
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Energy-efficient digital processing via Approximate Computing / JAHIER PAGLIARI, Daniele; Poncino, Massimo; Macii,
Enrico - In: Smart Systems Integration and Simulation / Bombieri N., Poncino M., Pravadelli G.. - ELETTRONICO. - [s.l] :
Springer, 2016. - ISBN 978-3-319-27390-7. - pp. 55-89 [10.1007/978-3-319-27392-1_4]

Original

Energy-efficient digital processing via Approximate Computing

Publisher:

Published
DOI:10.1007/978-3-319-27392-1_4

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2616950 since: 2021-09-28T14:18:15Z

Springer

Energy-Efficient Digital Processing via
Approximate Computing

Daniele Jahier Pagliari and Massimo Poncino and Enrico Macii

Abstract

1 Introduction

While the most characteristic feature of a Smart System is its capability of sens-
ing a set of environmental quantities and actuating appropriate actions in response
to those signals, it is obvious that a significant part of its functional operations is
involved with the elaboration of the information carried by the signals [15]. This
elaboration is usually done after converting the analog, asynchronous environmen-
tal signals into the digital domain.

Part of the smartness of a Smart Systems is therefore expressed in the au-
tonomous and transparent operation based on closed loop control and predictive
capabilities, as well as improved signal processing technologies. The former func-
tions are normally carried out by a micro-controller or processor core, whereas the
latter ones rely on either a Digital Signal Processor (DSP) or an Application Specific
Integrated Circuit (ASIC). Hybrid architectures, that combine one or more general
purpose CPUs with one or more hardware accelerators are also increasingly popular
[12].

Such “processing” dimension, coupled with the energy-autonomous nature of
these systems put significant emphasis on their energy efficiency [4, 13]. Measures
for reducing energy (and power) consumption vary according to the engineering
domain of the component being considered. In the computing subsystem, classical

Daniele Jahier Pagliari
Politecnico di Torino, www.polito.it e-mail: daniele.jahier@polito.it

Massimo Poncino
Politecnico di Torino, www.polito.it e-mail: massimo.poncino@polito.it

Enrico Macii
Politecnico di Torino, www.polito.it e-mail: enrico.macii@polito.it

1

2 Daniele Jahier Pagliari and Massimo Poncino and Enrico Macii

low-power techniques for processors and digital circuits can be fruitfully exploited
[36]. In this chapter, however, we focus on the explicit signal processing task and
show how we can effectively leverage an emerging design paradigm called Approx-
imate Computing [21, 51].

Approximate Computing has its foundations in the tradeoff between quality and
energy. It is based on the principle that, accepting a controlled degradation in output
quality, energy consumption can be reduced significantly, by changing either the
implementation of a computing device or its operating conditions. In Smart Sys-
tems, inputs to the computing subsystem often consist of physical data sampled
by some type of sensor. This information is inherently imprecise, both because of
environmental noise and measurement errors, and because of the limited precision
of transducers and analog-to-digital converters. Therefore, small approximations in
computation may be accepted, as their impact on the final output quality may be
negligible with respect to the effect of input imprecisions.

Moreover, some of the outputs in Smart Systems are power actuators, which
normally have much longer time constants with respect to electronic elements. As
a consequence, an error that manifests only intermittently for short amounts of time
is automatically “filtered-out” by the actuators.

Both aspects show that the maximum computation accuracy constraint is often
overly restrictive in Smart Systems applications. In other words, these applications
are error resilient, i.e. can tolerate some computational errors without a significant
impact on the quality of results. This property makes them the ideal targets for
the Approximate Computing methodology. In fact, if the design constraints of the
processing subsystem are set correctly, approximations can be made negligible with
respect to input errors and/or to the resolution of outputs, effectively reducing energy
consumption without impacting the output quality in a significant manner.

2 Error-Resilient Computing Paradigms

In modern electronics, energy has become a primary concern, due in particular to
the widespread diffusion of mobile, battery-powered devices. Researchers identified
error resilience as a common characteristic often found in applications performed
by such devices, including Smart Systems, that can be exploited to optimize their
energy efficiency [8].

2.1 Error Resilience

Error resilience, or tolerance, can be defined as the capability of tolerating some
errors without a significant impact on output quality. There are several factors that
affect the resilience of an application. In this Section, we try to categorize the most
recurring ones (see Figure 1).

Energy-Efficient Digital Processing via Approximate Computing 3

Error
Resilience

Noisy/Redundant
Inputs

Multiple
"Golden" Outputs

Limited
Human Perception

Algorithm
Features

Stochastic
Computing

Probabilistic
Computing

Approximate
Computing

Fig. 1 Overview of error resilience features and error resilient design paradigms.

Noisy or redundant input data. One cause of resilience is the fact that a system
deals with inputs affected either by errors or by some form of environmental noise.
In this situation, errors in computation can be tolerated, as long as they are negligible
with respect to the imprecisions on inputs. The latter, in fact, effectively constitute
an upper bound on the accuracy that can be obtained at the outputs. One example of
this situation has been already anticipated in Section 1, and corresponds to applica-
tions that process data coming from analog sensors, which are inherently affected by
environmental noise. Similarly, computing elements inserted in the decoding chain
of a communication system also fall in this category, as their inputs are affected by
noise and interferences in the channel. Another family of resilient applications are
those that process a redundant input data set, as is typical in several machine learn-
ing tasks. In this case, some computations can be approximated or even skipped
completely, because they do not add information (quality) to the results.

Absence of a unique golden output. For many applications, the definition of op-
timal, “golden” results is informal or fuzzy. This may happen because multiple out-
comes are equivalently valuable for the purposes of the system mission. Alterna-
tively, the optimality of the results produced by a computation can be inherently un-
known, because of the presence of random, semi-random or heuristic operations. In
the latter case, slightly perturbing the outputs of an internal operation might neigher
worsen nor improve the quality of the final results. The first property is present in
many data mining tasks. As an example, two similar outputs produced by a web
browser search engine might be considered equally good for the end-user, and it
is very difficult to distinguish the optimal. On the other hand, applications in the
domains of optimization and operation research often display the second feature. In

4 Daniele Jahier Pagliari and Massimo Poncino and Enrico Macii

literature, the broad family of Recognition, Mining and Synthesis (RMS) applica-
tions, is often reported as a particularly significant example of error resilience [8].

Limited human perception. Resilience can also come from the fact that the final
results of a computing task are often evaluated by people. Human sense organs have
a limited resolution both in terms of spacial and temporal dimensions and in terms
of discernible “values”. As an example, let us consider the visual system. Two full-
HD images that differ only for a few pixels are hardly distinguishable to the naked
eye (spatial dimension). Similarly, a single altered frame in a video stream is also
practically unnoticeable (temporal dimension). Finally, the two images or videos
are still perceived identical, even if differences are much more frequent in space
and time, as long as the pixels colors are only slightly altered (values dimension).
In summary, approximations that are sufficiently rare, in space or time, or suffi-
ciently small do not affect the perceived quality. The majority of the applications
that belong to this category are found in the domains of multimedia and telecommu-
nication e.g. audio/video compression, imaging tasks, etc. Notice that this feature
is partially overlapped with the previous one, since the fact that certain differences
are not noticeable by humans can be interpreted as a quality equivalence among
multiple outputs.

Algorithmic features. Lastly, an application can be resilient because of the in-
ner characteristics of the involved algorithms. In particular, certain computational
patterns favor the mitigation or the rejection of errors. A typical example of such
patterns is iterative refinement, used in many recognition and mining applications
as well as for the solution of systems of linear equations [21]. This pattern starts
from an inexact initial solution and iteratively improves it. Because of how it is con-
structed, possible additional error contributions introduced by approximate com-
putations will be reduced as well. Again, there is a partial overlapping between
this characteristic and the absence of a unique golden output. For example, pseudo-
randomness and heuristic decisions can be also thought of as algorithmic features.

In summary, in a resilient application, the quality of results can be thought of
as a continuous function of the quality of computations, as opposed to a boolean
one. Approximate Computing is one of the design paradigms that exploit this new
dimension for the optimization of computing systems, mostly in terms of energy
and power consumption (Figure 1).

2.2 Error Resilient Paradigms

In literature, Approximate Computing is distinguished from other similar approaches,
that also leverage error tolerance, such as Stochastic and Probabilistic Computing
[21]. In this section we briefly describe the main characteristics and differences
among these three perspectives.

Energy-Efficient Digital Processing via Approximate Computing 5

2.2.1 Stochastic Computing

Stochastic Computing (SC) was first theorized in the 1960s by two independent re-
searchers in Europe and in the United States [17, 43]. In this paradigm, information
stored in streams of bits is interpreted numerically as the probability of occurrence
of the logic value 1. As an example, a 10-bit stream with four 1s and six 0s is inter-
preted as the rational number 4/10. In formal terms, a string of n bits with n1 bits at
logic 1 corresponds to the real number:

p =
n1

n
(1)

It can be seen easily that all numbers in this system belong to the interval [0,1],
and that their representation is not unique. For example:

(0,0,0,1)SC = (0,1,0,0)SC = (0,0,1,0)SC = 0.2510 (2)

The initial interest for Stochastic Computing was motivated by the fact that some
arithmetic operations between bit-streams can be implemented very efficiently in
hardware [2]. Moreover, stochastic streams also have good tolerance properties in
response to soft (i.e. transient) faults. In fact, if any of the bits of a n-bit string
changes value because of a transient fault, the error in terms of the corresponding
real number is always 1/n. On the contrary, in binary the impact doubles for each
bit going from the Least Significant Bit (LSB) to the Most Significant Bit (MSB).

However, Stochastic Computing also has some major drawbacks. First of all, in-
creasing the precision of a calculation requires an exponential increase in the length
of bit streams. This affects both the speed of calculations and the bandwidth required
for memory access and communication. Moreover, not all possible representations
of a real number yield the most accurate result when used as input of an operation.
More specifically, correlation between the different inputs of an operation generates
errors at the outputs. To cope with this issue, random or pseudo-random architec-
tures (e.g. Linear Feedback Shift Registers) are used to generate the input stochastic
streams in the “most uncorrelated” way possible. The problematic aspect is that the
probability of correlation errors increases with the number of levels of logic, and in
circuits with feedback. Furthermore, some topological aspects of circuits, such as
reconvergent fanouts, enforce a strong correlation among streams.

The issues related with data correlation and the large bandwidth requirements
constrained the application of SC away from the field of general purpose comput-
ing. However, this paradigm was used successfully in several domains, such as neu-
ral networks, control systems and image processing [2]. Recently, SC has regained
interest due to its application to the decoding of Low-Density Parity Check (LDPC)
codes. Many of the most efficient algorithms for this task are probabilistic, and
therefore error resilient in nature. It has been shown that fast and low cost imple-
mentations of such algorithms benefit from a SC representation of data [19].

6 Daniele Jahier Pagliari and Massimo Poncino and Enrico Macii

2.2.2 Probabilistic Computing

The trend labeled Probabilistic Computing (PC) originates from the increasing re-
liability issues of integrated circuits as technology scales [42]. Because of physical
phenomena such as thermal noise and aging, standard CMOS devices are increas-
ingly unreliable from one generation to another. Therefore, hardware designers and
manufacturers put great effort in

building reliable circuits from unreliable physical switches via fault tolerant ar-
chitectures, thermal aware design, etc.

Probabilistic Computing reverses this idea, accepting to work with unreliable
circuits. To this end, a probabilistic model is formulated, in which each switching
device is associated with a probability of correctness p< 1, and computing architec-
tures are built on top of this model. The rationale that motivates PC is that accepting
a small drop in p can provide a large reduction in energy consumption, hence en-
abling very efficient computation.

Physical devices exhibiting this type of accuracy vs energy tradeoff have been
first theorized and then manufactured, giving birth to the logic family known as
Probabilistic CMOS (PCMOS). In parallel, Probabilistic Boolean Logic (PBL) has
been adopted as an abstract model to support designs based on PCMOS [6]. Proba-
bilistic Computing devices have been used to design architectures for various error
resilient applications, including decision systems, pattern recognition, and cryptog-
raphy, with promising results in terms of power efficiency [42].

2.2.3 Approximate Computing

Approximate Computing (AC), which is the main focus of this chapter, is allegedly
the most successful error resilient design paradigm to this day [21]. It differenti-
ates from Probabilistic Computing because the traditional deterministic logic model
for switching devices is maintained; AC methods do not assume any probabilistic
nature in the underlying physical devices that constitute the computing system. Sim-
ilarly, AC is also a separate body of work with respect to Stochastic Computing. In
fact, in most instances, information is processed and transmitted in standard binary
representations (unsigned, two‘s complement, etc).

Approximate Computing focuses on building imprecise or inexact circuits with
deterministic architectures (e.g. based on standard CMOS transistors). Statistical
considerations, for example on input data, are extensively used, but in general, a
reliable behavior of the hardware at the physical level is assumed. Hence, it is
sometimes referred to also as Inexact Computing [42]. The main goal of AC is,
as mentioned, power and energy reduction, but there are also techniques that exploit
approximation to achieve performance increase and silicon area optimization..

The success of this approach is partly due to the fact that it relies on existing
models and design techniques, modified appropriately to target the error resilient
application domain, rather than completely changing the perspective. This makes it
more accessible to hardware and software engineers accustomed to standard design

Energy-Efficient Digital Processing via Approximate Computing 7

flows. As an example, many embodiments of Approximate Computing are inspired
by techniques from the hardware and software reliability literature [23, 47, 7], while
others make use of modified versions of standard Electronic Design Automation
(EDA) algorithms [53, 48, 41].

In an attempt to build a topology of Approximate Computing techniques, a first
order classification can be done to split them in two groups:

• The first family includes techniques that modify the architecture of an existing
hardware or software design, introducing approximations in the computation,
in such a way that the impact of these modifications on the output quality is
statistically negligible, while the power and energy consumption are significantly
reduced (e.g. [35]).

• The second group includes techniques in which power reduction is achieved by
modifying the operating conditions of the target design rather than its structure.
Structural modifications can still be present, but in this case they are a way to
mitigate the quality loss rather than to directly reduce power (e.g. [23]).

A second classification of Approximate Computing literature can be done ac-
cording to the level of abstraction. This is the organization that will be followed
in the rest of this chapter to describe the details of some of the most successful
techniques. In particular, we can identify: (i) Transistor/Gate-Level Hardware Tech-
niques, (ii) Algorithm/Architecture-Level Hardware Techniques, (iii) Processor-
Level Hardware Techniques, (iv) Cross-Level Hardware Techniques and (v) Soft-
ware Techniques. In this discussion, we will mostly focus on hardware approaches,
since they are currently the most diffused and effective ones. Software AC will be
briefly described in Section 4.

3 Error/Quality Metrics

Before describing the details of the different Approximate Computing techniques,
it is important to briefly discuss the matter of quality evaluation. AC is essentially
a tradeoff between quality and some other metric, usually power or energy. To seek
for optimality, both axes of the design space must be quantifiable. Well-estabilished
models are available in literature for the power and energy consumption of digital
circuits [36]. In this section, we focus on metrics to evaluate quality, and in particular
to those suitable for hardware systems. Since quality is a function of the errors
introduced by approximate computations, quality and error metrics are often used
equivalently. In general, a quality metric can be obtained by taking the inverse of
the corresponding error metric.

8 Daniele Jahier Pagliari and Massimo Poncino and Enrico Macii

3.1 Error Rate and Error Significance

Quality is mostly a domain-specific metric, and there is certainly not a universal
function valid for the optimization of any Approximate Computing target. How-
ever, the overall quality of a computing system is often the result of two concurring
factors, which are commonly referred to as Error Rate and Error Significance (or
Magnitude) [21].

Error Rate (ER) is the rate or frequency of occurrence of errors. It is most com-
monly measured as the number of erroneous outputs over the number of total outputs
considered, both erroneous (ne) and correct (nc):

ER =
ne

(ne +nc)
(3)

Informally, ER can be considered as the average probability of occurrence of an
error over the time interval considered for its evaluation [8].

Error Significance (ES) defines instead the severity of a single error. Since the
notion of severity is strictly related to the mission of a system, the number of ES
functions found in literature is much larger than for ER. In this context, we mention
some of the most common ones. The simplest ES metric is the absolute value of
the numerical difference (D) between the correct (vc) and erroneous (ve) values of a
given output at a given time instant [48, 26]:

‖D‖= ‖vc− ve‖ (4)

A commonly found alternative definition uses the squared difference D2 instead.
The Hamming Distance (HD), defined as the number of bits that differ between
the binary representations of the correct and erroneous values, is often used for
strategies targeting arithmetic circuits [26]:

HD = ∑
bit(i)=1

(vc⊕ ve) (5)

where ⊕ is the bitwise XOR operator. Finally, the relative difference (RD) normal-
izes the error with respect to the correspondent correct value:

RD =

∣∣∣∣vc− ve

vc

∣∣∣∣ (6)

3.2 Composite Metrics and the Fail Small or Fail Rare Concept

In most Approximate Computing literature, some form of composite metric is used
that encompasses the information of both ER and ES [29, 33, 49]. The simplest of
such metrics is Rate-Significance (RS), defined as the product between the rate and
the maximum significance over a set of vectors

Energy-Efficient Digital Processing via Approximate Computing 9

[49]:
RS = ER ·max(ES) (7)

ER and ES are in turn defined according to one of Equations 3 and 4-6. In RS, the
contributions of ER and ES can also be

assigned a different importance by means of appropriate weighting. A slightly
more refined metric is the Mean Error Distance (MED), defined as the mean of ‖D‖
(see Equation 4) over the considered set of N output vectors [33]:

MED =
1
N

N

∑
i=1
‖vc,i− ve,i‖ (8)

If errors occurring in any time instant only depend on the value of the correct output
in the same instant, MED can be equivalently defined as:

MED =
M

∑
j=1
‖vc, j− ve, j‖ ·P(vc, j) = E [‖vc, j− ve, j‖] (9)

where M is the number of possible values assumed by the correct output and P and
E stand for probability and expected value respectively 1. The Normalized Error
Distance (NED) corresponds to the MED normalized to the maximum possible error
on a given output [33]:

NED =
MED

max(‖D‖)
(10)

With respect to the unnormalized version, this metric is better to compare the impact
of errors on buses with different widths or using different data representations. Very
similar to MED is the Mean Squared Error (MSE) [29]:

MSE =
1
N

N

∑
i=1

(vc,i− ve,i)
2 (11)

And again, under the assumption that errors only depend on “present” output values:

MSE = E
[
(vc, j− ve, j)

2] (12)

Up to this point, we mentioned mainly general purpose metrics. However, many
of the most used metrics in AC are domain-specific. The most popular in digital sig-
nal processing and communication applications is the Signal-to-Noise Ratio (SNR),
defined as [1, 29, 23, 47]:

SNR =
σ2

s

σ2
w

(13)

where σ2
s is the power of the signal component, i.e. of the set of error-free values

carrying useful information and σ2
w is the power of the noise component, i.e. of the

1 However, in many AC architectures errors are either affected by previous history of inputs and
output values, or by external conditions, hence this definition is not valid

10 Daniele Jahier Pagliari and Massimo Poncino and Enrico Macii

combination of all types of disturbances affecting the measured values. Therefore,
when SNR is used, errors due to approximate computations are modeled as a noise
source. One of the advantages of this metric is that it allows to combine approxima-
tions with disturbances caused by other factors, such as limited accuracy of analog
components, external radiations and crosstalk in a communication systems, etc. In
that case, assuming that computation inexactnesses and other sources of noise are
uncorrelated, the definition of SNR becomes [47]:

SNR =
σ2

s

σ2
noise +σ2

appr
(14)

This quantity is is often expressed in decibel (dB). Notice that SNR is strictly
related to MSE, as the “noise” due to approximations is defined as:

Nappr = vc− ve (15)

and hence its average power σ2
appr is exactly expressed by Equation 11. A further

variant is the Peak Signal to Noise Ratio (PSNR), which considers the ratio be-
tween the maximum value assumed by the correct data (max(‖vc‖) and the noise
variance. Lastly, many literature works use higher level application-specific models
of error/quality [8, 41, 38]. Since these metrics are so specific, they are too many to
be enumerated here.

In general, because of the nature of most error resilient applications, combined
metrics that consider both the rate and the significance of errors are often the most
effective ones. For these applications, the relation between computational errors
and measured quality is perfectly summarized by the rule of thumb of “Fail Small
or Fail Rare” [8]: the quality of outputs produced by an inexact computing system
acting over a set of inputs for a given period of time is acceptable if approximations
are either small in significance or rare in time. This is an essential guideline to the
design of Approximate Computing systems.

4 Approximate Computing Techniques

A schematic view of the main Approximate Computing techniques organized by
abstraction level is shown in Figure 2. In this section we provide a brief overview
of each group of approaches, aimed at conveying the general principles, and not
intended as a complete survey. We focus mostly on solutions suitable for the opti-
mization of DSP tasks commonly found in Smart Systems, and only mention the
remaining ones. However, we reference the most important publications, in case the
reader is interested. Solutions are examined with a bottom-up order, because low
level techniques often constitute the building blocks of higher level ones.

Energy-Efficient Digital Processing via Approximate Computing 11

Software
Level
(Sec. 4.3)

Processor
Level
(Sec. 4.3)

Algorithm
Level
(Sec. 4.2)

Netlist
Level
(Sec. 4.1)

Approximate
Functional

Units

Approximate
Logic

Synthesis

Error
Resilient

Processors

Best-Effort
Computing

A
b
st

ra
ct

io
n
 L

e
v
e
l

Voltage
Over-Scaling

Approximate
Behavioral
Synthesis

Cross
Level

(Sec. 4.3)

Scalable
Effort

Hardware

Quality
Programmable

Processors

Dynamic
Effort

Scheduling

Application
Resilience

Char.

Fig. 2 Overview of the main Approximate Computing techniques organized by abstraction level.

4.1 Transistor/Gate-Level Techniques

In Figure 2 we use the term Netlist-Level techniques to identify all those approaches
that operate on the transistor or gate-level netlist of circuits. Two main trends are
identified in literature at this abstraction. Some researchers have developed approx-
imate functional units, building inexact versions of the most common circuits found
in digital datapaths. Others have focused on automation aspects, developing tools
for the logic synthesis of approximate circuits.

4.1.1 Approximate Functional Units

The design of approximate versions of Functional Units (FU) is one of the most
popular applications of AC. Efforts are mainly directed toward the most common
datapath elements, namely adders and multipliers. A comprehensive survey of these
techniques can be found in [21].

For what concerns approximate adders, two main categories of approaches can be
identified. The first group modifies the structure of a single-bit Full-Adder (FA) and
then generates multiple-bit adders with the modified FA. The second also starts from
accurate architectures, but considers them from a coarser point of view, changing the
way in which their building elements are connected.

12 Daniele Jahier Pagliari and Massimo Poncino and Enrico Macii

In the category, one of the earliest designs is the so-called Lower-Part-OR Adder
(LOA) [37], in which some FAs are replaced by a simple OR gate (see Figure 3).
In [20, 55] the authors propose a similar idea, but in this case they generate ap-
proximate FAs with transistor-level simplifications. These solutions directly reduce
area and power (by affecting leakage, internal capacitances and switching activity)
and also decrease the delay of the FA, improving its performance, or alternatively
enabling a more aggressive voltage scaling, to further reduce power consumption.
Both goals are pursued while minimizing the truth table differences between the ap-
proximate versions and the original FA. Approximate FAs are used in the LSBs of a
multi-bit adder, while MSBs are summed accurately (e.g. with a Carry Lookahead
Adder) to preserve quality, as shown in Figure 3.

A0B0 An-1Bn-1

S0 Sn-1

Cin CLA

Bn An

Sn

BN-1AN-1

SN-1 Cout

Fig. 3 Lower-Part-OR Adder block diagram

The second group of approximate adders is mostly constituted by designs that
break the carry propagation chain. Being the critical path, breaking it enables delay
reduction at the expense of possible errors in the sum output. As mentioned, this can
be exploited for voltage scaling. Moreover, the carry chain is also responsible for
most switching activity in an adder, due to its frequent glitches. Therefore, reaching
signal stability earlier also has a direct impact on power. Adders based on this prin-
ciple can be found in [58, 57, 60, 59, 35, 25]. The authors of [54] use the same idea
to design a Variable Latency Speculative Adder, able to identify errors due to the
broken carry chain and compute the correct result, at the expense of additional la-
tency. In [26] an Accuracy Configurable Adder is proposed, in which multiple error
configurations can be set at runtime. The configurations that produce larger errors
have a smaller delay, and hence allow to scale the voltage more.

Approximate multipliers have a comparatively small literature. Some solutions
construct multipliers based on approximate adders [25, 35], while others modify
existing array multiplier architectures removing or simplifying the FAs involved in
MSBs calculations [37, 31]. A different approach is proposed in [30], where a multi-
bit unsigned multiplier is constructed starting from an approximate elementary cell
that performs 2-bit multiplication. It is shown that, by changing a single entry in
the truth table of the 2x2 multiplier, hardware complexity can be reduced of almost
50% (see Figure 4). Moreover, the erroneous condition can be easily detected and

Energy-Efficient Digital Processing via Approximate Computing 13

compensated. Thus, the architecture also supports an accurate mode of operation,
used only for quality-critical multiplications, at the expense of additional power.
Finally, [34] proposes an advanced design for an accuracy configurable multiplier,
based on input pre-processing.

p2 p1 p0
b0b1

a1a0

000

000

000

000

000

001

010

011

000

010

100

110

000

011

110

111

00

01

11

10

00 01 11 10

a0
b0

a0
b1

a1
b0

a1
b1

p0

p2

p1

Fig. 4 Modified 2x2 multiplication Karnaugh map and corresponding netlist.

4.1.2 Approximate Logic Synthesis

Approximate Logic Synthesis (ALS) deals with the generalization of the concepts
introduced for the approximation of functional units, and applies them to any gate-
level circuit. The rationale is that automation is indispensable to extend the approach
to larger and more complex designs. Some of the first efforts in this direction are
found in [48, 49], where methods for ALS are proposed targeting two-level and
multi-level circuits respectively. These solutions tackle the ALS problem directly,
using ad-hoc algorithms either to reduce the number of literals [48] or to simplify
some nets as if they were redundant [49], based on a given quality constraint.

A fundamental work on ALS is the tool developed in [53], named Systematic
methodology for Automatic Logic Synthesis of Approximate circuits (SALSA).
SALSA introduces several novelties with respect to previous approaches, includ-
ing the fact that ALS is transformed into a traditional synthesis problem, allowing
to fully leverage the optimization capabilities of commercial tools. Moreover, it also
unlinks the synthesis procedure from a specific quality metric, allowing the designer
to set their preferred metric as an input, and making the tool much more flexible.
The basic idea of SALSA is to construct the so called Quality Constraint Circuit
(QCC), shown in Figure 5. The triangular block contains a used-defined logic-level
implementation of the quality function, and its single-bit output Q is at 1 if and only
if the desired quality constraint is respected. SALSA considers the input conditions
for which Q is independent from a certain bit in the approximate circuit outputs

14 Daniele Jahier Pagliari and Massimo Poncino and Enrico Macii

Original
Circuit

Approximate
Circuit

Quality
Function

PI
POorig

POappr

Q

Fig. 5 Quality Constraint Circuit (QCC) in SALSA.

POappr,i, i.e. the Observability Don’t Cares (ODCs) of Q with respect to POappr,i.
Since those are the input combinations for which changing the value of POappr,i
does not violate the quality constraint, they are used to simplify the approximate
circuit, reducing area, power, and delay. Both the individuation of ODCs and the
corresponding simplifications are performed with commercial tools for classic logic
synthesis. The process is repeated iteratively on all bits of POappr, progressively
updating the approximate circuit in the QCC. Several optimizations are proposed
to reduce the computational complexity of the algorithm. Recently, the SALSA
methodology has been extended to consider also sequential circuits [45].

4.2 Algorithm/Architecture-Level Techniques

Algorithm/Architecture-Level techniques for approximate hardware can be concep-
tually defined as those that concurrently optimize a signal processing algorithm and
the hardware architecture that implements it. The considered targets can be as sim-
ple as a Multiply and ACcumulate (MAC) or as complex as a complete Fast Fourier
Transform (FFT). Therefore, there is not a well defined distinction between this
family of techniques and the previously mentioned Netlist-Level ones. Architecture-
Level methods are often the most effective ones for the DSP applications found in
Smart Systems.

4.2.1 Voltage Over Scaling

A large portion of Algorithm-Level techniques for Approximate Computing is based
on the Voltage Over Scaling (VOS) principle [29]. In a sequential device, at a given
clock frequency, the critical voltage Vdd,crit can be defined as the smallest supply
voltage that guarantees correct operation, i.e. absence of timing violations in the
worst case operating conditions. VOS-based approaches let the device operate at
voltages Vdd < Vdd,crit , exploiting the fact that timing errors only occur in corre-

Energy-Efficient Digital Processing via Approximate Computing 15

spondence of certain combinations of inputs. Therefore, in the majority of cases 2,
the circuit still produces the correct result. The clear advantage is that consumption
is reduced significantly, due to the super-linear relation between supply voltage and
both dynamic and leakage power [36].

The first embodiment of VOS to produce approximate circuits was originally
proposed in [23], and is named Algorithmic Noise Tolerance (ANT). Its main idea
is to let an arithmetic or DSP system work in VOS conditions, then leverage an
error-free Error Control (EC) block to detect the occurrence of a timing violation
and to mitigate its effects on the output quality (see Figure 7). Different types of
ANT, in particular for what concerns the implementation of the EC block, are pro-
posed in [24, 46, 47] and others. This technique is one of the most suitable for DSP
operations, and is analyzed in details in Section 5.

VOS is considered from a different perspective in Significance Driven Design
(SDD) [3, 40, 28, 22]. Instead of reducing errors due to VOS, this family of tech-
niques tries to confine their occurrence to non-significant computations, i.e. com-
putations that do not impact drastically the output quality. This goal is achieved
acting both on the algorithm and on the corresponding hardware architecture. As
an example, [3] applies SDD to a hardware implementation of the Discrete Cosine
Transform (DCT). Some DCT coefficients are slightly altered (algorithmic mod-
ification) in order to improve hardware sharing (architectural modification). This
sharing allows to compute high-energy DCT components, which are the most rel-
evant to determine the visual characteristics of the output image, with a reduced
delay, while long combinational paths are related to less significant components.
Therefore, in VOS conditions, timing errors will only affect the latter.

Path distribution
at nominal voltage

Effect of VOS

Clock Period

Violating paths

Clock Period

path delay [s] path delay [s]

N
.
o
f

p
a
th

s

N
.
o
f

p
a
th

s

Favorable Distribution Unfavorable Distribution

Fig. 6 Impact of slack distribution on VOS-induced errors.

An important aspect of all VOS designs is that the probability of timing errors
must be as small as possible, to limit the impact on quality. These errors are induced
by combinations of inputs that activate long combinational paths in the architec-

2 The precise rate of timing errors depends on circuit topology and on the characteristics of input
data. Moreover, it can be modified with optimization techniques (e.g. gate sizing).

16 Daniele Jahier Pagliari and Massimo Poncino and Enrico Macii

ture. Therefore, the distribution of path lengths influences significantly the behavior
of a system in VOS conditions; the ideal condition is to have few long paths and
many short ones, as shown in Figure 6. Two different works consider the problem
of easing timing degradation of circuits in VOS [27, 39]. The former proposes a
VOS-friendly gate sizing algorithm, that changes the path distribution to produce a
gradual degradation of quality and enable aggressive over-scaling. In [39] the focus
is on architectural modifications of some meta-functions, i.e. recurring operations
common to different error resilient applications, aimed at changing their path distri-
bution to reduce the error rate and significance at a given voltage.

Other literature involves VOS as key feature for power reduction. In [16, 14,
18] the authors proposed techniques and devices (such as the so-called Razor flip-
flops) that aim at detecting and avoiding VOS-induced errors. Error avoidance is
accomplished allocating additional clock cycles to let the longest combinational
paths stabilize, for instance via clock gating or pipeline stalling. These techniques
are very popular, but since they avoid errors rather than accepting them, they do not
strictly belong to the Approximate Computing domain.

4.2.2 Approximate Behavioral Synthesis

Recent works have addressed the approximate synthesis of designs described at the
behavioral level, i.e. starting from a functional model of the system behavior (typ-
ically graph-based) rather than from a net of logic gates. The main effort is doc-
umented in [41], where the authors propose a tool named Automated Behavioral
Approximate CircUit Synthesis (ABACUS), that produces multiple approximate
versions of a circuit starting from an original accurate model in behavioral HDL.
ABACUS operates by transforming the HDL in an Abstract Syntax Tree (AST)
model, then modifying the AST with a series of operators, each of which intro-
duces some approximations while preserving syntactic correctness. Operators in-
clude LSBs-truncation, variable to constant substitution, loop unrolling, etc. More-
over, ABACUS can also use models of approximate functional units like those pre-
sented in Section 4.1.1. Approximated ASTs are then transformed back to HDL and
processed with a standard synthesis and simulation flow to evaluate their cost (in
terms of area and power) and their accuracy. To avoid an exponential number of syn-
thesis and simulation phases, ABACUS does not apply all approximating operands
to all feasible locations in the AST. Instead, in each iteration it generates a number
of approximated ASTs choosing operands and locations at random, then greedily
selects the best solution as the starting point for subsequent iterations. Optimality
is expressed by a fitness function that weights cost and accuracy components. The
entire process is then repeated for a fixed number of iterations. A hard threshold on
accuracy is also set, so that solutions that affect quality too much are not synthe-
sized.

Energy-Efficient Digital Processing via Approximate Computing 17

4.3 Other Techniques

In this section we present Approximate Computing techniques that are less interest-
ing for the context of DSP in Smart Systems, but nevertheless need to be mentioned
to provide a complete view of the state of the art (see Figure 2).

Processor-Level Techniques. In the domain of programmable processors, AC so-
lutions are mostly based on the acceptance of errors due to process variability, ag-
ing, temperature, external radiation, etc. Rather than hardening the entire processor
against these errors, only some cores or units are made reliable with fault tolerance
mechanisms. Those units manage the control flow and execute critical operations,
while error resilient computations are offloaded to unreliable hardware. The total
area and power costs related to hardening are thus significantly reduced [32, 56].
A different approach is found in [52], where the authors propose a vector proces-
sor in which the “quality-level” of each operation can be set at the software level,
thanks to a specific Instruction Set Architecture. Different quality/power levels are
obtained in hardware combining reduction of operands bit-widths with power and
clock gating.

Cross-Level Techniques. Another branch of research has focused on methodolog-
ical aspects related to AC, such as the automatic assessment of error resilience,
and the combination (or synergy) of techniques at multiple abstraction levels. The
first objective has produced the so-called Application Resilience Characterization
(ARC) framework [8], able to individuate the error resilient computational kernels
in an application and evaluate the impact of different AC techniques (e.g. approxi-
mate functional units, VOS meta-functions, etc.) on them. The ARC framework is
used in [9] to generate Scalable Effort Hardware architectures, that combine AC
techniques at different abstraction levels to obtain greater power and area savings.
A further improvement is found in [10], where a technique called Dynamic Effort
Scheduling is proposed to set the global quality level at runtime, acting on knobs
that affect the different AC techniques involved.

Software Techniques. Most literature on AC at the software level exploits the pre-
viously mentioned iterative refinement (also found as iterative convergence) compu-
tational pattern. A technique called Best Effort Computing has been devised for these
algorithms in [38, 5], based on principles similar to those of best effort communica-
tion in the networking stack. An algorithm is divided in guaranteed computations,
which are fundamental for the final result, and optional computations, which can
tolerate errors without a significant impact on output quality. The relaxed correct-
ness requirement on the latter group is exploited in the Operating System to perform
different types of optimizations, aimed both at performance improvement and cost
containment. For example, optional computations can be skipped entirely, to avoid
exceeding the power budget, or synchronization between threads can be relaxed to
improve performance.

18 Daniele Jahier Pagliari and Massimo Poncino and Enrico Macii

5 Algorithmic Noise Tolerance for DSP

Many Smart Systems applications involve some form of Digital Signal Processing
(DSP). Depending on the complexity of the task, designers can choose different
types of computing devices to implement it. In some cases, a programmable pro-
cessor is mandatory, while in others the entire application can be implemented with
ASIC hardware. Even in the first setting, however, recent trends in industry indicate
that computing platforms are becoming increasingly heterogeneous, combining gen-
eral purpose processors with domain-specific hardware accelerators [12]. The need
for accelerators is driven by the double objective of improving performance while
reducing energy consumption; being less flexible, dedicated hardware can be de-
signed to be faster and more efficient than general purpose processors. Moreover,
for large sells volumes, heterogeneity also reduces costs, as a given performance
level is reached with simpler hardware, thanks to specialization.

In summary, complex Smart Systems are likely to include some form of special-
ized hardware module, which is often in charge of the most computationally inten-
sive and energy consuming processing tasks. As mentioned in Section 1, DSP appli-
cations involved in Smart Systems frequently exhibit error resilience. Consequently,
Approximate Computing configures as a potential source for further energy-driven
optimization. Smart Systems specialized ASICs are often more complex than a sin-
gle arithmetic module; examples of frequently found elements include FIR and IIR
filters, FFT or DCT processors, etc. Multiple of such elements are normally inte-
grated in a single IC. The most suitable Approximate Computing techniques for
this kind of complexity are those working at the Algorithm/Architecture Level (see
Section 4.2), because their high-level view allows to optimize the hardware system
in its entirety, rather than each functional unit separately. In particular, Algorithmic
Noise Tolerance (ANT) for the mitigation of errors due to Voltage Over Scaling
(VOS) is currently the most mature and well-defined approach for approximating
computation in specialized hardware modules of this nature [23].

5.1 ANT Overview

The most general scheme of an ANT-based architecture is shown in Figure 7. The
gray box corresponds to the hardware that performs the main functionality (e.g. a
digital filter) and is referred to as Main DSP (MDSP) block. Its primary inputs and
outputs are labeled X and YM respectively. The MDSP operates in VOS conditions
(Vdd < Vdd,crit), therefore it consumes significantly less dynamic (Pdyn) and leak-
age (Pleak) power than in nominal conditions, according to the well known power
dependencies for CMOS circuits:

Pdyn ∼ fclkCLV 2
dd (16)

Pleak ∼ IleakVdd (17)

Energy-Efficient Digital Processing via Approximate Computing 19

where fclk is the clock frequency, CL is the total load capacitance and Ileak is the
leakage current. However, the logic in the MDSP is slowed down by the reduced
supply voltage; in fact, the delay of combinational CMOS gates depends on voltage
according to the following equation:

τd =
Vdd

β (Vdd−Vth)α
, α > 1 (18)

In ANT, while Vdd is reduced below the critical value, the clock frequency (fclk)
used to drive sequential memory elements such as Flip-Flops is not modified, in
order to preserve the same performance (latency or throughput) as in nominal con-
ditions. Consequently, the MDSP is subject to input-dependent timing errors; when
a long combinational path is activated by a certain input combination, the logic can
fail to produce the correct, stable value in time before the following clock edge.
To cope with these errors, the MDSP is coupled with an Error Control (EC) block,
delimited by the dashed line in Figure 7. The purpose of the EC block is to detect
the occurrence of an error due to a timing violation, and limit its effects providing
a suitable approximation of the correct result at the global outputs of the ANT ar-
chitecture (Y). The combination of MDSP and EC block is sometimes referred to as
soft DSP [23].

MDSP

Error Control (EC)

YM

Y

X

Estimator

Yest

Decider

Fig. 7 General scheme of an ANT architecture.

Thanks to the fact that the EC block does not need to correct an error, as in a
fault tolerant system, but only to approximate the corresponding correct value, its
hardware complexity is limited. This conveniently reduces the overheads in terms
of additional silicon area and power; clearly, in order to be useful, the complete
ANT system in VOS must consume less than the MDSP in nominal supply voltage

20 Daniele Jahier Pagliari and Massimo Poncino and Enrico Macii

conditions. Moreover, relaxing the objective of complete error correction also allows
to make the EC block timing compliant in VOS. This is a necessary requirement,
because it guarantees that the error mitigation performed in the EC block is not
affected by errors itself.

The EC block is composed of two main elements, an Estimator and a Decider.
The Estimator is the component that produces an approximation of the correct
MDSP output, called Yest . In general, the estimation is obtained using information
on MDSP inputs and outputs, although the most popular ANT implementations only
use either one or the other. The Decider, instead, is the module in charge of select-
ing the output of the MDSP or that of the Estimator, depending on the possible
occurrence of a timing error. Notice that both MDSP and Estimator outputs must be
latched before being fed to the Decider. Otherwise, the decision logic might end up
in the critical path, becoming prone to delay errors, and rendering the entire ANT
architecture useless. Latching, however, increases of one clock cycle the latency of
the system, with respect to the original MDSP.

5.1.1 Decision Scheme

ANT is based on two important assumptions on the nature of timing errors due to
VOS. Firstly, timing violations must be rare in time, so that in most of the cases the
MDSP produces the correct output, and that value can be used as global output of
the system. This allows to maintain an average output quality which is comparable
to that of the MDSP in nominal voltage conditions. The validity of this assump-
tion depends on the selected VOS voltage, on the input data sequence, and on the
distribution of timing paths in the MDSP. However, techniques such as slack re-
distribution can be leveraged to enforce it [27]. Secondly, the errors produced in
correspondence of a timing violation must be large in magnitude, so that they are
easily detectable by the Decider. This condition is verified for the large majority
of DSP hardware systems. In fact, these systems are composed of a sequence of
elementary functional units such as adders and multipliers, for which the critical
timing paths are relative to the computation of the MSBs of result. Therefore, when
an error occurs, it most likely affects drastically the output.

The fact that errors are large in magnitude allows to select between MDSP and
Estimator outputs using as discriminating factor the absolute value difference be-
tween the two. The Estimator is designed to provide a good approximation of the
correct output. Therefore, if at a given instant its output is significantly different
from that of the MDSP, it is safe to assume that the latter is subject to a VOS-induced
error, and vice versa. In summary, the decision scheme is the following:

y[n] =

{
yM[n], if |yM[n]− yest [n]| ≤ Th

yest [n], if |yM[n]− yest [n]|> Th
(19)

Energy-Efficient Digital Processing via Approximate Computing 21

where, y[n], yM[n] and yest [n] indicate the values of signals Y , YM and Yest at time
n respectively 3. It is important to highlight that this decision scheme effectively
mitigates also errors not caused by VOS (e.g. Deep Sub-Micron noise, external ra-
diation, aging, etc.), whose effects on YM are significant, as long as the EC block is
not affected by the same errors.

5.1.2 Quality Metric and Problem Formulation

The main targets of ANT are DSP systems, such as digital filters or FFT acceler-
ators. These systems often process analog data produced by sensors and converted
to the digital domain, or received from a communication channel. Both types of in-
put are affected by noise. Therefore, in nominal supply voltage conditions (i.e. in
absence of VOS errors) the output of the MDSP can be expressed as:

yM,0[n] = s[n]+w[n] (20)

where s[n] is the signal component, and w[n] is a generic noise component, that may
be due to different physical sources. A particularly suitable metric for assessing the
processing quality of this type of systems is the Signal to Noise Ratio (SNR), defined
in Equation 13. The ANT strategy saves power accepting to introduce errors due to
timing violations, which are only partially corrected by the EC block. The residual
errors on Y can be modeled as an additional source of noise, as explained in Section
3. The global output quality of the ANT system can thus be measured (in decibel)
with the following expression:

SNR = 10log
(

σ2
s

σ2
w +σ2

err

)
(21)

where σ2
err (assumed uncorrelated with σ2

w) is the power of the additional errors
introduced by ANT:

σ
2
err = E[(yM,0[n]− y[n])2] (22)

y[n] is defined as in Equation 19, so it takes into account the reduction of VOS-
induced errors thanks to the EC block. Clearly, the SNR is not the only possible
quality metric for ANT, but given the nature of the considered MDSPs, it is largely
the most used. A typical goal is to design the EC block so that errors due to VOS
timing violations are negligible with respect to external noise (σ2

err << σ2
w).

In general, the problem of designing an optimal ANT architecture for a given
MDSP system can be defined as: finding the VOS voltage and feasible EC block
implementation that minimize total power consumption, including EC block over-
heads, under a minimum quality constraint, and so that the entire ANT system con-
sumes less than the single MDSP in nominal conditions. In formal terms:

3 In general, we use capital letters to refer to a signal, and lowercase ones to indicate its value at a
given instant in time.

22 Daniele Jahier Pagliari and Massimo Poncino and Enrico Macii
min[Pant(Vvos,k)]
Q(Vvos,k)> Qdes

Pant(Vvos,k)< Pmdsp(Vnom)

(23)

In Equations 23, Q represents a generic quality metric (e.g. SNR) and Qdes is the
minimum acceptable quality for the target application. Vvos and Vnom are respec-
tively the VOS and nominal (i.e. error free) supply voltages. Pmdsp is the power of
the MDSP, and only depends on voltage, since the MDSP hardware is fixed. On
the contrary, the power of the entire ANT system (Pant) depends both on the VOS
operating point and on the generic vector of parameters k which determines the
implementation of the EC block:

Pant(Vvos,k) = Pmdsp(Vvos)+Pec(Vvos,k) (24)

Depending on how the EC block is designed, k corresponds to a different set of
parameters, as explained in the following.

Two main families of ANT architectures have been proposed in literature:
Prediction-Based ANT [23, 24] and Reduced Precision Redundancy (RPR) ANT
[46, 47]. Hybrid approaches have also been studied in [47]. In the next sections, we
briefly describe the features of the existing types of ANT, which mainly differ in the
implementation of the Estimator. Then, we concentrate on RPR ANT and provide a
complete example of its application.

5.2 Prediction-Based ANT

In Prediction-Based ANT the Estimator is a linear forward predictor, that provides
an approximation (Yp) of the correct output based on the recent history of the system.
In particular, the estimate is based on a linear combination of the last Np outputs
produced by the MDSP:

yp[n] =
Np

∑
k=1

hp[k]y[n− k] (25)

The weights hp[k] are chosen to minimize the Mean Squared Error (MSE) of the
predictor E[e2

p[n]] in absence of VOS-induced timing violations (i.e. when ep[n] =
‖yM,0[n]− yp[n]‖). The way in which these coefficients are obtained is discussed in
detail in [44].

The hardware that implements an Estimator with the transfer function of Equa-
tion 25 is shown in Figure 8, where the boxes labeled with a “D” are delay elements,
i.e. Flip-Flops. The figure also reports one of the possible decision schemes for this
architecture, which follows the same principle of Equation 19. The Decider com-
putes internally the prediction error and compares it to a threshold Th. Given that
prediction coefficients are computed to minimize the approximation error in ab-
sence of VOS, if ep[n] is large it is assumed that a timing violation has occurred.

Energy-Efficient Digital Processing via Approximate Computing 23

In that case, the predictor output is used as approximation of the correct value. If
instead the error is less than Th, the MDSP output is selected. Other more complex
decision schemes have been proposed in [24]; they are not reported here for brevity.

MDSP

+ +

|-|
X X X

D D D

X

YM

YP

h(Np)h(2)h(1)

Predictor

> Th

Y

D
e
ci

d
e
r

Fig. 8 Prediction-Based ANT architecture.

The overheads in terms of cost and power of the Estimator in Prediction-Based
ANT depend on the length of the prediction window Np. The simplest version uses
a single past value of the MDSP output; in this case, it is referred to as Difference-
Based Estimator, since the value that is compared with Th is simply the (possi-
bly weighted) difference between the current and previous values of YM . Clearly, a
longer prediction window allows to obtain a more accurate estimate.

Setting the threshold Th for the Decider is one of the main design issues of this
type of architecture. In [24] the authors propose to use a multiple of the standard
deviation of the prediction error (Th = kσep). However, notice that this does not
guarantee that the Decider always selects the MDSP output when the system is free
of VOS-induced errors. If the MDSP output varies suddenly, causing a large error in
the predictor, the Decider may assume a delay error has occurred when in reality it
has not. In general, Prediction-Based ANT systems have good detection capabilities
when the outputs of the MDSP exhibit a strong temporal correlation, that is when
subsequent values of YM are correlated with each other.

Another limitation of this scheme is that the predictor output is biased by errors
occurred in the previous Np instants. In this time window, if another error occurs,
detection and output estimation capabilities of the ANT architecture become much
less accurate. In particular, performance degrade significantly when error bursts
happen at the MDSP output.

In summary, despite its simplicity and relatively small overhead, Prediction-
based ANT is limited to few MDSP, such as narrowband low-pass filters, that exhibit
strong output correlation. Moreover, it does not allow to aggressively scale the sup-

24 Daniele Jahier Pagliari and Massimo Poncino and Enrico Macii

ply voltage Vvos, since its effectiveness is limited to situations in which delay errors
do not accumulate in the prediction window.

5.3 Reduced-Precision Redundancy ANT

|-|

X

YM YR

> Th

Y

D
e
ci

d
e
r

MDSP Replica

Fig. 9 Reduced Precision Redundancy ANT architecture.

RPR ANT uses an alternative scheme for the Error Control block; the entire ar-
chitecture is depicted in Figure 9. In this case, the Estimator is a low-complexity
replica of the MDSP, obtained reducing the precision of internal operations. The
replica receives the same inputs as the MDSP at every clock cycle, and produces a
corresponding approximation of the main block results. Thanks to the smaller and
thus faster hardware operands involved, the replica can be designed to be timing
compliant in VOS conditions. Its internal logic is designed so that approximate re-
sults differ from accurate ones in the LSBs; therefore, the approximation error has a
small magnitude. This allows the Decider to select between MDSP and replica out-
puts based on the absolute value of their difference, as explained for the Prediction-
Based architecture.

If the entire output images of MDSP and replica, i.e. the sets of output values
produced by any sequence of inputs is known, the decision threshold Th can be
computed as:

Th = max
∀input

‖yM,0[n]− yR[n]‖ (26)

Energy-Efficient Digital Processing via Approximate Computing 25

where yM,0[n] and yR[n] are the error-free MDSP outputs and the Replica outputs
at time n respectively. Equation 26 ensures that in absence of VOS-induced errors,
the MDSP output is always selected by the Decider. However, the entire images of
YM and YR are easy to compute only for few simple MDSPs. Therefore, statistical
thresholds similar to those proposed for Prediction-Based ANT might be necessary
also in this case.

In RPR ANT the tradeoff between quality and EC block overheads is explored
varying the number of bits (Br) used for the internal operands of the replica (which
corresponds to the generic parameter k in Equation 23). A larger replica consumes
more power, both switching and leakage, and has a larger silicon cost. However,
it produces a more accurate approximation of the MDSP output, and therefore it
allows to maintain a higher quality at the global output Y . As explained in Section
5.1.2, the goal is typically to make errors due to VOS negligible with respect to
external noise.

The advantage of RPR with respect to Prediction-based schemes is its higher
flexibility. In fact, since the output estimate is computed based only on the present
value of inputs, this architecture behaves in an equivalent manner regardless of the
correlation between subsequent outputs in the MDSP 4. Also, the error mitigation
capabilities of RPR ANT are not affected by recent errors, except for cases in which
MDSP and replica have internal feedback networks. The drawback of RPR is that,
especially for complex MDSPs, replicas have larger overheads with respect to linear
predictors.

5.4 Hybrid ANT

Prediction-based ANT performance degrade when two timing errors occur too close
in time, effectively limiting the minimum Vvos at which the system can be operated.
On the other hand, RPR ANT has a larger power overhead. An hybrid scheme,
proposed in Figure 10 can be used to overcome these limitations, exploiting the best
features of both architectures.

In hybrid ANT, the EC block is equipped with two different Estimators: a lin-
ear predictor and a reduced-precision replica, designed as in Sections 5.2 and 5.3
respectively. An additional Finite State Machine (FSM) selects between two operat-
ing modes. In normal conditions, the approximation of the correct output is obtained
with the linear predictor (Yest =YP) whereas the replica is turned off via power/clock
gating, eliminating most of its overheads. When an error is sensed by the Decider
(‖yest [n]−yM[n]‖> Th) the FSM turns on the replica and switches the leftmost mul-
tiplexer of Figure 10, so that Yest becomes equal to YR. This preserves the error
detection and mitigation capabilities of the EC block, which is not affected by the
accumulation of errors in the Predictor. The system remains in “RPR-mode” until
no errors are detected for a given number of clock cycles. Then, it returns to normal

4 Different sequences of data may cause a different VOS-error rate, which results in a different
quality, but they have no influence on the error mitigation capabilities of the architecture.

26 Daniele Jahier Pagliari and Massimo Poncino and Enrico Macii

X

YM

YR
MDSP Replica

Predictor

|-
|

>
 T

h

FSM

Yest
Y

YP

Fig. 10 Hybrid ANT architecture.

operation. In [47] the authors show that hybrid ANT outperforms both RPR and
Prediction-Based architectures in terms of output quality, for the particular case of a
digital filter MDSP. The major drawback of this scheme is clearly the larger silicon
area required.

6 A Case Study: RPR ANT applied to a Finite Impulse Response
Filter

To conclude the discussion on Approximate Computing for digital processing in
Smart Systems, this section provides a detailed example of application of ANT,
which as explained in Section 5, is one of the most promising approaches in this
context. With a similar rationale, the hardware architecture that we optimize is a dig-
ital filter, due to its wide range of possible uses in Smart Systems applications (e.g.
communication, multimedia, control, etc.) [44]. We select a 16-th order lowpass
Finite Impulse Response (FIR) filter, with a cutoff frequency of wc = 0.1πrad/s.

The starting point for our optimization is the Verilog code that models the FIR
filter at the Register-Transfer Level (RTL). The particular implementation consid-
ered in this section uses the so-called Direct Form architecture, and its input (U) and
output (Y) ports are 12-bit and 24-bit wide respectively. A simplified block diagram
of the FIR filter is shown in Figure 11. Its transfer function is:

y[n] =
15

∑
i=0

u[n− i] ·w[i] (27)

We adopt Reduced-Precision Redundancy ANT as an optimization technique,
because of its higher flexibility with respect to prediction-based approaches. In par-
ticular, we have anticipated that prediction-based ANT is effective only if the filter
has a narrowband transfer function. RPR, on the contrary, can be exploited indepen-

Energy-Efficient Digital Processing via Approximate Computing 27

X

D Q

W0 W1 W2 W14 W15

X

D Q

X

D Q

X

+

+

X

D Q

+

+

U

Y

Fig. 11 Direct Form FIR filter block diagram.

dently from the parameters of the FIR (tap-length and coefficient values), although
the resulting performance may vary.

The objective in RPR ANT is to find the minimum VOS supply voltage and
number of bits in the replica operands that satisfy a given quality constraint (as in
Equations 23). Previous approaches [46, 47], have provided a solid theoretical foun-
dation for this type of optimization. However, their search for the optimal parameters
is based on simplified and often unrealistic assumptions.

The most important limitation is related to the method of evaluation of VOS-
induced errors and of their effects on the output quality. Specifically, the variance
of errors introduced by ANT, expressed by Equation 22, is a fundamental element
for the computation of the SNR and many other quality metrics (e.g. MSE). This
quantity depends both on the accuracy of approximations provided by the EC block,
and on the rate at which the replica output is selected, over the entire time window
considered.

In [46] the rate of VOS-induced errors is evaluated as the percentage of static
timing paths in the MDSP that have a negative slack at a given Vvos. Since path acti-
vation depends on the sequence of input vectors, this method implicitly assumes that
all pairs of inputs are equally probable. However, in most applications, the proba-
bility of occurrence of input vectors is not uniformly distributed (e.g. in arithmetic
cores often the operands have a Gaussian distribution with zero mean) let alone that
of input pairs. The assumption of uniformly probable path activation biases also the
estimation of error significance, since every possible VOS-induced error is consid-
ered equally likely. This, in turn, affects the evaluation of which errors are detected
and mitigated by the EC block, and of the corresponding approximation accuracy.
All these aspects influence significantly Equation 22, and might produce misleading
results (both overly optimistic or pessimistic) on the number of replica operand bits
required to ensure a minimum quality at a given Vvos.

Another important aspect that is partially neglected by literature is the effect of
voltage scaling on the replica. We have mentioned that the replica must be timing
compliant in VOS, in order to let the ANT system function correctly. However, this
is not trivially achieved, and depends strongly on the topology of the circuit. It does

28 Daniele Jahier Pagliari and Massimo Poncino and Enrico Macii

not suffice to assume that the reduction in critical delay of the replica is proportional
to the number of removed bits in its operands. Timing compliance must be checked
accurately, and can also be enforced, for instance with gate re-sizing. The latter
technique, however, may increase the power overhead and reduce the total savings
of the ANT system. All these details cannot be taken into account by optimization
methods such as the one proposed in [46], which use abstract high level models of
MDSP and replica.

To cope with these issues, we have developed a tool for the automatic genera-
tion of RPR ANT architectures on top of existing MDSPs [?]. Our tool is based on
timing simulations with input stimuli taken from the real application domain of the
MDSP, which are used to evaluate the rate and impact of VOS-induced errors accu-
rately. These simulations leverage a set of standard-cell library characterizations,
that model the target technology (usually CMOS) at different voltage points. This
approach allows to consider non-uniform input/input-pairs distributions as well as
secondary technological effects that have an impact on timing violations.

Moreover, the replica implementation is obtained automatically from the MDSP
netlist, removing some inputs and propagating the simplifications in the internal
logic. To make it timing compliant, the replica is then re-synthesized with state of
the art commercial tools, changing gate sizing if needed. After synthesis, the power
overheads are checked, and if they produce a negative power-saving for the entire
ANT system, the configuration is discarded. This procedure is repeated in a clever
way, minimizing the number of synthesis and simulations required, until the optimal
configuration in terms of VOS supply voltage and replica bits is found.

Using this tool, we have studied the application of RPR ANT to the FIR filter
from an engineering perspective, gathering detailed results that were not obtainable
with the methods originally proposed by literature. In the following sections, we
first describe the experimental conditions, then we present some results that confirm
the improvements achieved by our tool in terms of accuracy. In particular, we focus
on the effects of input distributions and timing correlation on VOS-induced errors.
To conclude, we show how the tool can be used to explore the power versus quality
tradeoff.

6.1 Experimental conditions

We performed experiments on the FIR filter targeting a 45nm CMOS standard cell
technology. The tool has been instructed to find the optimal VOS voltage in the
range between 1.1V and 0.55V, with a step of 0.05V. The clock frequency was set to
250MHz. This value allows to meet timing constraints exactly (with positive slack
∼ 100ps) for the single MDSP at Vdd = 1.1V , which we considered as the nomi-
nal voltage condition. For the synthesis of MDSP and EC block we used Synopsys
Design Compiler F-2011.09, while for timing and power analysis we used Synop-
sys PrimeTime Suite F-2011.12, and for behavioral and timing simulations Mentor
Modelsim SE 6.4a. As quality metric, we used the Signal-to-Noise Ratio (SNR),

Energy-Efficient Digital Processing via Approximate Computing 29

defined as in Equation 21 for all experiments. We measured the total power savings
and area overheads of the RPR ANT architecture with the following equations:

Psav =

(
1−

Prpr(Vvos,Br)

Pmdsp(Vnom)

)
·100% (28)

Aovr =

(
Arpr(Vvos,Br)

Amdsp
−1
)
·100% (29)

where Vnom, Vvos, Pmdsp and Prpr are defined as in Section 5, Amdsp and Arpr represent
the silicon area of the MDSP and replica respectively, and Br is the number of bits
in the replica inputs, which in turn determines the widths of internal operands.

6.2 Impact of input distribution and correlation

The first set of experiments aims at highlighting the strong dependence of the dis-
tribution and temporal sequence of inputs on the rate of VOS-induced errors, and
consequently on the performance of RPR ANT. For this purpose, we ran our op-
timization tool on the FIR filter four times, with identical settings, but using four
different sets of input vectors (S1-S4) in timing simulations. The first two sets con-
tain uniformly distributed vectors. In S1, vectors are in a random sequence, while
in S2 they are sorted numerically, in order to enforce a strong temporal correlation
in the MSBs (with a large probability, only the LSBs vary between two consec-
utive vectors). S3 and S4 instead represent more realistic inputs for a digital filter.
They contain two full swing sinusoids, respectively at ws3 = 0.01πrad/s, that is one
tenth of the cutoff frequency, and ws4 = wc = 0.1πrad/s. In all cases, we suppose
that input data is noiseless; we measure quality in terms of SNR, but considering
only VOS-induced errors, and we arbitrarily set the minimum quality requirement
to 25dB. Moreover, we limit our analysis to those VOS voltages that produce an Er-
ror Rate in the MDSP (computed as number of timing violations over total number
of vectors) greater than 0% and smaller than 20%.

Figure 12 reports the maximum power savings obtained at each Vvos point with
the mentioned constraints. The graph clearly shows the impact of different input
vectors on the effectiveness of RPR ANT. Two phenomena are particularly impor-
tant. First of all, at a given Vvos the error rates are significantly different depending
on the input set. As a numerical example, at Vvos = 0.7V , the error rates in S2 and
S4 are 0.05% and 12% respectively. Consequently, depending on the input set, the
replica output is selected more or less frequently, and hence a different value of Br
is required to achieve the desired quality. At Vvos = 0.7V , the errors for S2 are so
rare that a replica that only considers the 2 MSBs of the filter input for its compu-
tations is sufficient; in the case of S4, instead, 6 bits are required to achieve 25dB
of SNR. At the end, the noticeable product of these phenomena is that the power
savings in the two cases differ by almost 40%. Obviously, the input sets used in this
section constitute an extreme example. However, they serve as a mean to demon-

30 Daniele Jahier Pagliari and Massimo Poncino and Enrico Macii

5

15

25

35

45

55

65

75

0.550.60.650.70.750.80.850.9

P
o

w
er

 S
av

in
g

[%
]

VOS-Voltage [V]

S1 S2

S3 S4

Fig. 12 RPR ANT Power Saving vs. Vvos for different input sets.

strate that simplified assumptions on VOS-induced errors as those in [47] may lead
to unrealistic results.

Notice that Figure 12 also indirectly shows one of the features that make ANT
effective. We mentioned that the positive slack of the MDSP in nominal conditions
is only 100ps, meaning that the clock frequency is appropriate (not too small), ac-
cording to a classic worst-case design paradigm. However, we discovered that for
voltages between 1.05V and 0.9V , none of the input sets produces a timing violation
in the MDSP, i.e. the error rate remains 0%. This means that the critical timing path
of the FIR, which corresponds to the cascade of carry chains in all adders and mul-
tipliers (see Figure 11), is never excited by the provided stimuli. This is an evident
reason why relaxing the 100% accuracy constraint, working in VOS, and limiting
the impact of the rare errors with ANT is a very effective way to reduce power.

6.3 Power versus quality tradeoff

In this section, we demonstrate a more realistic use of our tool for the optimization
of the FIR filter, showing how it can be leveraged to explore the quality versus power
tradeoff. To do so, we select a popular application of hardware FIRs, which has been
also considered in [47], that is the low-pass filtering at the receiver of a QPSK com-
munication system. In particular, we instruct our optimization tool to perform simu-
lations with a set of inputs generated from a MATLAB model of the IEEE 802.11g
WiFi standard, which includes QPSK among the possible modulations. We assume
that the inputs to the FIR are affected by Additive White Gaussian Noise (AWGN)
due to channel interferences. As explained in [47], a minimum SNR at the filter out-
put of 21.5dB ensures a bit error rate of 10−7. Therefore, we add AWGN to the input
set, so that the output SNR of the filter is approximately at such value. Then, we let

Energy-Efficient Digital Processing via Approximate Computing 31

0

5

10

15

20

25

0 10 20 30 40 50 60 70

Q
u

al
it

y
(S

N
R

)
[d

B
]

Power Saving [%]

0.8V 0.75V

0.7V 0.65V

0.6V 0.55V

Fig. 13 RPR ANT Quality vs. Power Saving tradeoff for a 16th order FIR filter.

the tool generate all feasible replica configurations at each Vvos, without imposing
a quality constraint 5. In this context, feasible means that the ANT architecture has
positive power savings, and that the replica is timing compliant. The results on a
power saving versus quality plane are reported in Figure 13, in which each curve
corresponds to a value of the VOS supply voltage, and points on it correspond to
different replica input widths (Br).

Two trends can be identified in the graph. On the left side, quality is determined
by the channel AWGN noise, and saturates to a horizontal line. Therefore, all ver-
sions of the ANT architecture have the same final quality, independently from Br.
On the right side of the graph, instead, the errors due to VOS become dominant
with respect to channel noise, and the curves assume a typical Pareto shape: imple-
mentations with a smaller Br have smaller overheads, and hence higher total power
savings, but also a worse quality. A quality threshold can be visualized as a horizon-
tal line on the graph. The optimal RPR architecture for that quality is found as the
rightmost point among all those above the line.

If a designer wants to maintain a quality of 21.5dB at the output of the FIR
filter, in order to respect the constraints imposed by the 802.11g standard, RPR al-
lows to save up to 44.96% of total power. This is achieved setting the voltage to
Vvos = 0.60V , and inserting in the EC block a replica that considers the 6 MSBs
of the 12-bit input for its internal computations. The total area overhead of the EC
block, including replica and Decider is 88.39%. Notice that this significant power
saving is obtained without any effective impact on quality. In fact, quality was al-
ready bounded by the noise on the channel.

Interestingly, Figure 13 shows that a lower Vvos does not always correspond to
a larger power saving, for a given quality constraint. This happens because of the

5 In its normal operating mode, the tool only synthesizes the replica configuration with minimum
Br to satisfy a quality constraint at each Vvos.

32 Daniele Jahier Pagliari and Massimo Poncino and Enrico Macii

gate re-sizing performed by our tool in order to make the replica timing compliant.
In fact, at lower Vvos, faster gates, which are also larger and more consuming, are
needed to meet timing, and the resulting design often consumes more despite the
reduced supply voltage. This trend shows that accurate timing and power evalua-
tions for the replica, which were not performed in [47], are mandatory to correctly
estimate the effectiveness of RPR. Notice that the same phenomenon is visible also
in Figure 12, since power saving does not increase monotonically with the reduction
of Vvos for some input sets.

7 Conclusions

In this chapter, we have surveyed the most popular design solutions based on the
Approximate Computing paradigm. We have shown how, despite its relatively re-
cent formalization, AC has stimulated interesting research at all abstraction levels,
from single transistors to complete systems and to software. The growing interest on
this subject is demonstrated by the fact that most cited works have been published
in the last two or three years. Therefore, it is easy to foresee that in the near future,
even more effort from will be devoted to the progress of this field of research by
academia and industry.

We envision Approximate Computing as an effective way to reduce power and
energy consumption in Smart Systems, providing as motivation the fact that appli-
cations performed by these devices are often error resilient. As an example, we have
applied a popular AC technique to the optimization of a digital filter, which is one
of the most commonly found hardware modules in Digital Signal Processing appli-
cations. We have considered the situation in which the filter is part of the receiver
of a digital communication system, affected by noise on the channel, and we have
shown how, in this setting, almost 50% power saving can be achieved without an
effective impact on output quality. Moreover, higher power savings can be obtained
if a partial quality reduction is accepted.

References

1. Abdallah, R., Shanbhag, N.: Minimum-energy operation via error resiliency. IEEE Embedded
Systems Letters 2(4), 115–118 (2010).

2. Alaghi, A., Hayes, J.P.: Survey of stochastic computing. ACM Trans. Embed. Comput. Syst.
12(2s), 92:1–92:19 (2013).

3. Banerjee, N., Karakonstantis, G., Roy, K.: Process variation tolerant low power dct archi-
tecture. In: Design, Automation Test in Europe Conference Exhibition, DATE ’07, pp. 1–6
(2007).

4. Bombieri, N., Drogoudis, D., Gangemi, G., Gillon, R., Macii, E., Poncino, M., Rinaudo, S.,
Stefanni, F., Trachanis, D., van Helvoort, M.: Smac: Smart systems co-design. In: Euromicro
Conference on Digital System Design (DSD), pp. 253–259 (2013).

Energy-Efficient Digital Processing via Approximate Computing 33

5. Chakradhar, S., Raghunathan, A.: Best-effort computing: Re-thinking parallel software and
hardware. In: 47th ACM/IEEE Design Automation Conference (DAC), pp. 865–870 (2010)

6. Chakrapani, L.N.B., Palem, K.V.: A probabilistic boolean logic for energy efficient circuit
and system design. In: Proceedings of the 2010 Asia and South Pacific Design Automation
Conference, ASPDAC ’10, pp. 628–635. IEEE Press, Piscataway, NJ, USA (2010).

7. Chen, J., Hu, J.: Energy-efficient digital signal processing via voltage-overscaling-based
residue number system. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
21(7), 1322–1332 (2013).

8. Chippa, V., Chakradhar, S., Roy, K., Raghunathan, A.: Analysis and characterization of inher-
ent application resilience for approximate computing. In: 50th ACM / EDAC / IEEE Design
Automation Conference (DAC), pp. 1–9 (2013)

9. Chippa, V., Mohapatra, D., Raghunathan, A., Roy, K., Chakradhar, S.: Scalable effort hard-
ware design: Exploiting algorithmic resilience for energy efficiency. In: 47th ACM/IEEE
Design Automation Conference (DAC), pp. 555–560 (2010)

10. Chippa, V., Raghunathan, A., Roy, K., Chakradhar, S.: Dynamic effort scaling: Managing
the quality-efficiency tradeoff. In: 48th ACM/EDAC/IEEE Design Automation Conference
(DAC), pp. 603–608 (2011)

11. Chippa, V., Venkataramani, S., Chakradhar, S., Roy, K., Raghunathan, A.: Approximate com-
puting: An integrated hardware approach. In: 2013 Asilomar Conference on Signals, Systems
and Computers, pp. 111–117 (2013).

12. Cong, J., Sarkar, V., Reinman, G., Bui, A.: Customizable domain-specific computing. IEEE
Transactions on Design and Test of Computers, 28(2), 6–15 (2011).

13. Crepaldi, M., Grosso, M., Sassone, A., Gallinaro, S., Rinaudo, S., Poncino, M., Macii, E.,
Demarchi, D.: A top-down constraint-driven methodology for smart system design. IEEE
Circuits and Systems Magazine, 14(1), 37–57 (2014).

14. Das, S., Tokunaga, C., Pant, S., Ma, W.H., Kalaiselvan, S., Lai, K., Bull, D., Blaauw, D.:
Razorii: In situ error detection and correction for pvt and ser tolerance. IEEE Journal of
Solid-State Circuits, 44(1), 32–48 (2009).

15. 2014 MultiAnnual Strategic Research and Innovation Agenda (MASRIA) for the ECSEL Joint
Undertaking.

16. Ernst, D., Das, S., Lee, S., Blaauw, D., Austin, T., Mudge, T., Kim, N.S., Flautner, K.: Razor:
circuit-level correction of timing errors for low-power operation. IEEE Micro, 24(6), 10–20
(2004).

17. Gaines, B.R.: Stochastic computing. In: Proceedings of the Spring Joint Computer Confer-
ence, AFIPS ’67, pp. 149–156. (1967).

18. Ghosh, S., Bhunia, S., Roy, K.: Crista: A new paradigm for low-power, variation-tolerant, and
adaptive circuit synthesis using critical path isolation. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 26(11), 1947–1956 (2007).

19. Gross, W., Gaudet, V., Milner, A.: Stochastic implementation of ldpc decoders. In: Conference
Record of the Thirty-Ninth Asilomar Conference on Signals, Systems and Computers. pp.
713–717 (2005).

20. Gupta, V., Mohapatra, D., Raghunathan, A., Roy, K.: Low-power digital signal processing us-
ing approximate adders. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 32(1), 124–137 (2013).

21. Han, J., Orshansky, M.: Approximate computing: An emerging paradigm for energy-efficient
design. In: 18th IEEE European Test Symposium (ETS), pp. 1–6 (2013).

22. He, K., Gerstlauer, A., Orshansky, M.: Controlled timing-error acceptance for low energy
idct design. In: Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1–6
(2011).

23. Hegde, R., Shanbhag, N.: Energy-efficient signal processing via algorithmic noise-tolerance.
In: International Symposium on Low Power Electronics and Design (ISLPED), pp. 30–35
(1999)

24. Hegde, R., Shanbhag, N.: Soft digital signal processing. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 9(6), 813–823 (2001).

34 Daniele Jahier Pagliari and Massimo Poncino and Enrico Macii

25. Huang, J., Lach, J., Robins, G.: A methodology for energy-quality tradeoff using imprecise
hardware. In: 49th ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 504–509
(2012)

26. Kahng, A., Kang, S.: Accuracy-configurable adder for approximate arithmetic designs. In:
49th ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 820–825 (2012)

27. Kahng, A., Kang, S., Kumar, R., Sartori, J.: Slack redistribution for graceful degradation under
voltage overscaling. In: 15th Asia and South Pacific Design Automation Conference (ASP-
DAC), pp. 825–831 (2010).

28. Karakonstantis, G., Mohapatra, D., Roy, K.: System level dsp synthesis using voltage over-
scaling, unequal error protection and adaptive quality tuning. In: IEEE Workshop on Signal
Processing Systems (SiPS), pp. 133–138 (2009).

29. Karakonstantis, G., Roy, K.: Voltage over-scaling: A cross-layer design perspective for energy
efficient systems. In: 20th European Conference on Circuit Theory and Design (ECCTD), pp.
548–551 (2011).

30. Kulkarni, P., Gupta, P., Ercegovac, M.: Trading accuracy for power with an underdesigned
multiplier architecture. In: 24th International Conference on VLSI Design (VLSI Design), pp.
346–351 (2011).

31. Kyaw, K.Y., Goh, W.L., Yeo, K.S.: Low-power high-speed multiplier for error-tolerant ap-
plication. In: IEEE International Conference of Electron Devices and Solid-State Circuits
(EDSSC), pp. 1–4 (2010).

32. Leem, L., Cho, H., Bau, J., Jacobson, Q., Mitra, S.: Ersa: Error resilient system architecture
for probabilistic applications. In: Design, Automation Test in Europe Conference Exhibition
(DATE), pp. 1560–1565 (2010).

33. Liang, J., Han, J., Lombardi, F.: New metrics for the reliability of approximate and probabilis-
tic adders. IEEE Transactions on Computers, 62(9), 1760–1771 (2013).

34. Liu, C., Han, J., Lombardi, F.: A low-power, high-performance approximate multiplier with
configurable partial error recovery. In: Proceedings of the Conference on Design, Automation
& Test in Europe (DATE), pp. 95:1–95:4. (2014).

35. Lu, S.L.: Speeding up processing with approximation circuits. Computer 37(3), 67–73 (2004).
36. Macii, E.: Ultra low-power electronics and design. Springer US (2004)
37. Mahdiani, H., Ahmadi, A., Fakhraie, S., Lucas, C.: Bio-inspired imprecise computational

blocks for efficient vlsi implementation of soft-computing applications. IEEE Transactions
on Circuits and Systems I: Regular Papers, 57(4), 850–862 (2010).

38. Meng, J., Chakradhar, S., Raghunathan, A.: Best-effort parallel execution framework for
recognition and mining applications. In: IEEE International Symposium on Parallel Dis-
tributed Processing, pp. 1–12 (2009).

39. Mohapatra, D., Chippa, V., Raghunathan, A., Roy, K.: Design of voltage-scalable meta-
functions for approximate computing. In: Design, Automation Test in Europe Conference
Exhibition (DATE), pp. 1–6 (2011).

40. Mohapatra, D., Karakonstantis, G., Roy, K.: Significance driven computation: A voltage-
scalable, variation-aware, quality-tuning motion estimator. In: Proceedings of the ACM/IEEE
International Symposium on Low Power Electronics and Design (ISLPED), pp. 195–200
(2009).

41. Nepal, K., Li, Y., Bahar, R.I., Reda, S.: Abacus: A technique for automated behavioral syn-
thesis of approximate computing circuits. In: Proceedings of the Conference on Design, Au-
tomation & Test in Europe (DATE), pp. 361:1–361:6 (2014)

42. Palem, K., Lingamneni, A.: What to do about the end of moores law probably. In: Proceedings
of the 49th Design Automation Conference (DAC), pp. 924–929 (2012).

43. Poppelbaum, W.J., Afuso, C., Esch, J.W.: Stochastic computing elements and systems. In:
Proceedings of the Joint Computer Conference (AFIPS), pp. 635–644 (1967).

44. Proakis, J.G., Manolakis, D.G.: Digital Signal Processing (3rd Ed.): Principles, Algorithms,
and Applications. Prentice-Hall (1996)

45. Ranjan, A., Raha, A., Venkataramani, S., Roy, K., Raghunathan, A.: Aslan: Synthesis of ap-
proximate sequential circuits. In: Design, Automation and Test in Europe Conference and
Exhibition (DATE), pp. 1–6 (2014).

Energy-Efficient Digital Processing via Approximate Computing 35

46. Shim, B., Shanbhag, N.: Performance analysis of algorithmic noise-tolerance techniques. In:
Proceedings of the 2003 International Symposium on Circuits and Systems (ISCAS), vol. 4,
pp. IV–113–IV–116 (2003).

47. Shim, B., Sridhara, S., Shanbhag, N.: Reliable low-power digital signal processing via reduced
precision redundancy. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
12(5), 497–510 (2004).

48. Shin, D., Gupta, S.: Approximate logic synthesis for error tolerant applications. In: Design,
Automation Test in Europe Conference Exhibition (DATE), pp. 957–960 (2010).

49. Shin, D., Gupta, S.: A new circuit simplification method for error tolerant applications. In:
Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1–6 (2011).

50. Tanenbaum, A.: Computer Networks, 4th edn. Prentice Hall Professional Technical Reference
(2002)

51. Venkataramani, S., Chakradhar, S., Roy, K., Raghunathan, A.: Approximate computing for
efficient information processing. In: 12th IEEE Symposium on Embedded Systems for Real-
time Multimedia (ESTIMedia), pp. 9–10 (2014).

52. Venkataramani, S., Chippa, V.K., Chakradhar, S.T., Roy, K., Raghunathan, A.: Quality pro-
grammable vector processors for approximate computing. In: Proceedings of the 46th
IEEE/ACM International Symposium on Microarchitecture (MICRO-46) pp. 1–12 (2013).

53. Venkataramani, S., Sabne, A., Kozhikkottu, V., Roy, K., Raghunathan, A.: Salsa: Systematic
logic synthesis of approximate circuits. In: 49th ACM/EDAC/IEEE Design Automation Con-
ference (DAC), pp. 796–801 (2012)

54. Verma, A., Brisk, P., Ienne, P.: Variable latency speculative addition: A new paradigm for
arithmetic circuit design. In: Design, Automation and Test in Europe (DATE), pp. 1250–1255
(2008).

55. Yang, Z., Jain, A., Liang, J., Han, J., Lombardi, F.: Approximate xor/xnor-based adders for
inexact computing. In: 13th IEEE Conference on Nanotechnology (IEEE-NANO), pp. 690–
693 (2013).

56. Yetim, Y., Martonosi, M., Malik, S.: Extracting useful computation from error-prone proces-
sors for streaming applications. In: Proceedings of the Conference on Design, Automation
and Test in Europe (DATE), pp. 202–207 (2013).

57. Zhu, N., Goh, W.L., Wang, G., Yeo, K.S.: Enhanced low-power high-speed adder for error-
tolerant application. In: International SoC Design Conference (ISOCC), pp. 323–327 (2010).

58. Zhu, N., Goh, W.L., Yeo, K.S.: An enhanced low-power high-speed adder for error-tolerant ap-
plication. In: Proceedings of the 12th International Symposium on Integrated Circuits (ISIC),
pp. 69–72 (2009)

59. Zhu, N., Goh, W.L., Yeo, K.S.: Ultra low-power high-speed flexible probabilistic adder for
error-tolerant applications. In: International SoC Design Conference (ISOCC), pp. 393–396
(2011).

60. Zhu, N., Goh, W.L., Zhang, W., Yeo, K.S., Kong, Z.H.: Design of low-power high-speed
truncation-error-tolerant adder and its application in digital signal processing. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, 18(8), 1225–1229 (2010).

