
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Assessing the Performance of Virtualization Technologies for NFV: a Preliminary Benchmarking / Bonafiglia, Roberto;
Cerrato, Ivano; Ciaccia, Francesco; Nemirovsky, Mario; Risso, FULVIO GIOVANNI OTTAVIO. - STAMPA. - (2015), pp.
67-72. (Intervento presentato al convegno Fourth European Workshop on Software Defined Networks (EWSDN 2015)
tenutosi a Bilbao (Spain) nel 30 Sept - 2 Oct 2015) [10.1109/EWSDN.2015.63].

Original

Assessing the Performance of Virtualization Technologies for NFV: a Preliminary Benchmarking

Publisher:

Published
DOI:10.1109/EWSDN.2015.63

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2616822 since: 2016-03-18T16:12:45Z

IEEE

Assessing the Performance of Virtualization

Technologies for NFV: a Preliminary Benchmarking

R. Bonafiglia∗, I. Cerrato∗, F. Ciaccia¶, M. Nemirovsky†, F. Risso∗

∗Politecnico di Torino, Dip. Automatica e Informatica, Italy
¶Barcelona Supercomputing Center (BSC), Spain

†ICREA Researcher Professor at BSC, Spain

Abstract—The NFV paradigm transforms those applications
executed for decades in dedicated appliances, into software
images to be consolidated in standard server. Although NFV is
implemented through cloud computing technologies (e.g., virtual
machines, virtual switches), the network traffic that such com-
ponents have to handle in NFV is different than the traffic they
process when used in a cloud computing scenario. Then, this
paper provides a (preliminary) benchmarking of the widespread
virtualization technologies when used in NFV, which means when
they are exploited to run the so called virtual network functions
and to chain them in order to create complex services.

Keywords—NFV; service function chain; performance evalua-
tion; KVM; Docker; Open vSwitch

I. INTRODUCTION

Network Function Virtualization (NFV) is a recent network
paradigm with the goal of transforming in software images,
those network functions that for decades have been imple-
mented in proprietary hardware and/or dedicated appliances,
such as NAT, firewall, and so on. These software implementa-
tions of network functions, called Virtual Network Functions
(VNFs) in the NFV terminology, can be executed on high-
volume standard servers, such as Intel-based blades. Moreover,
many VNFs can be consolidated together on the same server,
with a consequent reduction of both fixed (CAPEX) and
operational (OPEX) costs for network operators.

Recently, the European Telecommunication Standard In-
stitute (ETSI) started the Industry Specification Group for
NFV [1], with the aim of standardizing the components of
the NFV architecture. Instead, the IETF Service Function
Chain [2] working group takes into account the creation of
paths among VNFs; in particular, they introduce the concept
of Service Function Chain (SFC), defined as the sequence of
VNFs processing the same traffic in order to implement a
specific service (e.g., a comprehensive security suite). Hence,
a packet entering in a server executing VNFs may need to be
processed in several VNFs (of the same chain) before leaving
such a server. Moreover, several chains are allowed on a single
server, which process different packet flows in parallel.

NFV is heavily based on cloud computing technologies;
in fact, VNFs are typically executed inside Virtual Machines
(VMs) or in more lightweight virtualized environments (e.g.,
Linux containers), while the paths among VNFs deployed
on a server are created through virtual switches (vSwitches).
While these technologies have been well tested/evaluated for
the cloud computing environment, such a study is still missing
when used in the case of NFV. In our opinion, an evaluation of

virtualization technologies when exploited in the NFV domain
is required, since cloud computing and NFV differ both in
the amount and in the type of traffic that has to be handled
by applications and vSwitches. This difference is due to the
following reasons. First, traditional virtualization has to deal
most with compute-bounded tasks, while network I/O is the
dominant factor in NFV (the main operation of a VNF is in fact
to process passing traffic). Second, a packet may need to be
handled by several VNFs before leaving the server; this adds
further load to the vSwitch, which has to process the same
packet multiple times. Finally, common techniques to improve
network I/O such as Generic Receive Offload (GRO) and TCP
Segmentation Offload (TSO) may not be appropriate for NFV,
since some VNFs (e.g., L2 bridge, NAT) need to work on each
single Ethernet frame, and not on TCP/UDP segments.

The contribution of this paper is the preliminary bench-
marking of VNFs chains deployed on a single server and based
on the most common virtualization components, highlighting
their bottlenecks under different scenarios and conditions.
Particularly, we consider KVM [3] and Docker [4] as execution
environments, and Open vSwitch (OvS) [5] and OVDPDK [6]
as vSwitches to steer the traffic among them in order to
implement the chain(s).

The rest of this paper is organized as follows. Section II
provides an overview of the related works, while Section III
details the technologies considered in our benchmarking. Tests
are detailed in Section IV, while Section V concludes the paper
and provides some remarks for the future.

II. RELATED WORK

Several works available in literature evaluate the perfor-
mance of virtualization components, both in the computing
virtualization side (i.e., VMs, containers) and in the network
virtualization side (i.e., vSwitches). This section provides an
overview of the works that are mostly related to the objective
of this paper.

From the virtual networking side, [7] and [8] provide a
deep evaluation of the behavior of OvS, analyzing how several
factors, such as CPU frequency, packets size, number of rules
and more, influence the performance of the vSwitch itself.
Moreover, [7] measures the throughput obtained when OvS is
exploited to interconnect a single VM both with the physical
network and with a second VM executed on the same server.
However, both the papers do not evaluate OvS when used to
cascade several VNFs, as well as they do not consider Docker
containers and OVDPDK [6].

In [9], Casoni et al. measure the performance of chains of
Linux containers (LXC) [10] interconnected through different
technologies: the VALE vSwitch [11], the Linux bridge and
the Virtual Ethernet interfaces (veth), missing some other
widespread technologies such as OvS.

From the computing virtualization side, [12] studies the
overhead introduced by the KVM hypervisor [3] when access-
ing to the disk and to the network. However, it does not evalu-
ate such overhead in a VNF scenario, in which a packet has to
potentially traverse several VNFs before leaving a server. This
scenario is again not considered in [13], although it provides
a comparison between LXC containers and KVM-based VMs.
Xavier et al. [14] evaluates networking performance of several
virtualization technologies: the Xen hypervisor [15], LXC,
OpenVZ [16] and Linux-VServer [17]. However, the tests
provided in the paper focus on High Performance Computing
workloads, which can be consistently different from those
experienced on a server running chains of VNFs.

III. BACKGROUND

This paper provides an initial evaluation of the over-
head introduced by VNF chains deployed on a single server.
Different technologies are considered for what regards both
the virtual environment running the VNFs, and the vSwitch
interconnecting such functions together and with the physical
network, in order to identify their performance and compare
such technologies among each other.

Virtual Machines (VMs) are the main virtualization tech-
nology used to execute VNFs, since they provide strong isola-
tion among VNFs themselves. However, lightweight containers
are gaining momentum, since they still provide a form of isola-
tion while having lower resources demand. As environment to
execute VNFs, in this paper we consider KVM-based VMs [3]
and Docker [4] containers.

Interconnections among VNFs are implemented through a
vSwitch, exploiting its capabilities to perform traffic steering
based on multiple criteria such as the port ID and L2-L7
protocol fields. Although several vSwitches are available, in
this paper we focus on the most widespread ones, namely
Open vSwitch (OvS) [5] and OVDPDK [6], a variant of
OvS based on the Intel Data Plane Development Kit (DPDK)
technology [18].

The remainder of this section provides an overview of the
OvS I/O model, as well as it gives some insights on KVM-
based VMs and Docker containers, mainly focusing on the
way in which they connect to the vSwitch.

A. KVM-based virtual machines and networking

Figure 1 provides an overview of the components involved
in the network I/O of VMs running in the KVM hypervisor.

Before detailing how VMs send/receive network packets,
it is worth mentioning that KVM is just a kernel module that
transforms the Linux kernel into an hypervisor, i.e., it provides
to the Linux kernel the capability of running VMs. A VM
is then executed within QEMU, which is a Linux user-space
process that exploits KVM to execute VMs. For instance, the
VM memory is part of the memory assigned to the QEMU

����������	

��������

�������

������

����	�
������

�����

�����������

������

����

���

���	����	�
������

��	����

��	����

������

�	�
	� �����������

����

����	�
������

�	�
�������

�����������

������

Fig. 1. Networking of a KVM-based virtual machine.

process, while each virtual CPU (vCPU) assigned to the VM
corresponds to a different QEMU thread in the hypervisor.

As shown in Figure 1, the guest operating system (i.e., the
operating system executed in the VM) accesses to the virtual
NICs (vNICs) through the virtio-net driver [19], which is
a driver optimized for the virtualization context. Each vNIC is
associated with two virtio queues (used to transmit and
receive packets) and a process running in the Linux kernel,
namely the vhost module in the picture. As shown, vhost
is connected to the virtio queues on one side, and to
a tap interface on the other side, which is in turn attached
to a vSwitch. vhost works in interrupt mode; particularly,
it waits for notifications from both the VM and the tap and
then, when such an interrupt arrives, it forwards packets from
one side to the other.

As a final remark, the transmission of a batch of packets
from a VM causes a VM exit; this means that the CPU stops
to execute the guest (i.e., the vCPU thread), and run a piece
of code in the hypervisor, which performs the I/O operation
on behalf of the guest. The same happens when an interrupt
has to be “inserted” in the VM, e.g., because vhost has to
inform the guest that there are packets to be received. These
VM exits (and the subsequent VM entries) are one of the main
causes of overhead in network I/O of VMs.

B. Docker containers and networking

Docker containers are a lightweight virtualization mecha-
nism that, unlike VMs, do not run a complete operating system:
all the containers share the host’s kernel1. Containers represent
a way to limit the resources visible by a running userland
process; hence, if no process is running in the container, such
a container is not associated with any thread in the host. Such
this limitation of resources (e.g., CPU, memory) is achieved
through the cgroups feature of the Linux kernel, while
isolation is provided through the Linux namespaces, which
give to processes running in the container a limited view of
the process trees, networking, file system and more.

As shown in Figure 2, each container corresponds to a
different network namespace; this means that it is only aware
of those interfaces inserted into its own namespace, as well as
it has a private network stack. According to the picture, packets
can traverse the namespace boundary by means of veth pairs,

1In other words, on the physical machine there is a single kernel, with a
single scheduler, a single memory manager and so on.

Container Container

Container network

namespace
Veth interface

Host network

namespace

Container network

namespace

vSwitch

Fig. 2. Networking of a Docker container.

ovs-vswitchd

ovs_mod.ko

User-space

Kernel-space

Slow path

Fast path

Fig. 3. Open vSwitch data-plane architecture.

which are in fact a pair of interfaces connected through a
pipe: packets inserted in one end are received on the other
end. Hence, by putting the two ends of the veth in different
namespaces, it is possible to move packets from one network
namespace to another. According to the picture, a vSwitch
connects all the veth interfaces in the host namespace among
each other and with the physical network.

C. Open vSwitch I/O model

OvS is a widespread vSwitch, whose data plane architec-
ture is depicted in Figure 3; as shown, it consists of a user-
space daemon and a kernel-space module, respectively referred
as ovs-vswitchd and ovs-mod.ko in the picture.

The kernel module implements the fast path; it acts in
fact as a cache for the user-space component, and includes all
the last matched rules for increasing forwarding efficiency. In
particular, when a packet enters into the vSwitch, it is first
processed in the kernel module, which looks for a cached
rule matching such a packet. In case of positive result, the
corresponding action is executed, otherwise the packet is
provided to the user-space.

The user-space daemon (that implements the slow path)
contains in fact the full forwarding table of the vSwitch. By
default, it implements the traditional MAC learning algorithm,
although it can also be “programmed” by an external con-
troller through the Openflow protocol2. Then, after that the
first packet of a flow has been handled in user-space, the
corresponding rule is offloaded to the kernel module, which
will be able to handle all the subsequent packets of the same
flow, thus increasing sensibly the performance.

Interesting, there are no threads associated with the
ovs-mod.ko kernel module; the in-kernel code of OvS
consists in fact of a callback invoked by the software interrupt
raised when a packet is available on a network interface.
For instance, the OvS code (in the hypervisor) is executed
in the context of the ksoftirq kernel thread in case of
packets coming from the physical NIC, while it is executed
in the context of the vhost associated with the “sender”

2The capability to program the switching table of OvS from an external
entity is exploited in NFV to create chains of VNFs.

vNIC in case of packets coming from the VM (Figure 1).
In case of packets coming from Docker (Figure 2), OvS runs
in the context of the process executed in the container. This is
possible because a single kernel exists, which is shared among
the host and the containers.

D. OVDPDK I/O model

OVDPDK is a version of OvS based on DPDK, a frame-
work proposed by Intel that offers efficient implementations
for a wide set of common functions, such as NIC packet
input/output, memory allocation and queuing.

Unlike the standard OvS, OVDPDK simply consists of a
user-space process (with a variable number of threads) that
continuously iterates over the physical NICs and the virtio
queues. The vhost module shown in Figure 1 is in fact
integrated in the vSwitch, so that the tap interface, which
introduces overhead in the data path of packets to/from VMs,
is removed. Furthermore, thanks to DPDK: (i) the vSwitch
accesses to the physical NICs without the intervention of the
operating system; (ii) packet transfer between the physical
NICs and the vSwitch is done with zero-copy.

As a final remark, OVDPDK can also exchange packets
with the VMs through shared memory: this solution removes
the vhost at all, and does not require the virtio-net

driver in the VMs. Although this configuration allows the
vSwitch to move packets in a zero-copy fashion among VMs,
we decided of not using it in our preliminary benchmarking of
service chains. In fact, due to a design choice of DPDK, the
same memory would be shared among all the VMs deployed,
thus weakening the isolation among VMs themselves.

IV. PERFORMANCE CHARACTERIZATION

This sections details our benchmarking of VNFs chains
implemented on a single server. As already mentioned, we
carried out several tests using different technologies for what
regards both the virtualization environment used to run VNFs
(KVM and Docker), and the vSwitch that properly steers the
traffic among them in order to create the chain(s) (OvS and
OVDPDK).

Particularly, our tests focus on measuring the throughput
and the latency obtained when packets (of different size) flow
through a server hosting one or more chains of different length.
Each measurement lasted 100 seconds and was repeated 10
times; results are then averaged and reported in the graphs
shown in the following of this section. Some graphs are
provided with a bars view and a points-based representation of
the maximum throughput. The former representation is referred
to the left y axis, which provides the throughput in Mpps, while
the latter is referred to the right y axis, where the throughput
is measured in Gbps.

A. Hardware and software setup

As shown in Figure 4, our test environment includes a
server that runs a vSwitch and a variable number of VNFs;
this server is connected to a sender and to a receiver machine
through two point-to-point 10Gbps Ethernet links. All the
physical machines are equipped with an Intel Core i7-4770
@3.40GHz (4+4 cores), 32GB of memory, and run Fedora

������

���������	
����

��������

��� ��� ����

�������

Fig. 4. Physical set up used for the tests.

TABLE I. BARE-METAL THROUGHPUT OF THE APPLICATIONS USED IN

OUR MEASUREMENTS.

Linux bridge libpcap-based bridge DPDK-L2fw

64B
2.39 (1,14) 1.29 (0.66) 8.78 (4.39)

[Mpps (Gbps)]

20 with kernel 3.18.7-100.fc20.x86 64. The phsyical network
interfaces are instead Intel X540-AT2.

As already mentioned, VNFs are executed either in KVM-
based VMs3, or in Docker containers. According to Figure 4,
each VNF is equipped with two vNICs connected to the
vSwitch, which can be either OvS or OVDPDK. In order to
steer the traffic among VNFs, the vSwitch is configured with
Openflow rules matching the input port of packets, while the
action is always the forwarding of packets through a specific
port. In case of multiple service chains deployed on the server,
the traffic entering from the physical port is split so that some
packets enter in one chain, other packets in another chain and
so on. Traffic splitting is based on the source MAC address of
packets, which are properly generated so that they are equally
distributed among all the available chains.

To measure the overhead introduced by different vSwitches
and virtualization engines when used for NFV, we kept the
VNFs as simple as possible. Particularly, our VNFs simply
receive packets from one interface and forward them on the
other; such applications, in a non-virtualized environment (i.e.,
when used to directly connect two physical interfaces), provide
the throughput shown in Table I.

The throughput is measured using unidirectional traffic
flowing from the sender to the receiver machine, respectively
running a packet generator and a packet receiver based on the
pfring/dna [20] library, which allows to transmit/receive
packets at 10Gbps.

B. OvS-based chains: virtual machines vs Docker containers

This section evaluates the throughput achieved when a
single chain of VNFs is deployed on a server running OvS
as vSwitch4. Measurements have been repeated with VMs and
Docker containers, chains of growing length and packets of
different size; results are reported in Figure 5. Those graphs
have been obtained by executing the Linux bridge within
VMs, while each container runs a simple user-space bridge
based on libpcap [21]. In fact, with the Linux bridge inside
containers, we got an unacceptable throughput of 3Mbps with
8 chained VNFs.

3In this case, each VM is associated with a single vCPU, i.e., the whole
VM corresponds to a single thread in the hypervisor. Moreover, the guest
operating is Ubuntu 14.04 with kernel 3.13.0-49-generic, 64 bit.

4Note that, due to the small number of rules inserted in the vSwitch, the
packet processing is entirely done in the kernel module (Section III-C).

This poor result is a consequence of two factors: (i) the
Linux bridge data plane is in fact a kernel-level callback
executed in the context of the thread that provides packets
to the vSwitch (similarly to OvS); (ii) all Docker containers
share the kernel with the host (as detailed in Section III-B).
As a consequence, the ksoftirq kernel thread that processes
the packet received from the physical NIC is also in charge
of executing (i) the OvS code that forwards the packet in the
first container; (ii) the data plane part of the Linux bridge
launched in the first container (but running, in fact, in the host
kernel); (iii) again OvS, and so on, until the packet leaves the
server through the physical NIC. In other words a single kernel
thread executes all the operations associated with the packet,
resulting in no parallelization at all and hence in really poor
performance, especially in case of long chains.

Instead, in case of VMs, the vCPU thread (Section III-A)
executes the guest kernel and hence the Linux bridge, while
vhost executes the OvS code, thus providing high paralleliza-
tion in packets processing and then acceptable performance.
In case of Docker, such a parallelization can be achieved by
running a VNF that is actually a process (e.g, our simple
libpcap-based bridge). This way, the OvS code between
VNFs is executed in the context of this process, and the
ksoftirq is just involved at the beginning of the service
chain.

A comparison between Figure 5(a) and Figure 5(b) shows
that chains implemented with the two virtualization technolo-
gies (when executing the proper application) present different
throughput only when there is a single VNF per chain (and 64B
packets), while they are almost equivalent in the other cases.
However, according to Table I, the Linux bridge provides
nearly twice the throughput of the libpcap-based bridge,
when executed in a non-virtualized environment. The fact that
we got almost the same throughput by running these two
applications respectively in VMs and containers, shows how
the overhead introduced by full virtualization is higher than
the overhead due to lightweight virtualization mechanisms.

Figure 5 also shows that the throughput is inversely pro-
portional to the number of chained functions, regardless of the
virtualization environment. In fact, more VNFs executed on the
same server results in more contention on the CPU resource,
as well as on the cache(s) and the Translation Lookaside
Buffer (TLB). Even, with longer chains, the probability that
a packet is processed on different physical cores is higher,
with a consequent increasing in the number of experienced
cache misses. Moreover, although OvS is executed on several
threads, there is just one instance of the forwarding table,
which requires synchronization for example to increment the
counters associated with the matched rules.

Figure 6 reports instead the throughput obtained when 64B
packets are equally distributed among multiple chains of VMs.
As evident, more chains result in lower throughput measured
on the receiver machine, for the same reasons stated above
in case of a single chains of different lengths (i.e., more CPU
contention, more cache misses, etc.). Similar results have been
achieved with containers, although they are not reported in the
paper due to space constraints.

We can then conclude that Docker containers are well
suited to run VNFs only in case of applications associated with

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

0 1 2 3 5 8 10
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

T
h
ro

u
g
h
p
u
t
[M

p
p
s
]

T
h
ro

u
g
h
p
u
t
[G

b
p
s
]

#VMs in the chain

64B
700B

1514B

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

0 1 2 3 5 8 10
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

T
h
ro

u
g
h
p
u
t
[M

p
p
s
]

T
h
ro

u
g
h
p
u
t
[G

b
p
s
]

#Docker containers in the chain

64B
700B

1514B

(b)

Fig. 5. Throughput of a single chain (of growing length) with VNFs deployed in: (a) KVM-based virtual machines; (b) Docker containers.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 2 3 5 8 10
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

T
h

ro
u

g
h

p
u

t
[M

p
p

s
]

T
h

ro
u

g
h

p
u

t
[G

b
p

s
]

#VMs in the chain

1Chain
2Chains
3Chains

Fig. 6. Throughput with several chains implemented with VMs and OvS.

a specific thread/process. In this case, they provide almost the
same performance of KVM-based VMs, with the advantage of
requiring less resources (e.g., memory), but with the drawback
of providing less isolation.

C. KVM-based virtual machines: OVDPDK vs OvS

This section evaluates the performance of a chain of VNFs
interconnected through OVDPDK, and compares such results
with those achieved in case of OvS. Particularly, in order to
compare the two switching technologies, we consider VNFs
executed in KVM-based VMs. Before analyzing the results, it
is worth remembering that OVDPDK is entirely executed in
user-space and works in polling, i.e., it continuously iterates
over the available NICs. Moreover, the vhost module (Fig-
ure 1) is replaced with a software layer integrated in OVDPDK,
so that VMs directly communicate with the vSwitch.

As a first test, we consider again the Linux bridge as
VNFs, obtaining a throughput (not shown in the paper due
to space constraints) that is just slightly better than those
achieved with OvS and depicted in Figure 5(a); e.g., 1.66Mpps
(0.85Gbps) with 64B packets traversing a singe VNF. In
fact, although OVDPDK provides several enhancements with
respect to OvS, such improvements are mitigated by the high
overhead introduced by VMs.

Then, we installed DPDK in VMs as well, in order to
execute DPDK-based VNFs and exploits the DPDK acceler-
ation both in the guest and in the hypervisor. In particular,
results shown in Figure 7 are gathered using the L2-forwarded

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

0 1 2 3 5 8 10
 0

 1

 2

 3

 4

 5

 6

 7

T
h

ro
u

g
h

p
u

t
[M

p
p

s
]

T
h

ro
u

g
h

p
u

t
[G

b
p

s
]

#VMs in the chain

1Core
2Cores
3Cores
4Cores

Fig. 7. Throughput with VMs chained through OVDPDK.

application provided with the DPDK library (and 64B packets).
The test has then been repeated by changing the number of
polling threads (and hence CPU cores) associated with the
vSwitch, in order to evaluate its effect on the performance of
the chain. Note that, since the L2-forwarder works in polling,
during this test we always have to dedicate a CPU core to the
vCPU thread associated with each VM.

According to the picture, assigning more cores to the
vSwitch results in better performance in case the number of
cores required by the whole chain (VMs + vSwitch) does not
exceed the number of cores of the server. When this happens,
performance degrades until becoming unsustainable with 8
chained VMs. In fact, at this point some cores are shared
among many polling threads and, for instance, it may happen
that the operating system assigns the CPU to a VNF with no
traffic to be processed, penalizing others that would actually
have work to do.

For the sake of clarity, Figure 7 only reports the throughput
obtained with 64B packets. However, our measurements also
reveal that a chain implemented with OVDPDK and the DPDK
L2-forwarder within VMs, provides a throughput of 10Gbps in
case of 700B and 1514B packets. Of course, such results are
obtained only in case the chain does not require more cores
than those available on the server.

A comparison between Figure 7 and Figure 5(a) reveals
how chains implemented through DPDK-based components
(i.e., OVDPDK and VMs running DPDK applications) outper-
form chains not based on the DPDK library. In fact, DPDK-

 0.1

 1

 10

 100

 1000

 0 1 2 3 4 5 6 7 8 9 10

lo
g
 R

T
T

 [
m

s
]

#VNFs in the chain

OVS-VM

OVS-Docker

OVDPDK-VM (1 core)

OVDPDK-VM (2 cores)

OVDPDK-VM (3 cores)

OVDPDK-VM (4 cores)

Fig. 8. Latency introduced by service chains implemented through different
technologies.

based modules works in polling and optimize the data transfer
among each others, exploiting zero-copy as much as possible.
However, as already stated above, the polling working model
has the drawback of providing unacceptable throughput when
the cores required exceed the number of cores available on the
server.

D. Latency

In networking, the latency introduced by the system is
as important as the throughput achieved. Hence, this section
reports the latency measured with a single chain implemented
with the technologies discussed above. In particular, for each
scenario, we executed 100 ping between the sender and the
receiver machines; results have been averaged and reported in
Figure 8.

As expected, DPDK-based chains (OVDPDK + DPDK-
L2forwarder in VMs) provide better results, provided that the
number of cores required does not exceed the number of cores
of the physical machine on which such a chain is deployed.
At this point, similarly to what already discussed in case of
throughput, latency becomes definitely unacceptable.

Figure 8 also shows how Docker containers running a user-
space process (i.e., the simple libpcap-based bridge) intro-
duce smaller latency than VMs. This difference in performance
is again a consequence of the higher overhead introduced by
full virtualization with respect to lightweight containers.

V. CONCLUSION

This paper provides a performance analysis of service
chains implemented through different virtualization technolo-
gies, selected among those representing the state of the art in
the NFV domain.

From the several tests carried out, we can draw the follow-
ing conclusions. First, Docker containers provide acceptable
results only in case of VNFs associated with a specific process,
while they are definitively unsuitable for VNFs implemented
as callbacks to be executed in the kernel. However, due to the
low overhead introduced by lightweight virtualization, a user-
space program in Docker provides better latency and almost
the same throughput of callback-based VNFs (e.g., Linux
bridge) run within VMs kernel. Second, OVDPDK (when used
with VMs running DPDK-based applications) provides much
better performance than OvS. For instance, this is due to the

exploitation of zero-copy when transferring packets to/from
physical NICs, and to the polling model implemented by
DPDK-based processes. However, the polling model requires
at least a dedicated core per VM, hence limiting the usage of
OVDPDK in servers with a reduced number of VNFs.

ACKNOWLEDGMENT

The research described in this paper is part of the SE-
CURED project [22], co-funded by the European Commission
under the ICT theme of FP7 (grant agreement no. 611458).

REFERENCES

[1] “Etsi nfv,” http://www.etsi.org/technologies-clusters/technologies/nfv.

[2] Internet Engineering Task Force (IETF), “Service Functions
Chaining (SFC) working group,” 2014. [Online]. Available:
https://datatracker.ietf.org/wg/sfc/documents/

[3] “Kvm,” http://www.linux-kvm.org.

[4] “Docker,” https://www.docker.com/.

[5] “Openvswitch,” http://openvswitch.org/.

[6] “OVDPDK,” https://github.com/01org/dpdk-ovs.

[7] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle, “Performance
characteristics of virtual switching,” in Cloud Networking (CloudNet),

2014 IEEE 3rd International Conference on, Oct 2014, pp. 120–125.

[8] Y. Zhao, L. Iannone, and M. Riguidel, “Software switch performance
factors in network virtualization environment,” in Network Protocols

(ICNP), 2014 IEEE 22nd International Conference on, Oct 2014, pp.
468–470.

[9] M. Casoni, C. Grazia, and N. Patriciello, “On the performance of linux
container with netmap/vale for networks virtualization,” in Networks

(ICON), 2013 19th IEEE International Conference on, Dec 2013, pp.
1–6.

[10] “Lxc,” https://linuxcontainers.org/ .

[11] L. Rizzo and G. Lettieri, “Vale, a switched ethernet for virtual
machines,” in Proceedings of the 8th international conference on

Emerging networking experiments and technologies, ser. CoNEXT ’12.
New York, NY, USA: ACM, 2012, pp. 61–72. [Online]. Available:
http://doi.acm.org/10.1145/2413176.2413185

[12] B. Zhang, X. Wang, R. Lai, L. Yang, Z. Wang, Y. Luo, and X. Li,
“Evaluating and optimizing i/o virtualization in kernel-based virtual
machine (kvm),” in Network and Parallel Computing, ser. Lecture Notes
in Computer Science, C. Ding, Z. Shao, and R. Zheng, Eds., vol. 6289.
Springer Berlin Heidelberg, 2010, pp. 220–231.

[13] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated
performance comparison of virtual machines and linux containers,”
vol. 28, p. 32.

[14] M. Xavier, M. Neves, F. Rossi, T. Ferreto, T. Lange, and C. De Rose,
“Performance evaluation of container-based virtualization for high
performance computing environments,” in Parallel, Distributed and

Network-Based Processing (PDP), 2013 21st Euromicro International

Conference on, Feb 2013, pp. 233–240.

[15] “Xen,” http://www.xen.org/.

[16] “OpenVZ,” https://openvz.org/.

[17] “Linux-VServer,” http://linux-vserver.org.

[18] “Dpdk,” http://dpdk.org/.

[19] R. Russell, “Virtio: Towards a de-facto standard for virtual i/o devices,”
SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 95–103, Jul. 2008.

[20] “Ntoppfring,” http://www.ntop.org/products/pf ring/.

[21] S. McCanne and V. Jacobson, “The bsd packet filter: A new architecture
for user-level packet capture,” in Proceedings of the USENIX Winter

1993 Conference Proceedings on USENIX Winter 1993 Conference

Proceedings. USENIX Association, 1993, pp. 2–2.

[22] “Security at the network edge (SECURED),”
http://www.secured-fp7.eu/.

http://www.etsi.org/technologies-clusters/technologies/nfv
https://datatracker.ietf.org/wg/sfc/documents/
http://www.linux-kvm.org
https://www.docker.com/
http://openvswitch.org/
https://github.com/01org/dpdk-ovs
https://linuxcontainers.org/
http://doi.acm.org/10.1145/2413176.2413185
http://www.xen.org/
https://openvz.org/
http://linux-vserver.org
http://dpdk.org/
http://www.ntop.org/products/pf_ring/
http://www.secured-fp7.eu/

	Introduction
	Related work
	Background
	KVM-based virtual machines and networking
	Docker containers and networking
	Open vSwitch I/O model
	OVDPDK I/O model

	Performance characterization
	Hardware and software setup
	OvS-based chains: virtual machines vs Docker containers
	KVM-based virtual machines: OVDPDK vs OvS
	Latency

	Conclusion
	References

