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A. Alternative scaling parameters

In this Appendix, two alternative definitions for the scaling parameter θ
are discussed in order to further support the one discussed in the main
text. The first alternative definition is based on the notion of interfacial
work; while the second one makes an attempt to incorporate also the water
density / hydration level.

Inspired by other successful works, where a scaling behavior could be found
by resorting to the notion of interfacial work [327, 599], the first attempt
in searching for the scaling parameter was focused on the following argu-
ment. Let us consider the schematics in Figure 2.19c. Inspired by the
computation of δ(p) for an arbitrary particle p, a characteristic energy ε(p)

can be defined as:

ε(p) =
∑Na
i=1 ε

(p)
i Sloc,i

Stot
, (A.1)

where ε(p)
i represents the well depth of the potential energy shown in Figure

2.19b. Since the interfacial work between a particle and the solvent is
proportional to the above ε(p), a possible guess for the scaling quantity
would be:

θe = 1
Vw

∑
p ε

(p)V
(p)
in

NAkBT
, (A.2)

where NA and V (p)
in are the Avogadro Number and the volume of influence

of particle p, respectively. However, if θe is assumed as a unique inde-
pendent variable for scaling the D values, a poor correlation appears, as
evident in Figure A.1. Hence, θe was judged not suitable for the scaling
purpose.

Second, the suggested scaling parameter θ in Equation 2.16 does not in-
clude the density of water within the analyzed configurations. In fact,
the considered MD setups are characterized by a range of hydration levels
(from 660 to 1080 kg m−3) where no heterogeneous wetting or anomalous
behavior due to low water filling regimes are expected [92, 161]. Towards
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A. Alternative scaling parameters

Figure A.1.: Alternative dimensionless parameter θe. D self-diffusion co-
efficient of water vs. the dimensionless parameter θe based
on the interfacial work. For simplicity, only a subset of the
analyzed cases are reported.

an effort of incorporating also the hydration level, the following variable
θd can be also considered as a scaling parameter:

θd = ρB
ρ
θ, (A.3)

where ρB is the bulk density of water (given the pressure and the temper-
ature), ρ is the actual water density in the setup, while θ is the suggested
scaling variable previously defined by Equation 2.16. In Figure A.2 and
2.21 are reported the results obtained when the scaling variables θd and θ
are used, respectively.
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Figure A.2.: Alternative dimensionless parameter θd. D self-diffusion co-
efficient of water vs. the dimensionless parameter θd, which
also takes into account the density of water of the system. For
simplicity, only a subset of the analyzed cases are reported.
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B. Detailed Molecular Dynamics
results

In this Appendix, the detailed list of molecular dynamics configurations
and results discussed in Chapter 2 and 6 are reported.

In Table B.1, D is evaluated according to different diameters of silica
nanopores; in Table B.4, the D obtained around silica or magnetite NPs
at different concentrations (i.e. L size of the water box) is shown; in Tables
B.2 and B.3, different configurations of nanopores filled by NPs are simu-
lated. In Table B.5, the effect of water density on D is explored; whereas
in Tables B.6, B.7 and B.8 the effects of forcefield (i.e. strength of attrac-
tive nonbonded forces on solid surface) are evaluated. In Tables B.9 and
B.10, the D obtained around CNTs or proteins at different concentrations
(i.e. L size of the water box) are shown, respectively. In Table B.11, D
of bulk water is computed. Notice that, in Case 10 and Case 12, NPs are
initially placed randomly within the silica nanopore, whereas in all other
cases NPs are initially placed on the surface of silica nanopore, where they
tend to adsorb during the remaining time of computation.

Finally, Table B.12 details the simulated configurations of Gd(DOTA) ei-
ther bonded to silica wall or in bulk water.
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C. WANA software

In this Appendix, a software for the automatic evaluation of the character-
istic length of nanoconfinement δ of a solid surface is presented. The soft-
ware is named "WAter NAnoconfinement evaluation package" (WANA),
and it allows to calculate δ thus θ (Equation 2.16) once the water nanocon-
finement conditions (i.e. geometry and surface potential of the solid inter-
faces) are known. Self-diffusivity of water can be then computed by the
scaling law in Equation 2.20.

First, the purposes and architecture of the software are described; then
a brief tutorial of the WANA functioning is detailed. Note that the
first release of WANA software can be readily downloaded from http://
areeweb.polito.it/ricerca/small/nano/wana/, whereas a more com-
plete version will be soon presented in a detailed scientific article and
shared in a open-access library.

Purposes and architecture

An accurate prediction of self-diffusivity of water under nanoconfined con-
ditions is fundamental in a broad variety of technologies and biological
processes. For example, water adsorption or infiltration in nanoporous
materials are exploited for sieving, thermal storage or desalination de-
vices (Chapters 4 and 5), whereas the reduction of water mobility in the
proximity of solid surfaces is essential for the rational design of nanopar-
ticles for biomedical applications (Chapter 6). Atomistic simulations and
theoretical considerations have been widely studied for better understand-
ing the water diffusion properties under nanoconfined conditions (Chapter
2). However, a gap between modeling knowledge and technological ex-
ploiting of the water nanoconfined properties still exist. In this context,
WANA software is realized with the specific aim to make more accessible
the estimation of water self-diffusivity under nanoconfined conditions to
non-specialists, such as manufacture engineers, biologists or physicians.
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C. WANA software

WANA software allows to compute the characteristic length of nanocon-
finement δ and the mean attractive potential well of solid-liquid non-
bonded interactions from the numerical results obtained by simple pre-
processing tools (e.g. energy minimization algorithms) available in GRO-
MACS package [27]. Therefore, the need to run a full and computation-
ally intensive molecular dynamics simulation is no more required for de-
termining water properties under nanoconfined conditions, such as within
nanopores, around nanoparticles, carbon nanotubes or biological molecules.

The software is implemented as a MATLABr script, in order to allow
the modification and further development of the code by experts. More-
over, the package is accompanied by a Graphical User Interface (GUI),
which is designed for simplifying the basic usage of the software by non-
specialists.

Running WANA requires:

• A coordinate file (e.g. *.pdb) describing the structure of interest (e.g.
nanopores, nanoparticles, carbon nanotubes or biological molecules);

• GROMACS (http://www.gromacs.org, version 4.5.7 or above) soft-
ware, which is an open-access molecular dynamics engine. Note that
any other software able to generate the Solvent Accessible Surface
(SAS) of a given geometry could be analogously adopted;

• MATLABr R2009b (http://www.mathworks.com) software. Note
that older releases of the software have been successfully tested for
compatibility;

• A nearest neighbors routine. In particular, such a routine should be
able to locate the nearest neighbors (according to Euclidean distance)
within a fixed radius as well as the k nearest neighbors to a given
point (for a fixed integer k). To this purpose, the open source script
nearestneighbour.m by Richard Brown is suggested, which is freely
downloadable at Matlab Central website (http://www.mathworks.
it/matlabcentral/fileexchange/12574-nearestneighbour-m). Ob-
viously, at the user option, any other routine for the search of nearest
neighbor can be utilized instead;

• A table with an estimate of the relative permittivity of water as a
function of distance from the charged surface. In the current WANA
release, data are taken from Reference [176];

• WANA software.
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Software tutorial

Given a certain geometrical configuration, where water molecules are nanocon-
fined, and by referring to the flow-chart in Figure C.1, the main steps in-
volved in the computation of the scaling parameter θ are reported. For the
sake of completeness and without loss of generality, a few GROMACS com-
mands are also given as example. The described procedure can be properly
rearranged by a well educated user of other MD software packages.

First, input files for WANA software have to be prepared:

1. Download or generate the dry geometry of interest (i.e. *.pdb file).
Large databases of nanoscale geometries are available in the Web, for
example the Protein Data Bank (http://www.rcsb.org) for biologi-
cal molecules, the PubChem Project (https://pubchem.ncbi.nlm.
nih.gov/) for chemical compound or the ZEOMICS Project for mi-
croporous materials (http://helios.princeton.edu/zeomics/);

2. Chose a suitable force field for the solid-liquid nonbonded interac-
tions, in the form of 12-6 Lennard Jones and/or Coulomb potentials.
The latter can be either user-defined or extracted from the libraries of
molecular dynamics software (e.g. GROMOS, AMBER, CHARMM,
...);

3. Create a topology file containing the coordinates of the atoms of the
confining surface and their force field parameters;

pdb2gmx -f geometry.pdb -o geometry_0.gro -p topology.top -i re-
straints.itp -water spce

editconf -f geometry_0.gro -o geometry.gro -bt triclinic -d 2 -c

or

editconf -f geometry.pdb -o geometry.gro -bt triclinic -d 2 -c

g_x2top -f geometry.gro -o topology.top -ff forcefield -noparam -pbc

4. Perform energy minimization of the particle in vacuum (not neces-
sary if the initial geometry is the equilibrium configuration of the
molecule);

grompp -f em.mdp -c geometry.gro -p topology.top -o em.tpr

mdrun -s em.tpr -o trajectory.trr -c geometry-em.gro -e em.edr
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C. WANA software

5. Solvate the system by a proper water model (e.g. SPCE, TIP3P,
TIP4P, ...);

genbox -cp geometry-em.gro -cs spc216.gro -o geometry_sol.gro -p
topology.top

6. Perform energy minimization of the solvated setup;

grompp -f em_sol.mdp -c geometry_sol.gro -p topology.top -o em_sol.tpr

mdrun -s em_sol.tpr -o trajectory_sol.trr -c geometry_sol-em.gro -e
em_sol.edr

7. Use the output trajectories from step 6 to obtain the Connolly sur-
face (in the form of a geometry *.pdb file) [173], the local and the
total SAS (*.xvg file) of the confining solid surface. To this purpose,
g_sas is the most adapt post-processing function readily available in
GROMACS.

g_sas -f trajectory_sol.trr -s em_sol.tpr -o sas.xvg -oa atom_sas.xvg
-q connolly.pdb

At this point, four files are obtained, namely:

1. topology.top, topology file describing the structure of interest;

2. itpfile.itp, database of the nonbonded 12-6 Lennard-Jones and/or
Coulomb interactions between the atoms of the considered geometry;

3. atom_sas.xvg, text file containing the SAS per atom of the solid
surface;

4. connolly.pdb, coordinates of the Connolly surface for the molecule.

The latter files have to be grouped in a folder, which will be the input
source for the WANA software.

WANA software is then launched by running the Matlabr script deltasas-
gui.m, which initializes the GUI. Figure C.2 shows the preliminary oper-
ations needed for setting up WANA computations, namely: (1) Input the
system temperature ([K]), the fraction of kinetic energy to be considered
(see Chapter 2 for further details), the cutoff radius to be used for non-
bonded interactions ([Å]) and the Lorentz-Berthelot combination rule for
Lennard-Jones potentials (1 – arithmetic mean for σ, geometric mean for
ε; 2 – geometric mean for both σ and ε); (2) Generate a *.txt file where
the output of WANA computations will be written. The default name of
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Figure C.1.: Steps leading to the computation of the scaling parameter θ.
Red arrows indicate the chronological sequence, while dashed
blue lines indicate the provenience of the input files for WANA
software. Note that the operations with yellow background
are performed by a proper molecular dynamics software (e.g.
GROMACS).

the output file is given by the date and time of creation; however, it can
be properly renamed by hand.

After that, input files have to be loaded to the WANA environment. Fig-
ure C.3 shows the sequence of operations for (1) loading the input folder,
which contains the *.pdb, *.xvg, *.top and *.itp files previously prepared,
and (2) start the WANA computation. The obtained results are the char-
acteristic length of nanoconfinement ([nm]), the Solvent Accessible Surface
([nm2]) and the nonbonded potential well for the confining solid surfaces
([kJ/mol]), and they are shown both in the right-hand side window of the
GUI and written to the output *.txt file.

Finally, once the accessible volume of water (Vw) is estimated following
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C. WANA software

Figure C.2.: Preliminary operations to be performed for computing the
characteristic length of nanoconfinement by WANA software.

Figure C.3.: WANA computation and outputs, namely the characteristic
length of nanoconfinement ([nm]), the Solvent Accessible Sur-
face ([nm2]) and the nonbonded potential well of the confining
solid surfaces ([kJ/mol]).

one of the procedures suggested in Chapter 2, θ parameter can be easily
computed from Equation 2.16, whereas the self-diffusivity of water under
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such nanoconfined conditions obtained from the scaling law in Equation
2.20.
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D. GROTOLAM script

In the last twenty years, numerous molecular dynamics software have been
developed to analyze a large variety of microscopic systems. Although they
share the same methodology, they have been developed focusing on par-
ticular fields of application (e.g. GROMACS for biomolecules; LAMMPS
for inorganic compounds) thus implementing specific (but complemen-
tary) running and post-processing capabilities. Hence, current open access
molecular dynamics software show different structures of the code as well
as of the input/output file formats. This led to a microcosm of different
languages and standards, which tangles up the researchers interested to
use more than one molecular dynamics software for a synergistic usage of
the available running and post-processing functionalities. In this confusing
framework, the increase of portability between language patterns of differ-
ent MD software is urgently needed. Despite some isolated and incomplete
attempts [600], a simple, modular, robust and consistent solution to the
issue is still far from being achieved. In this Appendix, the "GROMACS to
LAMMPS" script (GROTOLAM) is presented and its translation accuracy
tested.

Structure and functioning

GROTOLAM aims to automatically translate GROMACS input files to
LAMMPS ones in a modular way, i.e. allowing to progressively increase
both the compatibility between those two software and to add further MD
software as export options. GROTOLAM is a MATLABr code, which
will be soon presented in a detailed scientific article and shared in a open-
access library. The main script of the package is named GROTOLAM.m,

This Section has been developed also thanks to the work of Gianmarco Ciorra for his
Master thesis in Mechanical Engineering at Politecnico di Torino. Further details
are available in Reference [331].
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D. GROTOLAM script

and it sequentially calls a few sub-functions for converting parts of the
system geometry and force field from GROMACS to LAMMPS, in a mod-
ular way. The latter sub-functions make the script flexible and able to
read different force field types. In the current version, GROTOLAM is
able to convert force fields either user-defined or extracted from the GRO-
MACS libraries GROMOS and OPLS, but further extensions will be soon
available.

Figure D.1.: Flow chart of the GROTOLAM script.

The algorithm is equipped with two simple Graphical User Interfaces
(GUI), which allow to choose how the translation process has to be carried
out. In the fist GUI, the user is asked to define the following translation
options:

• Atom Style. User is asked to choose among atomic, angle or full
styles as interaction potentials for the atoms in the configuration
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to be translated. Atomic style considers only intermolecular non
electrostatic interactions (e.g. Lennard Jones or Buckingham poten-
tials); angle style adds intramolecular bond and angle potentials to
the atomic style capabilities; full style introduces electrostatic inter-
actions to the angle style options.

• Solvation. User is asked to define the solvent type in the considered
setup. In the current version of GROTOLAM, three points water
models (e.g. SPC/E, SPC, TIPS, TIP3P) and sodium ions are com-
patible with the algorithm.

• Bond input. User can choose the input source for the bonded pa-
rameters, namely ITP if they have to be read from the GROMACS
*.itp file or TOP from *.top file. The latter possibility is useful for
user-defined force fields.

• Force field. User is asked to select the type of force field to be used,
either GROMOS, OPLSA or Custom.

• Solvent name. User has to input the name of the group to be con-
sidered as solvent in the GROMACS input files.

The second GUI allows to select the statistical ensemble according to which
the simulation will be performed, namely NVT, NPT or NVE. The GUI
guides users to define the parameters required by the ensemble subroutine,
more specifically:

• NVT requires the system equilibrium temperature and the temper-
ature dumping factor;

• NPT requires the system equilibrium temperature and pressure, as
well as the temperature and pressure dumping factors and direction
of box shrinking;

• NVE directly writes on the LAMMPS input file the fix nve command.

Finally, a DONE button concludes the definition of the ensembles and
starts the final translation.

Translation procedure begins by loading *.top (topology, which contains
partial charges, masses and - possibly - bonded parameters), *.gro (ge-
ometry, which contains atoms coordinates and box size) and *.itp (force
field, which contains both bonded and nonbonded parameters) files in the
GROTOLAM environment.
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First, force field is imported. Regarding nonbonded interactions, GRO-
TOLAM script automatically recognizes whether Van der Walls interac-
tions are modeled by 12-6 Lennard-Jones potential or by Buckingham one,
whereas Coulomb potential is used for partial charges. The Lennard-Jones
cross parameters are computed using the Lorentz-Berhelot mixing rule,
and the output parameters converted in LAMMPS’s real units. Regarding
bonded interactions, the current version of GROTOLAM is compatible
with the following potential types:

• Bond potentials: harmonic, Morse;

• Angle potentials: harmonic, Urey-Bradley;

• Dihedral potentials: proper, Fourier, improper.

If GROMOS force field is selected, the fourth power bond potential from
GROMACS is properly converted in an equivalent LAMMPS harmonic
bond potential. The latter conversion leads to a discrepancy, but the
fourth power bond potential is not yet implemented in LAMMPS thus
second power potential is the closest approximation available.

Second, *.top and *.gro files are read. Atom types, atom and molecule
indexes, charges and coordinates are saved to the GROTOLAM environ-
ment. The current version of the algorithm is only compatible with three
points water models and sodium ions.

Once all the GROMACS input files are imported, GROTOLAM writes
the topology file for LAMMPS. According to the atom style chosen by the
user, different geometry data files are produced. These files include all the
geometrical information required to run a LAMMPS simulation. Finally,
GROTOLAM generates a draft of the LAMMPS input file, which contains
commands and physical parameters to carry out the simulation in NVT,
NPT or NVE ensemble.

Script benchmark

In this Section, the accuracy of GROTOLAM translation is tested by
comparing results of a fixed molecular dynamics configuration as obtained
by both GROMACS (original case) or LAMMPS (GROTOLAM conver-
sion).
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Figure D.2.: The CNT analyzed for the GROTOLAM benchmark. The
CNT is shown (a) in void and (b) in a SPC/E water box.

The benchmark system consists in a short carbon nanotube ((5,5) CNT,
108 atoms) solvated by 930 molecules of SPC/E water. Here, the quan-
tities to be compared for assessing the accuracy of GROTOLAM conver-
sion are the different contributes to the total energy of the system during
the molecular dynamics simulation. The considered Lennard-Jones pa-
rameters are σ = 3.55 Å and ε = 0.06983 kcal mol−1 for carbon atoms
[145], σOO = 3.166 Å and ε = 0.15535 kcal mol−1 for water [156]. Partial
charges of SPC/E water model are qO = −0.8476 e and qH = 0.4238 e,
respectively [156]. Carbon-carbon bonds are modeled by harmonic poten-
tial, with equilibrium distance 1.42 Å and energy constant 572.0258 kcal
Å−2 mol−1 [145]. CNT angle interactions are also described by harmonic
potential, with equilibrium angle 120° and energy constant 67.1524 kcal
rad−2 mol−1 [145]. For the sake of simplicity, dihedrals are not considered.
Bond potentials of water molecules are represented following the standards
of SPC/E model, namely bond equilibrium distance 1 Å and equilibrium
angle 109.47°. Both bonds and angle of water molecules are constrained
by SHAKE algorithm [351].

Van der Waals interactions are handled by 12-6 Lennard-Jones potential,
while electrostatic interactions by Coulomb potential. PME and PPPM
methods are used in GROMACS and LAMMPS for considering the long
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D. GROTOLAM script

range terms of the electrostatic interactions, respectively. The cut-off ra-
dius for the nonbonded interactions is set to 15 Å, while the skin distance
for the neighbors to 2 Å and the neighbor list is updated every timestep.
Boundary conditions are applied along all Cartesian directions. After the
initialization of atom velocities by Maxwell-Boltzmann distribution (300
K), production runs are performed in NVT ensemble (Berendsen thermo-
stat at 300 K; dumping factor at 100 fs; 1000000 steps; 0.1 fs timestep).
Energies are stored every 100 steps and post-processed by MATLABr.

Figure D.3 presents the measured trends of (a) bond, (b) angle, (c) Coulomb
and (d) van der Waals interaction energies, both in case of GROMACS
(red lines) and LAMMPS (blue lines) simulations. Altough an accurate
agreement of energy values thus of GROTOLAM conversion performances
is already noticeable from Figure D.3, a more quantitative comparison is
made by evaluating the ratio between overall equilibrium energies in case
of either LAMMPS or GROMACS simulations, namely

RE = ELAMMPS

EGROMACS
. (D.1)

Quantity RE
Bond Potential Energy 1.0036
Angle Potential Energy 1.0067
Van Der Waals Energy 1.0047
Coulombic Energy 1.0032
Potential Energy 1.0025
Total Energy 1.0034

Table D.1.: Ratio between energies computed by either GROMACS (orig-
inal case) or LAMMPS (GROTOLAM conversion), for the
molecular dynamics setup in Figure D.2.

As shown in Table D.1, an accurate correspondence (i.e. less than 1%
difference) between the outputs of the two simulators is found for all the
physical quantities investigated. Hence, the benchmark validates the trans-
lation accuracy of GROTOLAM.
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Figure D.3.: Comparison between energies computed by LAMMPS (blue
lines) and GROMACS (red lines). (a) Bond, (b) angle, (c)
Coulomb and (d) van der Waals interaction energies.
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E. Details of Gd(DOTA)
experiments

In this Appendix, further analyses of molecular dynamics and in vitro ex-
periments of Gd(DOTA)-based contrast agents are detailed, starting from
the data available in Reference [566]. First, tumbling times of the SiMP
and SiP particles synthesized by Gizzatov and colleagues are estimated
[566]. Second, power spectra of the simulated Gd(DOTA) molecules are
reported, according to the Lipari-Szapo formalism. Finally, experimen-
tal data for Gd(DOTA)-SiMP contrast agents are analyzed, in order to
compute the mean pore surface coverage of Gd(DOTA) molecules.

Tumbling time of SiP/SiMP particles

Molecular dynamics simulations of a Gd(DOTA) molecule chemically bonded
to silica wall, which mimics the surface of a larger silicon nonporous (SiP)
or mesoporous particle (SiMP), show that the bulk rotational correlation
time of Gd(DOTA) in bulk water is not sufficient to fully describe the
overall tumbling motion of complex MRI contrast agents such as those in
Reference [566]. Hence, in this Section τR of micrometer spherical and
disk-like particles is estimated by means of Stoke-Einstein relation.

According to Stokes-Einstein’s relation for Brownian motion, the rota-
tional diffusion coefficient (DR) and the molecular correlation time (τM )
for an isotropic particle are correlated by the classical formula:

τM = 1
6DR

, (E.1)

where DR is inversely proportional to the rotational drag coefficient (γR),
namely

DR = kBT

γR
, (E.2)
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being kB the Boltzmann constant and T the environment temperature.

In case of spherical particles [14]

γR = 8µπr3
p, (E.3)

where µ is the dynamic viscosity of the surrounding media and rp is the
particle radius.

When cylindrical geometries (diameter Φ, length L; axial ratio p = L/Φ)
are considered instead, the tumbling (τ⊥M ) and spinning (τM ) molecular
correlation times are related to the rotational motion transversal or longi-
tudinal to the cylinder length, respectively:

τ⊥M = 1
4D⊥R

(E.4)

τM = 1
2DR

. (E.5)

In case of disk-like particles, rotational diffusion coefficients can be evalu-
ated as [601]:

D⊥R = 1
6τa

(E.6)

DR = 1
τb
− 5

6τa
, (E.7)

where for p < 0.75

τa = τ0(1.18 + 0.1744(ln p+ 0.2877)2 − 0.2417(ln p+ 0.2877)3+
−3.882× 10−2(ln p+ 0.2877)4)

(E.8)
τb = τ0(1.183 + 0.2902 (ln p) + 0.4406(ln p)2 − 5.850× 10−2(ln p)3+

−9.544× 10−3(ln p)4),
(E.9)

and τ0 = πL3µ
4p2kBT

is the rotational time for a sphere with the same volume
of the disk.

In the experimental results shown by Gizzatov and colleagues [566], spher-
ical nonporous Silica Particles (SiP) with diameter ΦSiP = 1000 nm and
discoidal Silicon Mesoporous Particles (SiMP) with diameter ΦSiMP =
1000 nm and length L = 400 nm are analyzed. If bulk conditions are
considered for the solvent (i.e. dynamic viscosity µ ∼= 1×10−3 Pa s at 310
K, Equation E.1 implies τM,SiP = 0.13 s, whereas Equation E.4 and E.5
τ⊥M,SiMP = 0.15 s and τM,SiMP = 0.32 s, respectively.
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Power spectra of simulated Gd(DOTA)

Once the characteristic τE of Gd(DOTA) bonded to a silica wall and τM
of SiMP are estimated, it can be demonstrated that the spectral density
of the overall contrast agent can be determined from Equation 6.6 as

J (ω) = S2τM
1 + ω2τ2

M

+
(
1− S2) τT
1 + ω2τ2

T

, (E.10)

where ω represents a frequency and τ−1
T = τ−1

M +τ−1
E . The spectral density

of a complex is related to its NMR relaxation response, because it influ-
ences the relaxation time of water protons in the first coordination sphere.
The formalism proposed by Lipari and Szabo has proved to be accurate for
the analysis of NMR relaxation data, and it is a de facto standard method
because of its simplicity [602].

First, Equation E.10 is applied to the case of a Gd-based complex char-
acterized by isotropic tumbling motion (i.e. S2 = 0, τT = τR = τR,bulk)
but different τR,bulk (i.e. 10 ps, 75 ps, 1 ns, 100 ns and 1000 ns), in order
to assess the effect of tumbling time of contrast agents on J (ω), thus on
their NMR relaxation response. Results in Figure E.1 show that the spec-
tral density monotonically increases with τR for ω < 10 MHz, whereas the
latter relation progressively inverts at larger frequencies (i.e. ω > 10000
MHz). Hence, in clinically relevant frequencies (i.e. 0.25–3 T, namely 10–
130 MHz) the relation J(ω) ∼ τR holds only for τR < 1 ns (Figure E.2),
whereas further increments of τR have detrimental effects on J(ω).

Second, Equation E.10 is applied to the case of Gd(DOTA) bonded to
SiMP at different distances dmin from the pore surface, namely 0.23, 0.26
and 2 nm respectively. S2 and τE of Gd(DOTA) are taken from MD results
in Table B.12, whereas τ⊥M,SiMP = 0.15 s as from Equation E.4. Results
in Figure E.3 show that Gd(DOTA) and Gd(DOTA)+SiMP at dmin = 2
nm have the same spectral density, i.e. the effect of SiMP bonding is not
noticeable on J (ω) if the wall-DOTA bond is large thus S2 → 0. Moreover,
for clinically relevant frequencies, the bonding of Gd(DOTA) to larger
particles have different impacts on J (ω) according to the distance between
Gd(DOTA) and the particle surface (Figure E.4): J (ω) increases respect
the case of bulk Gd(DOTA) for dmin > 0.26 nm, whereas it decreases for
dmin < 0.26 nm (molecule blocked on the surface).
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Figure E.1.: Spectral densities of Gd-based contrast agents immersed in
bulk water with increasing tumbling times (τR,bulk).

Figure E.2.: Spectral densities of Gd-based contrast agents immersed in
bulk water with increasing tumbling times τR,bulk, focusing
on clinically-relevant conditions (i.e. 10–130 MHz).

350



Figure E.3.: Spectral densities of Gd(DOTA) bonded to SiMP at differ-
ent distances from the pore surface. Spectral densities of
SiMP and Gd(DOTA) alone are also shown. Note that J(ω)
of Gd(DOTA) and Gd(DOTA)+SiMP at dmin = 2 nm are
overlapped.

Experimental pore surface coverage by
Gd(DOTA)

For a better understanding of the difference between the measured re-
laxivities of Gd(DOTA)+SiMP-HP and SP [566], the surface density of
Gd(DOTA) molecules on the SiMP-HP and SP surfaces is calculated from
the experimental data kindly provided by Gizzatov and colleagues. First,
the surface (Sp) and volume (Vp) of a SiMP nanopore (ΦSiMP particle
diameter, L height, φ pore diameter) are calculated as

Sp = π
φ

2L (E.11)

and
Vp = π

φ2

4 L, (E.12)

respectively. Then, the external surface of SiMP (Se,SiMP ) is obtained
as

Se,SiMP = 2
(
π

ΦSiMP
2

4

)
+ πΦSiMPL− 2Np

(
π
φ2

2

)
, (E.13)
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Figure E.4.: Spectral density of Gd(DOTA) bonded to SiMP at differ-
ent distances from the pore surface, focusing on clinically-
relevant conditions (i.e. 10–130 Hz). Spectral densities of
SiMP and Gd(DOTA) alone are also shown. Note that J(ω)
of Gd(DOTA) and Gd(DOTA)+SiMP at dmin = 2 nm are
overlapped.

whereNp = %pVSiMP
Vp

is the number of SiMP’s nanopores, VSiMP = πΦSiMP 2

4 L

the volume of the SiMP and %p its porosity. Hence, the overall accessible
surface of the mesoporous silicon particle is

St,SiMP = NpSp + Se,SiMP . (E.14)

The surface density of Gd(DOTA) on the accessible surface of the SiMP
is then estimated as

ρGd(DOTA) = [Gd]VsolNA
NSiMPSt,SiMP

, (E.15)

where [Gd] is the molar concentration of Gd(DOTA) bonded to SiMPs in
an experimental sample, Vsol is the sample volume, NSiMP the amount of
SiMP particles in the sample and NA the Avogadro number. Hence, the
percentage of St,SiMP covered by Gd(DOTA) molecules is

γGd(DOTA) =
(
ρGd(DOTA)SGd(DOTA)

)
· 100, (E.16)

with SGd(DOTA) the equivalent Gd(DOTA) occupancy area; whereas the
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average barycenter distance between contiguous Gd(DOTA) can be esti-
mated as

lGd−Gd =
(
ρGd(DOTA)

)− 1
2 . (E.17)

Table E.1 reports the initial data for Equations E.11 to E.17, whereas Ta-
bles E.2 and E.3 the results obtained in case of SiMP-HP and SP. Based on
the variance of experimental measurements, two extreme approximations
are considered as NSiMP within the analyzed sample, namely 1× 108 and
5× 108.

HP SP
ΦSiMP [nm] 1000 1000
φ [nm] 50 10
L [nm] 400 400
%p [-] 0.6 0.6

Sp [nm2] 6.54E+04 1.26E+04
Vp [nm3] 1.13E+06 3.14E+04
[Gd][mM] 0.00186 0.00217
Vsol[mL] 5 5

SGd(DOTA)[nm2] 0.79 0.79
Table E.1.: Geometry of SiMP-HP and SP nanoparticles and concentration

of Gd(DOTA) therein.

HP SP
ρGd(DOTA)[#/nm2] 3.88 0.85
γGd(DOTA) [%] 304 66
lGd−Gd [nm] 0.51 1.09

Table E.2.: Gd(DOTA) surface distribution and coverage if NSiMP =
1.0E8 is considered.

HP SP
ρGd(DOTA)[#/nm2] 0.78 0.17
γGd(DOTA) [%] 61 13
lGd−Gd [nm] 1.14 2.43

Table E.3.: Gd(DOTA) surface distribution and coverage if NSiMP =
5.0E8 is considered.
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