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Abstract—In most computational systems memory access rep-
resents a relevant bottleneck for circuits performance. The
execution speed of algorithms is severely limited by memory
access time. An emerging technology like NanoMagnet Logic
(NML), where its magnetic nature leads to an intrinsic memory
ability, represents therefore a very promising opportunity to solve
this issue. NanoMagnet Logic is the ideal candidate to implement
the so called Logic-In-Memory (LIM) architecture. But how is
it possible to organize an architecture where logic and memory
are mixed and not separated entities?

In this paper we try to address this issue presenting our recent
developments on LIM architectures. We originally conceived a
LIM architecture without considering any technological con-
straints. Here we present the first adaptation of that architecture
to NanoMagnet Logic technology. The architecture is based on
an array of identical cells developed on three virtual layers,
one for logic, one for memory and one for information routing.
These three virtual layers are mapped on two physical layers
exploiting all our recent improvements on NanoMagnet Logic
technology, which are validated with the help of low level
simulations. The structure has been tested implementing two
different algorithms, a sort algorithm and an image manipulation
algorithm. A complete characterization in terms of area and
power is reported. The structure here presented is therefore the
first step of an ongoing effort directed toward the development
of truly innovative architectures.

Index Terms—NanoMagnet Logic, Logic-In-Memory, Parallel
Computing, Multi-Layer Circtuits.

I. INTRODUCTION

In the last decades CMOS technology has undergone a
considerable evolution. Circuits have become incredibly small
and fast, allowing to fit an increasing number of functionalities
in a single chip. Most of this growth was due to the scaling
process, with transistors constantly shrinking in size. The
advantages provided by transistors scaling has shadowed other
problems that affect VLSI circuits and that are not improved
by the scaling process itself. A significant problem of modern
computational systems is in fact the “Memory Wall” problem
[1], the huge performance loss due to memory access times.
Currently a processing unit can handle an enormous amount of
operations, but memories are not fast enough to provide them
the required data. As a consequence system performance are
limited by memories. The scaling process makes things worse,
because the performance gap between logic and memory
further increases reducing transistor size. To attenuate this
problem, current computational systems use caching systems
and hierarchical memories [2]. However, this is not enough,

and a change in computational paradigm to overcome Von
Neumann limitations is required. This is a particularly fa-
vorable moment of history to work on this topic, because
transistors scaling is ending and new emerging technologies
are being developed. The scaling process end means that the
focal point of future developments is shifting from device to
architecture. The emerging of new technologies, particularly
magnetic-based technologies like NanoMagnet Logic (NML)
[3], means that new features, impossible to achieve with
CMOS transistors, can now be integrated inside VLSI circuits.

This work represents the sum of our recent efforts in trying
to reach the goal of a “true” logic-in-memory (LIM) circuit.
We have developed an architecture made by a big array of
computational units. Each unit is made by three “virtual”
layers, a logic core, a memory core and a routing plane.
Since memory is locally embedded in each processing unit,
this architecture provides several benefits in case of parallel
algorithms with a strong local interaction among neighbor
elements. The technology of choice is NanoMagnet Logic.
The LIM architecture here presented does not fully exploit
the potential of a magnetic technology, however we describe
several enhancement that we have made toward this applica-
tion. The background on NML logic and our improvements
are described in Section II. The general structure of LIM
architecture is instead described in Section III. To test the
effectiveness of our idea we have adapted and implemented
two algorithms on the LIM structure, the odd-even sort and
the binomial filter, both highlighted in Section III. Finally
Section IV describes the NML implementation. The circuit
is designed and simulated using an RTL model. At the same
time our advancement on NML technology allow us to design
circuits using two physical layers, instead of planar circuits
as normally happens in NML technology. The architecture
is analyzed in terms of power and area. We believe that the
solution here proposed represents a promising new beginning
for architectures development, leading the research on circuits
for computation on unexplored paths.

II. BACKGROUND ON NML

NanoMagnet Logic is an emerging technology that uses
single domain nanomagnets with only two stable states to
represent logic values (Figure 1.A) [4]. The innovative key
point, compared to transistors based technologies, is based on
a signal propagation that does not rely on voltages or currents.



Signals propagate through the circuit thanks to magnetody-
namic coupling among neighbor magnets [3]. A NML wire is
therefore composed simply by chaining the desired number of
magnets (Figure 1.A) [5]. The advantages of this technology
are related to its magnetic nature. A magnet maintains its state
also without an applied power supply. The consequence is
that in NML logic a magnet can act as a logic or memory
element. Moreover it has no static power consumption and a
potential very low dynamic power absorption [6]. The main
characteristics of NML technology is the need of an external
mean to switch magnets from one stable state to the other [7].
Magnets are forced in an intermediate unstable state, allowing
them to overcome the energy barrier and switch to a different
state depending on the value of neighbor magnets [8]. This
system is called clock, because it gives to the technology
a synchronous behavior similar to clocked CMOS circuits.
Several techniques can be used to force magnets in the RESET
state, like an external magnetic field [7] or the Spin Hall Effect
[9], a spin-torque coupling with a current flowing through
the magnet itself [10] or a mechanical stress applied through
a voltage and piezoresistive substrate [6]. Regardless of the
mechanism used a multiphase clock system must be used [11].
Circuits are divided in areas composed by a limited number
of magnets called clock zones. At each clock zone a different
clock signal is applied. The multiphase clock system allows
to safely propagate signals in NML circuits in presence of
thermal noise [12].
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Fig. 1. NML fundamentals. A) Single domain nanomagnets encode the
information. Virtual clock zones can be created with magnets of different
size. B) Clock signals applied to the circuit. C) Micromagnetic simulation of
a NML wire with virtual clock phases. D) Comsol simulation of 3D NML
structure, with copper wires placed above and below magnets.

Among the clock solutions only the magnetic field [3] and
the Spin Hall Effect [9] clock where experimentally demon-
strated. Both shares the same technological frame, where the
clock is generated by a current flowing through a wire placed
under the magnets plane. The difference among these two
clocks lies in the current value required and the material used
for the wires. More details will be provided in Section IV.

We base our LIM design on these two clock solutions. In
this paper we present a major improvement to NML clock,
the virtual clock system. The working principle is depicted
in Figure 1.A. Magnets with a bigger aspect ratio require
a higher magnetic field to be reset. As a consequence we
have built a wire chaining magnets with different aspect ratios
(50x100nm2 and 50x802 in Figure 1.A). Two physical wires
are used to generate the clock field, the waveforms applied are
depicted in Figure 1.B). This particular solution allows us to
use only two wires to create four “virtual” clock phases. Each
virtual phase correspond to magnets with a different aspect
ratio (Figure 1.A). In Figure 1.C the low level simulation
obtained with NMAG [13] software is reported. Magnets start
to switch from left to right, the two bigger magnets in the
first virtual clock phase and then the two smaller magnets in
the second virtual clock phase. Following the waveforms of
Figure 1.B, the next magnets in the chain that switch are the
bigger magnets corresponding to the third virtual clock phase
and then the last two small magnets of the fourth virtual clock
phase.

The complete explanation and validation of this clock sys-
tem is out of the scope of this paper. However we commonly
employ it in our designs because it provides several benefits
to NML circuits. It simplifies the clock generation network,
only two clock wires are required to generate the four clock
phases necessary to assure a correct signals propagation. It
enables to safely use the majority voter, the basic logic gate
of this technology, also considering the constraints related
to the fabrication of clock wire (more details are in Section
IV). It allows us to build magnetic interconnections in NML
circuits using domain walls, as we demonstrated in [14],
greatly reducing interconnections overhead. Finally, placing
clock wires above and under the magnets, as suggested in
[3], it is possible to build multilayer NML circuits. In this
case we limit our design to two logic layers, with a third
separation layer between them. Figure I.D shows a Comsol
Multiphysics [15] simulation of such structure. The section
view depicts two clock wires of 400nm thickness and three
layer of magnets. The current value used is 3mA and the
magnetic flux density varies in the range of 2-3mT, depending
on the layer distance. This value of magnetic flux density is
sufficient to reset magnets. As will be described in Section IV,
the possibility of using two logic layers allow us to greatly
reduce area thanks to lower interconnection overhead.

III. THE LOGIC-IN-MEMORY STRUCTURE

The Logic-In-Memory can be seen as a smart memory
where data are not only stored but also elaborated. The basic
element (cell, Figure 2.A) embeds memory and logic with an
information routing component. The architecture has a matrix-
like structure (grid, Figure 2.A) where each element works
autonomously in parallel.

The cell is composed by three “virtual” layers, memory,
logic and routing. With the definition “virtual” we mean that
these three layers can be mapped on different physical layers,
depending on the possibility offered by the target technology.



Fig. 2. (A) Logic In Memory (LIM) basic cell, three virtual layers are
used, a memory plane, a logic plane and the routing plane. (B) Example of
cells connection. Every LIM cell is connected with neighbor cells on 4 sides
through the routing plane.

The Logic Plane hosts all the computational blocks required
for the algorithm execution. It is a unit that must be designed
ad-hoc for each implemented algorithm. The Memory Plane
stores memory cells that can be read and written with simple
operations. The number of memory locations depends on
the algorithm implemented. In the case of the algorithms
described in this paper, few memory locations are needed,
making the memory plane size negligible compared to the
other planes. The Routing Plane handles the communication
and data exchange with neighbor cells. The routing plane is the
same for all applications, while the memory plane size and the
logic plane structures depends on the algorithms implemented.

Information are exchanged between cells through messages,
called words. Each word is a complex bit string with many
fields used to identify important information, like the opera-
tion type and cells address. Each word is composed by the
following fields.

• TAG: it identifies the operation type.
• TCA (Target Cell Address): it is the address of the

message origin cell inside the grid.
• WA (Word Address): it specifies the memory location to

access;
• DATA: it is the data to be computed or stored.
• DEST: it represents the message destination cell address

inside the grid
The instruction set of each is composed by several opera-

tions.
• Local write/read: local operations to allow the logic to

write or read data from the memory.
• Toc-toc write/read: they allow the communication among

two different cells; each cell can write or read a data of
adjacent cells.

• Remote write/read: remote operations are the slowest
ones and are used to allow the communication between
non adjacent cells.

• Logic-logic: these operations allows to the logic planes
of two adjacent cells to directly exchange data without
accessing their memory planes.

This kind of structure is particularly suited to execute algo-
rithms where a high number of memory accesses have to
be performed, since the logic is embedded in the memory
and therefore the access is less expensive. Moreover, since

each cell is connected to the adjacent ones by means of local
interconnections avoiding global wires, the LIM architecture
is particularly adapted to NML technology where intercon-
nections overhead wastes a lot of area. In the following the
routing plane and the logic planes for the two algorithms are
described. The description of the memory plane is not reported
because it is made simply by an array of memory cells.

A. The routing plane

The block diagram of the routing plane is depicted in Figure
3. To simplify the architecture, the routing plane has been
designed with only one FSM. It manages the input requests
without solving conflicts in case of simultaneous request
coming from different cells. To solve this issue a priority
management block has been created. The highest priority has
been given to the logic and then, in descending order, to the
requests coming from the north, west, south and east cell
respectively. If one or more requests cannot be satisfied, an
acknowledge bit is sent to the request-sender. The key role of
the routing plane is to discriminate the operation type and
to identify the sender and the receiver. Neighbor cells are
identified by two bits (from 00 of the east cell to 11 of the
north cell in clockwise order). This two bits represent a sort of
relative address, that each cell uses to identify its neighbors.
In conjunction to the relative address, an absolute address
system is used to identify each cell. A number indicates the
cell position in terms of column and row. The routing plane
can be divided in four main regions. 1) The input interface
is responsible for sinking all requests and managing their
priorities. 2) The priority manager checks if the FSM is
available to execute an operation. In the affirmative case it
selects the request with the highest priority and sends it to the
selection unit. If a request cannot be satisfied, acknowledge
bits are sent to the senders. 3) The selection unit identifies
the operation to be executed. 4) The last region is the output
interface. It is responsible of sending the data to the correct
destination.

B. The odd-even sort logic plane

As a first case of study the logic plane has been designed
to execute the odd-even sort algorithm. It is a comparison
sorting algorithm where every even and odd couple of numbers
are compared. If numbers are not in the exact order, they are
swapped. The main advantage of this algorithm is its ability to
simultaneously compare all even or odd couples of numbers
exploiting the parallel computation. The logic plane for this
application (depicted in Figure 4) is composed by registers,
a FSM, an adder to compare the value of the two data and
two counters: one to switch from the operating mode to the
stand-by mode and one to stop the execution.

Only even cells start the computation while the odd ones are
in stand-by. After the algorithm execution, the even cells go in
stand-by mode while the odd ones run the sorting. The process
is repeated until all data are sorted. The pseudo-code of the
algorithm, in order to implement it inside the LIM architecture,
is reported in the following.



Fig. 3. Routing plane block diagram. Multiplexers, a priority management component and destination selection blocks are used to route signals to logic and
memory planes and to neighbor cells. The plane behavior is controlled by a dedicated finite state machine (FSM).
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Fig. 4. Logic plane block diagram for the odd-even sort algorithm. The logic
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1) Read the configuration word;
2) Read the local data;
3) Read the adjacent cell data;
4) Compare the two data;
5) Exchange data if necessary;
6) Stand-by until the execution restarts.

C. The binomial filter logic plane

As a second case of study a binomial filter, mostly used
for signal processing, has been implemented. The logic plane
(depicted in Figure 5) is composed of registers, a FSM and an
adder to sum all read data.
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Fig. 5. Logic plane block diagram for binomial filter algorithm. The logic
plane is composed by an adder, two registers, a multiplexer and an FSM
control unit. The datapath is simpler compared to the odd-even sort algorithm.

The pseudo-code of the algorithm is reported in the follow-
ing.

1) Read the local data;
2) Read the eight neighbouring cells data;



3) Sum all data and divide the result by 16;
4) Write the result in the local memory.

IV. THE LOGIC-IN-MEMORY ARCHITECTURE

The Logic-In-Memory architecture has been implemented
using NML technology applying the enhancements described
in Section I. To design and simulate the NML circuit, an
RTL model has been developed [16]: as depicted in Figure
6, registers simulate the propagation delay of signals through
consecutive clock zones, while ideal logic gates model the
logic function. Majority voters and inverters are sufficient to
represent every logic function. An inverter is obtained linking
consecutively an odd number of magnets. AND/OR gates can
be obtained from a majority voter fixing the polarization of one
input to a constant logic ’0’ or logic ’1’, respectively. Figure 6
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Fig. 6. RTL model of an NML circuit. Registers are used to model the
propagation delay introduced by each clock zone whereas ideal gates are
used to represent the logic function.

highlights the majority voter implementation using the virtual
clock. The three input wires belong to the first virtual phase
(bigger magnets). The central and output magnets belong to
the second virtual phase (smaller magnets). As a consequence
the central magnet switch only after all input signals have
successfully propagate. This solution greatly improves the
reliability of majority voters considering constraints related
to clock wires fabrication [5].

The NML implementation of the Logic-In-Memory archi-
tecture is based on the use of two physical layers and virtual
clocking. In Figure 7 is depicted, as an example, a 3D full
adder. The adder develops horizontally on two physical layers
(layers 1 and 3), thus, it can be thought of as a three-
dimensional structure. Layer 1 and layer 3 are connected
through an intermediate level on which only few magnets
(those necessary to the communication between layers) are
allowed. The role played by magnets on Layer 2 is the same
as the one played VIAs in CMOS circuits. Thanks to virtual
clocking and multilayer structures the circuit area greatly
decreases. The full adder here presented is more than 4 times
smaller than the full adder described in [14].

Figure 8 depicts instead the 3D layout of a ripple carry
adder. The layout has been designed according to the following
constraints: 1) clock wire length equal to 6 magnets and 2)
maximum number of consecutive magnets belonging to the
same virtual phase equal to 5 [12].

The LIM architecture is based on three virtual layers, but
the technology allow us to use only two physical layers. As a
consequence we found that the optimal solution was to map
every plane independently on two physical layers. The cell and
the array were then assembled by aligning the three virtual
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Fig. 8. NML layout implementation of a 4 bit ripple carry adder. Two
physical layers and virtual clocking have been used.

planes. Figure 9 depicts the generic organization of a 4 × 4
grid of LIM cells with the block scheme of a cell outlined. The
block scheme and the dimensions refer to a PE in which the
logic plane implements the odd-even sort algorithm. It can
be noticed that the routing plane occupies most of the area
of the cell. This is mainly due to two reasons. First there is
an high number of interconnections, that waste a considerable
portion of area even if solutions (such as domain walls and two
physical layers) to compact the layout are exploited. Secondly,
an high parallelism is adopted, implying that a large number
of NML wires travels in parallel and the area that they take is



not at all negligible. The area occupied by the “virtual” logic
plane is comparable to the routing plane, while the memory is
much smaller. Each processing element (PE) has an estimated
height of 33.1µm and a length of 66.4µm.

M
E
M

O
R
Y

ROUTING
LOGIC

3
3

.1
 u

m

66.4 um

N

E W

S

PE

PE

PE

PE

PE

PE

PEPEPE

PEPEPE

PE

PE

PE

PE

Fig. 9. 4× 4 grid of LIM cells. The block scheme of each PE is outlined.
Each “virtual” plane is mapped independently on two physical layers. The
whole structure is then assembled by aligning the “virtual” planes together.

The area occupation and the power consumption have been
estimated for both implementations. Results are summarized in
TABLE I. The area was evaluated by knowing the total height
and width in terms of number of magnets and considering the
physical height and width of magnets as reported in Section
II. Power dissipation was evaluated estimating the clock wires
length starting from circuit area. More details on how to
evaluate power consumption can be found in [16]. Power
was evaluated considering the magnetic field clock [3], using
copper wires of 400nm thickness and 420nm width and a
current of 6 mA for each wire [3]. Power was also estimated
in case of Spin Hall Effect clock, considering wires made
by a complex heterostructure where the resistance value is
dominated by the 10nm layer of Tantalum. In [9] authors use
a current of 2mA for a clock wire with a width of 1µm and
an height of 10nm. In this case we use wires with a width of
420nm and an height of 10nm, thus the current value that we
use is 0.8mA. and a thickness equal to 400nm.

TABLE I
AREA OCCUPATION AND POWER CONSUMPTION ESTIMATION OF A SINGLE

CELL THAT EXECUTES, IN ONE CASE, THE ODD-EVEN SORT ALGORITHM
AND, IN THE OTHER, THE BINOMIAL FILTER ONE.

Circuit Area Power

(µm2) (mW)

Magnetic field Spin Hall Effect

Odd-even sort 2196.2 18.4 2.6

Binomial filter 2129.8 18.4 2.6

Considering the two algorithms the cell area occupation
and power consumption is roughly the same. The two clock
systems instead lead to the same circuits organization, there-
fore the area does not change considering one clock system
instead of the other. Power consumption instead is quite
different, being 7 times lower in the Spin Hall Effect clock.
If further development of this solution will allow to use the
Spin Hall Effect clock with lower resistance materials, power
consumption will be further reduced. Regarding time, circuits
works with a frequency of 100MHz, the instructions execution
time varies from 79 to 131 clock cycles. This is mainly due

the intrinsic pipelined nature of this technology which reduces
performance in case of feedback signals [11].

V. CONCLUSIONS

We have developed a logic-in-memory architecture to ex-
ploit the potential of emerging technologies. We have imple-
mented the LIM architecture using NML technology as target,
bringing, at the same time, several enhancements to the tech-
nology itself. Performance obtained are very good, especially
in terms of area and power consumption. We are now working
on technological solution that allow us to implement NML
circuits with many layers. At the same time we are redesigning
the architecture keeping in mind its pipelined behavior in order
to improve circuit performance.
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