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ON THE FLY ESTIMATION OF THE SPARSITY DEGREE IN COMPRESSED SENSING
USING SPARSE SENSING MATRICES

Valerio Bioglio, Tiziano Bianchi, Enrico Magli

Department of Electronics and Telecommunications, Politecnico di Torino

ABSTRACT

In this paper, we propose a mathematical model to estimate
the sparsity degree k of exactly k-sparse signals acquired
through Compressed Sensing (CS). Our method does not
need to recover the signal to estimate its sparsity, and is
based on the use of sparse sensing matrices. We exploit this
model to propose a CS acquisition system where the num-
ber of measurements is calculated on-the-fly depending on
the estimated signal sparsity. Experimental results on block-
based CS acquisition of black and white images show that
the proposed adaptive technique outperforms classical CS
acquisition methods where the number of measurements is
set a priori.

Index Terms— Compressed Sensing, Sparsity Estima-
tion, Sparse Sensing Matrices, Adaptive Sensing

1. INTRODUCTION

Compressed Sensing (CS) [1, 2], a novel signal acquisition
technique that is emerging in the recent years, allows one to
greatly reduce the number of measurement needed to acquire
a signal. If a signal having dimension n is known to be sparse
or compressible, instead of taking n samples of the signal,
CS suggests to take only m � n linear combinations of the
signal entries. State-of-the-art CS systems are able to recover
k-sparse signals from only m = O(k log(n/k)) linear mea-
surements [3]. Many recovery algorithms are based on linear
programming techniques, such as Lasso [4] or Basis Pursuit
(BP) [5]; moreover, faster greedy algorithms, such as Orthog-
onal Matching Pursuit (OMP) [6] or Compressive Sampling
Matching Pursuit (CoSaMP) [7], can be exploited and usually
provide comparable empirical performance.

Since the number of linear measurements required for the
recovery depends on the sparsity degree of the signal, the
knowledge of k is crucial for a CS system. If m is too small,
the recovery algorithms do not guarantee the signal recon-
struction; if it is too big, the acquisition turns out to be re-
dundant. Moreover, k is needed as input to greedy recovery
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algorithms, like CoSaMP or OMP, where the number of itera-
tions is bounded by k. Also, Lasso techniques require to tune
a parameter λ, for which the knowledge of k is helpful [8].

In this paper, we propose a method to estimate the spar-
sity degree of exactly k-sparse signals directly from their lin-
ear measurements. The method exploits the fact that, in the
case of a k-sparse signal, sparse sensing matrices produce
sparse measurements whose sparsity degree depends on k.
The use of sparse sensing matrices is feasible in CS systems;
at the price of a small increase of the number of measurements
needed for the recovery, a complexity reduction of the sensing
process is obtained [9,10]. The proposed method can be used
to estimate the signal sparsity during acquisition, adaptively
choosing the number of measurements according to the esti-
mated k. Experimental results on block-based CS acquisition
of images [11] confirm the validity of our model, showing
that the proposed adaptive acquisition strategy outperforms
CS systems in which the number of measurements is set a
priori.

2. MOTIVATIONS AND BACKGROUND

A signal s ∈ Rn is called k-sparse if there exists a basis
Φ ∈ Rn×n such that s = Φx and x has only k nonzero en-
tries. The matrix A ∈ Rm×n is called sensing matrix and
y ∈ Rm, obtained through the multiplication A · x, is called
measurement vector. The (i, j) element of A is denoted as
aij , while the i-th entry of vector x is denoted as xi. The
measurements vector can also be obtained by the original sig-
nal s through the multiplication y = Ψs, where Ψ = AΦ−1 is
the compression matrix. According to CS [1], k-sparse signal
can be recovered even fromm� nmeasurements by solving
the minimization problem

x̂ = arg min
x
||x||0 s.t. Ax = y. (1)

A necessary condition for the uniqueness of the solution of (1)
is that m > 2k. Moreover, this NP-complete `0-problem can
be rewritten as a more tractable `1-problem, in which case at
least m = O(k log(n/k)) measurements are needed [3]. As
a consequence, the knowledge of the sparsity of the signal is
essential to calculate the number of measurements required to
guarantee a high recovery probability. However, this sparsity
is generally unknown.



In the CS literature, many papers propose various tech-
niques for the estimation of the positions of the nonzero en-
tries of the signal [12–14]. In the sparsity estimation problem,
instead, one wants to guess only the sparsity degree k of the
signal. In practice, sparsity estimation can be seen as a sub-
problem of support estimation. In [15], the sparsity of the
signal is lower-bounded through the numerical sparsity, i.e.
the ratio between the `1 and `2 norms of the signal. How-
ever, the numerical sparsity is only a lower bound for the
sparsity: an upper bound would be more useful for choos-
ing the right m. In [16], the authors propose to estimate the
sparsity of an image before its acquisition, by calculating the
image complexity. Even if this technique gives good results,
the proposed metric is based on the image pixel values, forc-
ing to calculate a separate estimation that does not depend
on the measurements. Some papers propose sequential ac-
quisition techniques, in which the number of measurements
is dinamically adapted until a satisfactory reconstruction per-
formance is achieved [17–20]. However, even if the recon-
struction can take into account the previosly recovered signal,
these methods require to solve a new problem at each new ac-
quired measurement. It is evident that a method for estimating
the sparsity directly from the measurements will dramatically
decrease the complexity of sequential acquisition.

Random Gaussian (RG) sensing matrices are usually ex-
ploited in CS systems. Even if RG sensing matrices achieve
an optimal scaling of the number of measurements required
for the recovery [21], with these matrices the measurements
are uniformly distributed on the hypersphere of radius given
by the energy of the signal [22], meaning that the only way
to estimate k exploiting RG sensing matrices is through the
recovery of the signal. In order to estimate k without recover-
ing x, a different kind of sensing matrix is needed. Moreover,
we need a family of sensing matrices that combine good CS
recovery and good sparsity estimation properties. In this pa-
per, we propose to exploit Sparse Random Gaussian (SRG)
sensing matrices. Each entry aij of a SRG sensing matrix is
set to zero with probability 1−γ, where γ is a tunable param-
eter, while with probability γ the entry will be nonzero. In the
latter case, the value is drawn over R according to a Gaussian
distribution of mean zero and variance 1

mγ . To summarize,

aij ∼

{
0 with probability 1− γ
N
(

0, 1
γm

)
with probability γ.

(2)

A trade-off between costs and efficiency of SRG matrices is
presented in [9], which derives lower bounds on the number
of measurements required for the recovery as a function of
the sparsity γ of the SRG matrix. Similar results are achieved
in [10], showing that SRG matrices lead to a small increase
of the number of measurements needed for the recovery.

3. SPARSITY ESTIMATION

We propose to estimate the signal sparsity k exploiting the
number of nonzero elements of the measurement vector y. In
order to do that, we begin by calculating the probability that
an entry of y is equal to zero. We call di the number of entries
for which aij and xj are both nonzero for 1 ≤ j ≤ n, i.e. the
number of collisions between the i-th row of A and the signal
x. The probability that a measurement is equal to zero is

P(yi = 0) =

k∑
j=0

P(yi = 0|di = j)P(di = j) = P(di = 0),

since P(yi = 0|di > 0) = 0 and P(yi = 0|di = 0) = 1 in
R. If we call P = P(di = 0), the value of P depends on the
sparsity k, hence it is possible to write P = P (k). Since the
rows of A are i.i.d., the `0 norm of the measurements vector
follows a binomial distribution, i.e., letting h be the number
of nonzero elements of y, h = ||y||0, then P(h | k) ∼ B(1 −
P,m). In fact, h is a random variable counting the number
of nonzero entries of the measurements vector y. Due to the
nature of A, each measurement is independent of the others,
and it is equal to zero with probability P . As a consequence,
h is the result ofm Bernoulli processes, hence it is distributed
according to the presented binomial distribution.
This can be exploited to estimate k from the knowledge of h.
Indeed, it is possible to estimate the proportion parameter 1−
P of the distribution of P(h | k). Since this parameter depends
on k, we can use its knowledge to estimate the sparsity of the
signal. In practice, since A is generated according to (2), di
is distributed according to a binomial distribution, and more
precisely P(di) ∼ B(k, γ). This follows from the fact that
di is a random variable that counts the number of collisions
between the i-th row and the signal. The signal has k nonzero
entries, hence di depends on the number of nonzero entries of
the i-th row ofA in these k positions. Since each entry ofA is
independent of the others and assumes a nonzero value with
probability γ, di is the result of k Bernoulli processes, and it
is distributed according to the presented binomial distribution.
As a consequence, we can calculate P as

P = P (k) = P(di = 0) =

(
k

0

)
γ0(1− γ)k = (1− γ)k.

Transposing this equation, the value of k can be calculated as

k = log1−γ(P ) =
log(P )

log(1− γ)
. (3)

We divide the study of good estimators of k in two cases:
with and without a priori information on the distribution of
k. In the former case, a maximum a posteriori probability
(MAP) estimator can be obtained, whereas in the latter case,
a maximum-likelihood (ML) estimator can be calculated.



3.1. ML Estimator

The measurements sparsity h takes on values according to a
binomial distribution; the ML estimator for the parameter 1−
P of its binomial distribution is given by

1− P̂ =
||y||0
m

⇒ P̂ = 1− h

m
. (4)

Collecting Eqs. (3) and (4), a ML estimator for k can be cal-
culated; however, k is an integer number, while P is a real
number. As a consequence, the ML estimator for k would
result in a real value. In order to get an integer value simple
to calculate, we pick the closest integer to the real ML esti-
mator, even if the solution found is suboptimal. Finally, the
estimator is given by

k̂ML =

⌈
1

log(1− γ)
log

(
1− h

m

)⌋
, (5)

where b·e is the closest integer function. To calculate an upper
bound for k the binomial proportion confidence interval for
P [23] is used, i.e, with probability larger than β,

P ≥ P̂ −

√
P̂ (1− P̂ )

m
zβ ,

where zβ is the β percentile of a standard normal distribution;
as an example, z0.99 = 2.57. As a consequence, the upper
bound for k with probability β is given by

k ≤ k̃βML =
1

log(1− γ)
·log

1− h

m
−

√
h
m (1− h

m )

m
zβ

 .

In this case, k̃βML can be a real value, since it is only an upper
bound for an integer value.

3.2. MAP Estimator

If, in addition to P(h | k), also the sparsity distribution P(k) is
known, we can exploit this to find a MAP estimator for k. In
this case, however, it is not possible to exploit the properties
of the binomial distribution to get a closed formula for the
estimator, since it also depends on the distribution P(k). We
suppose k to be bounded, i.e. kmin ≤ k ≤ kmax, obtaining
the MAP estimator

k̂MAP = arg max
kmin≤k≤kmax

P(k |h) =

= arg max
kmin≤k≤kmax

(
(m
h)(1−P (k))h(P (k))m−h·P(k)

P(h)

)
(6)

where P (k) = P since k is the only free parameter that gen-
erated P . Moreover, an upper bound for this estimate with
probability larger than β can be found as

k ≤ k̃βMAP = wβ ,

where wβ is the β percentile of P(k |h). This probability
distribution can be calculated when the distribution of k is
known, hence it is simple to evaluate its percentiles. However,
in order to have a MAP estimate of k, we need to assume an a
priori distribution for k. In the following, we will exploit two
models for the distribution of k.

Uniform sparsity: k is uniformly distributed between
kmin and kmax with probability (kmax − kmin + 1)−1.

Binomial sparsity: k = kmin+B, whereB is distributed
according to the Binomial distribution B ∼ B(kmax −
kmin, α), with α a tunable parameter; kmin ≤ k ≤ kmax.

4. EXPERIMENTAL RESULTS

Here we describe the results of our experiments on the spar-
sity estimation, proving that a good approximation of k can be
calculated through SRG matrices without any additional cost.
In all the experiments, the sensing matrices are SRG created
according to (2) with γ = 0.1. Each point of the figures is
obtained through a 10000 runs simulation. The signal is ran-
domly drawn and has sparsity exactly k, i.e., x has k nonzero
entries drawn according to a Gaussian distribution N (0, 1).
First, to evaluate the correctness of the proposed estimators
on the number of measurements collected, we calculate the
root square mean error (RMSE) of an estimator k̂ as

RMSE(k̂) =

√∑r
i=1(k̂ − k)2

r
,

where r is the number of runs of the experiment. The RMSE
is connected to the confidence interval calculated in the previ-
ous section, since RMSE(k̂) ≤ 2(k̃β − k̂) with probability
β. Moreover, it is possible to prove that k̃β− k̂ = O(1/

√
m),

i.e. the goodness of the estimation improves as the number
of measurements increases. In Fig. 1-(a), the RMSE of the
ML estimator (5) is presented as a function of the number
of measurements m. Signal sparsity k is set to be constant,
since the signal does not follow any known distribution. We
can see that the accuracy of the estimator depends on both m
and k: the more measurements we get, the more accurate the
estimator is. Moreover, the estimation is better if the signal
is sparser, since in this case the binomial confidence interval
becomes tighter. In fact, for k = 40 the ratio k/n is too high,
and the confidence interval turns out to be too wide to ensure
a fast convergence. The same discussion is valid for the MAP
estimator (6) presented in Fig. 1-(b). In this case, the a priori
distributions of k presented in the previous section are ex-
ploited: each curve represents a different value of kmax, that
is the maximum value k can get, while kmin is always set to 1.
Comparing the two plots of Fig. 1, we see that the estimation
improves if the distribution of k is known, as expected.

In order to demonstrate the practical usefulness of the
proposed sparsity estimation technique, we simulate a block-
based [11,24,25] CS acquisition system that adjusts the num-
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Fig. 1. RMSE of different estimators vs. m for n = 300, γ = 0.1: (a) k̂ML; (b) k̂MAP , α = 0.2 for binomial sparsity
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Fig. 2. Recovery of sparse images under different acquisition
settings: original images, (a) 512× 512 pixels, (d) 352× 352
pixels; proposed adaptive sensing strategy, (b) m = 190012,
PSNR = 37.1, (e) m = 76044, PSNR = 34.6; fixed number of
measurements per block, (c) m = 190464, PSNR = 9.6, (f)
m = 76472, PSNR = 17.4.

ber of measurement for each block on-the-fly depending on
the estimated signal sparsity. We assume that the measure-
ments are taken one by one, and the sensor has to decide
when to stop acquiring measurements. CoSaMP needs at least
m = 3k measurements in order to recover the correct sig-
nal [7]; in order to guarantee a sufficiently high probability
of correct recovery, we propose that the sensor stops the ac-
quisition when m ≥ 3k̃β , which ensures that the minimum
requirements of CoSaMP are met with a probability equal to
β. Namely, at each step the sensor acquires one measurement
and calculates the upper bound k̃β ; if m ≥ 3k̃β , the sensor
assumes that the number of measurements sensed is sufficient
to guarantee the recovery of the signal, otherwise another step
begins. The proposed system is used to sense two black and

white images, with size 512× 512 pixels and 352× 352 pix-
els, respectively. Each 16 × 16 block is independently ac-
quired using an adaptive number of measurements, obtained
according to the strategy described above, and then recov-
ered using CoSaMP. The block sparsity is estimated through
the ML estimator and the corresponding upper bound satis-
fies β = 0.999. We also simulate a system in which each
16×16 block is independently acquired using a fixed number
of measurements obtained through a dense sensing matrix. In
order to have a fair comparison, in this second case we set
m as close as possible to the average number of measure-
ments acquired in the first experiment. The recovered images
are shown in Fig. 2. It is evident that estimating the sparsity
during acquisition enables significant performance gains: us-
ing the same number of measurements, the proposed system
is able to achieve a 20-25 dB increase in the peak signal to
noise ratio (PSNR) of the recovered images. Further exper-
iments showed that, in order to achieve the same quality of
the recovered image, the nonadaptive system should collect a
number of measurements close to the image size. Hence, the
ability to estimate on the fly the required number of measure-
ments proves very useful when applying CS to signals with
unknown and/or varying degrees of sparsity.

5. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a method to estimate the sparsity
of a signal in a CS acquisition system directly from its mea-
surements. The method is based on the properties of sparse
sensing matrices and on the hypothesis of exactly sparse sig-
nals. The results show that a realistic upper bound on the
signal sparsity can be obtained directly from the measure-
ments, by applying simple estimators. Moreover, we show
that the knowledge of the sparsity can be exploited to adjust
the number of measurements to acquire, outperforming ac-
quisition methods where the number of measurements is set a
priori, especially when the signal sparsity varies widely.



The method is currently limited to exactly sparse signals,
which are relevant in many important practical settings, such
as the acquisition of images with few gray levels or the detec-
tion of anomalies in network traffic [26]. Moreover, we are
currently working on the extension of the proposed method in
the case of signals that are not exactly sparse.
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