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Abstract—Reduced Precision Redundancy (RPR) is a popular
Approximate Computing technique, in which a circuit operated
in Voltage Over-Scaling (VOS) is paired to a reduced-bitwidth
and faster replica so that VOS-induced timing errors are partially
recovered by the replica, and their impact is mitigated.
Previous works have provided various examples of effective
implementations of RPR, which however suffer from three
limitations: first, these circuits are designed using ad-hoc pro-
cedures, and no generalization is provided; second, error impact
analysis is carried out statistically, thus neglecting issues like non-
elementary data distribution and temporal correlation. Last, only
dynamic power was considered in the optimization.
In this work we propose a new generalized approach to RPR
that allows to overcome all these limitations, leveraging the
capabilities of state-of-the-art synthesis and simulation tools. By
sacrificing theoretical provability in favor of an empirical input-
based analysis, we build a design tool able to automatically add
RPR to a preexisting gate-level netlist.
Thanks to this method, we are able to confute some of the
conclusions drawn in previous works, in particular those related
to statistical assumptions on inputs; we show that a given inputs
distribution may yield extremely different results depending on
their temporal behavior.

I. INTRODUCTION

Approximate Computing (AC) is a design paradigm that ex-
ploits the error resiliency existing in many application domains
to tackle energy consumption in digital systems [1]. The
general idea is that, relaxing the constraints on maximum
accuracy, it is possible either to reduce a system’s complexity
or to modify its operating conditions, to improve energy effi-
ciency. Many AC techniques have been proposed in literature,
operating at various abstraction levels [2], [3].
Several power-driven AC solutions leverage Voltage Over-
Scaling (VOS), i.e., scaling of the supply voltage below the
critical value Vdd,crit, as the underlying technology knob. A
popular VOS-based approach is Algorithmic Noise-Tolerance
(ANT), an architectural-level technique applicable to arith-
metic and DSP circuits, that allows to operate in VOS con-
ditions without reducing the original system throughput [5].
In ANT, the original circuit, called Main DSP (MDSP), is
coupled with an Error Control (EC) block that limits the
impact of timing-errors due to the lowered Vdd. The rationale
is that, even if the MDSP operates in VOS conditions, only a
small percentage of the total paths actually violates the timing
constraints. ANT works nicely when the timing errors have
large magnitude, as in most arithmetic circuits, where the
critical path is associtated to the MSBs. In fact, the EC block

can easily identify these events, and when they occur, provide
a good-enough approximation of the correct result.
In this paper, we focus on one particular instance of the ANT
technique, called Reduced Precision Redundancy (RPR) [6],
in which the EC contains a reduced-bitwdith replica of the
MDSP. RPR has been proved a quite effective embodiment
of AC [6]. However, all literature on this subject focuses
on single or small families of designs. In these works, the
replica is designed using ad-hoc procedures, and no general
and automated approaches have been proposed. Moreover,
estimation of the output quality after the insertion of the
EC block is obtained via statistical analysis. In order to
do so, oversimplified assumptions are made on I/O data
distribution, and important aspects such as input temporal
correlation (i.e. the relation between values of subsequent
inputs) are neglected. Finally, the optimization was done only
considering dynamic power, and leakage was evaluated only
a posteriori; however, the redundancy nature of RPR will
obviously increase leakage power, which should be thus part
of the cost function [6].
In this work, we propose a new generalized approach to
RPR-ANT, that allows to overcome these limitations. By
sacrificing theoretical provability in favor of an empirical
input-based analysis, and by leveraging state-of-the-art EDA
tools, we build a design tool able to automatically add RPR
to a preexistent gate-level netlist. The specific contributions
provided in this work include:

• We estimate all design metrics using accurate characteriza-
tions of real standard-cell libraries. This method provides
more accurate estimates of savings and timing degradation
with respect to the basic delay and power models of previous
works. Moreover, it allows to consider all power compo-
nents, including the leakage overhead introduced by the EC.

• Thanks to a simulation-based analysis performed on a set of
realistic input stimuli, we obtain a more faithful estimation
of the rate and impact of timing-errors. In fact, we are
able to account for temporal correlation and non-trivial
distributions, two aspects that cannot be treated by simple
statistical models.

• We build the replica starting from an already synthesized
gate-level netlist of the MDSP, leveraging standard EDA
tools directives for its simplification. Our approach is thus
application-agnostic, i.e. it does not require the knowledge
of the functionality performed by a design. The method is
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Fig. 1: Reduced Precision Redundancy ANT Block Diagram.

automatically able to discern whether the addition of RPR
is suitable or not, and to synthesize the replica configuration
that maximizes power savings under a user-defined quality
constraint. The entire process is automated, so that no
additional coding effort is needed by the user in order to
implement RPR on top of an existing design.

We show that, when tested on the same families of designs
treated with ad-hoc procedures in previous works, our ap-
proach reaches comparable savings. Moreover, we apply it
to several architectures that were not considered previously,
confirming its generality and flexibility. Globally, we are able
to reduce total power up to 50%.

II. BACKGROUND AND RELATED WORK

A comprehensive overview of AC techniques can be found
in [1], while VOS and its applications to AC are discussed
in [4]. Algorithmic Noise Tolerance (ANT) was first proposed
by Hegde and Shanbhag in 2001 [5].

The general concept of ANT is shown in Figure 1: the original
design (MDSP) is operated in VOS, which results in errors due
to input-dependent timing violations. To reduce their impact,
the MDSP is coupled with an Error Control (EC) block,
that does not attempt to correct MDSP errors, but just to
mitigate them, by providing a good-enough approximation
of the correct result. Therefore, the EC block can be made
simpler than the MDSP, and can be designed to be error-
free (i.e. timing compliant) in VOS conditions. The EC block
is composed of two main elements: an estimator, which
generates the approximate version of the correct output, and
a decider that produces the global output selecting between
MDSP and estimator. In particular, the selection is performed
based on the absolute value difference between the MDSP and
estimator outputs. If this difference exceeds a given threshold,
the estimator output is selected, assuming that a timing-error
has occurred in the MDSP. Otherwise, the MDSP result is
forwarded to the global output.

As explained in Section I, the rationale behind this scheme
is that, for most arithmetic circuits, critical timing paths are
related to the computation of the MSBs. Therefore, MDSP
outputs generated in correspondence of a timing error will
differ significantly from the approximations provided by the
estimator.

Two main approaches to ANT are possible, which differ in
the structure of the estimator [7]. In Prediction-based ANT,
an interpolation filter is used to predict the next MDSP output
as a linear combination of the recent output history. This
scheme works better for narrow-band systems, i.e., with high
correlation among subsequent outputs. Its main limitation is
that all MDSP outputs, including erroneous ones, are used in
the predictor filter. Therefore, prediction accuracy is affected
by previous errors, and this may in turn influence the selection
in the decider block.

In Reduced-Precision Redundancy (RPR) ANT, the estimator
is a simplified replica of the original circuit. The most intuitive
way to build the replica is by reducing the bit-width of its
operands, removing some of the LSBs. With respect to the
prediction-based approach, RPR has a larger overhead, but it
can be applied to a wider range of systems, with different
output bandwidths.

This work focuses on RPR-ANT, because of its greater flex-
ibility. In the rest of this Section we present a recap of the
theory behind this approach; a more exhaustive discussion can
be found in [6].

With reference to Figure 1, the MDSP output at time n is:

yM [n] = yo[n] + γ[n] = (s[n] + η[n]) + γ[n] (1)

where yo is the error-free output, and γ is the component
due to timing violations, modeled as an additive noise. For
some application domains (e.g. digital communications), yo
can be split into a signal component s and an additional noise
component η (e.g. communication channel noise). The replica
output is termed yr[n].
yM and yr are subtracted and compared against a threshold
Th. The decision MUX selects between its inputs as follows:

y[n] =

{

yM [n], if |yM [n]− yr[n]| ≤ Th

yr[n], if |yM [n]− yr[n]| > Th

(2)

A desirable property of this architecture is that y = yM in
absence of timing errors. To ensure it, the threshold must be
set as:

Th = max
all inputs

|yo[n]− yr[n]| (3)

The RPR architecture must be designed so that the global
output y satisfies a quality constraint, which is strongly
application-dependent. A typical quality metric used in many
DSP and communication applications is the Signal-to-Noise
Ratio (SNR), defined as:

SNRy =
σ2
s

σ2
γr

+ σ2
η

(4)
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where σ2
s is the signal power, σ2

η is the channel noise power
and σ2

γr
is the residual noise power due to timing errors after

the decider:

σ2
γr

= E[|yo[n]− y[n]|2] (5)

The quality constraint is satisfied by acting on the VOS
supply voltage (VV OS) and on the replica implementation.
In particular, since the replica is a reduced width version of
the MDSP, the possible implementations vary in accuracy and
power/area overheads (both function of the number of removed
bits B). In conclusion, the identification of the best RPR
architecture can be formulated as an optimization problem
with the following objective function:

min
VV OS ,B

[Prpr(VV OS , B)] (6)

Under the following constraints:
{

Q(VV OS , B) ≥ Qtarget

Prpr(VV OS , B) < Pmdsp(Vnom)
(7)

where Q is a generic quality measure (e.g. SNR), Qtarget is
the desired minimum quality constraint, and Pmdsp and Prpr

are the total power consumptions of the MDSP and of the
RPR architecture (including the EC block overhead).

III. AUTOMATED RPR DESIGN METHODOLOGY

A. Limitations of the basic RPR formulation

While theoretically solid, the formulation of RPR of Section II
has a few downsides, that constrain its application to a
small number of designs. The main issues are related to the
evaluation of the decision threshold and of the quality function.

In order to compute Th with Equation 3, knowledge of
the MDSP and replica outputs produced by the entire set
of possible inputs is required. Computation of these output

images is not easy, except for some trivial cases. Moreover,
often applications use only a portion of the input domain of
a hardware block. Therefore, the theoretical threshold might
correspond to an input combination that never occurs during
real operation.

Similar issues are also faced in the evaluation of Equation 5,
which is required to measure the output quality in the case
Q ≡ SNR. In fact, the expected value is computed over the
entire range of error-free and RPR outputs. In addition to
that, three more quantities are needed for the evaluation of
the SNR: the distribution of output values, and the probability

and magnitude of timing-errors. Output values distribution
depends, in turn, on all inputs distributions; if those are not
elementary (e.g. uniform) and if the MDSP function is not
trivial, an analytical evaluation is unfeasible. Error probability
and magnitude are required to compute the global RPR output
y. In fact, we need to know how often the MDSP output in
VOS differs from the error-free output yo, and how many of
those errors are detected by the EC block.

In previous works, the error probability was estimated as the
percentage of static timing paths that violate the positive-slack
constraint under VOS. This percentage was computed based

on simple CMOS delay models [6]. However it is known
that timing-errors are determined by dynamic path activations.
Computing the error probability as the number of violating
static paths implicitly assumes a uniform distribution of all
input pairs, which is not realistic for the majority of designs.
Similarly, also the error magnitude depends on which paths are
activated by a given input sequence, and cannot be estimated
correctly with a static analysis.

Notice that these issues are not specific to the SNR, since most
standard quality metrics (e.g. PSNR, MED, MSE, etc.) involve
at least one of the mentioned quantities.

B. Synthesis/Simulation-Oriented Perspective

Because of the limitations described in Section III-A, applica-
tions of RPR based on the theoretical formulation are limited
to (1) a small class of designs, and (2) under the assumption
of inputs uniformly distributed and completely uncorrelated in
the time domain.

The objective of this work is to extend the RPR approach to
a much wider family of designs. We propose a methodology
and the relative tool to automatically check if RPR is feasible
or not for a given MDSP design, and to identify the optimal
configuration of parameters (VV OS , B) according to the model
of Equations 6 and 7. The tool is application-agnostic in that
it does not require knowledge of the specific functionality
performed by the MDSP.

To address the issues of the theoretical formulation, we need
to change the perspective in favor of a more synthesis-
and simulation-oriented view. The first improvement that we
introduce over existing RPR optimization algorithms is a more
accurate evaluation of design metrics. We operate on a
gate-level model of the MDSP, which allows us to accurately
estimate timing, power and area with characterized standard-
cell libraries rather than simplified models. Our tool uses
N + 1 Liberty format descriptions of the same gate library,
corresponding to the nominal supply voltage Vnom and to a
series of decreasing VOS operating points [VV OS,1...VV OS,N ].

The second novelty of our tool is that it relies on user-
provided input stimuli. It is reasonable to assume that a
designer wanting to add RPR on top of an existing hardware
has a good knowledge of the inputs that will be applied to
the circuit during normal operations. This information can
be used to estimate all the quantities required by the RPR
optimization (Equations 6 and 7) through simulations. With
respect to the theoretical formulation, these estimations are
not 100% accurate, being based on a finite-length sequence
of inputs. However, this method allows to take into account
temporal correlation of inputs and arbitrary data distributions.

Simulation outputs are used to check the effectiveness of RPR
for a given MDSP, and to obtain the optimal parameters for
the EC block. Then, the tool automatically synthesizes the

RPR architecture using state-of-the-art tools. In particular,
the replica is obtained from the MDSP via netlist manipulation
directives.
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Fig. 2: RPR Automation Tool Flow.

C. Automation Flow

Figure 2 shows the flow of the RPR automation tool. In
its description, we will refer to the concept of input and

output buses to denote a coherent set of interface wires, not
necessarily correspondent exactly to a HDL port. Within a
bus, wires represent the digits of a binary fixed-point number.
The tool receives a list of MDSP input and output buses, each
mapped to the corresponding HDL interface signals, via simple
pragmas inserted by the designer in the netlist.
As mentioned, our optimization relies on the information about
input data. This information is provided to the tool in the form
of a Verilog or VHDL testbench for the MDSP.
It is also reasonable to assume that the designer knows the
most appropriate quality metric Q (and the relative desired
quality Qdes) to use for each MDSP output bus. Therefore, the
tool can accept a custom quality evaluation function, currently
provided in the form of a Perl module. For each output bus,
this function receives two arrays of binary words, representing
the sequences of error-free and erroneous outputs, and must
return the corresponding quality. Standard quality functions
(e.g., Q ≡ SNR) can be used in place of custom ones.
In summary, the inputs that a designer should provide to the
tool are:

• The gate-level netlist of the MDSP, annotated with bus
pragmas.

• A testbench generating realistic input stimuli.
• Optionally, a custom quality evaluation Perl module.

The execution of the tool is split in two phases, grouped by
dashed rectangles in Figure 2. In the preliminary phase, the
MDSP netlist is simulated at the nominal voltage Vnom with
Mentor Modelsim ( 1© in the figure), in order to gather the
set of golden outputs needed to measure quality during the
optimization. Then, using Synopsys PrimeTime, the power
and area of the MDSP at Vnom are annotated to be used
as reference when comparing against RPR. Power analysis
is performed using switching activity information previously
collected in VCD files during the Modelsim simulation.

Another set of simulations is then run in order to determine
the accuracy of different replica configurations ( 2©). In doing
this, we exploit two facts: (1) in a fixed-point datapath cir-
cuit, removing some LSBs from an input bus is functionally
equivalent to setting them to logic 0; (2) in the final design,
the replica will be timing-compliant, i.e. error-free.

Thanks to (1) we can obtain the outputs produced by a replica
in which some LSBs ave been removed by forcing those
bits to zero in the MDSP simulation. This does not require
the availability of the actual replica netlist, and can be done
directly on the MDSP. Thanks to (2) we can run functional

simulations in this phase, without the need of accurate timing
information. This allows one to execute a single set of replica
simulations for all VV OS , and also speeds them up.

By progressively zeroing out bits in the simulations in in-
creasing bit-weight order, multiple sets of replica outputs with
decreasing accuracies are obtained. Although precise power
and area information are not yet available, it is safe to assume
that at a given VV OS,i, a larger number of removed bits
corresponds to a smaller overhead.

When golden outputs and replica outputs for all configurations
have been gathered, the decision threshold T ′

h for each bus,
and for each version of the replica is computed as:

T ′

h = max
all input stimuli

|yo[n]− yr[n]| ≤ Th (8)

This expression is in accordance to Equation 3, where in this
case yo represents simulation golden outputs, and yr represents
replica outputs. Notice that the empirical threshold T ′

h will be
generally smaller than the theoretical one. Therefore, for some
combination of inputs not present in the testbench, the decider
may select the replica output even though the MDSP is correct.
However, if the test stimuli are representative of real usage,
this occurrence will be rare.

In the optimization phase, the tool iterates over the N
standard-cell library characterizations in VOS ( 1©). For each
VV OS , the MDSP is analyzed with PrimeTime and the timing
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degradation due to the lowered Vdd is annotated in a Standard
Delay Format (SDF) file. The SDF is then loaded in Modelsim,
which runs a timing-accurate simulation of the MDSP in
VOS conditions ( 2©). This simulation may produce erroneous
outputs due to the activation of violating paths; since a realistic
input sequence is used, the error rate and magnitude are
estimated accurately, also accounting for temporal correlation.
With erroneous MDSP outputs available, the tool computes
the minimum replica configuration that satisfies the quality
constraints ( 3©). To do so, it iterates over replicas in ascending
order of removed bits. The outputs of a hypothetical RPR
architecture are generated merging erroneous MDSP outputs
and replica outputs taken from simulations, according to
Equation 2 and to T ′

h. The obtained sequence is processed
by the quality evaluation module, where it is compared with
the error-free version of the MDSP outputs. If the quality
constraints are satisfied for all output buses, the evaluation
is repeated with a smaller replica, until a configuration that
violates at least one constraint is found.
When the minimum size replica configuration has been iden-
tified, the tool proceeds by generating its netlist ( 4©). This
task is performed with Synopsys Design Compiler (DC). In
particular, we make use of the netlist simplification directives
embedded in DC (e.g. remove_net). All input bits that were
zeroed out during the replica simulation are removed from the
netlist. Then, a re-synthesis is performed in order to propagate
these simplifications, eliminating all cones of logic that have
become useless. Re-synthesis also has a secondary purpose:
DC will run all the necessary optimizations (e.g., gate resizing)
in order to obtain a timing-compliant replica (at the chosen
VV OS), which is fundamental to correctly evaluate the power
and area overheads of RPR. In fact, to meet timing, the replica
may contain much larger gates with respect to the MDSP.
Once the replica is generated, the rest of the EC block
must be synthesized. In particular, each output bus requires a
proper decider. The decider has a fixed structure (subtractor,
comparator and multiplexer), and the only variable parameters
are the bitwidth and the threshold T ′

h. Therefore, the tool uses
a generic VHDL model to generate it.
The final step performed by the tool is the estimation of
the total power and area costs of the RPR configuration
in PrimeTime ( 5©). Here, the tool also checks the actual
timing compliance of the replica and decider, necessary for the
correct behavior of the entire architecture. A configuration is
considered feasible if the total power (including dynamic and
leakage contributions) is less than the power of the MDSP at
nominal voltage, and if the EC block meets timing. The loop
is then repeated with the next VOS library characterization.
The tool also has a full mode, in which the complete tradeoff
between accuracy and power savings is analyzed. In this mode,
instead of just extracting the minimum replica size for each
VV OS , all configurations that meet the quality constraint are
synthesized and analyzed. Clearly, with respect to the normal
operation, this mode greatly increases the execution time.
Finally, it is also possible to set a hard constraint on the
maximum error rate allowed for the RPR architecture.

IV. EXPERIMENTAL RESULTS

We validated the methodology proposed in Section III with ex-
periments on a set of IPs publicly available on OpenCores [8].
We synthesized the original RTL models with Synopsys DC
F-2011.09, targeting a commercial 45nm standard-cell library
from STMicroelectronics. For all designs, we set the nominal
(error-free) supply voltage to 1.1V, and we selected a synthesis
frequency that produces a critical positive slack of less than
100ps in those conditions. We characterized the library in
terms of timing and power in a set of VOS points going
from 1.05V to 0.50V in steps of 0.05V. The flow depicted in
Figure 2 has been integrated also with Synopsys PT F-2011.12
and Mentor Modelsim SE 6.4a.

We selected the following five designs for our experiments:

• Pipelined 16th-order lowpass FIR filter in direct form (12-bit
in, 24-bit out) [9].

• Pipelined 4th-order lowpass IIR filter in direct form I,
modeled after a butterworth analog filter (16-bit in, 32-bit
out) [9].

• Decimation In Time Fast Fourier Transform (DIT-FFT)
“butterfly” unit (16-bit in, 16-bit out) [9].

• Rotation Mode (RM) pipelined COordinate Rotation DIgital
Computer (CORDIC) unit (16-bit in, 16-bit out) [10].

• Fixed-point 32-bit Square Root Unit (SRU) implementing
the Goldschmidt recursive equation [11].

FIR and butterfly have been selected to compare our results
with those of [6], while the others are used to show the
extensibility of our algorithm, and to discuss the feasibility
of RPR in relation to the characteristics of a given hardware.

For each circuit, we generated a testbench in VHDL that
stimulates it with realistic inputs extracted from a suitable
error-resilient application. Depending on the nature of inputs,
we adopted two different quality metrics. For communication
applications we measured the SNR as in Equation 4, while
for arithmetic units we used the inverse of the Mean Squared
Error (MSE):

Qmse =
n

∑n
i=0(y[n]− yo[n])2

(9)

where y and yo are y and yo normalized to the maximum
value expressible on each output bus, in order to meaningfully
compare errors on busses with different widths 1. The discrim-
inant for the usage of one quality metric or the other is the
presence of channel noise. By combining the effects of timing-
errors with a preexistent source of inaccuracy (noise), SNR
is effective in showing how RPR does not affect the overall
quality of processing in communcation systems, if the replica
is sufficiently large. MSE, instead, is suitable to consider the
impact of VOS-induced errors alone, for systems in which no
information on input data noise is available.

1This metric is also sometimes referred to as Peak SNR (PSNR). We
preferred a different notation to highlight that it does not account for external
noise but only considers VOS-induced errors.
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Fig. 3: RPR Input dependence, Power vs. Vdd.

For what concerns power savings and area overheads, we refer
all of our measurements to the metrics of the MDSP in nominal
conditions:







Psav =
(

1− Prpr(VV OS ,B)
Pmdsp(Vnom)

)

· 100%

Aovr =
(

Arpr(VV OS ,B)
Amdsp(Vnom) − 1

)

· 100%
(10)

A. Analysis of Input Data Dependence

In order to show the importance of implementing RPR in
an input-aware manner, we analyzed the impact of different
input datasets on power savings for a pair of designs. As a
first example, we applied RPR to a fixed-point signed array
multiplier, with 16-bit inputs and 32-bit outputs. We used
MSE as quality metric, and we set an arbitrary constraint
Qmse ≥ 60 dB (i.e. MSE ≤ 10−6). We generated two sets
of 5000 inputs: in the first, both operands of the multiplier
are uniformly distributed in the range [−215 : 215 − 1], while
in the second, they follow a Gaussian distribution with mean
µ = 0 and standard deviation σ = 210. Moreover, we repeated
the two experiments after sorting the stimuli in ascending
order, thus enforcing a strong temporal correlation among
subsequent vectors. We set a maximum error rate of 0.2,
which, for all inputs, led the tool to discard configurations
with VV OS < 0.7V .

Figure 3a shows the results produced by our tool on a
power saving vs voltage plane. Power saving follows a similar
monotonically ascending trend for all data sets. However, the
maximum difference between the most and least favorable
conditions is around 8% (at VV OS = 0.9V ), and the relation
among input set and power saved is not trivial.

The reason for these results is twofold. On one hand, different
inputs stimulate the internal paths of the multiplier differently.
Because delay faults depend on input patterns pairs, both
absolute values and temporal sequences are relevant. Since
activation probability depends on input, also the percentage
of violating paths at each VV OS (and consequently the error
rate) does. Thus, at a given voltage, the tool is often able to

obtain the same quality using two different replica bitwidths

for different stimuli. Clearly, a smaller replica will produce a
smaller leakage overhead and a larger power saving. On the
other hand, the sequence of inputs also directly affects the
switching activity of the netlist gates, which in turn influences
the dynamic power consumption of MDSP and replica.

As an example, at VV OS = 1V the correlated Gaussian inputs
produce an error rate of 1.5 · 10−3 while the error rate for
uncorrelated data is only 0.4 · 10−3. However, the total power
consumption of the MDSP at this voltage is 0.6mW for the
correlated case, and 1.7mW for the uncorrelated.

The impact of inputs on the effectiveness of RPR is even more
evident for a more complex circuit, such as the 16th order
FIR (Figure 3b). We fed the filter with two sets of full-swing
sinusoid samples, respectively at ws1 = 0.01πrad/s and
ws2 = 0.1πrad/s, both affected by Additive White Gaussian
Noise (AWGN) with a SNR of 25dB. The cutoff frequency
of the filter is wc = ws2. In this case, the two sets of stimuli
have the same distribution of values, only the rate of variation
over time differs. We instructed the tool to keep the quality
at Qsnr ≥ 25dB (i.e. the RPR configurations are accepted as
long as the FIR output SNR is dominated by the channel noise
power), and we set the maximum error rate to 0.2.

In Figure 3b, we only report results starting from VV OS =
0.9V because for higher voltages, even though the critical path
slack is negative, no input pair generates a timing violation.
When applying the input at ws1, the circuit is still error-free
also at 0.9V .

We can notice how in this case power savings do not increase
monotonically with decreasing voltage. This phenomenon is
typical for complex designs, especially in deep VOS condi-
tions. Since the replica must be timing compliant, the tool
optimizes its netlist until a positive slack is obtained, possibly
modifying gate sizes, and thus increasing the leakage overhead
of the RPR system. This contribution may be larger than
the decrease in dynamic power with respect to the previous
VOS point. When voltage is reduced further, if the error rate
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Benchmark Net Count fclk [MHz] Optimal VV OS [V] Replica/MDSP Bits Tot. Power Saving [%] Area Overhead [%]

FIR Filter 3379 330 0.60 6/12 44.96 82.39

FFT Butterfly 3840 200 0.55 13/16 49.66 133.20

IIR Filter 3556 250 0.50 9/16 8.82 181.82

RM-CORDIC 4939 400 0.55 11/16 42.05 127.64

SRU 21267 125 0.75 17/32 47.91 143.32

TABLE I: Summary of Results for the Five Benchmarks.

does not increase significantly, allowing to maintain a similar
replica size, total savings can start to increase again.

The main difference with respect to the multiplier example,
however, is the influence of the input/output transfer function
on quality. In fact, the attenuation due to the lowpass FIR
is different at ws1 and ws2 and this causes a reduction in
signal power for the higher frequency samples. Consequently,
the output SNR is significantly different, even under the
same conditions of channel noise and rate of VOS-induced
errors. This dependency adds up with the influence of vectors
sequences on activated paths, resulting in a power saving
difference between the two inputs sets larger than 20%.

These two examples clearly highlight that the assumption
of uniformly distributed inputs can lead to suboptimal RPR
architectures (either overly optimistic or pessimistic depending
on circuit). They also show that the sole distribution of values
is not a sufficient indicator, and that accurate simulations can
provide much more realistic results.

B. Flexibility of the Approach and Comparison with Ad-Hoc

Solutions

For each of the five target benchmarks we selected an error-
resilient application that uses it, and profiled it to generate the
simulation stimuli required by the tool.
For the FIR filter and FFT-butterfly, we considered the same
applications examined in [6], i.e. the lowpass filtering at the
receiver of a QPSK communication link, and the modula-
tion/demodulation in Orthogonal Frequency Division Multi-
plexing (OFDM) WLAN respectively. We also assumed the
same channel SNR conditions (21.5dB for the FIR and 55dB
for the butterfly). As above, we set the quality constraints of
the tool to the same SNR values, in order to enforce the
negligibility of VOS-induced errors. To generate the signal
component, we started from a MATLAB model of the IEEE
802.11g WiFi standard. We extracted the input data for the
two circuits, converted it to the appropriate binary format and
added AWGN. The produced sets of vectors were loaded in
the VHDL testbench passed as input to the automation tool.

RM-CORDIC can be used in place of the classical butterfly
unit in FFT accelerators [12]. Similarly, the lowpass butter-
worth IIR filter can replace the FIR filter in a QPSK receiver.
Therefore, we decided to test these two new circuits for the
same applications of the previous two, and under the same
quality constraints. This shows how our tool can be used to
determine empirically the most suitable architectures for an
approximate realization of a given task.

Finally, the Square Root Unit (SRU) is used in many error-
resilient applications, from FFT magnitude evaluation to SVD-
based image compression. For our experiments, we targeted
the Automatic Gain Control (AGC) task present in many DSP
systems [9]. We generated the inputs to the SRU from a set of
baseband audio samples. In this case, in absence of precise
data on noise, we used the MSE quality metric, and we
decided to accept a maximum MSE of 10−12.
Table I summarizes the obtained results for all five bench-
marks. The power saving values confirm the generality of
the tool, since almost 50% reduction in total power can be
obtained for 4 of the 5 benchmarks, with the notable exception
of the IIR filter, which is however due to intrinsic features of
the RPR approach.
We profiled the computational burden of the RPR automation
tool, in order to assess its applicability in real-life scenarios.
Rather than absolute values, we measured the ratio between
the execution time of the tool and that of a normal design and
verification flow (i.e. a single sequence of synthesis, timing
annotation, timing simulation and power estimation). This met-
ric is in first approximation independent from the workstation
used in the process, as well as from circuit complexity and
input stimuli length; it only depends on the number of VOS
voltage points and on the number of feasible solutions found
by the tool. We discovered that the execution time of the RPR
automation tool for the five benchmark circuits is between 6x
and 9x that of a standard flow. Notice that this overhead could
easily be reduced selecting a smaller number of VOS points.
Moreover, the reference time for the standard flow does not
consider any power optimization, which could require several
iterations to converge to an optimal implementation.
The RPR EC block introduces a significant area overhead
of more than 100%, except for the FIR benchmark. This is
partly caused by the gate resizing performed by DC during
the replica optimization; however, it is also a consequence
of our application-agnostic approach. In fact, since we create
the replica from the MDSP netlist, using Design Compiler
directives, we only allow logic-level optimizations to be per-
formed on the reduced unit. DC cannot perform higher-level
optimizations such as instantiations of different DesignWare
macro-blocks. As an example of this issue, under the same
synthesis constraints, an 8x8-bit multiplier generated removing
inputs from a 16x16 netlist is typically 1.3 times larger than
one generated directly from behavioral VHDL. However, we
did not want to limit the applicability of our tool only to
designs defined parametrically, in which replicas could be
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generated setting some generics appropriately. Therefore, we
accepted this additional overhead.

The power savings for the FIR and butterfly are comparable to
those obtained by Shim et al. in [6]. In particular, [6] achieves
60% power reduction for the filter (versus our 44.96%) and
44% (versus 49.6%) for the FFT component. Differences are
partly related to different testing conditions (especially the
technological node), partly to the different timing and power
models adopted. For instance, the leakage power overhead is
much more significant at 45nm than at 250nm. However, the
main contributor to the discrepancies might be the fact that
we take into account input sequences in our optimization,
obtaining more realistic estimates of the real timing and power
behavior. In summary, the comparison with an ad-hoc ap-
proach clearly shows the competitiveness of our methodology.

C. Impact of Architectural Features

The IIR benchmark deserves a separate analysis. We in-
troduced this circuit in our experiments because it has a
significant difference with respect to all others: the presence of
a feedback network from the outputs [9]. The fact that previous
outputs are used to produce new ones is clearly a drawback
for the insertion of RPR. When a timing error is generated,
it remains in the system for more than a single clock cycle,
worsening the output quality. In other words, even if the rate
of timing violations is low, the error rate becomes extremely
large. Since the “memory” of the IIR is limited in time by the
finite data precision, the error gradually reduces in magnitude
and eventually becomes comparable to channel noise. This
is the reason why our tool is still able to produce feasible
solutions. Moreover, the presence of feedback also limits the
simplifications that can be performed by DC when inputs are
removed for replica generation. Thus, this benchmark also has
the largest area overhead.

The IIR example highlights some of the characteristics that
a circuit should possess to be an ideal candidate for RPR.
However, results show that our tool is able to deal also with
unfavorable input netlists, generating all feasible solutions.
The assessment of the convenience of such solutions is clearly
left to the designer.

D. Quality versus Power tradeoff

As a last result, we present in Figure 4 an example of the
output produced by our tool when executed in full mode,
for the FIR filter test case. To generate it, we set a very
low quality constraint (0 dB), and no error rate constraint.
In practice, this forces the tool to produce the entire set of
feasible configurations for each VV OS point in which the
error rate is not 0. Input vectors and noise parameters are
the same used in Section IV-B. Two trends can be identified
in the graph: on the left side (correspondent to large replica
implementations), the effects of channel noise dominate, and
the quality saturates at the 21.5 dB limit; as soon as the RPR
effects start to become relevant due to the reduction in replica
size, the tradeoff between power and quality becomes evident.
Given a desired quality value, the optimal configuration is
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Fig. 4: Quality vs. Power tradeoff for the FIR Filter.

found as the rightmost point above it in the graph. Note that
not all curves have the same number of points. This happens
because the tool still eliminates those replica implementations
that either produce a negative power saving, or cannot be
synthesized with positive slack at the given VV OS .

V. CONCLUSIONS

We have proposed a flexible framework for the implementation
of RPR architectures starting from existing gate-level netlist
of fixed-point arithmetic and DSP circuits. Our tool improves
the analysis accuracy over previously proposed theoretical
RPR formulations by using accurate circuit models and taking
into account input dependence, whose importance was clearly
shown in this work. Despite its generality, which allowed to
apply RPR to circuits that had never been considered before,
the tool is still able to reach comparable results with respect
to ad-hoc approaches.
We have also confirmed that sequential loops represent a major
obstacle against the adoption of RPR. A possible future work
for the improvement of our tool is the revision of RPR in order
to take this aspect into account.
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