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Acceleration of Microwave Imaging Algorithms for
Breast Cancer Detection via High-Level Synthesis

Daniele Jahier Pagliari

Politecnico di Torino, Turin, Italy
Email: daniele.jahier@polito.it

Abstract—We present the system-level design of two accelerators
for two microwave imaging algorithms for breast cancer detection.
The accelerators were designed in SystemC and optimized via
High-Level Synthesis (HLS). The two algorithms stress the
capabilities of commercial HLS tools in different ways: the first
is communication-bound and requires careful pipelining of com-
munication and computation; the second is computation-bound
and requires the implementation of mathematical functions that
are not properly supported by HLS tools. Still, in the span
of four months we were able to design and validate about
one hundred alternative implementations, targeting a Zynq SoC
platform. Furthermore, we were pleased to obtain results that
are superior to a previous RTL implementation, which confirms
the remarkable progress of HLS tools.

I. INTRODUCTION
The adoption of new medical imaging techniques and the
enhancement of existing ones are limited by the lack of cost-
efficient and power-efficient computational platforms. Various
promising algorithms require a computational capacity diffi-
cult to enclose in a medical equipment with a constrained
form-factor or a limited power budget. Hence, researchers
are investigating the design of specialized accelerators to
obtain power-efficient, high-performance implementations of
innovative algorithms for various medical applications.
An important application domain is Microwave Imaging (MI)
for breast cancer detection, one of the most promising alter-
natives to overcome the limitations of X-Ray mammography.
The processing involved in MI is too heavy for a pure software
implementation, especially for high resolution images. Fig. 1
illustrates a possible alternative solution, in the form of an
embedded architecture in which a CPU offloads the critical
parts of the computation to a specialized accelerator.
The design and optimization of accelerators can benefit from
recent advances in High-Level Synthesis (HLS), which allow
the efficient production of synthesizable RTL implementations
(in Verilog/VHDL format) from design specifications given in
a high-level programming language (e.g. C/C++, SystemC) [1].
State-of-the-art HLS tools provide a set of knobs to explore a
multi-objective design space by synthesizing many alternative
microarchitectures, in search for those that are Pareto-optimal
in terms of cost vs. performance tradeoffs [2]. Often, an expe-
rienced user of these tools can synthesize a microarchitecture
that outperforms manually-designed RTL.
We examine two alternative methods for breast cancer MI and
use HLS to accelerate the corresponding imaging algorithms,
which we specified in SystemC. These algorithms stress HLS
tools in different ways. The first, called MIST Beamforming, ex-
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ecutes a set of fairly simple operations on a massive amount of
input data. The second, MUSIC-Inspired (MUSIC-I), processes
a relatively smaller amount of data but requires significantly
more complex operations. Consequently, the performance of
the corresponding accelerators are likely communication-bound
for MIST Beamforming and computation-bound for MUSIC-I.
For both algorithms, we complete a comprehensive Design-
Space Exploration (DSE) by varying parallelism, pipelining,
resource sharing, mapping of the memory elements and, in the
case of MUSIC-I, implementation of complex mathematical
operators. To leverage the potential of the accelerators, we aim
at microarchitectures that optimize the pipeline between I/O and
computation. We synthesize our designs for FPGA technology
and validate them on a Xilinx Zynq board, which is the
emulation platform closest to a final ASIC SoC implementation.

II. MI BREAST-CANCER DETECTION

We focus on two linear-scattering methods which irradiate the
breast with Ultra Wide Band (UWB) microwave pulses, using
multiple (or a single moving) transceiver. The corresponding
reflections are sampled and processed to produce an energy map
in which tumors are highlighted, thanks to the high dielectric
contrast between tumors and healthy tissue in the microwave
spectrum. Here we provide a succinct description of the two
methods; more details can be found in the cited references.

MIST Beamforming. In Microwave Imaging via Space-Time
(MIST) Beamforming [3], the processing synthetically focuses
the reflections scattered by a point of a volume, i.e. a voxel.
Sampled reflections are pre-processed to eliminate the clutter
due to scattering at the air-skin interface. Then, in the actual
beamforming step, they are delayed and filtered to align the
scattering contributions of the considered voxel on different
antennas, while rejecting noise and reflections due to other
locations. Filtering also compensates path-length dependent



Listing 1: MIST Beamforming computational kernel.

Listing 2: MUSIC-I computational kernel.

1| for vox = 1 : NVOX % loop over voxels
2| energy = 0;
3 for i = 0 : LH & loop over samples
4 z = 0;
5 for ant = 1 : NANT $ loop over antennas
6 for 1 =1 : L & loop over filter weights
idx = i + 1 + (NH - L);
8 if idx > NA ¢ windowing and alignment
9 z =z + ( x(ant, idx - d(vox,ant)) =
w(vox,ant,1l));
10 end
11 end
12 end
13 energy = energy + (z x z);
14| end
15 en (vox) = energy;
16| end
Subtask Runtime (s) Subtask Runtime (s)
FFT 0.013  Computation of F 17.861
Declutter 0.725  Computation of P 0.027
Computation of Eigenvectors 0.007

TABLE I: Profiling of MUSIC-I steps.

dispersion and attenuation and isolates the frequency band of
interest. Multiple windowing steps isolate the samples where the
scattered UWB pulse is expected to be found. Finally, signals
from different antennas are combined and the voxel energy is
computed by squaring and accumulating the samples over the
window span. This process is repeated after changing alignment
and filtering coefficients, in order to steer the beamformer and
scan all voxels. Alignment “delays” and filter weights are
determined voxel by voxel, and depend on the characteristics
of the antennas and of the propagating medium. Listing 1 shows
a MATLAB implementation of the beamforming kernel. Matrix
x contains the scattered field samples, d and w store alignment
delays and filter weights, and en stores the energy values map.
A discussion on the determination of the parameters in capital
letters can be found in the literature [3], [4].
MUSIC-Inspired Reconstruction. A recently proposed MUIti-
ple Slgnal Classification (MUSIC)-Inspired algorithm has been
proved robust when characterization of the UWB antennas
and of the heterogeneity in the breast tissue is not possible [5].
While Beamforming works in time domain, MUSIC-I processes
the samples in frequency domain via FFT. The Ng frequency-
domain samples are organized in a matrix whose columns
correspond to N4 antennas. In this case, clutter removal is
obtained with a subspace-projection method. Then, the reflected
energy map is generated as shown in Listing 2. First, the
eigenvectors of the correlation matrix R = S7 - (S7) are
computed, where S is the n-th row of the N4 x Ng decluttered
samples matrix Sy. Then, for each voxel position, the dominant
eigenvector of R is multiplied with an array of Green functions,
which account for the propagation between the trial voxel
and each transceiver, using the Hermitian inner product. The
processing is repeated over multiple frequencies (i.e. on all
rows of S;) to reduce image artifacts due to the rank deficiency
of R. A detection function Py combines the results at different
frequencies to obtain a peak only for real scattering sources in
the breast (i.e. tumors), while rejecting artifacts. In Listing 2,
nz and ny represent the image size in pixels, z(nz) and y(ny)
store the horizontal and vertical coordinates of the voxels, xo
and yo contain the positions of the transceivers, and k is the
wave number. Matrix P stores the detection function.

1{inv_P = 1;

2| for £ = 1 : Nfreq % loop over frequencies

3 $ correlation matrix

4 R = 8d(:,:,f).” » conj(Sd(:,:,£f));

5 $ eigenvectors/eigenvalues computation

6| [V,D]=eig(R);

7 [max_val, max_idx] = max (abs(diag(D)));

8 for u =1 : nx ¢ loop over image rows

9 for v =1 : ny ¢ loop over image columns

10 % green function computation

11 Wn = (exp(-Jjxkb(f) * sqgrt((x(u)-xo)." 2 +
(y(v)-yo)."2)).")."2;

12 % inner product and norm

13 F(u,v,f)= norm((Wn / norm(Wn))’ * V(:,max_idx));

14 end

15 end

16 % product over different frequencies

17 inv_P = inv_P.x(1-F(:,:,£).72);

18| end

19|P = 1/inv_P;

III. HARDWARE ARCHITECTURE

Profiling. Previous work on the hardware acceleration of
MIST showed that filter weights and alignment delays can
be computed offline once the system has been characterized
and that the air-skin clutter removal step can be implemented
sufficiently fast in software [6], [4]. Consequently, we focused
our effort on accelerating the beamforming step (Listing 1). To
identify the critical parts of MUSIC-I, we profiled a software
execution divided in five steps: FFT, declutter, eigenvectors
extraction, Hermitian product (matrix F' in Listing 2), and
detection function computation (matrix P). We evaluated the
execution time for a 200 x 200 2D image reconstructed using
18 antennas and 20 frequencies. Table I reports the results
obtained on an Intel Core i5 - 3337U processor (2.7 GHz,
3-MB L3, 1600-MHz FSB, 4-GB DRAM, Linux kernel 3.13.0-
32.), showing that the computation of F (lines 8-15 of Listing 2)
is the obvious target for hardware acceleration. Note that, while
the execution of MUSIC-I on a small image completes in few
tens of seconds, a larger image or a 3D image made of several
2D slices, would require minutes for each patient’s breast, a
time not acceptable for a clinical scenario.
Microarchitecture. Figs. 2 and 3 show high-level views of the
accelerators. Through the slave bus interface, the embedded
processor connected to the system bus (Fig. 1) accesses the
accelerators register bank to write parameters and commands
and to read the execution status. Through the master bus
interface, accelerators exchange data with the processor via
DMA-like transfers on a shared memory. We developed these
interfaces using a synthesizable Transaction-Level Modeling
(TLM) library that abstracts the bus protocol by means of
generic blocking FIFO primitives. TLM simplifies the porting
of the designs to different bus (or NoC) architectures. For
validation, we mapped this agnostic model to a signal-level
implementation of the AMBA AXI standard.

Internally, the two microarchitectures exploit the intrinsic
parallelism that both algorithms offer at the voxel level, as
evident in Listings 1 and 2: the accelerators are composed
of a series of parallel sub-units (blue rectangles in Figs. 2-3)
working concurrently on different data. The granularity of the
task performed by each sub-block was determined considering
the size of the input data set (Table II), part of which is stored
in sub-block-private scratchpad memories before processing. In
MIST, weights w and delays d have the largest size and are not
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Fig. 2: Accelerator architecture for MIST Beamforming.

MIST Beamforming

Input N. elements  Input N. elements
z[Ng * Na] 4608 d[Nvox * Na 720000
w[Nyox * Na * L] 39600000

MUSIC-I

Input N. elements  Input N. elements
z0[N 4] 18 y[Ny] 200
yo[NA] 18 kb[Q*NFREQ] 40
z[Nx] 200 V[2*Na*Nprpeg) 720

TABLE II: Accelerators input requirements for a system with
18 antennas, 256 samples/channel, 20 frequencies, 200x200
image size. Factor 2 in MUSIC-I is for complex quantities.

shared among voxels, whereas samples x have a smaller size
and are shared. This calls for a natural voxel-level partitioning
among parallel elements, hence named Voxel Processors (VPs).
To avoid conflicts, each VP receives a copy of x at the beginning
of computation. Weights and delays are distributed cyclically
to VPs when a new voxel energy must be computed.

In MUSIC-I, instead, the smaller size of the data set and the
higher data sharing in the computation of the elements of matrix
F (for a single frequency) call for a coarser granularity. Hence,
we designed Row Processors (RPs) for the computation of each
row of F'. The larger atomic processing unit reduces the control
overhead in the top-level module of the accelerator. On the
other hand, an even coarser granularity would have required an
excessively large output scratchpad memory for each sub-block.
Each RP receives a copy of shared arrays xo, yo, kb, and V,
while x and y are suitably partitioned, since every RP operates
on separate row ranges.

HLS tools do not permit advanced memory partitioning on a
sequential specification (e.g. an unrolled loop structure) during
the scheduling phase. Hence, parallelism has to be specified
explicitly by instantiating VPs/RPs directly in the SystemC
description. The resulting model is structural at the top-level,
due to the explicit instances of the parallel blocks, but is
still behavioral at the bottom level, due to the TLM-untimed
specification of the internal microarchitecture of each block.
The number of VPs/RPs can be defined at synthesis time by
setting proper preprocessor constants. Hence, it becomes an
additional design-space exploration knob, complementary to
those provided by the HLS tool such as pipelining, fine-grain
parallelization, and resource sharing.

Computation and I/O are orchestrated by the top-level SystemC
module. Upon activating the accelerator, the CPU writes in a
register the number of voxels/rows to be processed. The top-
level module fetches the input data from memory, distributes
the workload among VPs or RPs, stalls the I/O if all processing
elements are busy, and at end triggers a single interrupt.
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Fig. 3: Accelerator architecture for MUSIC-I.

Concurrent Computation and Communication. A VP in
MIST requires a large input data set and produces a single
output energy value. Instead, a RP in MUSIC-I requires much
less data but produces an entire image row. To avoid stalling
computation when these data are transferred, a ping-pong buffer
can be instantiated in VPs input and RPs output scratchpads.
Its insertion is another design-exploration variable to be set at
synthesis time. In MIST, to maximize I/O throughput, outputs
from each VP are stored in a circular buffer and transferred to
the bus by the writer control logic when enough elements for
a burst are ready. Meanwhile, the reader thread keeps copying
input data from memory to VPs scratchpads via DMA. Internal
synchronization avoids data loss or overwriting. The control
part of the MUSIC-I accelerator is simpler. After a single input
burst at the beginning of the processing of each frequency
component of matrix F, all RPs start computing together; there
is no advantage in pipelining input retrieval and computation.
Hence, a single control thread manages both I/O directions.
Also, since the number of pixels in an image row is typically
larger than the maximum AXI burst length, there is no need to
group outputs before a DMA write. In conclusion, MUSIC-I
RPs are more complex than MIST VPs, whereas MIST uses a
more advanced communication and synchronization scheme.
Mathematical Kernels in MUSIC-I. The math of MUSIC-I
is non-trivial from a hardware viewpoint (Listing 2), and most
commercial HLS tools do not provide standard implementations
of the operations required. Hence, we implemented a SystemC
library that maps each operation to one or more synthesizable
specifications of known algorithms. When multiple options
are available for the same operation, a scheduling directive
allows the user to select among them. Thanks to the behavioral
TLM-untimed description, further exploration is possible for
each algorithm, using standard HLS strategies (e.g. loop
unrolling/pipelining, inlining/sharing of the function code, etc).
This solution provides more flexibility than devising a “fixed”
RTL IP for each operation.

IV. EXPERIMENTAL RESULTS
Setup. We synthesized the SystemC specifications of the two
accelerators using a commercial HLS tool. We targeted a Xilinx
Artix-7 FPGA technology, in order to validate the designs
on a prototype platform based on the Xilinx Zynq XC7Z702
SoC, which is composed of a dual-core ARM Cortex-A9 and
the Artix-7 Programmable Logic (PL). The Zynq system bus
implements the AXI standard, with slave and master ports
accessible from the PL. Hence, we could validate our design
from a full system perspective, connecting the accelerated parts
with the rest of the algorithms, implemented in software on
the Cortex-A9. To complete the HW/SW stack, we wrote a
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Fig. 4: DSE Results: MIST Beamforming accelerator.

device driver for each accelerator on Linux, kernel version
3.13.0. Starting from the HLS-generated RTL code of the
two accelerators, we obtained gate-level netlists through logic
synthesis using Vivado Design Suite. Due to the different use
of PL resources by the two kernels, especially DSP-blocks,
MIST and MUSIC-I implementations were synthesized with a
clock frequency of 75MHz and 50MHz, respectively.

Design Space Exploration (DSE). For both accelerators, we
explored the design space by acting on the HLS-knobs and the
custom architectural configurations (e.g. the amount of VP/RP
parallelism). From a single SystemC specification, we obtained
80 different implementations of MIST and 104 of MUSIC.
Fig. 4 and 5 report the Pareto-optimal implementations in the
performance vs. cost plane. The cost metric (X axis) is the
percentage of occupation of the most critical type of resources
on the PL. In most MUSIC-I implementations these resources
are DSP-blocks (due to the complex math operations), while in
MIST are LUTs. To measure performance (Y axis), we profiled
the execution time of the complete reconstruction algorithm
on the Zynq, including SW parts and driver overhead. We
also evaluated the speedup over the non-accelerated version of

the algorithms (running on the Zynq Cortex-A9 at 667 MHz).

In these experiments, the MIST Beamforming parameters are
N =9, L=55, for a 152x176 2D image, while the MUSIC-I

parameters are N4=18, Nprpo=20 for a 200x200 2D image.

These results are valid for any set of input samples of the same
size because the operations are data independent.

The Pareto curve of MIST (Fig. 4) is much denser in points than
the MUSIC-I one (Fig. 5). The reason is that VPs are simpler
and smaller than RPs and, therefore, it is possible to allocate

from 1 to 16 of them without exceeding the FPGA resources.

Instead, all MUSIC-I implementations with more than two
RPs exceed the available DSP-blocks and LUTs. Moreover,
since the FPGA cost metric considers a single resource type,
most solutions were discarded as Pareto-dominated: e.g. in
MUSIC-I, for a given number of RPs, solutions without
ping-pong buffers were pruned because they use the same
number of critical resources (LUTs/DSPs) but execute more
slowly. By using HLS, we quickly identified and discarded the
dominated implementations, a task that would have required
multiple iterations with RTL design. The maximum achieved

speedup is similar for the two accelerators, close to 25x.

Table III summarizes the DSE results reporting the minimum
and maximum values of the main metrics over the whole set of

implementations obtained from a single SystemC specification.

The performance and area tradeoffs vary by more than one
order of magnitude, thus offering a rich set of options for the
design reuse of each accelerator across different systems.
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Fig. 5: DSE Results: MUSIC-Inspired accelerator.
Exec. Time (ms)
i %
(HW/SW Speedup) Occupation (%)
Algorithm Min Max Min Max
MIST 84.43 1207.63
. 13.9 95.9
Beamforming (21.42) (1.49)
595.07 1765.92
MUSIC-1 27. 1
usic (21.38) (7.20) 3 0

TABLE III: Range of implementation results.

Speedup versus RTL Design. Finally, we evaluated the
effectiveness of the HLS methodology against the RTL MIST
Beamforming accelerator described in [6]. We compared the
results of the two methods after synthesis, for the same Artix-7
FPGA technology. We obtained that for similar occupation
metrics the design synthesized with RTL has an execution time
of 148ms while the HLS design takes 48ms, i.e. 3X faster.

V. CONCLUSIONS

We presented the system-level design of two accelerators for
microwave imaging algorithms for breast-cancer detection.
Thanks to the configurable degree of parallelism, from a single
SystemC specification for each accelerator we obtain a variety
of solutions in terms of cost vs. performance tradeoff. Our
work shows the potential that HLS offers in terms of design-
productivity gains: while the design and testing of a single
RTL implementation of MIST required three months [6], in
about four months one designer with no prior knowledge of the
two algorithms was able to specify, synthesize, and evaluate
80 (MIST) and 104 (MUSIC-I) alternative implementations.
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