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Abstract—The current trend for intensive computational archi-
tectures is to adopt massive parallelism, with several concurrent
tasks performed simultaneously, as done for example in GPUs.
This approach has many advantages, such as the reduced
design time given by circuit replication and an increasing in
computational speed without the need of higher frequency. It
has however evidenced an important bottleneck in data exchange
between memory and processor.

We envisage a revolutionary path for the future relation
between memory and logic in parallel processors, where a new
type of architecture exploits the principle of caching to the
limit. Our Logic-in-Memory (LIM) architecture mixes logic and
memory in the same device, removing the bottleneck of other
existing parallel solutions. The architecture we propose, here in its
preliminary version, has an array organization and each element
in the array is based on three blocks: a logic unit for processing,
a smart memory block and a routing structure for inter block
communication. In this article we show the benefits of this
approach with an application example in the image processing
field. We can achieve a 4X computational time reduction for an
image processing algorithm (Summed Area Table) with respect
to the best architecture present in the literature, even with a
preliminary and not optimized version.

Besides the adoption of massive parallelism to increase per-
formance, new technologies to open the post-CMOS era are
explored. Among them NanoMagnet Logic (NML) is particularly
interesting for its ability to mix logic and memory in the same
device. We present here the preliminary results of the NML
implementation of the LIM architecture. We thus demonstrate
that it is not only a good solution for a standard CMOS
technology but can also exploit the potential of an emerging
technology as NML.

I. INTRODUCTION

With the growing sizes of database and files, most algo-
rithms used nowadays are parallel algorithms that work on
a huge amount of data. Running these algorithms on gen-
eral purpose processors would require a long computational
time, often not compliant with the stringent performance
requirements by these tasks. The only way to execute these
algorithms in a reasonable amount of time is to process
as many data as possible in parallel. Moreover, while in
last decades CMOS scaling allowed remarkable increase in
operating frequency processing data in shorter time, this trend
has suddenly decayed in last years for intrinsic technological
limitations [1]. For these reasons parallel architectures, that
allow to process several data at the same time, are recently
gaining unprecedented interest.

Current parallel structures comprise both architectural so-
lutions (GPUs, Systolic Arrays) and specific physical orga-
nization (FPGAs) [2]. They are employed in different fields
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Fig. 1. (A) Array Processor with marked central cell. (B) NanoMagnet Logic
(NML) principle: magnetization represents logic values. (C) Clocking scheme
for magnetic QCA circuits. (D) An example of signal propagation in a NML
circuit. The circuit is split in 3 different clock zones. Nanomagnets with one
cut corner implement logic functions AND, OR.

and for different applications, but they all share some peculiar
characteristics: 1) The amount of memory they embed is
extremely limited, requiring continuous communication be-
tween the Array Processor and the external memory. 2) The
communication between the processor and external elements
is provided through a limited number of communication ports.
In a rectangular processor as in Fig. 1.A, the communication
ports are placed on boundary cells. If an input data must be
provided to one central cell (labeled with X in Fig. 1.A), a
certain delay is required to transmit this data through several
cells.

These characteristics highlight that both the mechanism
to provide inputs and the access to memory during algo-
rithm execution are inefficient. A change of perspective is
required to overcome these main limitations. We propose then
a revolutionary architecture that mixes logic and memory
in the same device, exploiting the Logic-in-Memory (LIM)
concept [3]. This is a layered architecture, with a “smart”
memory plane, a computational plane to execute complex
algorithms on stored data and a routing plane to transfer
data from cell to cell. Though still in its preliminary form,
it already allows to solve the abovementioned problems and
we demonstrate it with an application case frequently adopted
in image processing. We have designed at RTL level this
architecture to demonstrate the feasibility of this solution and
its effectiveness, and we compared our preliminary results to
previous solutions proposed in literature.

We have also designed a NanoMagnetic Logic (NML)
implementation in order to demonstrate that its characteristics
could be further exploited if an emerging beyond CMOS
technology could be used. While the results here presented
are just a preliminary work, our long term aim is to optimize
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Fig. 2. (A) The LIM cell layered architecture. The routing plane communicates with memory plane above, logic plane below and with near cells.
(B) Magnetoelastic NML. Magnets are placed on a piezoelectric substrate. When an electric field is applied the substrate strain induces a magnetization
rotation on magnets. (C) Magnetoelastic NML logic gate set.(D) Memory cell schematic. Common buses and a distributed multiplexer architecture is used to
reduce interconnections overhead. (E) Memory cell layout.

the architecture for NML, fully exploiting the peculiar char-
acteristics of this technology.

In this article we lay the foundations for this radical change
in perspective, introducing the new LIM architecture and
showing an application example in the image processing field.
We underline that results are only preliminary. However, the
reader can perceive the remarkable potential of this structure
and the way it is expected to change the relationship between
logic cores and memories that represent the bottleneck of
today’s systems.

In the following some backgrounds on magnetic logic are
given in section II and a description of the LIM architecture
is discussed in section III. Then hints on the particular appli-
cation and the related results are reported in section IV and
V, respectively.

II. NANOMAGNET LOGIC

The previously mentioned limits of CMOS scaling have
induced, besides an increasing interest in parallel architectures,
a new research path towards nanotechnologies that could
replace the current technology in the future [4]. QCA [5]
represents one of the most promising emerging technologies
because it can guarantee low power consumption [6], in the
so-called NanoMagnet Logic (NML) implementation [7]. This
technology is based on nanomagnets whose magnetization
represents an encoding binary value (Fig. 1.B). Nanomagnets
align their state according to neighbor elements, thanks to
magnetic interaction, thus propagating information through the
circuit. A 3-phase clock mechanism, represented in Fig. 1.C-D,
is used to guarantee correct propagation of signals. Circuits are
divided in small areas called clock zones. At every clock zone
one of 3 clock signals is applied, which forces the magnets in
different states. During the RESET state, magnets are placed in
an intermediate unstable state. Magnets in the SWITCH state
are influenced only by those in HOLD state, propagating the
information correctly. The “RESET” field can be generated
either from a current induced magnetic field [8], or with a
mechanical stress induced by the strain of a piezoelectric
substrate [9][10] (Magnetoelastic NML). The use of a clock

mechanism leads to an intrinsic pipelined behavior with delays
depending on the circuits layout [11].

Due to the intrinsic memory ability of NML technology, the
LIM architecture appears as an ideal target for this technology.
The regularity of LIM architecture, coupled with the local
memory, leads also to a low interconnection overhead. Wasted
area for interconnections is one of the most serious problems
of NML technology [12]. It is therefore important to design
architectures that limit interconnection wires length. For the
NML implementation we choose the Magnetoelastic NML
[10], which is the NML subtype with the lowest power
consumption. The working principle of this technology is
outlined in Fig. 2.B. Magnets are deposited on a piezoelectric
substrate. A voltage is applied to two electrodes placed beside
the magnets. The electric field generated induces a strain in the
substrate. The mechanical stress on the above magnets forces
a magnetization rotation, driving the magnets in the RESET
state. The set of logic gates available is highlighted in Fig. 2.C.
The main logic functions are implemented using AND, OR
and inverters [13], while a crosswire block [8] is required to
cross two wires on the same plane, since NML is a single
layer technology. We have envisioned the LIM architecture as
a multi-dimensional structure, where logic, memory and in-
terconnections are placed on different planes. This is however
a logical structure, the physical implementation depends on
the constraints of the target technology. In the Magnetoelastic
NML case, the entire structure is therefore mapped on a single
physical layer. As a consequence, the effectiveness of LIM
architecture mapped on NML is for now limited. With further
technological developments, however, we will be able to fully
exploit the potential of LIM circuits.

III. THE LOGIC-IN-MEMORY ARCHITECTURE

The LIM architecture is composed by an array of cells,
each one containing a plane dedicated to logic, routing and
memory (Fig. 2.A). The division in planes is from the logical
point of view. The planes can be physically located in the
same layer or in different layers, the choice depends on the
technology. The cells can operate independently one from the



other. Each cell is connected only to the adjacent ones through
local connections, completely avoiding global wires, therefore
improving considerably the routing of the signals, with all the
advantages in terms of area, power and speed. While most of
the other architectural models, like NoC, consists of separated
logic, memory and network elements, LIM integrates the three
aspects in each cell. Computational power is proportional to
the number of parallel elements. Cells should be small to
increase the ratio between the number of cells and area.

The routing plane connects the logic plane to the memory
plane of the cell. Moreover, it allows inter-cell communication
among routing planes of adjacent cells. It receives memory ac-
cess requests from the logic plane and from the routing planes
of neighbor cells, delivering them to the final destination. The
logic plane is the part of the cell devoted to the execution of the
algorithm to be implemented in the LIM array. All its accesses
to memory must pass through the routing plane. The memory
plane represents the local memory of each cell, accessible only
through the routing plane. The physical proximity of logic
and memory allows a very fast access. Inter-cell and inter-
plane communication is divided in packets, which may have
different lengths depending on the type of operation involved.
The list of possible operations is the following: Local Write
(LW), Local Read (LR), Toc Toc Write (TTW), Toc Toc Read
(TTR), Remote Write (RW), Remote Read (RR).

Local Write (LW) and Local Read (LR) are the fastest ones
because there is no interactions with other cells, signals travel
only through the routing plane of the same cell. On the other
hand, Toc Toc access allows read/write operations in a memory
location of neighbor cells. Signals travel through the logic and
routing plane of the source cell and the routing and memory
plane of the destination cell. Therefore the execution time
of TTW e TTR operations is two times the execution time
of local operations. Finally, Remote Write (RW) and Remote
Read (RR) enable communication among any arbitrary couple
of cells in the grid. They overcomes the limitations of local
accesses to memory, but at the cost of reduced performance.
Indeed, the delay of a Remote Write is N times bigger than
local operations, where N is the distance between the target
and the source cell. A Remote Read is instead 2N times slower,
since the read data must travel back to the origin cell.

The LIM structure is described using a parametric VHDL
code, that allows the flexibility necessary to implement a wide
range of algorithms. The most relevant parameters are grid
dimension, cell memory size and data width. The logic plane is
the only one requiring a custom design for each implemented
algorithm. Conversely, routing and memory planes provide
communication and memory services that are intrinsically part
of the architecture, not peculiar to the algorithm. Therefore,
they can be shared among the implementations. This design
reduces development time and effort.

IV. APPLICATION EXAMPLE: SUMMED AREA TABLE

The test application for the LIM architecture is the
“Summed area table” calculation algorithm. First introduced
by Crow [14] in computer graphics domain in 1984, it became

Starting image LIM array
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Fig. 3. Summed Area Table application example. Each cell stores an entire
column. The array is linear but is arranged in a matrix structure to optimize
the layout.

popular after the Viola-Jones object detection algorithm [15]
included it as first step, renaming it integral image. The
algorithm provides a fast way to detect features in two-
dimensional rectangular images. At the beginning, the entire
image is loaded in the LIM memory plane. Each row of the
image is mapped in a cell and consecutive rows are placed
in adjacent cells. The image becomes an array of rows that
is then compacted in a grid in a snake-like configuration, as
in Fig. 3, to optimize circuit layout. The number of cells is
therefore equal to the height of the image.

The computation of the Summed Area Table algorithm is
organized in two phases. First, the pixels’ values are added
column by column. Secondly, the results are added row by
row, as in [16]. Since every column is in a different cell in the
array, during the first phase cells cannot work in parallel. The
second phase can be executed completely in parallel, because
an entire row is stored inside a cell. Resource utilization and
performance reach therefore their maximum in this second
phase. The locality of memory accesses, the amount of par-
allelism, the high memory bandwidth are all motivations that
make this architecture suitable for the implementation of the
Summed Area Table calculation.

V. RESULTS

A. Results based on CMOS technology

In order to have an initial performance estimation, a pre-
liminary synthesis on a single LIM cell has been run with
a 28nm CMOS technology library, using Design Compiler
Synopsys software. Memory has been synthesized using reg-
isters to achieve the maximum possible clock frequency. The
area and power consumption of a single cell are 83296µm2

and 119mW , respectively. The obtained clock frequency is
1.6GHz. The total execution time of the algorithm was
evaluated and compared with results presented in literature.
The comparison is shown in Table I.

The gain in speed, though the structure is not optimized,
is very high, highlighting the potential of this architecture
in terms of timing. Delays due to traffic load and resource
conflicts are already considered in the timing results. Area
and power can be reduced using SRAM cells for the memory
instead of registers, increasing however the execution time.
In the future, we plan to embed dedicated memories in the



TABLE I
COMPARISONS WITH THE RESULTS OF PREVIOUS WORKS ON SUMMED

AREA TABLE COMPUTATION

Reference Image size Time [ms]

Zhang[16] 640x480 0.19

This work 640x480 0.051

Huang-CPU[17] 1024x1024 7.96

Huang-GPU[17] 1024x1024 2.53

Bilgic[18] 1024x1024 2

This work 1024x1024 0.096

architecture, analyzing the trade-off between area/power and
speed.

B. Results based on NML

We implemented the whole LIM architecture using Mag-
netoelastic NML technology. The schematic of the core part,
one memory cell of the memory array, is depicted in Fig. 2.D.
The design uses shared bus lines for control signals and
input/output data, controlled by the ROW signal, which is
the output of the selection decoder. This design was chosen
because it allows to greatly reduce interconnections overhead.
The memory cell layout can be seen in Fig. 2.E. It is very
compact and modular: The memory array can be built simply
assembling the desired number of memory cells together.

The entire circuit was modeled and simulated with an RTL
model, described with VHDL language [19]. The circuit works
with a frequency of 100MHz. The total area of a single
LIM cell is 227000µm2, nearly three times the area of the
CMOS cell. The power consumption of one cell is 4.8mW ,
a value much lower than the 119mW obtained with CMOS
technology. However, reducing the operating frequency of the
CMOS implementation, the power consumption obtained by
the NML implementation is slightly higher than the CMOS
one. While this is not the expected result, it can be easily
explained. The LIM architecture is conceived as a three layer
structure, one for logic, one for routing and one for memory.
Since, for now, multilayer structures are not possible in NML,
this leads to a sub-optimal result. Moreover the present LIM
architecture represents a preliminary implementation of the
logic-in-memory principle. It was not thought specifically for
NML technology and its technological constraints. Finally,
while NML technology has intrinsic memory ability, the clock
mechanism negate this advantage. Magnets are periodically
forced in the RESET state, eliminating therefore the memory
mechanism. The most simple way to exploit the intrinsic mem-
ory ability of this technology is to embed Magnetic RAMS
inside NML circuits. Doing this will result in a considerable
reduction in both area and power consumption.

VI. CONCLUSIONS

We have successfully designed a Logic-In-Memory archi-
tecture, that leads to considerable advantages, whenever the
access to memory is a critical factor. The circuit was synthe-
sized on a 28nm CMOS technology, using as a benchmark

the Summed Area Table algorithm. Results show that this
architecture provides a considerable advantage over other
hardware implementations presented in literature. We have
also presented the first results of the NML implementation
of the LIM architecture, which are encouraging.

We are now focusing on the NML implementation, trying
to exploit the intrinsic memory ability of this technology. We
plan to reach this result in two ways. First, redesigning the
architecture considering the NML layout constraints. Secondly,
integrating Magnetic RAMS inside the circuit.
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