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This work has been realised in the framework of:

LyoLyo--ProPro
Competitive and Sustainable Growth European ProjectCompetitive and Sustainable Growth European Project

The The scientific objectivescientific objective of the proposal is to optimize of the proposal is to optimize 
the freezethe freeze--drying process of pharmaceutical proteins drying process of pharmaceutical proteins 

on a scientific basis in order to set up efficient and on a scientific basis in order to set up efficient and 
rational freezerational freeze--drying diagrams for industrial drying diagrams for industrial 

manufacturing of commerciallymanufacturing of commercially--used drugs and used drugs and 
diagnostic proteins.diagnostic proteins.
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Freeze-drying (or lyophilization)

Drying process whereby water or another solvent is removed from a frozen 
product by sublimation, generally under vacuum.

Freeze-drying is the best available 
technique to dry pharmaceutical proteins 
reducing the possibility of introduction of 

immunogenicity or other undesirable 
changes in the product properties.

Limitations

• long process duration and high process costs

• optimisation by trial and error runs

• impossibility of direct measure of parameters of interest

Theoretical 
modelling

• help in design, optimization, and control of the process
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drying

• Sublimation of frozen water 

• Condenser to trap vapour 

• Coupled Heat and mass transfer

• Critical parameter: sublimating front temperature, Ti

Collapse/melting

Sublimation speed depend directly on Ti

• Endothermic process, latent heat must be provided

• Moving front of sublimation

Heating (radiation, conduction)

Cooling (sublimation)

 

Dried layer 

Frozen layer 

Metal tray 

Heating plate 

Contact resistance 

plateT  

interfaceT  

frozenR̂  

glassR̂  

trayR̂  

contactR̂  
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Modelling
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Bi-dimensional model for vial lyophilisation
Energy balance dried layer I

Material balance vapour

Energy balance frozen layer II 

Material balance inert

Material balance at the moving front

Energy balance at the moving front

( ),H r t

0

L

r

glR0

z

bottomq  

dried
layer I 

frozen
layer II

sideq  

topq
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A literature case: freeze-drying of skim milk
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Comparison between model 
simulations and experimental
results by Wolff et al. (1989). 
Left hand side: interface 
position. Right hand side: 
frozen core temperature
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Effect of radiation
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• Lower drying time

• Higher product
temperature

• Radial temperature
difference is small

• Moving front 
curvature is small

but

Mono-dimensional 
approach feasible
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Mono-dimensional model for vial lyophilisation

• Mono-dimensional geometry forces the
moving front to be planar

• Vial sidewall heat transfer is accounted

For the vial being in contact with the dried layer I:

For the vial being in contact with the frozen layer II:

( )H t

0

L

z

bottomq  

dried
layer I 

frozen
layer II

sideq  

topq
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Freeze-drying of a 5% bovine serum albumin solution
(LAGEP, CPE Lyon)

• Pressure 26 Pa 1

2

3

4

5

6

DOOR 

• 1 ml BSA solution 

• 200 vials 

• 6 thermocouples measuring 
bottom product temperature 
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Comparison between 1D model and 2D model

• Maximum temperature difference between 1D and 2D model < 1°C

• Temperature profiles of the frozen mass are practically coincident

• In the dried layer, predicted 1D temperature is comprised between
the two values given by 2D model at extreme radial positions 

• Moving front evolution practically coincident
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Optimal operating 
conditions
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 Pressure, Pa
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perature, K

Optimal operating conditions (constant Tplate)
At lower pressure

Minimum drying time

if pressure ↑
heat transfer ↑

At higher pressure

if pressure ↑
mass transfer ↓ Drying time ↑

The operative range is limited by the 
constraint of maximum temperature 
that allows safe operation

but…

if pressure ↑ Max temperature ↑

Drying time ↓
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Optimal operating conditions (variable Tplate)

When maximum 
allowable temperature 
is approached

Plate temperature is regulated in such a 
way that Ti,max is never overcome

Chart of operating conditions, 
Ti,max constraint is always satisfied
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Monitoring
and control
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Technological innovation of freeze-drying in Lyo-Pro

A new analytical balance
that permits to evaluate 
the mass of the product 

during the process

Use of the mass 
spectrometry to identify 

any anomaly in the 
process

example:
Manometric
Temperature 

Measure

Use of model-based estimators
(soft sensors) and indirect non-

invasive methods to monitor, 
control and optimize the process

Primary drying should be carried on at a controlled sublimation 
temperature in order to avoid denaturation of the product.

But front temperature can not be directly measured
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Manometric Temperature Method (or Pressure Rise Analysis)

• Remote sensing procedure for determining the temperature of the moving 
front at different times during the primary drying stage 

• The valve separating chamber and condenser is closed (≈20 seconds) and the 
chamber pressure increases

0 5 10 15 20
0

10

15

20

25

30

35

   4.0 hr
   7.3 hr
 10.3 hr

Pr
es

su
re

, P
a

Time, s

BSA, 10 Pa
MTM is currently adopted in some units. 
Chamber pressure is assumed to reach 

equilibrium and sublimation T is 
calculated through thermodynamics

but

Effect of “drift” limits MTM test duration 
(otherwise product can be damaged)
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Modified Manometric Temperature Method

Front temperature

Mass transfer 
resistance

• Time evolution of the product temperature is 
considered

A new approach to the description of the 
phenomena occurring during the MTM test

• The new model relates the measured pressure 
rise dynamics to the front temperature

• Non-linear optimization problem is solved
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Modified Manometric Temperature Method

• MTM is repeated several times to provide an 
estimation of Ti through all primary drying

• From model equations we can also determine:

mass transfer coefficient  

heat transfer coefficient at the vial bottom

ice thickness

temperature profile along the frozen mass

MTM is a global method, vials are considered 
as a whole

if there are large heterogeneities 
between vials, MTM measure is 
inaccurate (end of primary drying)

• Limitation:
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Control 

• Regulatory guidance do not allow closed loop in manufacturing
processes (in a validated process all cycles must be the same)

Only monitoring is possible in manufacturing, used as a 
“process record” to know that cycles are reproducible

• During cycle development (pilot/lab scale freeze-driers) no 
regulatory limitations apply, closing loop is possible

control the product 
temperature in real 

time preventing 
product degradation,
maximize heat input

MTM or soft-sensor 
for estimation of Ti
can be inserted in a 

feedback loop
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Output feedback control (5% BSA solution)
The temperature of the moving front is controlled by manipulating the temperature 
of the heating plate Tplate

A Proportional-Integral (PI) controller has been implemented
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more slides…
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Bi-dimensional model for vial lyophilisation

( ),H r t

0

L

r

glR0

z

bottomq  

dried
layer I 

frozen
layer II 

sideq  

topq
• Spatial and time evolution of: 

Dried Layer I Temperature

Frozen Layer II Temperature

Water vapour pressure

Inert pressure

Bound water concentration

and moving sublimating interface:

Temperature 

Velocity

Position

• Transient material and energy balances
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Bi-dimensional model for vial lyophilisation

• Moving boundary or Stefan problem

Problems arise in time integration

Complex mathematical formulation

Spatial grid fixed in time through a
mathematical artifice 

• Front-fixing resolution method

• Orthogonal collocations; spatial derivatives are
determined via differentiation matrixes

• Non-uniform N x M grid

Time changing spatial grid would be required
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Heat transfer in the vial sidewall

Lower drying time, Higher product temperature

Analogous effect of radiation on drying time and product 
temperature, but at a minor extent 

• Energy provided by the heating plate is exchanged with the product    
mainly at the bottom and in part at the vial side
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Simplified models for 
real-time applications
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Simplified models for real-time monitoring of primary drying

Computational power

A large number of parameters, not 
always easily accessible

Detailed transient models 
of the process require:

Simplified models have been set up easier to 
implement for real time monitoring and control

Main hypothesis

• Pseudo-steady state conditions 

• Radiation is neglected 

Vials well shielded from edge effects
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Simplified model I

• Vial sidewall is not accounted for

• Dynamic behaviour is retrieved by mass balance across the moving front 

• Only 1 Ordinary differential equation

• Fast solution 
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Simplified model II

The simplified balances can be integrated analytically in order to get the 
equations for the temperature profiles along the product and along the vial sidewall  

To complete the model the 
boundary conditions must be 
applied, given by the following 
set of linear equations. The 
analytical solution of the 
system gives the integration 
constants C1…C6. 

The various parameters in the 
equations are function of H, Ti, 
Kv, k1, geometry and thermal 
properties of the vial/product.
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Simplified model II

• Vial sidewall is    
modelled

• Dynamics of:
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Soft-sensors (observers)

In many engineering applications it is desirable to have estimates of hard-to-
measure or non-measurable quantities.

An observer combines a priori knowledge about the physical system 
(mathematical model) with experimental data (on-line measurements) to 
provide an on-line estimation of the sought quantities.

Process

Observer

input output
Process

Observer
State 

estimate
correction
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Soft-sensors (observers)

Primary drying should be carried on at a controlled sublimation temperature in 
order to avoid denaturation of the product.

Problem: front temperature can not be directly measured

• Non-linear observers (Extended Kalman Filter, 
High Gain Observer) to estimate Ti on-lineFrom simplified 

models
• unknown heat and mass transfer parameters

Different approaches to 
determination of the 
corrective term (gain)

Different typologies of 
observers (EKF, HG)
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Improvement of the control system

In order to improve both quality and reproducibility some objectives 
should  be fulfilled:

Objectives

• Control the product end-use properties

• Develop a fault diagnosis software for controlling the 
process, detecting problems on-line and preventing large
degradation

• Develop a software, based on remote sensing tools
(soft-sensors, manometric temperature measurements) for
the quality estimation of the end-use product 
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Closed-loop control (for cycle development) 

System

Ti estimator

input output
MTM or soft-sensor 
for estimation of Ti 
can be inserted in a 

feedback loop

Controller
u

It is possible to 
control the product 
temperature in real 

time preventing 
product degradation

Estimated Ti

( ) ( ) ( )( )î ,u t K T t p t=

Controller law
(PI, MPC, …) Constraints
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Closed-loop control (skim milk)

The temperature of the moving front is controlled by manipulating the 
temperature of the heating plate Tplate

A conventional Proportional-Integral (PI) controller has been implemented

Controller tuning according to MIN of ISE:
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LyoLyo--ProPro
Competitive and Sustainable Growth European ProjectCompetitive and Sustainable Growth European Project

Innovative nucleation technology

The first prototype of freeze-dryer with the nucleation technology 
created by Asymptote and Telstar Industrial


