP and SA-FEMIP

Figure 5.18 shows the NEM versus different levels of injected Gaussian noise variance σ2
f

(since FEMIP has a fixed σ2
f = 2, its NEM is represented by the dashed line).

A fixed σ2
f does not allow to reach the highest NEM for every noise level. Thus, exploiting the

reconfigurable filter architecture (Section 5.1.2.1) it is possible to highly increase the number of
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(a) FEMIP

(b) SA-FEMIP

Figure 5.17: Example of extracted matches

Figure 5.18: NEM results for different levels of injected Gaussian noise, varying the Gaussian Filter
variance

extracted matches, as shown by the Optimal line in Figure 5.18. In order to follow the trend of

this line, in the SA-FEMIP architecture 5 configurations for the RF module have been chosen.

In particular, these configurations are associated with σ2
f equal to 0.5, 0.75, 1, 1.5 and 2, for the
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noise level ranges [0,100], [100,200], [200,300], [300,600], [600,1600], respectively. As can be seen

in Figure 5.18, the usage of a reconfigurable filter increases the NEM value w.r.t. FEMIP up to 2

times, especially for a σ2
n lower than 600.

Moreover, as described in Section 5.1.2.1, the usage of the DPR enables to save resources with

respect to use a static hardware architecture including 49 multipliers, each one with a multiplexer

to select the right Gaussian kernel value. In SA-FEMIP, using the same fixed-point data represen-

tation adopted in FEMIP, the RM and the Reconfiguration Controller (Figure 5.11) require 5,320

LUTs and few registers. Instead, a static hardware architecture (as the one adopted in AIDI), with

the same data parallelism, would require about 19,000 LUTs, leading to a save of 72% of hardware

resources.

Since each bitstream for the RM module is 166 KB (for the selected FPGA device), to store the 5

configurations 830 KB are required in the external memory. Since the throughput of the Reconfig-

uration Controller is 400 MB/s (i.e., this value is limited by the maximum throughput of the ICAP

[230]), the time required to reconfigure the RM is equal to 0.42 ms. This time fits the idle time of

the external memory (i.e., ti dl e in Figure 5.12) that is equal to 1.2 ms (i.e., the time required by

the Matcher to perform the NMS phase). For the sake of completeness, considering an operating

frequency of SA-FEMIP chain equal to 60 MHz, the time required to perform the filtering and the

matching tasks (i.e., t f i l ter i ng and tmatchi ng in Figure 5.12) is 21.5 ms and 7.6 ms, respectively.

Eventually, Figure 5.19 shows the percentages of Correct Matches (CM) for the different filter

configurations and injected noise levels. CM has been computed exploiting the knowledge about

Figure 5.19: Correct Matches (CM) results for different levels of injected Gaussian noise, varying
the Gaussian Filter variance

the camera movement between two consecutive images of the dataset. Starting from the posi-

tion of a matching point in the first image, it is possible to compute its expected position in the

second image by using a three dimensional roto-translation model. For each couple of images

in the dataset this process has been automated through a MATLAB script. Then, the CM values

have been computed by comparing the outputs of the script with the ones of the proposed archi-

tecture.

It is worth noting that, the CM values are not computed for every σ2
f since, as shown in Figure
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5.18, with a filter characterized by a low variance it is not possible to extract matching points for

very high noise levels.

As can be seen in Figure 5.19, the accuracy of the different filter configurations is higher than 85%

for every noise level, and it is almost equal for a fixed noise level. These data demonstrate that

the proposed filter is able to maximize the NEM, while preserving the correctness of its outputs.

5.2 FPGA-based hardware accelerators for Active Space Debris removal

The system presented in this section takes care of accelerating the first phase of the debris re-

moval mission. In order to collect the required information about the object to be removed three

main operations must be performed: (i) the debris three-dimensional shape reconstruction, (ii)

the definition of the structure of the object to be removed and the identification of the composing

material, and (iii) the computation of the kinematic model of the debris. In particular this work

focuses on the first of these three phases.

As described in Section 2.6, to enable the debris three-dimensional shape reconstruction,

video-based techniques are the most suitable in the strict context of space missions, where low-

energy consumption is fundamental, and sensors should be passive in order to avoid any possible

damage to external objects as well as to the chaser satellite.

Digital cameras can be used for 3D shape reconstruction exploiting several techniques. In

particular, as highlighted in Sections 2.6.1 and 2.6.2, the most used and efficient techniques are

the stereo-vision, and Shape-from-shading approaches.

However, both methods cannot provide the expected performances on every kind of objects to

be reconstructed. In fact, stereo-vision technique limitations arise when the object to be cap-

tured is mono-chromatic and texture-less [197]. Since several types of space debris fall into this

category, Shape-from-Shading algorithms, that work exploiting pixel intensities in a single image

[238] could represent an efficient solution.

Moreover, in this type of missions, real-time, or quasi-real-time performances are required

to ensure high accuracy of the reconstructed shape models. Since image processing algorithms

are very computational intensive, a software implementation of these algorithms running on a

modern fault tolerant space-qualified processor (e.g., LEON3 [75]) cannot achieve the required

performances. In this context hardware acceleration is crucial and devices such as FPGAs best fit

the demand of computational capabilities.

For all the aforementioned reasons, this chapter presents a novel fast shape-from-shading

(SfS) algorithm and a field-programmable gate array (FPGA)-based system hardware architecture

for video-based shape reconstruction of space debris. The FPGA-based architecture, equipped

with a pair of cameras, includes a fast image pre-processing module, a core implementing a

feature-based stereo-vision approach, and an on-board processor that executes the novel SfS
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algorithm. The proposed combination of fast hardware accelerators and optimized software rou-

tines ensure to maintain limited the hardware resources usage, while in the same time provide

high processing speed. The comparisons done with other state-of-the-art SfS methods demon-

strates the provided timing improvements and lowest area occupation. In particular, the reduc-

tion in the hardware resources usage ensures to integrate in a single FPGA device other vision-

based techniques to improve the comprehension of debris model, allowing a fast evaluation of

associated kinematics in order to select the most appropriate approach for capture of the target

space debris (i.e., another key step in the active space debris removal (Section 2.6)).

The main novelty of the proposed system concerns the overcoming of existing algorithm lim-

itations. All the SfS algorithms analysed in Section 2.6.2 present three main limitations: (i) they

are very far from real-time behaviours, (ii) their outputs represent the normalized shape of the

observed object with respect to the brightness range in the input image, without providing infor-

mation on its absolute size and absolute distance from the observer, and (iii) they create artefacts

if the surface is not completely monochromatic. Thanks to the proposed system, from one hand,

the first problem is solved by the novel fast Shape-from-Shading algorithm which exploits the

knowledge on the input light direction (that is easily retrievable during space missions), with re-

spect to the image plane, to reduce the computational load of the shape reconstruction problem.

On the other hand, the last two problems can be solved by merging stereo-vision and shape-

from-shading approaches. In particular, depth data can be exploited to correct and de-normalize

the shape extracted by the SfS algorithm, in order to increase the robustness of the entire shape

reconstruction process.

In the next sections, the novel fast Shape-from-Shading algorithm, and the proposed system

hardware architecture are detailed. Eventually, the chapter is concluded with the presentation of

the experimental results highlighting the benefits of the proposed system w.r.t. the state-of-the-

art solutions.

5.2.1 Novel Fast Shape-from-Shading Algorithm

This section describes the proposed novel fast Shape-from-Shading algorithm, hereafter called

Fast-SfS.

The basic idea of Fast-SfS is to suppose, as for the regular SfS algorithms, that the surface of

the captured object follows the rules of the Lambertian model [238]. However, a first main differ-

entiation from the standard SfS algorithms, concerning the light direction, is introduced. Consid-

ering the specific Space Debris removal application, the dominant source that lights the observed

object is the Sun. In fact, the Albedo of the earth (i.e., the percentage of the sun light reflected by

the earth surface and atmosphere back to the space) can vary from the 0% (e.g., ocean, sea, and

bays) to 30% (e.g., clouds) [162]. Thus, also in the worst case, the sun represents the dominant

light source. Since data concerning the actual environmental conditions in space debris removal
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missions are still not available, in this work we initially assume that the earth reflection is negli-

gible. Taking into account the data about the earth Albedo, this assumption can be considered

valid, indeed the elements that provide the lower reflection factor (e.g., ocean, sea, and bays)

are also the ones that cover the major part of the earth surface (i.e., around the 71% of the over-

all earth surface[205]). Knowing the position and the orientation of the system which captures

the images with respect to the sun, it is possible to determine the mutual direction between the

cameras axis and the sunlight direction. This information can be extracted by computing the

attitude of the spacecraft, which is provided by Sun-sensors [224] or Star-trackers [137], that are

commonly available on spacecrafts.

A second assumption is about the light properties, which is supposed to be perfectly diffused,

since the sun is far enough to be considered as an illumination source situated at infinite dis-

tance. This means that sunlight rays can be considered parallel among each other.

Given the two aforementioned assumptions, the amount of light reflected by one point in

the observed object surface will be proportional to the angle between the normal (n) to the tan-

gent surface in this point, and the light direction. Thus, all points in which n is parallel to the light

direction (as (1) in Figure 5.20) are supposed to be represented in the image as the ones with max-

imum brightness (i.e., these pixels provide the maximum reflection). On the contrary, all points

in which n is perpendicular to the light direction (as (3a) and (3b) in Figure 5.20) are represented

with the minimum image brightness (i.e., these pixels do not provide reflection).

Figure 5.20: Example of the light reflected by the object surface, supposing diffused light.

The proposed algorithm can be summarized by the flow diagram in Figure 5.21.

First, the algorithm crops the input image following the object borders, in order to exclude the

background pixels from the following computations. Cropping is performed by means of a single

thresholding algorithm that, for each row of the image, finds the first and the last pixel in that row

that are greater than a given threshold, representing the background level. Moreover, Fast-SfS
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Figure 5.21: Flow diagram of the proposed Fast-SfS algorithm.

searches for the minimum and the maximum brightness values inside the cropped image.

Then, the proposed algorithm computes the position in the 3D space of each pixel composing the

cropped image. Considering the image surface as the x-y plane, and the z axis as the normal to

the image plane, the position of a pixel in the 3D space is defined exploiting the associated (x, y, z)
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coordinates. Obviously the first two coordinates (i.e., x and y) are simply provided by the position

of the pixel in the image surface. Instead, the elevation of each pixel (i.e., z coordinate) is defined

exploiting the light direction, that is provided in input as the horizontal and vertical components.

These components are provided as the two angles between the axis z and the horizontal (i.e., the

projection on the x-z plane) and vertical projections (i.e., the projection on the y-z plane) of the

vector representing the light direction. For a better comprehension, Figure 5.22 shows the two

components of the light direction, where αH is the component along the horizontal axis, and αV

is the one along the vertical axis.

(a) Component on image horizon-
tal axis

(b) Component on image verti-
cal axis

Figure 5.22: Light direction decomposition

As shown in Figure 5.21, the elevation of each pixel is separately computed along the hori-

zontal and vertical component, that are finally merged together to compute the shape associate

to the input image. This approach ensures the reduction of complexity of the operations to be

performed and potentially allows to parallelize the computations. For the sake of brevity, in the

following, the algorithm details are reported for the computations related to the horizontal direc-

tion only. However, the same considerations are valid for the vertical components.

The elevation of each pixel is computed in two steps according to the reflection model previ-

ously described (Figure 5.20).

First, for each pixel, its intensity value is exploited to find the slope of the tangent surface to the

object point represented by the pixel. According to the considered light reflection model, Fig-

ure 5.23 shows the case in which the currently processed pixel (P(x,y)) is characterized by the

maximum brightness value in the image. In this case, the tangent surface associated with P(x,y)

(S(P(x,y))) is perpendicular to the light direction component (i.e., like surface (1) in Figure 5.20),

so exploiting the similar triangle theorem, it is possible to demonstrate that the slope (i,e., the

angle between S(P(x,y)) and the x axis, called αP (x,y)) is equal to αH .

In the opposite case, when the considered pixel presents the minimum brightness value, the tan-

gent surface is parallel to the light direction (Figure 5.24), and αP (x,y) is equal to 90◦−αH .

Considering that the pixels with the maximum brightness (Imax ) have an associated angle equal

to αH , and the pixels characterized by the minimum value of brightness (Imi n) have an associ-
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Figure 5.23: Case in which P (x, y) has the maximum intensity value.

Figure 5.24: Case in which P (x, y) has the minimum intensity value.

ated angle equal to 90◦−αH , an αP (x,y) value can be assigned to all other pixels in the image by

linearly regressing the range [αH ;90◦−αH ] on the pixel brightness range. Figure 5.25 shows the

proposed linear regression model.

Figure 5.25: Proposed linear regression model

According to the graph in Figure 5.25, the αP (x,y) value can be computed for each pixel as:

αP (x,y) = 90◦−2∗αH

Imax − Imi n
∗ I (x, y)+q
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where Ix,y is the brightness value of the current pixel, and q is equal to:

q = αH (Imax + Imi n)−90◦∗ Imi n

Imax − Imi n

Afterwards, in order to extract the elevation map of each pixel, i.e., ∆H in Figure 5.23 and

Figure 5.24, the tangent of each αP (x,y) is computed. In this step, only the module of the resulting

tangent value is taken into account, since from the brightness of a pixel it is not possible to define

the sign of the slope (as surfaces (2a) and (2b) in Figure 5.20).

Finally, the ∆H are merged together to create the complete elevation map (or the object pro-

file) associated with the horizontal component. This is done by integrating pixel-by-pixel the ∆H

values. Thus, the final elevation of each pixel is the sum of all ∆H associated with the pixels that

precede it in the current image row. This operation is repeated for each row of the cropped image.

To discriminate if the object profile decreases or increases (i.e., if ∆H is positive or negative), the

brightness value of the currently considered pixel I (x, y), is compared with the one of the previ-

ous in the row I (x−1, y). If I (x, y) ≥ I (x−1, y) the∆H is considered positive (i.e., the profile of the

object increases), otherwise it is negative.

As shown in the flow diagram of Figure 5.21 all the aforementioned operations are repeated

for the vertical component.

Finally, the two elevation map components are merged to obtain the computed shape results.

The two components are combined using the following equation:

H(i , j ) =
√
∆Hx (i , j )2 +∆Hy (i , j )2

where H(i , j ) represents the output elevation map matrix, ∆Hx and ∆Hy are the two components

of the elevation map in the horizontal and vertical axis, respectively, while (i , j ) represents the

pixel position in the image.

The most complex operation that the algorithm must perform is represented by the tangent

computation. However, to allow a fast execution, this function can be approximated using a

Look-Up Table approach. Moreover, compared to the SfS algorithms introduced in the previ-

ous section, Fast-SfS is not iterative, it does not present any minimization function, and can be

parallelized.

Obviously, Fast-SfS presents the same problems, in terms of output results, as all the other

SfS algorithms that rely on the Lambertian surface model. Nonetheless, these problems can be

overcome resorting to stereo-vision depth measures [35, 176].

5.2.2 Proposed hardware architecture

The overall architecture of the proposed system is shown in Figure 5.26. It is mainly composed of

the FPGA subsystem and the Processor subsystem.
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Figure 5.26: Proposed architecture.

The Stereovision Camera provides in output two 1,024 x 1,024 gray-scale images, with 8 bit-

per-pixel resolution. The camera is directly connected to the FPGA sub-system (i.e., an FPGA

device), that is in charge of acquiring the two images at the same time, and pre-processing them

in order to enhance their quality. Moreover, the FPGA also implements a feature-based matching

algorithm to provide a "sparse" depth map of the observed object (i.e., it provides depth infor-

mation of extracted features, only).

In parallel to the feature-based matching algorithm, the Processor sub-system performs the

novel fast Shape-from-Shading algorithm, presented in the previous section, and provides in out-

put the reconstructed shape of the actual observed object portion.

The FPGA and the Processor subsystems share an external memory, used to store results and

temporary data, and they communicate between each other in order to avoid any collision during

memory reads or writes. As aforementioned, the results obtained by the stereo-vision algorithm

can be merged to the ones in output from the Fast-SfS algorithm to correct them and to enhance

their accuracy [35, 176].

The following subsections details the functions and the internal architecture of the two sub-

systems.

5.2.2.1 FPGA sub-system

As depicted in Figure 5.27, the FPGA subsystem is composed of an FPGA device which includes

several hardware-implemented modules.

Its internal architecture can be split in two main stages. The first, called Image Preprocessing

Stage, encloses the Input Controller, the Noise Filters, the Image Enhancers, and the Rectifiers,

while the second, called Stereo-vision Processing Stage, includes the Feature Extractors, the Fea-
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Figure 5.27: FPGA subsystem internal architecture.

ture Matcher, and the Feature Depth Calculator. Moreover, a main Control Unit coordinates all

the activities of the different modules, providing also the interface with the external bus, to com-

municate with the Shared Memory.

An FPGA-based hardware implementation of these algorithms has been preferred with re-

spect to a software implementation running on an embedded processor since, when dealing with

1,024 x 1,024 pixels images, the software alternative can lead to execution times in the order of

tens of seconds (Section 5.2.3 for further details). On the contrary, custom FPGA-based hardware

acceleration of these algorithms can lead to very high performances.

The data stream from the Stereo camera is managed by the Input Controller (Figure 5.27). The

Input Controller manages the communication between the Stereo camera and the FPGA subsys-

tem depending on the protocol supported by the camera. Moreover, it provides two output data

streams, each one associated with one of the two acquired images. Each pixel stream is orga-

nized in 8-bit packets. Since the camera has a resolution of 8 bpp, every output packet contains

one pixel. The output packets associated with the right and left image are provided in input to

the two Noise filter modules.

The two Noise filter instances apply Gaussian noise filtering [82] on the two received images.

Image noise filtering is essential to reduce the level of noise in the input images, improving the ac-

curacy of the subsequent feature extraction and matching algorithms. In our architecture, Gaus-

sian filtering is performed via a two-dimensional convolution of the input image with a 7x7 pixels

Gaussian kernel mask [82]. For this reasons, this components has been implemented using the

2D-convolver presented in Section 4.3.1.1. Among the IP-cores contained in the Image filters fam-

ily (Section 4.3.1), it has been decided to use this component since it allows to maintain limited

the resources usage allowing to integrate in a single device the overall FPGA sub-system.

In order to perform the desired filtering operation, the 2D-convolver has been configured accord-

ing to the input image resolution and the desired kernel size.

The filtered pixels provided by the 2D-convolver, are sent both to the Image Enhancer and to
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the external Shared Memory. Storing filtered pixels in the external memory is mandatory since

this information is needed during the following features matching phase.

Since the illumination conditions in the space environment cannot be predicted a priori and,

at the same time, the proposed architecture must always be able to properly work, an image en-

hancement is required. The enhancement process aims at increasing the quality of the input

images in terms of illumination and contrast. In [177] it has been demonstrated that this opera-

tion allows to increase the features extraction capability, also in bad illumination conditions.

This task can be performed exploiting one of the IP-cores contained in the Image Enhancers

family (Section 4.3.3). Since the image conditions cannot be predicted a priori, no assumption

can be done on the tonal distribution in the acquired image (i.e., cannot be defined the type

of histogram associated with the input image). Thus, in order to design a system able to work

autonomously, the Image Enhancer module has been implemented using SAFE. As described in

Section 4.3.3.3, SAFE is a high performance FPGA-based IP-core that is able to enhance an input

image autonomously selecting the best image enhancement technique (i.e., histogram equaliza-

tion, histogram stretching, or no enhancement) to be applied.

This IP-core receives the input pixels from the Noise Filter (Figure 5.27), that provides pixels

represented on 8 bit. Since SAFE expects to receive 4 pixels in parallel, an input controller has

been added to group the pixels provide by the Noise Filter in 4-pixels packets. In addition, SAFE

receives in input the two thresholds useful to discriminate on the image enhancement technique

to be applied (i.e., HW and BW described in Section 4.3.3.3).

After image enhancement, the Rectifier modules perform the rectification of the left and right

image, respectively. Image rectification is essential (i) to remove the image distortion induced

by the camera lens (especially in the borders of the image), and (ii) to align the images acquired

by two different points of view in order to subsequently apply the epipolar geometry during the

feature-matching task [212]. Since the rectification parameters are fixed by the camera type and

by the relative orientation between the two cameras, the rectification process can be performed

using a simple Look-Up Table (LUT) plus a bilinear interpolation approach, as done in [212]

[168], where the two LUTs (one for each image) are stored in the external Shared Memory. Ba-

sically, each input pixel in position (x, y) in the original image is moved to a new position (x1, y1)

in the new rectified image. The value of the rectified pixel is computed interpolating the four

adjacent pixels in the original image. Since, for resources efficiency reasons, the LUT is stored in

the external memory, the coordinates must be translated in an absolute address value. This task

is accomplished by simply adding a constant offset, that is equal to the memory base address at

which the LUTs are stored.

After image pre-processing, the feature-based stereo-vision algorithm can be applied in order

to obtain the features depth map. The algorithm performs feature extraction, feature matching,

and finally, feature depth computation. Among these three activities, feature extraction is the

most complex one.
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As described in Section 5.1, among the available feature extraction algorithms, Harris is probably

the best trade-off between precision and complexity [211]. In this specific case, since the two im-

ages acquired by the two cameras can present only very small differences in terms of rotations,

and almost no differences in terms of scale, its accuracy is comparable to the one provided by

SURF and SIFT (Section 2.5.1.1). For this reason, the hardware implementation of the feature

extractor and matcher follows the architecture of the namesake components in FEMIP (Section

5.1.1). The SA-FEMIP (Section 5.1.2) architecture has been discarded since well-distributed fea-

tures is not a key factor in the 3D-shape reconstruction. Moreover, the FEMIP architecture re-

quires less hardware resources than SA-FEMIP.

Finally, the Feature Depth Calculator reads the coordinates of the matched features and com-

putes their depth exploiting triangulation [14]. Since matched features are aligned in the two

images, the triangulation becomes a two-dimensional problem (i.e., this benefit is obtained from

the input image rectification (Section 2.6.1.2)). Looking at Figure 2.28, knowing the focal length

of the two cameras, the depth Di of a feature point Pi , i.e., the distance between the point and

the baseline b of the stereo camera, can be computed as:

Di = f ·b

x1,i −x2,i

where x1,i and x2,i represent the x-coordinate of the considered matched feature Pi in the two

acquired images.

Finally, the depth results are stored in the external Shared Memory in order to be accessible

by the Processor subsystem for following computations.

5.2.2.2 Processor sub-system

The Processor sub-system includes a processor that executes the novel fast Shape-from-Shading

algorithm presented in the previous section. Even if implementing the proposed algorithm di-

rectly in hardware, as the modules described in the previous subsection, could lead to a boost of

the performances, a software implementation has been preferred to highlight the differences, in

terms of execution time, with respect to other state-of-the-art SfS algorithms.

To perform the proposed approach, the processor reads from the shared memory one of the

two rectified images. The results of the algorithm represent the shape of the observed object,

with respect to a reference plane.

Eventually, the same Processor sub-system can be exploited to execute the algorithm that aims

at merging the depth information gathered from the FPGA sub-system, with the results obtained

by the fast SfS approach. This can allow (i) to correct the reconstructed shape in the features

points neighbourhoods, and (ii) to extract the absolute size and distance of the object under eval-

uation.
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5.2.3 Experimental Results

To prove the feasibility of the proposed architecture, we implemented both the FPGA subsystem

and the Processor subsystem on a single FPGA device exploring the Aeroflex GR-CPCI-XC4V devel-

opment board, which is equipped with a Xilinx Virtex 4 XC4VLX100 [226] and a 256 MB SDRAM

memory [78]. The choice of using a Xilinx Virtex 4 FPGA, instead of a more advanced device, fits

the considered space debris removal applications. In fact, modern radiation-hardened space-

qualified FPGAs exploit the same device architecture [225]. Moreover, the Processor subsystem

has been implemented using the Aeroflex Gaisler LEON3 soft-core processor, that represents the

standard processor architecture used in space applications [75].

In the following, experimental results are separately reported for the FPGA subsystem and the

Processor subsystem.

5.2.3.1 FPGA subsystem results

All modules described in the previous sections have been synthesized and implemented on the

chosen FPGA device, resorting to Xilinx ISE Design Suite 14.6 [229]. The following table reports

the resources consumption of each module composing the FPGA subsystem, in terms of Look-Up

Tables (LUTs), registers (FFs), and internal Block-RAMs (BRAMs) (Section 3.3).

Table 5.5: FPGA subsystem modules logic and memory hardware resources consumption for a
Xilinx Virtex 4 XC4VLX100 FPGA device.

LUTs FFs BRAM
Input Controller 352 96 -
Noise Filter (x2) 11,792 1,392 14

Image Enhancer(x2) 2,635 317 16
Rectifier (x2) 1,216 712 8

Features Extractor (x2) 19,162 2,212 12
Features Matcher 2,432 656 19

Features Depth Calculator 615 64 -
Total 38,204 5,449 69

(38.9%) (5.54%) (28.8%)

The numbers in brackets represent the percentages of resources used with respect to the total

available in the FPGA device. It is worth noting that Noise Filters, Image Enhancers, Rectifiers, and

Features Extractors are instantiated twice in the design.

To emulate the camera, the images are supposed to be pre-loaded in an external memory.

Thus, the Input Controller consists of a Direct Memory Access interface that autonomously reads

the images pre-loaded into the Shared Memory.

The entire processing chain is able to process a couple of images and to provide the associated

depth map in about 32ms, leading to a throughput of 31 image couples per second.
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The bottleneck of the system is represented by the external Shared Memory, that in some

time slots is simultaneously requested by different modules. Using a dual-port memory can help

to avoid the stall of the processing chain, leading to a greater throughput.

To highlight the speed-up obtained by resorting to hardware acceleration, the algorithm im-

plemented by the proposed hardware modules have been also described in C, and compiled (us-

ing the maximum possible optimization level) for the LEON3 processor. The processor has been

implemented enabling the floating-point unit and the internal data/instruction cache memories

of 4 KB and 16 KB, respectively. The overall software execution time attests around 42 seconds,

when the processor runs at 60 MHz (i.e., the maximum operating frequency of the LEON3 pro-

cessor implemented on the selected FPGA device). The major contribution in the execution time

is given by the Gaussian filtering and feature extraction functions, that perform two-dimensional

convolution.

Comparing the overall software and hardware execution times, hardware acceleration pro-

vides a speed-up of 1,300x.

Finally, focusing on the Feature Extractor and Feature Matcher modules, we can highlight the

gain, in terms of hardware resources consumption, of using the Harris algorithm, with respect to

more complex SIFT or SURF extractors. As an example, [16] and [25] propose two FPGA-based

implementations of the SURF algorithm. The architecture proposed in [16] consumes almost

100% of the LUTs available on a medium sized Xilinx Virtex 6 FPGA, without guaranteeing real-

time performances. Similarly, the architecture proposed in [25] consumes about 90% of the inter-

nal memory of a Xilinx Virtex 5 FPGA. It saves logic resources, but it is able to process in real-time

only images with a limited resolution of 640 x 480 pixels. Another example is presented in [233]

where an FPGA-based implementation of the SIFT algorithm is presented. It is able to process

in real-time 640 x 480 pixel images, consuming about 30,000 LUTs and 97 internal Digital Signal

Processor hard macros in a Xilinx Virtex 5 FPGA. Instead, taking into account the reduced com-

plexity of the Harris algorithm, the feature extraction for the two 1024x1024 input images, and the

matching task can be performed in real-time using only 21,594 LUTs and 31 BRAMs resources,

representing the 22% and the 12.9% of the considered Xilinx Virtex 4 FPGA device, respectively.

An explicit comparison with other state-of-the-art FPGA-based stereo-vision architecture has

not been made since they focus on block-based methods [38, 206, 217, 243]. Even if they provide

more dense results, due to their increased complexity they incur in a greater hardware resources

consumption (not including the resources needed for the image pre-processing) [25][233][38].

5.2.3.2 Processor subsystem results

The Processor subsystem has been implemented resorting to the LEON3 soft-core processor archi-

tecture [75], and integrated in the same FPGA device as the FPGA subsystem. The processor has

been implemented enabling the floating-point unit and the internal data and instruction cache
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memories of 4 KB and 16 KB, respectively. The maximum operating frequency of the processor,

synthesized on a Xilinx Virtex-4 XC4VLX100 [226], is equal to 60 MHz.

The chosen processor configuration leads to an hardware resources usage of 21,395 LUTs,

8,750 FFs, and 32 BRAMs. Thus, the overall resources consumption of the proposed system (FPGA

and Processor subsystems) is around 60% of the overall logic resources available in the FPGA

device.

In order to evaluate the execution time of the proposed Fast-SfS algorithm, different execu-

tions have been performed on the LEON3 processor, providing in input images with different

size. The graph in Figure 5.28 shows the execution time trend with respect to the input image

size.

Figure 5.28: Proposed algorithm execution time trend with respect to the input image size.

The proposed algorithm has been compared, in terms of execution time, to other Shape-

from-Shading approaches proposed in literature. [60] reports execution times of the fastest SfS

algorithms presented in literature. The algorithms are executed on a Sun Enterprise E420 ma-

chine [96], equipped with four UltraSparc II processors running at 450 MHz, each one with 4 MB

of dedicated cache. From [60], the fastest SfS algorithm is the one presented in [171], that is an

iterative algorithm, requiring 0.29 s for 5 iterations and 1.17 for 20 iterations (to ensure better re-

sults), to process a 256x256 images. Even if running on a processor clocked at 1/6 of the operating

frequency, and equipped with a cache of 3 orders of magnitude smaller, the proposed algorithm

requires almost the same time of [171].

In [194] authors state that the proposed non-iterative SfS algorithm is faster than the iterative

ones. By comparing their approach with Fast-SfS, from Figure 5.29 it can be seen that the speed-

up is always greater than 3x. It is worth noting that in [194] the testbed used to run the proposed

algorithm is not defined.

The algorithm applied on the two synthetic images provides good results since they are char-
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Figure 5.29: Comparision of the execution times of Fast-SfS and the algorithm reported in [194].

acterized by a diffused light and a monochromatic surface. This characteristics completely match

the assumptions on which the proposed algorithm is based (Section 5.2.1).

On the other hand, in the real image the target object is illuminated by direct light, since

diffused light cannot be easily reproduced in laboratory. Moreover, due to the reflective mate-

rial composing the object, the image presents some light spots (see the upper central part of the

drinking bottle in Figure 5.32(a)). As can be noted in Figure 5.32(b) and 5.32(c), these light spots

lead to some peaks in the reconstructed shape. Nevertheless, the resulting shape provided by

the Fast-SfS algorithm follows the profile of the real object and the peaks can be efficiently cor-

rected by merging the reconstructed shape with the information gathered from the stereo-vision

algorithm.

5.3 FPGA-based JPEG-LS Image Compressor

This section presents the main outcome of my visiting period at ESTEC: an area-efficient FPGA-

based implementation of the JPEG-LS algorithm (Section 2.7.1). The main motivation above this

work concerns the increasing need to compress images taken during space exploration mission.

In fact, in the last years, all space agencies increased the number of cameras mounted on space-

craft and rover involved in space exploration mission to take a plenty of images. In the past,

images acquired during space mission have been just exploited for scientific purposes, instead

in the last period, space agencies started to use these images for public relation purpose, also, in

order to increase the social interest in the space agency activities. This trend directly reflected

in an increased amount of picture taken in space environment. However, the strict constraint in

terms of mass and power consumption did not allow to increase in the same way the memory

resources and communication bandwidth to send picture to Earth. For the aforementioned rea-
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(a) Input image

(b) Fast-SfS results (side-view)

(c) Fast-SfS results (dimetric-view)

Figure 5.30: Fast-SfS output result on the semi-sphere image

sons, the need of efficient systems able to reduce the size of images while preserving the image

quality increased more and more.

Following this growing need, ESTEC people decided to develop an area-efficient hardware sys-

tem able to strongly reduce the image size while introducing a negligible loss of information. In

addition the required system must be able to tune the applied compression factor depending on

159



5. COMPLEX IMAGE PROCESSING SYSTEMS IN SPACE

(a) Input image

(b) Fast-SfS results (dimetric-view)

(c) Fast-SfS results (opposite dimetric-view)

Figure 5.31: Fast-SfS output result on the vase image

the actual availability in terms of memory resources and communication bandwidth to Earth.

According to these requirements and the characteristics of the image compression algorithms

presented in Section 2.7, the target algorithm for this image compression system has been the

JPEG-LS Algorithm.
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(a) Input image

(b) Fast-SfS results (front-view, highlighting the light spots)

(c) Fast-SfS results (oblique-view)

Figure 5.32: Fast-SfS output result on the drinking bottle image

Following sections present the internal block diagram of the proposed system and the achieved

performances in terms of hardware resources usage, compression capability and introduced loss

of information on the compressed images.
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5.3.1 JPEG-LS hardware architecture

This section describes the FPGA-based IP-core implementing the near-lossless JPEG-LS algo-

rithm presented in Section 2.7.1. It has been decided to implement only the near-lossless mode,

since, as demonstrated in Section 5.3.2, with N E AR = 1 (i.e., the lowest amount of information

loss) the quality of the compressed image is practically the same as the original one. Moreover,

this decision ensures to reduce the hardware complexity, and increase the achievable output

throughput. Moreover, to increase the flexibility and the applicability, the proposed hardware

system can be customized, exploiting VHDL generics [232], to support the compression of color

and gray-scale images characterized by different image resolutions (i.e., image size, and bit-per-

pixel resolution).

Figure 5.33 shows the main modules composing the implemented hardware component.

Figure 5.33: JPEG-LS IP-core architecture

The IP-core receives in input four signals:

• pixel: the pixel value to be processed. The input image is supposed to be received in in-

put in a raster way (i.e., pixels are provided from top to bottom, and from left to right), as

provided by almost all camera.

• valid_pixel: a one bit signal asserted when the data on pixel is valid.
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• RX_data: an 8 bit command signal aiming at providing in input to the compressor: (i) the

desired N E AR parameter (Section 2.7.1), (ii) the start compression command, and (iii) the

acknowledge that all the compressed bytes have been received correctly.

• valid_RX_data: a one bit signal asserted when the input command signal is valid

In the current implementation the accepted N E AR values are from 1 to 5. As demonstrated

in Section 5.3.2, this range ensures to reach a high compression ratio, and, at the same time,

maintain the image quality really high.

The output compressed image is provided by means of three signals: (i) output data that is an

8 bit signal containing the byte composing the output compressed bitstream, (ii) valid_out is a

one bit signal asserted when theoutput data signal is valid, and (iii) end_of_image that is asserted

when the last valid byte has been provided in output.

Internally, the proposed architecture is composed of six main components:

• JLS Controller is the manager of all the operations inside the JPEG LS compressor. It man-

ages the inputs and it synchronizes the computation by providing the data to the different

internal modules in the proper timing sequence.

• Input Param Generator aims at computing all the input parameters depending on the re-

ceived N E AR value. Basically, this module computes the qbpp, qBet a, and the cei l_hal f

_qBet a, as described in Section A.0.2.1. For this reason this module operates just before

the start of the image compression task when a new N E AR value is received.

• Context Computer computes the context value for the regular encoding mode. This mod-

ule receives in input, from the JLS Compressor, the reconstructed sample values associated

with the next pixel to be processed, and it produces the C l assM apcontext value as de-

scribed in Section A.0.2.2.

• Buffers aims at storing the values composing the A, B , C , and N vectors (Section A.0.2.1).

Thus, this component is just a set of BRAMs that ensure to internally store these vectors

without requiring accesses to the external memory.

• Compression Core is the module that actually performs the compression of the input pixels.

As shown in Figure 5.33, it is internally composed of two main modules: Regular Encoder

and Run Engine, that respectively perform the regular (Section A.0.2.3) and run-length en-

coding (Section A.0.2.4) compression. These two components operate in parallel for every

received pixel producing a pixel compressed value for both compression method. How-

ever, thanks to the information provided by the JLS Controller, Compression Core provides

in output just the data associated with the pixel compressed with the selected compression

mode (Section A.0.2.2).
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• Output Manager receives the output of the compression process, generated by the Regular

Encoder, and the Run Engine, and it provides the output compressed bytes according to the

format imposed by the standard [101].

As can be noted, differently from the description of the other proposed hardware systems, the

level of provided internal architecture details is lower. This is mainly due to an Non Disclosure

Agreement (NDA), signed with the ESTEC security office, that protect the architecture of this

hardware system and it does not allow to provide more detailed information about the hardware

module implementation.

5.3.2 Experimental results

To evaluate the hardware resources usage and the timing performances, the proposed archi-

tecture has been synthesized resorting to Xilinx ISE Design Suite 14.6 [229] on a Xilinx Virtex 4

XC4VLX100 FPGA [226]. Post place and route simulations have been done with Modelsim SE

10.1c [83].

Table 5.6 compares the area occupation of proposed architecture w.r.t. the actual state-of-

the-art implementations [113] [218].

Table 5.6: Resource Usage for Xilinx Virtex 4 XC4VLX100 FPGA device

IP-core
Resource Usage

Slices LUTs

Proposed 1,926 (3.21%) 3,095 (3.14%)

[113] 2,154 (4.38%) 5,402 (5.50%)

[218] 2,596 (5.28%) 6,511 (6.62%)

As can be noted, the proposed implementation outperforms in terms of resources usage the cur-

rent state-of-the-art implementations. In particular, the improvements is around 11% for the

used Slices, and 74% for the used LUTs. This gain is even bigger if we consider that the implemen-

tations presented in [113] and [218] are only able to perform the Lossless JPEG-LS compression,

that requires a lower number of operations w.r.t. the Near lossless one. Instead, the proposed

implementation is able to perform a Near-lossless compression in which the compression level

can be externally programmed.

Concerning the timing performances in the proposed implementation the logic performing

the actual compression is able to reach a clock frequency of 30 MHz. Since the output throughput

is of 1 compressed pixel every 3 clock cycle, the proposed IP-core is able to reach in the worst case

(i.e., when all the pixel are compressed with the regular encoding) a throughput of 10 fps process-

ing an image with a resolution up to 1,024 x 1,024 pixel. The achieved throughput is particularly
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important since is the maximum frame rate to apply an Intra-frame compression algorithm (Sec-

tion 2.7).

In order to quantify the accuracy of the JPEG-LS compressor, in terms of compression capabil-

ity and loss of information introduced on the compressed image, a dataset of images have been

provided in input to the proposed hardware system.

The selected datasets of images includes a comprehensive selection of images taken in Mars

environment. The Mars environment has been selected since, as aforementioned, the peculiarity

of the JPEG-LS algorithm are of particular importance especially for space exploration missions,

like Mars missions. In order to model the images that can be taken during a Mars exploration

mission, the input image dataset has been composed with images representing the Mars surface

(this kind of images model the picture that can be taken during the descending phase on Mars),

and images taken on the Mars surface.

The first set has been filled with images extracted from the Mars Express database [69], while the

second with images extracted from the NASA’s Mars Rover Curiosity on Red Planet database [133].

In the sequel we refer to these two set of images as Mars Express and Curiosity datasets, respec-

tively.

Figures 5.34 and 5.35 show an example of the images contained in the two datasets.

Figure 5.34: Mars Express dataset examples

As can be noted from Figures 5.34 and 5.35, to properly test the proposed system under different

conditions, in both cases the images are characterized by different tonal distribution.

Moreover, for the set of images taken on the Mars surface, the selected pictures contains different
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Figure 5.35: Curiosity dataset examples

portion of sky, this allows to force the JPEG-LS compressor to use more or less the run encoding

mode (the sky represent a flat zone of the image, so in the sky portion of the image the run encod-

ing is extensively used (Section A.0.2.4)). In other words, the system can be tested under different

working conditions.

Moreover, for better characterize the system performances, the pictures composing the two data-

sets have been manipulated. In particular, the images have been resized to the 1,024 x 1,024 and

640 x 480 image resolutions, and, for each image resolution, the bit per channel resolution has

been set to 8 bpc, and 5 bpc (i.e., the most common parameters for space cameras). For these

reasons, 4 new sets of images have been created for both the Mars Express and Curiosity dataset.

All of these dataset has been provided in input to the proposed JPEG-LS Image Compressor to

quantify the achieved compression rate.

In Figure 5.36 and 5.37, the graphs showing the trends of the compression rate vs. the N E AR

parameter for each image dataset are reported.

As can be noted, the compression rate is not so much influenced by the image resolution,

in fact comparing Figure 5.36(a) with Figure 5.36(b), and Figure 5.37(a) with Figure 5.37(b), the

compression rate maintains almost the same trend in both the 1,024 x 1,024 and 640 x 480 image

resolutions.

Instead, comparing the compression rate inside the same graph, it can be noted that the differ-

ence between two images can be very high. This effect is due to the number of flat zones that

can be found inside an image. In fact, higher is the number and the size of the flat zones inside a
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(a) 1,024 x 1,024

(b) 640 x 480

Figure 5.36: 5 bpc Mars Express dataset compression rate

picture, higher will be the length of each run in the run encoding mode (Section A.0.2.4), and so

smaller will be the size of the compression image.

Somehow, as shown in Table 5.7, analysing the worst case for each image dataset the compres-

sion rate reach always good performance, demonstrating the high compression capability of the
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(a) 1,024 x 1,024

(b) 640 x 480

Figure 5.37: 5 bpc Curiosity compression rate

JPEG-LS algorithm.

To evaluate the error introduced on the compressed image in the case of near-lossless com-

pression, the Peak Signal to Noise Ratio (PSNR) has been compute for every compressed image

composing the datasets.

PSNR is defined as the ratio between the maximum possible power of a signal and the power

of corrupting noise that affects the fidelity of its representation. Because many signals have a

very wide dynamic range, PSNR is usually expressed in terms of the logarithmic decibel scale.

Equation 5.3 shows the formula to compute this parameter.

PSN R = 20log10
M AX I

MSE
(5.3)
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Table 5.7: Worst case compression rate

N E AR Figure 5.36(a) Figure 5.36(b) Figure 5.37(a) Figure 5.37(b)

0 1.56 1.58 2.58 1.62

1 2.76 2.82 3.49 2.73

2 3.64 3.90 4.29 3.51

3 4.61 5.22 5.17 4.19

4 5.88 6.91 6.20 4.94

5 7.60 8.98 7.44 5.84

6 9.79 11.76 8.90 6.91

7 12.82 14.75 10.68 8.35

8 17.11 19.69 12.85 10.11

9 23.16 27.28 16.50 12.88

10 32.52 39.34 20.16 16.67

where M AX I is the maximum possible pixel value of the image (i.e., 2bpp − 1), and MSE is the

Mean squared error that can be computed as in Equation 5.4.

MSE = 1

m ∗n

m−1∑
i=0

n−1∑
j=0

(I (i , j )−D I (i , j ))2 (5.4)

where m and n are the number of row and column composing the image, respectively, I (i , j ) is

the pixel value of the original image in the (i , j ) position, and D I (i , j ) is the pixel value in the

decompressed image in the (i , j ) position.

Figure 5.38 and 5.39 show the computed PSNR parameters on the two datasets. As can be

noted, from both figures, the PSNR parameter, as the compression rate, is not so much influ-

enced by the image resolution. Moreover, unexpectedly, this parameter is less influenced by the

different kinds of images than the compression rate parameter.

In general, the data gathered about the PSNR parameter demonstrate the effectiveness of the

near-lossless compression, that allows to increase the achieved compression rate while main-

taining limited the introduced error on the compressed image.

Analysing the literature, the common PSNR characterizing a lossy compression algorithm can

vary from 50 to 30 dB [184] [27]. Comparing this value with the data contained in the graph in

Figure 5.38 and 5.39, the near-lossless compression is able to introduce a lower error on the com-

pressed image, in fact, even in the worst case, the PSNR varies from 71 to 53 dB.

For the sake of completeness, in the sequel some examples on how the compressed image look

like are reported.
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(a) 1,024 x 1,024

(b) 640 x 480

Figure 5.38: 5 bpc Mars Express dataset PSNR parameter
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(a) 1,024 x 1,024

(b) 640 x 480

Figure 5.39: 5 bpc Curiosity PSNR parameter
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(a) Original (b) N E AR = 1

(c) N E AR = 2 (d) N E AR = 3

(e) N E AR = 4 (f) N E AR = 5

Figure 5.40: Mars Express database compression example
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(a) Original (b) N E AR = 1

(c) N E AR = 2 (d) N E AR = 3

(e) N E AR = 4 (f) N E AR = 5

Figure 5.41: Curiosity database compression example
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CONCLUSIONS

In this thesis have been presented a library of FPGA-based IP-cores that can ease the design of

complex image processing systems to be used in space applications.

A preliminary introduction on the importance of digital image processing in space applica-

tions allows the reader to understand how the proposed work can find a plenty of applications.

All the applications in which image processing is a key element have been presented. A major ef-

fort have been spent for the applications on which my research activity had a big impact. In fact,

for them have been reported a detailed description of the involved algorithms in order to allow

the reader to understand the level of complexity of the operations to be executed. This ensures

to better realize why to reach the mission requirements, in terms of speed, high performance

hardware accelerators are mandatory.

The comparison between FPGAs and ASICs highlights the benefits, in terms of flexibility and

cost reduction, provided by the former technology, and so justifies the trend of all space agencies

to prefer FPGAs for accelerating the execution of time consuming tasks. A detailed presentation

of the available space-grade FPGA technologies provided the needed knowledge to understand

why SRAM-based FPGAs are the most promising technology for the image processing accelera-

tion in space. In fact, this technology, even if it is less robust against transient error caused by the

harsh space environment, embraces all the needs, in terms of flexibility and high performances,

required by future space missions. For the sake of completeness, a comprehensive presentation

of the fault-tolerance techniques that must be adopted to use SRAM-based FPGA has been re-

ported.

After this introduction part, the core of my research work is presented: the FPGA-based IP-

core library for high performance image processing in space. First, the motivation about the im-

portance of IP-core libraries in the design flow of complex system is presented. Then, it has been

described the methodology that allowed to reach the required performances. This methodology

guides the designer from the image processing algorithm selection up to the hardware imple-

mentation. During the overall design flow, it suggests at which stage different optimizations (i.e.,

algorithm modification, internal parameters boost, data format and representation, hardware ar-

chitectural approaches etc.) must be applied. Moreover, in addition to the hardware implemen-

tation, the proposed methodology outcomes two models (i.e., algorithm and hardware models)

that can be used as inputs to the proposed verification and validation approach to quickly obtain

a validated IP-core.

Thanks to this methodology, a library of high performance FPGA-based hardware accelerators

have been developed. The proposed FPGA-based IP-core library has been organized in families.
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Each family contains a set of IP-cores that strongly accelerate the computation of an elementary

image processing task. For each IP-core a detailed presentation of the internal architecture has

been reported. This description depicts the architectural approaches exploited to achieve the

required performances. Moreover, to better highlight the achieved high performances for each

IP-core the area occupation and speed have been reported.

Eventually, to demonstrate the benefits provided by the proposed library in the development

of complex image processing system for space, the developed image processing systems have

been presented. These systems are the results of strong collaboration between me and space in-

dustries. The main purpose of this collaboration is the acceleration of applications that currently

require the highest performance in space (i.e., the relative VBN, the Active Space Debris removal,

and the image compression). In addition to the proposed IP-cores, each system is composed by

custom hardware components and software routines running on the on-board computer. This

mix of hardware and software elements demonstrates the flexibility and the integrability of the

proposed IP-cores in different systems. In order to demonstrate the impact of my research activ-

ity, all the developed systems have been compared with the current state-of-the-art implemen-

tations, in terms of both hardware performances and adaptability to the unpredictable environ-

mental and image conditions. These comparisons highlight how my work provided an important

boost on the performances of image processing in space applications.

To conclude this thesis, it must be recognize that the image processing in space is increasing

more and more its importance in space applications, so to even more increase the relevance of

future space missions, and in particular space exploration ones, a lot of research work still to be

done. However, this thesis can be considered a solid starting point for next research activities in

this field.
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JPEG-LS ALGORITHM DETAILS

In this appendix a detailed description of the operations performed by the JPEG-LS algorithm

is reported. In addition to the main operations mentioned in Section 2.7.1, this appendix, in

Section A.0.2.1, provides a deep explanation of all the internal parameters used by the JPEG-LS

algorithm.

A.0.2.1 Parameters initialization

The Parameters initialization phase aims at assigning the initial value to each JPEG-LS internal

parameters and variables. This phase must be repeated before each image compression task.

The main variables and parameters to be initialized are:

• NEAR: difference bound for near-lossless coding. Usually this parameter is not initialized,

but it is externally provided by the user depending the desired level of compression to be

applied on the input image. If N E AR is zero the lossless image compression is performed,

otherwise the near-lossless one.

• qBeta: an internal constant used during the Error Mapping phase (Algorithm 12). The value

of this constant is computed as follow:

qBet a = (al pha +2∗N E AR +QU AN T −1)/QU AN T (A.1)

where al pha is the maximum value that can be assumed by an input pixel, and QU AN T :

QU AN T = 2∗N E AR +1 (A.2)

• ceil_half_qBeta: another internal constant used during the Error Mapping phase (Algo-

rithm 12). The value of this constant is computed as follow:

cei l_hal f _qBet a = qbet a +1

2
(A.3)
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• qbpp: an internal constant defining the number of bits needed to represent a mapped error

value. Its value is equal to the bpp resolution (i.e., the number of bit used to represent pixels

in the input image) in the lossless compression, instead, in the near-lossless one, the qbpp

value is computed as follow:

f or (qbpp = 1;(2qbpp ) < qBet a; qbpp ++) (A.4)

• LIMIT : the length parameter used during the Golomb coding phase (Algorithms 13 and 22).

Its value is initialized to:

LI M I T =
2∗ (bpp +8)−qbpp −1, if bpp < 8

4∗bpp −qbpp −1, if bpp ≥ 8

• J[0..31]: is a 32-cells constant vector used during the block-MELCODE coding (Section

A.0.2.6). Its initial value is:

J [0..31] = 0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,5,5,6,6,7,7,8,9,10,11,12,13,14,15 (A.5)

• A[0..366]: it is a 367-cells vector used during the encoding phase to save the counters stor-

ing accumulated prediction error magnitudes. The cells from 0 to 364 are used in the regu-

lar encoding, instead the 365 and 366 ones are associated with the run mode interruption

context (Section A.0.2.4). All the cells of this vector are initialized to 2.

• B[0..366] it is a 367-cells vector used during the encoding phase to store bias values used

to update the prediction correction variable (C [0..364]). The cells from 0 to 364 are used

in the regular encoding, instead the 365 and 366 ones are associated with the run mode

interruption context (Section A.0.2.4). All the cells of this vector are initialized to 0.

• C[0..364]: it is a 365-cells vector used during the encoding phase to store prediction cor-

rection values. This variable is used during the regular encoding, only, to perform the cor-

rection of the predicted value (Algorithm 7). All the cells of this vector are initialized to

0.

• N[0..366]: it is a 367-cells vector used during the encoding phase to store counters for fre-

quency of occurrence of each computed pixel context (i.e., C l assM apcontext in regular

encoding, and Q in run encoding). The cells from 0 to 364 are used in the regular encod-

ing, instead the 365 and 366 ones are associated with the run mode interruption context

(Section A.0.2.4). All the cells of this vector are initialized to 1.
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A.0.2.2 Context Modelling

As shown in Figure 2.30, the first operation to be performed is the Context Modelling. This proce-

dure determines a probability distribution used to encode the current pixel (Ix in Figure 2.31). In

particular, the context is determined from four neighbourhood reconstructed samples ( Ra, Rb,

Rc, and Rd in Figure 2.31). As can be noted from Figure 2.31, each time a pixel is compressed a

new reconstructed sample is associated with it, and this value is used as Ra for the next processed

pixel. Obviously, if the current sample is in the first row, in the first column, or in the last column,

some of these parameters cannot be defined, since they are outside from the image boarders.

Table A.1 summarizes the padding rules defined in the standard to provide always a value to each

reconstructed sample. For the sake of completeness, in the table x denotes the row index, y the

column one, and Ncol s the total number of columns in the image.

Table A.1: Padding rules

Reconstructed Sample Position Assigned value

Ra
x = 0, y = 0 0

x 6= 0, y = 0 Rb

Rb x = 0 0

Rc
x = 0 0

x 6= 0, y = 0 Rb of first pixel of previous row

Rd
x = 0 0

x 6= 0, y = Ncol s −1 Rb

From these values, the context determines if the information of the current sample should be

encoded in the Regular or Run mode (i.e., the way in which the reconstructed value associated

with a pixel is computed varies depending on the selected encoding mode, so the procedure to

compute this value is described in Sections A.0.2.3 and A.0.2.4).

A.0.2.3 Regular Mode

As shown in Figure 2.30, when the Regular encoding mode is selected, a predicted value (P x) for

the current pixel is computed (Prediction). P x can be computed exploiting the following algo-

rithm.

After P x is computed, the prediction shall be corrected. The correction depends on SIGN (Sec-

tion A.0.2.2) and the prediction correction value C [context ]. The detailed procedure to perform

the correction is reported in Algorithm 7.

In the previous algorithm, the M AX V AL parameter is the maximum pixel value, so it is equal to

2bpp −1, where bpp is the number of bit used to represent a pixel.
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Algorithm 6 Sample prediction

1: if Rc ≥ max(Ra,Rb) then
2: P x = mi n(Ra,Rb)
3: else
4: if Rc ≤ mi n(Ra,Rb) then
5: P x = max(Ra,Rb)
6: else
7: P x = Ra +Rb −Rc
8: end if
9: end if

Algorithm 7 Prediction correction

1: if SIGN = 1 then
2: P x = P x +C [context ]
3: else
4: P x = P x −C [context ]
5: end if
6: if P x > M AX V AL then
7: P x = M AX V AL
8: else
9: if P x < 0 then

10: P x = 0
11: end if
12: end if

Using the corrected value of P x, the prediction error (Er r val ) can be computed following Algo-

rithm 8 (Prediction Error task in Figure 2.30).

Algorithm 8 Prediction error

1: Er r V al = I x −P x
2: if SIGN = 1 then
3: Er r V al =−Er r V al
4: end if

If the near-lossless compression has been selected, the prediction error must be quantized.

As suggested in the C/C++ implementation of the JPEG-LS, the quantization process can be per-

formed by using two LUTs: qdi v , and qmul . By pointing qdi v with Er r val the first quantization

step can be performed (the output value is called qEr r V al ). The quantization can be concluded

by computing the i qEr r V al variable by pointing qmul with qEr r V al .

Eventually, the modulo reduction of qEr r V al is performed as shown below. At this point, the

reconstructed sample associated with the current pixel (Rx (i.e., this value will become the Ra

sample for the next processed pixel)) can be computed as reported in Algorithm 10.

After all these steps, the computed errors can be encoded to obtain the compressed bitstream,
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Algorithm 9 qEr r V al modulo reduction

1: if qEr r V al < 0 then
2: qEr r V al = qEr r V al +qbet a
3: end if
4: if qEr r V al ≥ cei l_hal f _qbet a then
5: qEr r V al = qEr r V al −qbet a
6: end if

Algorithm 10 Sample reconstruction

1: if SIGN = 1 then
2: Rx = P x − i qEr r V al
3: else
4: Rx = P x + i qEr r V al
5: end if
6: if Rx > M AX V AL then
7: Rx = M AX V AL
8: else
9: if Rx < 0 then

10: Rx = 0
11: end if
12: end if

associated with the current processed pixel, to be appended to the compressed image.

This encoding phase is performed by means of the Golomb coding. First, the Golomb coding

variable k is computed (Algorithm 11) exploiting the A[0..364], and N [0..364] vectors.

Algorithm 11 k computation

1: for k = 0 → (N [context ] << k) < A[context ] do
2: end for

Then, the prediction error must be mapped on a non negative value (Error Mapping task in Figure

2.30), as reported in Algorithm 12, producing the two mapped errors AbsEr r V al , and MEr r V al .

Algorithm 12 Error mapping

1: if qEr r V al ≥ cei l_hal f _qbet a then
2: qEr r V al = qEr r V al −qbet a
3: absEr r V al =−qEr r V al
4: MEr r V al = 2∗absEr r V al −1
5: else
6: absEr r V al = qEr r V al
7: MEr r V al = 2∗qEr r V al
8: end if
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Eventually, the Golomb coding can be performed and the current processed pixel can be com-

pressed as reported in Algorithm 13 (Error Encoding task in Figure 2.30). In this algorithm the

function append_zer os(n) appends n zeros to the output compressed image, the function ap-

pend_bi t s(value,n) appends value represented on n bits to the output compressed image, and

& performs the bit-wise logical and operation.

Algorithm 13 Regular Golomb coding

1: unar y = MEr r V al >> k
2: if unar y < LI M I T then
3: append_zer os(unar y)
4: append_bi t s((1 << k)+ (MEr r V al & ((1 << k)−1)), (k +1))
5: else
6: append_zer os(LI M I T )
7: append_bi t s((1 << qbpp)+MEr r V al −1)), (qbpp +1))
8: end if

Before concluding the regular encoding phase, the A, B , C , and N vectors must be update as

shown in Algorithm 14.

A.0.2.4 Run Mode

If the local gradients are all equal to zero (for lossless coding), or their absolute values are less

than or equal to N E AR (for near-lossless coding), then the process enters in Run Mode.

In lossless coding, the encoder reads subsequent samples into I x while I x equals the recon-

structed sample Ra at the beginning of the run, or the end of the current image line is encoun-

tered.

Instead, in near-lossless coding, if the absolute value of the difference between I x and Ra is less

than or equal to the allowed error (N E AR), the run continues.

The encoding of the run length is followed by the encoding of the last scanned sample (i.e. run

interruption sample) in case the run is interrupted other than by the end of the current image

line.

From this initial description, the run mode procedure can be split into three main steps: Run

scanning, Run-length coding, and Run interruption coding (Figure 2.30).

A.0.2.5 Run scanning

The Run scanning step runs inside the image row associated with the current pixel until it finds

a run interruption sample, as depicted in Algorithm 15. In this algorithm, the variable EOLi ne

is asserted when the end of an image run is reached, and the function Get NextPi xel return the

pixel following the currently processed one.
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Algorithm 14 A, B, C, and N updating

1: B [context ] = B [context ]+qmul [qEr r V al ]
2: A[context ] = A[context ]+ AbsEr r V al
3: if N [context ] = RESET then
4: N [context ] = N [context ] >> 1
5: A[context ] = A[context ] >> 1
6: B [context ] = B [context ] >> 1
7: end if
8: N [context ] = N [context ]+1
9: if B [context ] =−N [context ] then

10: if C [context ] > M I N _C then
11: C [context ] =C [context ]−1
12: end if
13: B [context ] = B [context ]+N [context ]
14: if B [context ] ≤−N [context ] then
15: B [context ] =−N [context ]+1
16: end if
17: else
18: if B [context ] > 0 then
19: if C [context ] < M AX _C then
20: C [context ] =C [context ]+1
21: end if
22: if B [context ] > 0 then
23: B [context ] = 0
24: end if
25: end if
26: end if

Moreover, it must be specified that, in the case of lossless compression, the control |I x−RU N val |
≤ N E AR is reduced to I x = RU N val .

Algorithm 15 Run scanning

1: RU N val = Ra
2: RU N count = 0
3: while |I x −RU N val | ≤ N E AR do
4: RU N count = RU N count +1
5: Rx = RU N val
6:

7: if EOLi ne = 1 then
8: br eak
9: end if

10: I x =Get NextPi xel ()
11: end while
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A.0.2.6 Run-length encoding

After the computation of Algorithm 15, the variable RU N cnt is equal to the number of pixel

representing the processed run. The value of Runcnt must be encoded (Run-length encoding

task in Figure 2.30) exploiting the block-MELCODE coding [165], an adaptation technique for

Golomb code [80].

This encoding process exploits three variables: mel cor der , mel cst ate, and mel cl eng th, that

are initialized at the beginning of each image compression at 1, 0, and 0, respectively.

Algorithm 16 details the block-MELCODE coding operations. In this algorithm the function

append_ones(n) appends n ones to the output compressed image.

Algorithm 16 Run-length encoding

1: hi t s = 0
2: while Runcnt >= mel cor der do
3: hi t s = hi t s +1
4: Runcnt = Runcnt −mel cor der
5: if mel cst ate < 32 then
6: mel cst ate = mel cst ate +1
7: mel cl eng th = J [mel cst ate]
8: mel cor der = 2mel cl eng th

9: end if
10: end while
11: append_ones(hi t s)
12: if EOLi ne = 1 then
13: if Runcnt > 0 then
14: append_ones(1)
15: end if
16: r etur n
17: end if
18: l i mi t_r educed = mel cl eng th +1
19: append_bi t s(Runcnt , l i mi t_r educed)
20: if mel cst ate > 0 then
21: mel cst ate = mel cst ate +1
22: mel cl eng th = J [mel cst ate]
23: mel cor der = 2mel cl eng th

24: end if

It must be noted that if the the run is stopped by the end of a line, only the ones are appended to

the output compressed image, and the Run interruption coding is skipped (r etur n at row 16 of

Algorithm 16).

A.0.2.7 Run interruption coding

The basic concepts in the run interruption encoding are the same as those used to encode a new

sample in the regular encoding mode (Section A.0.2.3), with the additional requirement that I x
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must differ from Ra by more than N E AR, otherwise the run would have continued.

The Run interruption coding phase is performed if the run is interrupted other than by the end

of the image line. In this case, the run interruption sample must be encoded.

In this phase the value of the context (Q) is defined starting from the RI _t y pe variable that is

computed according to Algorithm 17.

Algorithm 17 RI_type computation

1: if |Ra −Rb| ≤ N E AR then
2: RI _t y pe = 1
3: else
4: RI _t y pe = 0
5: Q = 365+RI _t y pe
6: end if

Moreover, RI _t y pe is used to define the prediction value (xpr ) and the prediction error (Er r V al_

r un) of the run interruption sample (Algorithm 18).

Algorithm 18 xpr and ErrVal_run computation

1: if RI _t y pe = 1 then
2: xpr = Ra
3:

4: Er r V al_r un = I x −xpr else
5: xpr = Rb
6: Er r V al_r un = I x −xpr
7: if Rb < r a then
8: Er r V al_r un =−Er r V al_r un
9: end if

10: end if

As in the regular mode encoding, if the near-lossless compression has been selected, the predic-

tion error must be quantized using the two LUTs: qdiv, and qmul, in order to obtain the qEr-

rVal_run and the iqErrVal_run variables.

Moreover, as show in Algorithm 9, the modulo reduction of qEr r V al_r un is performed to obtain

the qEr r V al_ f i nal value.

At this point, the reconstructed sample associated with the current pixel (Rx) can be computed

as reported in Algorithm 19.

In the run mode encoding, the Golomb coding variable k, as shown in Algorithm 20, is computed

in a slightly different way w.r.t. the regular mode encoding.

Before computing the Golomb coding of the run interruption sample, the prediction error must

be mapped, as reported in Algorithm 21, producing the two mapped errors AbsEr r V al _r un,

and MEr r V al _r un.

Eventually, the Golomb coding can be performed and the current processed pixel can be com-

185



A. JPEG-LS ALGORITHM DETAILS

Algorithm 19 Sample reconstruction

1: if ((RI _t y pe = 1)||(Rb ≥ Ra)) then
2: Rx = xpr + i qEr r V al_r un
3: else
4: Rx = xpr − i qEr r V al_r un
5: end if
6: if Rx > M AX V AL then
7: Rx = M AX V AL
8: else
9: if Rx < 0 then

10: Rx = 0
11: end if
12: end if

Algorithm 20 k computation

1: if RI _t y pe = 1 then
2: A_new = A[Q]+N [Q]/2
3: else
4: A_new = A[Q]
5: end if
6: N t = N [Q]
7: for k = 0 → N t < A_new do
8: N t = N t ∗2
9: end for

Algorithm 21 qErrVal_run mapping

1: ol dmap = (k == 0 & qEr r val _r un & 2∗B [Q] < N t )
2: if qEr r V al_r un < 0 then
3: MEr r V al _r un =−2∗qEr r V al_r un −RI _t y pe +ol dmap
4: else
5: MEr r V al _r un = 2∗qEr r V al_r un −RI _t y pe −ol dmap
6: end if
7: AbsEr r V al = (MEr r V al +1−RI _t y pe)/2

pressed as reported in Algorithm 22. It must be noted that, the variable l i mi t_r educed is the

one computed during the Run-length encoding (Algorithm 16).

Before concluding the run encoding of the current pixel, the value of the A, B, and N vectors must

be update as shown in Algorithm 23. It must be noted, that differently from the regular mode

encoding, the C vector is not defined and used in this encoding mode.
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Algorithm 22 Run Golomb coding

1: r i g ht_l i mi t = LI M I T − l i mi t_r educed
2: unar y = MEr r V al _r un >> k
3: if unar y < r i g ht_l i mi t then
4: append_zer os(unar y)
5: append_bi t s((1 << k)+ (MEr r V al _r un & ((1 << k)−1)), (k +1))
6: else
7: append_zer os(r i g ht_l i mi t )
8: append_bi t s((1 << qbpp)+MEr r V al −1)), (qbpp +1))
9: end if

Algorithm 23 A, B, and N updating

1: if qEr r V al_r un < 0 then
2: B [Q] = B [Q]+1
3: end if
4: A[Q] = A[Q]+ AbsEr r V al
5: if N [Q] = RESET then
6: N [Q] = N [Q] >> 1
7: A[Q] = A[Q] >> 1
8: B [Q] = B [Q] >> 1
9: end if

10: N [Q] = N [Q]+1
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Generic name Description

A[] 367-cells vector saving the counters that store the accumulated pre-

diction error magnitudes

AbsEr r V al , MEr r V al Two mapped errors in the Regular-mode Encoding

AbsEr r V al _r un, MEr r V al _r un Two mapped errors in the Run-mode Encoding

acc Accumulator

actual_BW Current Histogram Bar Width

ADD Tree Adders tree

addr Address port

AHE Adaptive Histogram Equalization

AHFE Adaptive Harris Features Extractor

AIDI Adaptive Image Denoiser Ip-core

alpha Maximum pixel value in the image

αH light direction component along the horizontal axis

αP (x,y) Angle between the x axis and the tangent surface associated to the

currently processed pixel

αV light direction component along the vertical axis

AOCS Attitude & Orbit Control System

append_bits(value,n) Append to a bit string value represented on n bit

append_ones(n) Append n ones to a bit string

append_zeros(n) Append n zeros to a bit string

ASIC Application Specific Integrated Circuit

ATB Thales Alenia Space Avionic Testbench

ATHC Adaptive Threshold Computation Module

AVS Approximation of Viscosity Solution

Continue on next page
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Table B.1 – Continue from previous page

Acronym or Symbol Meaning

B Buffer

b Baseline of the stereo camera

B[] 367-cells vector storing the bias values used to update the prediction

correction variable

bpp bit-per-pixel

BRAM Block-Random Access Memory

BW Bar Width

BW_flag Flag signal asserted when the Histogram Bar width is greater than the

input Histogram Bar width threshold

C[] 365-cells vector storing the prediction correction value

CBM Cruise Balance Mass

CC Cross-Correlation

CCC Clock Conditioning Circuitry

CCD Charge Couple Device

CLAHE Contrast Limited Adaptive Histogram Equalization

C l assM apvLU T Look-Up Table to define the final value of the context

CLB Configurable Logic Block

CLK Clock signal

CLR Clear signal

CM Correct Matches

CMT Clock Management Tile

context Regular-mode encoding context

CS Computation Stage

Cur r _EF Current overall number of extracted features

Cur r ent_T H Current threshold value

D Pixel depth

data_in Input data port

data_out Output data port

DCM Digital Clock Manager

DDR Double Data Rate

δ Tolerance on the different between the number of extracted and tar-

get features

∆H Slope contribution provided by the currently processed pixel

δx Haar wavelet response along the horizontal direction

δy Haar wavelet response along the vertical direction

Continue on next page

190



Table B.1 – Continue from previous page

Acronym or Symbol Meaning

Det (X ) Determinant of matrix X

D-FF D-type Flip Flop

DFT Design For Testability

Di sp Displacement

DMA Direct Memory Access

DoG Difference of Gaussian

DPR Dynamic Partial Reconfiguration

DRD Design Requirement Document

DRL Design Requirement List

DSP Digital Signal Processor

Dx Image local gradient (x can be equal to 1, 2, and 3)

EBDM Ejectable Mass Balance Device

ECC Error Correcting Code

EDAC Error Detection And Correction

EDL Entry Descent and Landing

en Enable signal

EOLi ne Flag asserted when the end of an image line is reached

Er r V al Prediction Error in the Regular-mode encoding

Er r V al_r un Prediction Error in the Run-mode encoding

ESA European Space Agency

ESTEC European Space and Technology Centre

FB Features Buffer

FEM Features Extraction and Matching

FEMIP Features Extraction and Matching IP-core

FFT Fast Fourier Transform

F I (x, y) Filtered pixel value

Field Programmable Gate Array FPGA

FIFO First In First Out

FoV Field of View

fps frame-per-second

FSM Finite State Machine

FTMR Functional Triple Modular Redundancy

FVE Filter Variance Estimator

G(x, y,σ) Gaussian blurring function

Gap Difference between the number of extracted and target features

Continue on next page
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Table B.1 – Continue from previous page

Acronym or Symbol Meaning

Get NextPi xel () Return the pixel value following the currently processed one

GNC Guidance Navigation and Control

GRM General Routing Matrix

Gx Sobel kernel for detecting edges in the horizontal direction

Gy Sobel kernel for detecting edges in the vertical direction

H Image height

H(x, y) Combination of the slope contributions along the horizontal and ver-

tical axis

HA Histogram address signal

HA_done Flag signal asserted when the Histogram Analysis has been success-

fully computed

HAD Flag signal asserted when the Histogram Analysis has been success-

fully computed

Hazcam Hazard avoidance camera

HB Histogram Bar

HB_addr Histogram Bar addressing signal

HB_sum Histogram Bars sum

HB_sum_done Flag signal asserted when the Histogram Bars sum has been success-

fully computed

HDL Hardware Description Language

HE Histogram Equalization

HE_done Flag signal asserted when the Histogram Equalization has been suc-

cessfully computed

HED Flag signal asserted when the Histogram Equalization has been suc-

cessfully computed

hist_addr Histogram address signal

hist_done Flag signal asserted when the Image Histogram has been successfully

computed

hi t s number of loop performed during the Run-length encoding

HS Histogram Stretching

HS_done Flag signal asserted when the Histogram Stretching has been success-

fully computed

HSD Flag signal asserted when the Histogram Stretching has been success-

fully computed

HW Histogram Width

Continue on next page
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Acronym or Symbol Meaning

HW_flag Flag signal asserted when the Histogram width is greater than the in-

put Histogram width threshold

I (x, y) Input image pixel value

I/O Input/Output

ICAP Internal Configuration Port

ICD Interface Control Document

IET Image Enhancement Technique

I I (x, y) Integral image pixel value

Imax Maximum brightness value in the input image

Imi n Minimum brightness value in the input image

IMU Inertial Measurement Unit

IP Intellectual Property

i qEr r V al Final value of the quantized prediction error in the Regular-mode en-

coding

i qEr r V al_r un Final value of the quantized prediction error in the Run-mode encod-

ing

IRIS Interface Region Imaging Spectrograph

Ix Currently compressed pixel

J[] 32-cells constant vector for the Block-MELCODE coding

JTAG Joint Test Action Group

k Golomb coding variable

KFS Kernel Factor Selector

L(x, y,σ) Gaussian blurred pixel

LAPU Live At Power-Up

LE Logic Element

LEO Low Earth Orbit

LIMIT Length parameter used during the Golomb coding

l i mi t_r educed mel cl eng th value increased by one

LoG Laplacian of Gaussian

LowT H Lower threshold bound

LUT Look-Up Table

LUT-3 3-input LUT

LUT4 4-input LUT

LUT6 6-input LUT

LVE Local Variance Estimator

Continue on next page

193



B. LIST OF SYMBOLS AND ACRONYMS

Table B.1 – Continue from previous page

Acronym or Symbol Meaning

Lx Image derivative along the horizontal direction

Ly Image derivative along the vertical direction

m(x, y) Gradient magnitude

MAC Multiply-And-Accumulate

MARDI MARs Descent Imager

max Maximum Histogram Bar value signal

max(A,B) Return the maximum value between A and B

max_BW Maximum Histogram Bar width value

max_HB Maximum Histogram Bar value

MAXVAL Maximum pixel value in the image

ME Motion Estimation

mel cor der , mel cst ate, mel cl eng th Block-MELCODE coding variables

min Minimum Histogram Bar value signal

mi n(A,B) Return the minimum value between A and B

min_HB minimum Histogram Bar value

MISSE Materials International Space Station Experiment

MLE Mars Lander Engine

Mod C2 Module computing the complement 2 absolute value

µ Gradient orientation

MUL/ADD Tree Multipliers and adders tree

MUX Multiplexer

N Laplacian kernel

n Normal to the tangent surface to an observed object point

N (x, y) Second Moment matrix

N[] 367-cells vector storing the counters of the frequency of occurrence

of computed pixel contexts

N _cel l Number of image cells

N _Sobel _ f eatur es Number of features extracted exploiting the Sobel extractor

N _t ar g et_ f eatur es Number of target features

NAVCAM NAVigation CAMera

NCC Normalized Cross-Correlation

N E AR Allowed error for near-lossless coding

NEM Number of Extracted Matches

new_T H New threshold value

N F Number of extracted features

Continue on next page
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Acronym or Symbol Meaning

N F [] Matrix defining the number of extracted features from the image cells

NMS Non-Maxima Suppression

NPAL Navigation for Planetary Approach and Landing

NRE Non-Recurrent Engineering

N T H New threshold value

NVE Noise Variance Estimator

O f f set Correction value for the new threshold value

OT F Overall number of expected features per frame

OTP One-Time-Programmable

P (x, y) Currently processed pixel

PDE Partial Differential Equation

PLL Phase Locked Loop

pr evi ous_HB Previous Histogram Bar value

PSNR Peak Signal to Noise Ratio

P x Predicted compressed pixel value

Q Run-mode encoding context

Q_sum Sum of the quantized contexts

qBet a, cei l_hal f _qBet a Variables for the Error Mapping

qbpp Number of bit required to represent a mapped error

qdi v Look-Up Table for the first step of the prediction error quantization

qEr r V al Quantized prediction error after the first quantization step in the

Regular-mode encoding

qEr r V al_ f i nal qErrval_run with the modulo reduction applied

qEr r V al_r un Quantized prediction error after the first quantization step in the

Run-mode encoding

qmul Look-Up Table for the second step of the prediction error quantiza-

tion

Qx Quantized context of the image local gradient (x can be equal to 1, 2,

and 3)

R Register

R Reconfiguration task

R(x, y) Corner Response function

RB Row Buffer

r eal_HW Actual Histogram Bar width
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