
2. Scaling mass transport of
nanoconfined water

2.1. Introduction to nanoconfined water

Despite its fundamental importance in science and technology, the physi-
cal and transport properties of water are far from being completely under-
stood [17]. The self-diffusion of water molecules D in proximity of solid
surfaces, at the interface between immiscible liquids, and in confined ge-
ometries, such as nanopores and nanotubes, is a very different process as
compared to the bulk phase [33, 42, 88–90]. The thermal agitation of the
water molecules in the bulk liquid is only dictated by the local tempera-
ture and pressure conditions, and molecular diffusion follows the Einstein
relation [16]. Differently, under confined conditions, the mobility of wa-
ter molecules is perturbed by the presence of additional interaction forces
arising at the water/solid interfaces, mainly van der Waals and Coulomb
interactions. These additional forces usually reduce the local molecular
diffusion [91, 92]. Even if considerable work has been done in recent years,
both experimentally and theoretically, to understand and characterize the
perturbed behavior of the water molecules in confined geometries, there
is still no complete comprehension of the process and often the published
results are contradictory [93].

Controlling the mobility of water molecules is of relevance to several scien-
tific disciplines and has implications in multiple technological applications.
For instance, water adsorption/desorption in nanoporous materials, such
as zeolites, has potential in long-term thermal storage and energy engi-
neering [6, 94]; filters with nanopores and nanochannels are increasingly
explored for their large surface area and higher efficiency [95, 96]; in heat
transfer problems, nanofluids are under investigation because of their pe-
culiar thermal properties [97, 98]; in micro/nanotechnology processes, con-
trolling the deposition and surface diffusion of water molecules is critical
for precise manufacturing [99, 100]; in biology, the mechanisms regulating
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2. Scaling mass transport of nanoconfined water

the transport of single water molecules through cell membrane channels
(aquaporins) and the multiscale water compartmentalization in tissues are
still elusive [101–105]. Also, proteins tend to modify their structure and
function according to the surrounding aqueous environment [106–108]. Fi-
nally, nanomedicine is one of the fields which can take more advantage
from the anomalous behavior of nanoconfined water, especially for design-
ing novel Magnetic Resonance Imaging (MRI) contrast agents (see Chapter
6 for a detailed discussion) or drug delivery technologies.

In this Chapter, the self-diffusion coefficient of water molecules is investi-
gated through Molecular Dynamics (MD) simulations under five different
isothermal configurations, namely within silica nanopores; around spher-
ical hydroxylated nanoparticles (NPs); within silica nanopores filled by
NPs; in the proximity of single-wall carbon nanotubes (CNTs) and pro-
teins. The self-diffusion coefficient for all different configurations has been
found to scale with a single non-dimensional parameter θ, incorporating
both geometrical and physicochemical information, following the relation-
ship D (θ) = DB [1 + (DC/DB − 1) θ]. The D (θ) scaling is modulated by
the coefficients DB and DC , which represent the bulk and totally con-
fined diffusion of water, respectively. This law would help in explaining
and rationalizing previous experimental evidences [14], and represents a
ready-to-use tool for the rational design of nanoconstructs based on the
nanoscale confinement of water molecules.

2.2. Molecular Dynamics methods

The coefficient D of water under nanoconfined conditions is estimated by
molecular dynamics simulations for almost 60 cases, by varying the size
of the nanoparticles and nanopores, the electrostatic surface charges and
level of hydrophobicity, as well as the type of protein. In this Section, the
considered MD methods (geometries, force fields and simulation protocols)
are detailed [27].

2.2.1. Geometries

MD simulations are used to compute the self-diffusion coefficient D of
water molecules confined under different configurations. These are briefly
summarized in Figure 2.1 and include the case of water molecules (blue
dots) moving (a) around spherical hydroxylated nanoparticles (NPs) (gray
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2.2. Molecular Dynamics methods

dots); (b) within a hydrated nanopore (gray dots); around (c) hydroxylated
NPs (red dots) adsorbed on the surface of a hydrated nanopore (gray dots);
(d), around and within single-walled carbon nanotubes (CNTs); and (e-
f) around proteins. The NPs are made out of magnetite (Fe3O4) crystals
(red and cyan dots), with OH− functional groups on their surface; or silica
(SiO2) crystals (gray dots), with silanol SiOH functional groups on the
surface. The nanopores are made out of silica only. Hereafter, a detailed
description of the simulated geometries is provided.

Figure 2.1.: Some of the analyzed configurations. (a) Silica particle in wa-
ter, diameter φ = 5.2 nm (blue dots: water molecules; gray
dots: silica atoms); (b) silica nanopore filled by water, di-
ameter Φ = 8.1 nm; (c) 16 magnetite nanoparticles within
a silica nanopore filled by water, φ = 2.0 nm and Φ = 8.1
nm (red and cyan dots: magnetite atoms); (d) single-walled
carbon nanotube with chirality (5,5); (e) Green Fluorescence
protein; (f) Leptin protein (the standard ribbon visualization
of secondary structures has been used for proteins). In (d,e,f)
water molecules have been removed for clarity. Figure adapted
from Reference [27].
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2. Scaling mass transport of nanoconfined water

Nanopores and nanoparticles

A first set of geometries analyzed by MD simulations are cylindrical nanopores
and spherical nanoparticles (NPs). Nanopores are made out of silica; NPs
are made out of magnetite or silica.

First, a unit cell of alpha-quartz (SiO2) [109] (leftmost picture of Figure
2.2) is considered. The latter unit cell is replicated along all Cartesian
axes, such that a fully periodic brick with size 11.30 x 11.06 x 4.32 nm3 is
constructed (middle picture in Figure 2.2). A computational domain with
smaller dimensions compared to typical experiments is considered [14], for
reducing the computational demand. However, this is not a restricting
hypothesis as proved by the good scalability of the results in terms of
the presented parameter θ. Subsequently, a nanopore in the above brick
is obtained by removing all atoms whose distance from the brick center
is smaller than a fixed length (i.e. nanopore radius). For the sake of
simplicity, since here the main concern is to investigate on the trend of
the self-diffusion coefficient of water molecules in different nanoconfined
conditions, here amorphization of silica is neglected.

Upon the creation of the pore (see the rightmost picture in Figure 2.2),
all silicon atoms located along the "cut surface" with only one bonded
oxygen atom are removed. In addition, one hydrogen atom is attached to
all oxygen atoms that are missing one bond with silicon (surface oxygen).
This is achieved by imposing that the angle formed by silicon, oxygen and
hydrogen is 128.8 degrees (elevation) [110], with a random azimuth angle
(see Figure 2.4a).

A unit cell of magnetite (Fe3O4) [111] (leftmost picture of Figure 2.3) is
then considered. The latter unit cell is replicated along all Cartesian axes,
such that a fully periodic brick with desired size is constructed (e.g. 3.0
x 3.0 x 3.0 nm3 in the middle picture in Figure 2.3). Finally, a spherical
particle is obtained by retaining only atoms within a fixed distance from
the brick center (radius), as shown in the rightmost picture of Figure 2.3.

After the above cut, the NP surface is treated by the following procedure:
1) Iron atoms Fe2+ and Fe3+ are removed when they have less than 4 and
6 bonds, respectively; 2) a bonded hydrogen atom is attached to all oxygen
atoms with only one bond at the magnetite surface. The Fe-O-H angle can
be estimated between 125◦ (DFT, quantum) and 128◦ (SPASIBA, empiri-
cal force field) for Fe2+; while this Fe-O-H angle can be estimated between
126◦ (DFT, quantum) and 130◦ (SPASIBA, empirical force field) for Fe3+

[112]. In the simulations, it has been found that the numerical results are
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2.2. Molecular Dynamics methods

Figure 2.2.: Preparation of the MD geometry of a silica nanopore. From
left to right: unit cell of alpha-quartz; silica crystal brick
(11.30 x 11.06 x 4.32 nm3); silica pore (8 nm diameter), before
surface functionalization.

not very sensitive to this angle and hence the same angle of the silanol
group (129◦) is used in the geometry preparation for the sake of simplic-
ity, with a random azimuth angle (see Figure 2.4b). Such an approach of
modeling the surface aims at mimicking real SPIO particles without coat-
ing [113], and it represents a simple technique already validated in other
works for iron nanoparticles in aqueous environment [114]. On the other
hand, here the effect due to complex coatings will be indirectly taken into
account by a sensitivity analysis of the nonbonded interactions (Lennard-
Jones and partial charges parameterizations).

Towards the end of minimizing the effects due to the residual electrical
dipole induced by the charges located at the NPs surface, in all the stud-
ied setups NPs are inserted in pairs within the nanopore, where the first
particle (which undergoes a random rigid rotation on each Cartesian axis)
is initially opposed to its mirror image with respect to the midpoint of the
line segment connecting the centers of the two particles (see Figure 2.5).
In the initial configuration of the simulations, all NPs pairs have the latter
segment parallel to the pore axis.

Proteins

The second set of geometries analyzed by MD simulations aims to study the
effect of different proteins on the mass transfer properties of the surround-
ing water molecules. Proteins are biological macromolecules made of one
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2. Scaling mass transport of nanoconfined water

Figure 2.3.: Preparation of the MD geometry of a magnetite nanoparticle.
From left to right: unit cell of magnetite; magnetite crystal
brick (3.0 x 3.0 x 3.0 nm3); magnetite nanoparticle (2 nm
diameter), before surface functionalization.

Figure 2.4.: Silica and magnetite surface functionalization. (a) Silica tetra-
hedron with geometric details of silanol surface group and
magnification of a silica surface. The dihedral angle O-Si-
O(s)-H is randomly chosen, where O(s) is the oxygen atom
belonging to silanol; (b) Fe2+ tetrahedron and Fe3+ octahe-
dron within magnetite crystals, with details of the Fe2+OH
and Fe3+OH surface groups. A magnetite particle (φ = 2.0
nm) with functionalized surface is shown in the rightmost part.

or more chains of amino acids, performing a vast variety of functions within
living organisms. Amino acids show hydrophilic or hydrophobic character
according to the structure and polarity of their residues. As a matter of
facts, proteins may modify their structure and thus their functionality ac-
cording to the dynamics of surrounding water environment [107, 115, 116].
Dense protein products, such as pharmaceutical preparations or high pro-
tein nutrition bars, involve ongoing challenges for controlling the viscos-
ity of the water-protein system and for reducing protein self-association
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2.2. Molecular Dynamics methods

Figure 2.5.: Relative positions of NPs couples. NPs are constructed in
pairs where each particle represents the mirror image of the
other with respect to the midpoint of the line segment con-
necting the centers of the two particles (on the left-hand side,
atom A1 is the mirror image of A2 with respect to C). On the
right-hand side a rendered image of a SPIO mirrored pair is
shown.

phenomena [117]; enzymatic activity, molecular recognition and folding
process of proteins are strongly influenced by surrounding water mobility
and hydration [118]; fluctuations between different conformational sub-
states, which are determined by local temperature and minima of po-
tential energy surface and are related to the biological function of the
proteins [119], are influenced by the hydrogen bond creation/destruction
at the solvent-protein interface and thus by surrounding water dynamics
[106, 120–122].

Numerous experimental and theoretical studies have already demonstrated
that the water molecules in the proximity of a protein surface are subjected
to confined dynamics, i.e. a general decrease in the self-diffusion coefficient
respect to the bulk value and a substantial modification of the actual sol-
vent structure [123–125]. Water diffusion has been studied both locally
(i.e. by considering the water diffusion in the proximity of spatial uniform
sub-regions of proteins) and globally (i.e. by evaluating the spatially av-
eraged water diffusion as a function of the distance from protein surface)
[118]. However, a general modelling and broad physical understanding
of the water mobility modification in the vicinity of any protein is still
a subject of investigation, mainly because of the variety of physicochem-
ical properties (hydrophilic vs. hydrophobic) of the few tens of amino
acids or functional groups being the building blocks of millions of known

25



2. Scaling mass transport of nanoconfined water

proteins.

Hence, a wide range of solvated proteins is here considered, in order to sys-
tematically study their effect on the surrounding water dynamics. First,
a simple B1-Immunoglobulin binding domain of streptococcal Protein G
(1PGB entry in the Protein Data Bank [126]), which is involved in the
bonding process between many infectious bacteria and host immunoglobu-
lins and currently used in many biomedical applications, is considered (Fig-
ure 2.6). B1-Immunoglobulin binding domain is solvated in SPC/E water
boxes with different sizes, ranging from 348 nm3 (11253 water molecules)
to 23 nm3 (496 water molecules), but similar water density (∼= 1000 kg
m−3).

Figure 2.6.: MD geometry of B1-Immunoglobulin binding domain. (a)
Atomistic visualization. (b) Ribbon visualization of secondary
structures (orange for alpha-helices; cyan for beta-sheets; gray
for random coils). (c) Solvent accessible surface of the protein
(light gray). (d) Protein (red) solvated in SPC/E water box
(blue).

Second, ubiquitin (1UBQ [127]), which is a small and globular regulatory
protein found in almost all tissues of eukaryotic organisms, is considered
(Figure 2.7a). Ubiquitin is again solvated in SPC/E water boxes with
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2.2. Molecular Dynamics methods

different sizes, ranging from 817 nm3 (26758 water molecules) to 60 nm3

(1554 water molecules), but similar water density (∼= 1000 kg m−3).

Finally, six more proteins, with a vast array of geometries, sizes and func-
tions within living organisms, are also solvated at similar water density (∼=
1000 kg m−3) and studied by MD simulations: Glucokinase (1V4S [128],
Figure 2.7b), which is an enzyme involved in the regulation of carbohy-
drate metabolism by acting as a glucose sensor, solvated in a 580 nm3

SPC/E water box (16864 water molecules); Green fluorescence protein
(1QXT [129], Figure 2.7c), which is a fluorescent protein of many marine
organisms widely used in fluorescence microscopy technique, solvated in a
348 nm3 SPC/E water box (10353 water molecules); Leptin (1AX8 [130],
Figure 2.7d), which is a human hormone regulating many metabolism-
related behaviors such as appetite and hunger, solvated in a 348 nm3

SPC/E water box (10878 water molecules); Lysozyme (1AKI [131], Figure
2.7e), which is an enzyme part of the innate immune system, solvated in
a 348 nm3 SPC/E water box (10882 water molecules); Myoglobin (1MBS
[132], Figure 2.7f), which is found in the muscle tissue of vertebrates for
oxygen transport, solvated in a 348 nm3 SPC/E water box (10743 water
molecules); Ca2+-ATPase (1KJU [133], Figure 2.7g), which is a P-type
ion pump for transporting Ca2+ across the cellular membrane, solvated
in a 1215 nm3 SPC/E water box (35426 water molecules). The simulated
conformation of Ca2+-ATPase corresponds to the Ca2+-free (E2) state.
As noticeable in Figure 2.7, the geometry of simulated proteins ranges
from almost spherical (e.g. ubiquitin) to elongated (e.g. Ca2+-ATPase)
shapes, from small (e.g. 562 atoms of B-Immunoglobulin binding domain)
to larger sizes (e.g. 9667 atoms of Ca2+-ATPase); whereas the biological
function spans from catalytic (e.g. Glucokinase) to hormonal (e.g. Leptin)
or transport proteins (e.g. Myoglobin).

Note that crystal water molecules are removed from original PDB files,
in order to fully solvate the protein by means of the GROMACS’s tool
genbox.

Carbon nanotubes

The last set of geometries analyzed by MD simulations aims to evaluate
the diffusion of water in the proximity of strongly hydrophobic surfaces,
such as carbon nanotube (CNT) ones. CNTs have been recognized as
promising building blocks of novel nanostructured materials, because of
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2. Scaling mass transport of nanoconfined water

Figure 2.7.: Secondary structures (orange for alpha-helices; cyan for beta-
sheets; gray for random coils) of the simulated proteins are
displayed. (a) Ubiquitin. (b) Glucokinase. (c) Green Flu-
orescence. (d) Leptin. (e) Lysozyme. (f) Myoglobin. (g)
Ca2+-ATPase.

their exceptional mechanical, thermal and electrical features [134]. Me-
chanical, thermal and electrical properties of CNTs are well documented
in the literature [134, 135]; in contrast, even if CNT-based porous mate-
rials may be interesting components of nanofluidic devices for biomedical
applications [136–138], the physical understanding of transport properties
of fluids through or around their pores is still incomplete, because of the
difficulty in setting up adequate experimental setups [139]. Nevertheless,
computational studies have already demonstrated a general reduction of
water mobility both within (e.g. Figure 2.8b) and around CNTs (e.g.
Figure 2.8c), or close to graphene surfaces, according to different pore
size, surface functionalization or hydration level of these carbon structures
[139].

Here, armchair CNTs with different chirality (i.e. diameter) are solvated
in triclinic SPC/E water boxes with different volumes, in order to evaluate
the geometry effect on the overall self-diffusion coefficient of water. First,
a (5,5) CNT (i.e. 0.7 nm diameter) 5 nm long (Figure 2.8a) is solvated in
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2.2. Molecular Dynamics methods

Figure 2.8.: MD geometries of solvated carbon nanotubes (CNTs). (a)
(5,5) CNT 5 nm long. (b) (10,10) CNT filled by water. (c)
(5,5) CNT 5 nm long solvated in a water box.

water boxes ranging from 15 (317 water molecules) to 316 (10023 water
molecules) nm3 (Figure 2.8c). Then, 10 nm long (10,10) CNT (i.e. 1.4 nm
diameter), (20,20) CNT (i.e. 2.7 nm diameter) and (30,30) CNT (i.e. 4.1
nm diameter) are solvated in 132 (3689 water molecules), 260 (7284 wa-
ter molecules) and 431 (12351 water molecules) nm3 SPC/E water boxes,
respectively. Notice that water density is ∼= 1000 kg m−3 in all simulated
CNT setups, which corresponds to fully hydrated CNT surfaces. Car-
bon nanotubes geometries are generated by means of the VMD – Visual
Molecular Dynamics software [140].

2.2.2. Force field

Two types of interactions are considered in the MD simulations: i) bonded
interactions, among the atoms forming nanopores, nanoparticles, CNTs or
proteins; ii) nonbonded interactions, between the water molecules and the
solid surfaces, described via van der Waals and Coulomb potentials.

First, bonded and nonbonded interactions of proteins are modeled using
the GROMOS96 43a2 force field [141], which has been widely used for
studying water dynamics in the proximity of protein surfaces [142, 143].
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2. Scaling mass transport of nanoconfined water

Second, in the silica structure, the bonded interactions are modeled by
means of two harmonic terms, adopted to describe the silicon-oxygen and
oxygen-hydrogen interactions. That is, a bond stretching potential be-
tween two bonded atoms i and j at a distance rij (around the equilib-
rium distance r0

ij), and a bending angle potential between the two pairs
of bonded atoms (i, j) and (j, k) (around the equilibrium angle ϑ0

ijk) are
considered as follows:

UBOND (rij , ϑijk) = 1
2k

b
ij

(
rij − r0

ij

)2 + 1
2k

ϑ
ijk

(
ϑijk − ϑ0

ijk

)2
, (2.1)

with parameters reported elsewhere [144].

In the magnetite structure, sufficiently high values for the force constants
in Equation 2.1 are assumed for all bonded interactions (rigid particle as-
sumption), namely kbij = 400000 kJ mol−1 nm−2 and kϑijk = 400 kJ mol−1

rad−2. In fact, here the main concern is to investigate water self-diffusion
coefficient of water in nanoconfined geometries, which is affected by non-
bonded interactions. Therefore, here it is not of interest to accurately
describe the fast dynamics within the magnetite NPs, thus the rigid parti-
cle assumption does not affect the measurements of self-diffusion coefficient
of water, as confirmed by preliminary sensitivity analyses with respect to
kbij and kϑijk (results not shown).

In the CNT structure, the carbon-carbon bonded interactions are also
modeled by two harmonic terms (Equation 2.1), where kbij = 478900 kJ
mol−1 nm−2, r0

ij = 0.142 nm, kϑijk = 562.2 kJ mol−1 rad−2and ϑ0
ijk = 120◦

[145–147].

Nonbonded interactions among silica atoms (consisting in both van der
Waals and electrostatic interactions) are also taken into account through:
(i) a Lennard-Jones term

ULJ (rij) = 4εij

[(
σij
rij

)12
−
(
σij
rij

)6
]
, (2.2)

with mixed parameters consistently chosen according to the following Lorentz-
Berthelot combination rules

σij = 1
2(σii + σjj) and εij = (εii · εjj)1/2; (2.3)
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(ii) a Coulomb term

UC(rij) = 1
4πε0

qiqj
rij

, (2.4)

being ε0 the permittivity in a vacuum, and qi, qj the partial charges of
atoms i and j, respectively. Non-zero partial charges are assigned only
to atoms at the surface of the pore and belonging to a silanol group,
whereas all other atoms (bulk of silica) are considered neutral (i.e. zero
partial charge, qi=0). More specifically, partial charges in a silanol group
are assigned following the criterion of the overall neutral charge for the
entire system, with nonbonded parameters for silica reported in Reference
[148].

Similarly to silica, partial charges are assigned only to atoms at the mag-
netite surface and belonging to the Fe-O-H groups, whereas zero partial
charges (i.e. qi=0) are imposed at all other bulk atoms. Moreover, partial
charges are assigned within the Fe-O-H groups in order to ensure neutral-
ity of the whole system. Both the adopted parameterization for Lennard-
Jones potentials and the partial charges are reported in References [149]
and [150]. For the sake of completeness, Lennard-Jones parameters and
partial charge values have been further artificially changed in some MD
setups, in order to perform sensitivity analyses of force field parameters
on D.

Nonbonded interactions between CNTs and water molecules are modeled
by Lennard-Jones potential (Equations 2.2 and 2.3), where carbon atoms
are characterized by σCC = 0.36 nm and εCC = 0.29 kJ mol−1 [145–147].
All nanotubes’ carbon atoms are considered as neutral, because of the
strong hydrophobicity of pristine CNTs.

Finally, Lennard-Jones potentials are treated with a twin-range cut-off and
1.5 nm cut-off distance, whereas a Particle-Mesh Ewald (PME) [16] with
1.5 nm real-space cutoff, a 0.12 nm reciprocal space gridding, and splines
of order 4 with 10−5 tolerance is used for electrostatic interactions.

2.2.3. Simulation protocol

Simulations are carried out with a leap-frog algorithm (time step: ∆t = 0.5
fs), and periodic boundary conditions are applied along the three Carte-
sian coordinates. Upon energy minimization of nanoparticle, nanopore or

31



2. Scaling mass transport of nanoconfined water

nanotube setups, the two sub-systems (solid crystals and water) are ini-
tialized at 300 K (Maxwellian distribution of velocities), and fully coupled
to a Nosé-Hoover thermostat [151, 152] (at 300 K and time constant τ =
0.2 ps) for 50 ps, until the energies of the system relax to a steady state.
During the latter preliminary calculation, one thermostat for each sub-
system is adopted. Afterwards, Nosé-Hoover thermostats (at 300 K) are
maintained attached to solid crystals only, whereas the simulation is con-
tinued up to 2 ns. In case of proteins, the MD protocol is slightly changed
to improve convergence. Energy minimization for proteins is performed
before and after solvation and ions are added (when needed) for achieving
the neutrality of the system, which is then equilibrated in two steps: 100
ps in canonical ensemble (NVT) at 300 K (initialization with Maxwellian
distribution of velocities, Berendsen thermostats [153] separately attached
to proteins and water, τ = 0.1 ps); 100 ps in NPT ensemble at 300 K and
1 bar (Berendsen thermostats separately attached to proteins and water,
τ = 0.1 ps; Parrinello-Rahman pressostat [154] applied to the whole sys-
tem, τ = 2 ps). During the equilibration, all bonds in the proteins are kept
rigid using the LINCS algorithm [155]. Finally, a Nosé-Hoover thermostat
(300 K, τ = 0.2 ps) is attached to protein’s atoms, and the simulation is
continued for 1 ns.

The SPC/E model [156] is used for water molecules, which is known to
accurately predict some of the properties of water relevant for this study
at room temperature [157]. However, it is also worth noticing that the
SPC/E model does not accurately predict some other properties of water.
For instance, shear viscosity or thermal conductivity are found to be off
by more than 50% at room temperature [158].

The MD simulations are performed with the software package GROMACS
[159]. Rendering is performed with UCSF Chimera [160].

2.3. Molecular Dynamics results

In this Section, the MD setups analyzed for investigating the effect of ge-
ometrical, chemical and physical parameters on water self-diffusivity un-
der nanoconfined conditions are presented. First, MD simulations are
checked for convergence; second, results of both water density and D are
reported.
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2.3.1. Simulated cases

In order to investigate the influence of geometry and material properties,
the self-diffusion coefficient of nanoconfined water molecules is computed
for 58 different cases. First, for assessing the effect of particle geometry
on D, these cases are different in terms of NP diameter, being 1.3, 2.0 or
5.2 nm; nanopore diameter, with values 2.0, 4.1, 8.1 and 11.0 nm; num-
ber of NPs adsorbed on the nanopore wall, varying from 0 to 66 NPs per
pore; CNT armchair chirality, namely (5,5), (10,10), (20,20) and (30,30);
and type of proteins, including molecules with a spherical (e.g. Ubiqui-
tin) and elongated (e.g. Ca2+-ATPase) shapes; of small (e.g. 562 atoms
of B1-immunoglobulin binding domain) and large (e.g. 9667 atoms of
Ca2+-ATPase) sizes; and exhibiting a catalytic (e.g. Glucokinase), hor-
monal (e.g. Leptin), and transport (e.g. Myoglobin) function. Second,
for assessing the effect of material properties on D, the strength of the
Lennard-Jones potential of magnetite NPs is varied from 2.49 to 24.94 kJ
mol−1, and the partial electrostatic charges of atoms are set to either the
nominal value or zero, for NPs and nanopores. Finally, various hydration
levels are considered providing an overall water density ranging from 715 to
941 kg m−3. Note that for these density values, there is no heterogeneous
wetting and consequently no anomalous behavior related to low water fill-
ing regimes [42, 92]. All computed values of the self-diffusion coefficient D
are reported in the Appendix B.

Finally, the influence of temperature on D is explored, considering Case 7
as a reference and changing the temperature of the system to 350 K and
280 K, the measured D are 3.37±0.14×10−9 m2s−1 and 0.86±0.03×10−9

m2s−1, which implies a linear trend between D and temperature, in ac-
cordance with the Einstein relation. However, the anomalous dynamics of
nanoconfined water at different temperatures [42, 161] and the supercooled
regime at low temperatures [32, 37] are beyond the aims of this thesis and
will require further investigations.

2.3.2. Convergence of simulations

First, the analyzed systems are equilibrated in order to measure the self-
diffusion coefficient D of water molecules at equilibrium conditions. In
Figures 2.9 and 2.10, the steady state energies of configurations made out
of solvated nanopores and solvated nanopores filled by NPs are shown,
respectively.
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2. Scaling mass transport of nanoconfined water

Figure 2.9.: Total energy conservation in the systems where silica
nanopores are simulated (Cases 1−4 in Table B.1). D is ob-
tained from the MSD calculated between 600 and 1000 ps.

Figure 2.10.: Total energy conservation in the systems where magnetite
NPs within silica nanopores are simulated (Cases 5−8 in Ta-
ble B.2). D is obtained from the MSD calculated between
600 and 1000 ps.
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Hence, D is determined following the classical relationship of Einstein and
computing the mean square displacement (MSD) as

MSD = lim
t→∞

〈
‖−→ri (t)−−→ri (0)‖2

〉
i∈water

= 6Dt, (2.5)

where the position vector −→ri refers to the center of mass of the water
molecule i at the generic time t, and 0 refers to the initial configuration
of the system (in Figures 2.11 and 2.12 a few cases are shown) [16, 162].
Alternative approaches for computing the water diffusivity could be con-
sidered as well (e.g. those based on the first-passage concept) [163, 164].
Note that the MSD trend is linear after few picoseconds (MSD ∝ tα, with
α = 1), which denotes classical diffusion by Brownian motion. Figure 2.14
depicts a double logarithmic plot of MSD versus time, where three different
segments can be clearer distinguished, indicating three different diffusive
regimes: (i) a ballistic region (α ∼= 2) [165], within a sub-picosecond do-
main; (ii) a cage breaking sub-diffusion regime (α < 1) [166], within 1–50
ps according to the different configurations; (iii) the Brownian diffusion
regime (α = 1), where D of water is actually evaluated. Note that, in cases
where water molecules are highly confined (e.g. Case 1 in Table B.1), the
sub-diffusion regime can last tens of picoseconds, because the proximity
of most of the water to a surface significantly affects the cage-breaking
needed by the diffusing molecules for escaping their own hydration shell
[166, 167].

Finally, the convergence of D in 1 ns runs is verified by evaluating it every
200 ps and by verifying that D tends to an asymptotic value, as shown
for example in Figure 2.14. For the sake of completeness, a few setups are
extended up to 2 ns, in order to further assess the stability of D in longer
runs. The extended simulations confirm that D converges to a steady
state value after approximately 0.6 ns, then it fluctuates (less than ±10%)
around the equilibrium value.

After a few hundreds of picoseconds, the stability of the simulated protein
structures is also assured by the convergence of: (i) systems’ energies; (ii)
root mean square deviation of the structures with respect to the crystal-
lographic ones (averagely below 0.3 nm, e.g. Figure 2.15a); (iii) radius of
gyration of the protein (e.g. Figure 2.15b).
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2. Scaling mass transport of nanoconfined water

Figure 2.11.: MSD of water in nanopore setups. MSD is evaluated on equi-
librated systems between 600 and 1000 ps. Silica nanopores
are simulated (Cases 1−4 in Table B.1).

Figure 2.12.: MSD of water in nanopore filled by NPs setups. MSD is
evaluated on equilibrated systems between 600 and 1000 ps.
Magnetite NPs within silica nanopores are simulated (Cases
5−8 in Table B.2).
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2.3. Molecular Dynamics results

Figure 2.13.: Double logarithmic plot of MSD versus time, evaluated on
equilibrated systems between 600 and 1000 ps. Magnetite
NPs within silica nanopores are simulated (Cases 5−8 in Ta-
ble B.2).

Figure 2.14.: D versus time in equilibrated nanopore setups. Silica
nanopores are simulated (Cases 1−4 in Table B.1). Error
bars are obtained by fitting MSD in different time intervals.
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2. Scaling mass transport of nanoconfined water

Figure 2.15.: Structure stability of Glucokinase in 1 ns MD simulation. (a)
Root mean square deviation. (b) Radius of gyration.

2.3.3. Density of water at the interface

Water molecules in a close proximity of solid surfaces are subject to van
der Waals and Coulomb interactions, which interfere with their dynamics.
This induces a layering of water molecules near the surface. Among these
layers, only the first and partially the second layer of water (i.e. within
0.3–1.0 nm from the solid surface [168]) show appreciable different physical
properties as compared to bulk water [88, 169].

In Figure 2.16, the density (ρ) of water within a silica nanopore, around a
magnetite NP and in a silica nanopore with magnetite NPs are shown. In
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2.3. Molecular Dynamics results

all simulated cases, the density profile is clearly flat over 0.5–1.0 nm from
the solid surface, according to the different geometries and force fields
used. Layering effects of water can be noticed at the solid interface, where
water is organized in a mono, double or more layer structure.

Figure 2.16.: Water density (ρ) within nanopores or around NPs. All den-
sity values are normalized by the bulk density ρB = 1000 kg
m−3 at 300 K. (a) 2D distribution of ρ/ρB within a silica
nanopore (Φ = 2.0 nm), which is calculated by averaging ρ
along the nanopore axis. (b) 2D distribution of ρ/ρB around
a magnetite NP (φ = 2.0 nm) within a cubic water box (L =
7.0 nm), which is calculated by averaging ρ along the radius
of NP. (c) 2D distribution of ρ/ρB within a silica nanopore
(Φ = 8.1 nm) filled by 4 magnetite NPs (φ = 2.0 nm), which
is again calculated by averaging ρ along the nanopore axis.
Only 2 out of 4 NPs are visible, because they are placed on
the same x, y coordinates along the pore axis. (d) Radial
ρ/ρB within a silica nanopore (Φ = 2.0 nm), where r = 0 nm
lies on nanopore axis. (e) Radial ρ/ρB around a magnetite
NP (φ = 2.0 nm), where r = 0 nm lies on NP barycenter.
(f) Radial ρ/ρB within a silica nanopore (Φ = 8.1 nm) filled
by 8 magnetite NPs (φ = 2.0 nm), where r = 0 nm lies on
nanopore axis.
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2. Scaling mass transport of nanoconfined water

The first layer of water around the surface of a silica nanopore (Φ = 2
nm) shows a peak of 1.2 ρ/ρB (ρB = 1000 kg m−3 is the bulk density at
300 K). A second layer is barely observable at r = 0.4 nm from the center
of the pore. Moreover, local peaks of 2.5-3.0 ρ/ρB can be noticed in the
narrower cavities at the pore surface (Figure 2.16a,d). In Figure 2.17 the
water densities within nanopores with different diameters are compared.
It is possible to notice that an higher diameter implies a greater region of
bulk water, because the interface region (i.e. the first layers of water) is
still relegated to the first 0.5–1.0 nm from the solid surface. Moreover, the
peak intensity of the first layer of water is almost the same in all cases, i.e.
1.2 ρ/ρB .

Figure 2.17.: Water density (ρ) within nanopores with different diameters.
(a) Φ = 2.0 nm; (b) Φ = 4.1 nm; (c) Φ = 8.1 nm; (d)
Φ = 11.0 nm. Top: the 2D distribution of ρ/ρB within silica
nanopores is depicted, which is calculated by averaging ρ
along the nanopore axis. Bottom: the radial ρ/ρB within
silica nanopores is shown, where r = 0 nm lies on nanopore
axis.

For the magnetite NP (φ = 2.0 nm), the first layer of water shows a clear
peak of 1.5 ρ/ρB , and a second layer of water is also visible with a peak
of 1.1 ρ/ρB (Figure 2.16b,e). The higher peak in the density profile for
magnetite is determined by the selection of stronger Lennard-Jones and
Coulomb interactions [27].
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2.3. Molecular Dynamics results

The density distribution of water within a system composed by a silica
nanopore (Φ = 8.1 nm) filled by 4 magnetite NPs (φ = 2.0 nm) is then
considered. In Figure 2.16c, local peaks of 2.5-3.0 ρ/ρB can be noticed
around the NPs and in the narrower cavities of the nanopore, with a
synergistic effect in the interstices between NPs and nanopore surface;
whereas in Figure 2.16f the radial distribution of ρ/ρB shows an expected
drop in water density where the NPs are located. However, ρ/ρB peaks are
still noticeable around NPs and nanopore surfaces, even though radially
averaged with the rest of bulk water within the nanopore.

Finally, the density distribution of water around (and within) a (20,20)
CNT is considered. In Figure 2.18, local peaks of 2.3 ρ/ρB can be noticed
in the proximity of CNT surface. Notice that the apparently asymmetric
distribution of water densification around the CNT is given by the slight
tumbling of the geometry around the y axis during the simulation.

Figure 2.18.: Water density (ρ) within CNT. Density values are normalized
by the bulk density ρB = 1000 kg m−3 at 300 K. The 2D
distribution of ρ/ρB within and around a (20,20) CNT 10
nm long is depicted, which is calculated by averaging ρ along
the CNT axis (i.e. z axis).

Note that the hydrophilic liquid-solid interaction within the first layers of
adsorbed water induces a strong distortion of the hydrogen bond network,
which in turn significantly affects the dynamics of confined water [170,
171].

Of course, the level of hydration determines the effective pressure, namely
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2. Scaling mass transport of nanoconfined water

the sum of the bulk pressure and the spreading pressure [25], inside the
low mobility region due to nanoconfinement and consequently to the ther-
modynamic state of water in the low mobility region. Eventually, the
effective pressure could determine a switch from a low-density liquid to
a high-density liquid [17]. The observations here refer to the mobility
of nanoconfined water, which are not greatly affected by the actual local
density.

2.3.4. Self-diffusivity of nanoconfined water

In general, results reported in Appendix B show that the coefficient D
decreases compared to the bulk value, 2.60×10−9 m2s−1 at 300 K [157], as
the ratio between the total area of the solid-liquid interface and the total
volume occupied by the water (Vw) increases. More specifically, for a silica
nanopore, D is reduced from 2.50±0.09×10−9 m2s−1 to 0.82±0.22×10−9

m2s−1 as the pore diameter decreases from 11.0 to 2.0 nm. Moreover, D is
inversely proportional to the NP concentration and diameter. For a 5.2 nm
silica NP, D decreases from the almost unconfined value to 2.12± 0.04×
10−9 m2s−1 following a 36% increase in NP concentration. Indeed, the
increase in NP concentration is associated with a decrease in separation
distance between adjacent NPs and, consequently, a decrease in the volume
available to water molecules. Consistently, D reduces as the concentration
of magnetite NP increases within a nanopore: D is 2.20 ± 0.10 × 10−9

m2s−1 in a 8.1 nm silica nanopore; however, if 2 magnetite NPs, of 2.0
nm in diameter, are adsorbed on the nanopore surface, D decreases to
2.07± 0.14× 10−9 m2s−1 and it drops to 0.44± 0.05× 10−9 m2s−1 (∼80%
decrease), if 16 magnetite NPs, of 2.0 nm in diameter, are added in the
nanopore. In addition, for 16 magnetite NPs adsorbed on the wall of a 8.1
nm nanopore, D is 1.46± 0.09× 10−9 m2s−1 for 1.3 nm NPs and becomes
0.44±0.05×10−9 m2s−1 (∼70% decrease), for 2.0 nm NPs. A similar trend
is observed for the carbon nanotubes and proteins, by reducing the size of
the water box. More specifically, around the (5,5) chirality CNT with a
length of 5 nm, the water diffusivity D decreases from the bulk value (box
of 316 nm3) to 1.22±0.12×10−9 m2s−1 (box of 21 nm3). Similarly, around
the B1-immunoglobulin binding domain, the diffusivity D decreases from
2.41±0.04×10−9 m2s−1 (box of 348 nm3) to 0.87±0.10×10−9 m2s−1 (box
of 23 nm3). As expected, the above data qualitatively demonstrate that
the self-diffusion coefficient D of water is strongly correlated to the ratio
between the interface surface and the total water volume: the larger this
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2.4. Scaling self-diffusivity of nanoconfined water

ratio the smaller the water mobility. However, the possible contribution
of other parameters should also be assessed.

To this end, sensitivity analyses are performed to elucidate the effect of
the Lennard-Jones potential strength ε and Coulomb interactions on D.
Larger values of the parameter ε are associated with lower mobility of the
water molecules. As an example, let us consider the case of 8 magnetite
NPs (2.0 nm diameter) adsorbed on the walls of a 8.1 nm diameter silica
nanopore. A one order of magnitude decrease of ε of magnetite atoms only
carries a 10 percent increase of D: for ε = 24.94 kJ mol−1 D is equal to
1.33±0.13×10−9 m2s−1, whereas D increases to 1.47±0.11×10−9 m2s−1

for ε = 2.49 kJ mol−1. Moreover, D increases as the surface electrostatic
charges decrease. For neutral magnetite NPs, D grows to 1.64±0.04×10−9

m2s−1 and, if both the NPs and nanopore wall are electrically neutral, D
takes the value of 1.69±0.20×10−9 m2s−1 (∼30% increase as compared to
the example above). Although the water molecule confinement is affected
by the strength of the interaction potentials (van der Waals and Coulomb),
geometrical parameters show a greater influence on the coefficient D. The
reason is that all considered surfaces have effective wall potentials, which
are strong enough to induce a significant reduction of the water mobility
in a region close to the wall. On the other hand, as clarified below, the
volume of the low mobility region only slightly depends on the wall poten-
tial strength, namely the minimum of the potential well generated by the
wall.

Finally, the self-diffusion coefficient D does not change significantly with
the level of hydration in the considered range, in accordance with previous
studies [92]. Considering again the representative case of 8 magnetite NPs,
of 2.0 nm in diameter, adsorbed on the wall of a 8.1 nm silica nanopore,
D ranges from 1.30 ± 0.11 × 10−9 to 1.40 ± 0.07 × 10−9 m2s−1 (< 10%
variation), as the water density increases from 700 to 930 kg m−3.

2.4. Scaling self-diffusivity of nanoconfined
water

In this Section, self-diffusion coefficients of nanoconfined water obtained by
MD simulations and literature review are scaled by defining a characteristic
length of nanoconfinement δ of solid interfaces, which depends on the
solid-liquid nonbonded interaction energies, and by introducing a novel
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dimensionless parameter θ, which allows to compare the broad variety of
nanoconfined configurations.

2.4.1. Characteristic length of nanoconfinement

In the bulk fluid, the water molecules fluctuate with a kinetic energy pro-
portional to kBT , where kB is the Boltzmann constant (1.38 × 10−23 J
K−1) and T is the temperature. As opposed to molecules in the bulk,
those in a close proximity of solid surfaces are subjected to additional van
der Waals (Uvdw) and Coulomb (Uc) interactions interfering with their
state of agitation. This induces a layering of water molecules with reduced
mobility near the solid surface (see Figures 2.16), as already pointed out
in other works [32, 172]. A characteristic length δ can be introduced to
quantify the thickness of such confined water layer.

Referring to the popular notion of Solvent Accessible Surfaces (SAS) [173–
175], the quantities Stot and Sloc can be introduced as the total and specific
(per-atom) SAS areas, respectively. For an arbitrary atom i of the solid
structure, a number Nn of nearest neighbors (including the atom i itself)
can be identified within a fixed cut-off radius (Figure 2.19a,c). The cor-
responding effective potential energy Ueff on the water molecules, due to
both the van der Waals (Uvdw) and Coulomb (Uc) interactions, can be
computed as:

Ueff (n) = Uvdw (n) + 〈Uc〉 (n) , (2.6)

along the n-direction, orthogonally to the SAS and passing through the
center of the atom i (Figure 2.19c). For the 12-6 Lennard-Jones potential,
it follows that

Uvdw (n) =
Nn∑
k=1

4εk

[(
σk
rk

)12
−
(
σk
rk

)6
]
, (2.7)

with εk, σk and rk denoting the depth of the potential well, the distance at
with such potential becomes zero, and the Euclidean distance between the
generic line point with coordinate n and the center of k− th nearest neigh-
bor, respectively. Note that, when defining the van der Waals potential
Uvdw (n) in Equation 2.7, the parameters εk and σk already incorporate
a combination rule for the Lennard-Jones parameters between the atom
i and oxygen atoms of water (e.g. the Lorentz-Berthelot rule). For the
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Coulomb interactions, the average potential energy at a fixed temperature
T between the Nn atoms and the water dipoles is

〈Uc〉 (n) = −EµwΓ
(
Eµw
kBT

)
, (2.8)

where E, µw, kB and Γ denote the electrical field strength, water dipole
moment (7.50 × 10−30 C m for SPC/E model), the Boltzmann constant
and the Langevin function

Γ (x) = coth (x)− 1/x. (2.9)

In Equation 2.8, the effective strength of the electrical field E(n) = ‖E(n)‖
may be expressed by the following explicit form:

E (n) = 1
4πε0εr

∥∥∥∥∥
Nn∑
k=1

qk∇
(

1
rk (n)

)∥∥∥∥∥ , (2.10)

rk (n) =
√

[x (n)− xk]2 + [y (n)− yk]2 + [z (n)− zk]2, (2.11)
being qk the electric charge of the k − th neighbor, while (x, y, z) and
(xk, yk, zk) representing the Cartesian coordinates of the generic point on
l (corresponding to the local coordinate n) and the Cartesian coordinates
of neighbor k, respectively. In our approach, the relative permittivity εr is
an input parameter to be provided to the Matlabr routine WANA for the
computation of δ (see Appendix C). In particular, here εr is included as a
function of the distance from the particle (εr(n)), following the suggestion
in Reference [176].

The expression of 〈Uc〉 (n) is a classical result of electrostatics and can be
justified as follows. Let E be the electric field acting on a dipole µ. The
instantaneous energy can be expressed as Uc (ϕ) = −µ · E = −µEcosϕ,
with E and µ being the field and dipole strength, respectively, while ϕ is
the angle between the direction of the dipole and the field. The minimum
and maximum values of energy are attained for ϕ = 0 and π, respec-
tively. However, in the presence of thermal agitation, the direction of µ
(hence ϕ) continuously changes in time. For classical systems, a num-
ber of independent dipoles are distributed according to their energy level
Uc : Uc,min < Uc < Uc,max. In particular, at thermodynamic equilibrium,
the Boltzmann distribution predicts that the number N(Uc) of dipoles
with energy Uc is:

N (Uc) = Cexp
(
− Uc
kBT

)
, (2.12)
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being C a constant to be determined. Note that, in three dimensions, all
dipoles lying on a cone with angle 2ϕ around the electrical field direction
have the same energy. Moreover, at every ϕ, the total number of such
dipoles is N (Uc (ϕ)) dΩ, being Ω the incremental solid angle. The above
dipoles at ϕ give the component sum dµ in the field direction: dµ =
NdΩµ cosϕ. Hence, according to the Boltzmann distribution, the average
dipole moment takes the more explicit form:

〈µ〉 = µ

∫ π
0 exp

(
µE cosϕ
kBT

)
sinϕcosϕdϕ∫ π

0 exp
(
µE cosϕ
kBT

)
sinϕdϕ

. (2.13)

Upon substituting β = µE/kBT and ζ = cosϕ, the above integral becomes
〈µ〉 = µΓ (β) .

Knowing the effective potential Ueff (n) for the atom i, a corresponding
characteristic length δi can be estimated within which the water molecules
have reduced mobility. This length δi is given by δi = ni,2 − ni,1, where
ni,2 and ni,1 (Figure 2.19b) are the two zeros of the equation

Ueff (n) + αkBT = 0, (2.14)

where we expect α ≈ 1/4. In fact, provided that kBT/2 is the kinetic en-
ergy attributed to each degree of freedom of the water molecules, for planar
surfaces α = 1/4 because molecule are allowed to escape the potential well
only along half of the direction orthogonal to the surface. Obviously, when
the horizontal line U +αkBT = 0 does not intersect the function in Equa-
tion 2.6, δi = 0.

Therefore, based on the definition of δi, all the water molecules located
within such a distance are significantly affected by the van der Walls and
Coulomb interactions, whereas all the water molecules beyond the charac-
teristic length δi can escape the potential well generated by the solid wall.
In general, the quantity δi varies at each atom i (see Figure 2.19a). More-
over, (meaningless) non-zero values for δi can be found for bulk atoms. By
proper averaging over the surface, the mean characteristic length δ of the
overall solid surface (Figure 2.19d) can be derived as

δ =
∑N
i=1 δiSloc,i
Stot

, (2.15)

being Sloc,i and N the specific (per-atom) SAS for the atom i and the total
number of atoms, respectively. Note that the above formulation is general
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and applies to hydrophilic and hydrophobic surfaces, regardless of their
electrostatic surface charge. Also, both Stot and Sloc,i are readily com-
puted by GROMACS, once the geometry of the system is known (e.g. in
the form of a *.pdb file). It is also worth emphasizing that δ is a character-
istic length of the whole system of interest and can be straightforwardly
computed based on the geometry, Lennard-Jones force field parameters
and partial charges. The script for computing δ is based on Matlabr and
it is provided in Appendix C (WANA software).

In Figure 2.20, the water density profiles within a silica nanopore and
around a single magnetite NP are shown, where peaks denote the typical
water layers nearby a solid wall at the nanoscale [32, 88]. The abscissa
rn represents the radial distance from either the pore wall or the NP sur-
face. It is worth noting that despite the great difference in the potential
strength between silica and magnetite (minUeff,2/minUeff,1 ≈ 2.7), the
corresponding difference in terms of characteristic lengths is much more
moderate (δ2/δ1 ≈ 1.5). From the density profiles, magnetite clearly in-
duces a stronger perturbation in the nearby water molecules distribution.
However, except for a first thin water layer strongly adsorbed to the NP
surface (and accounted by δ2 > δ1), the amplitude of these perturbations
rapidly decays further away and become comparable in the remaining con-
fined volume for both cases. Similarly, even though there is a significant
difference in the potential minimum between Green Fluorescence Protein
and (5,5) CNT (minUeff,2/minUeff,1 ≈ 1.5), the difference between the
two characteristic lengths is negligible. The above observations suggest
that geometrical parameters could more significantly affect D as compared
to energetic parameters.

2.4.2. Scaling law

Finding a proper parameter θ (or equivalently δ) for scaling the self-
diffusivity of nanoconfined water in such a large variety of configuration
is not trivial. A few unsuccessful attempts to find a general scaling pa-
rameter for water self-diffusion coefficient have been tried, and they are
reported in Appendix A.

Since water mobility is impaired mostly in a thin layer next to the liquid-
solid interface with thickness δ, it is reasonable to assume that the observed
variation in the self-diffusion coefficient D is mainly associated with the
altered mobility of the water molecules within such a layer and the cor-
responding volume (volume of influence – Figure 2.20). Also, it has been
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Figure 2.19.: The characteristic length of nanoconfinement δ. (a) A local
characteristic length δi can be defined at any atom i (with
non vanishing Solvent Accessible Surface - SAS). (b) The
thermal energy level provides a criterion to (locally) define
the characteristic length δi, which typically varies along the
whole SAS. (c) The contribution to the total potential energy
of neighbors along a direction orthogonal to the SAS (line l
with local coordinate n) is computed. (d) A characteristic
length of nanoconfinement δ for the whole structure can be
defined by a weighted average of all δi. Figure adapted from
Reference [27].
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Figure 2.20.: Length of nanoconfinement δ of a nanopore and a nanoparti-
cle. (a) The length of nanoconfinement is reported for a silica
nanopore (δ1 ≈ 0.33 nm) and (b) for a magnetite nanopar-
ticle (δ2 ≈ 0.50 nm). For silica, only the first water layer
(with distance rw,1 from the pore axis) is located within the
volume of influence. For magnetite, both the first and the
second water layers (with distances rw,1 and rw,2 from the
particle center respectively) are found within the volume of
influence. Figure adapted from Reference [27].

already observed that the self-diffusion coefficient D reduces as the ratio
between the total interfacial area and the total volume occupied by water
increases. Based on such an evidence, a scaling parameter θ can be intro-
duced as the ratio between the total water volume of influence (Vin) and
the total volume accessible to the water molecules (Vw), thus

θ = Vin
Vw
≈
∑
p S

(p)
tot δ

(p)

Vw
. (2.16)
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This dimensionless parameter θ varies from 0 (bulk water case) to 1 (totally
confined water). The volume of influence (Vin) is the volume of water
that feels the van der Walls and Coulomb interactions and is therefore
influenced by the presence of solid walls. This volume is readily given
by

Vin ≈
∑
p

S
(p)
tot δ

(p), (2.17)

where S(p)
tot and δ(p) represent the total SAS and characteristic length of

the p − th particle, respectively. In Equation 2.17, the particle curvature
is neglected, thus this is accurate in the limit δ(p) � r(p), being r(p) a
representative radius of curvature of the p − th particle. However, if the
latter approximation is not properly fulfilled, a more accurate estimate
of the numerator at the right-hand side of Equation 2.17 can be easily
adopted.

Clearly, in cases of strong confinement (and high values of δ) with the
presence of several particles (e.g., the reported studies where a number of
spherical nanoparticles are loaded within cylindrical nanopores) a partial
overlap of the volumes of influence progressively becomes more probable.
However, we notice that volumes of influence due to different particles are
not additive. As a result, the quantity θ computed by Equation 2.16 is
only apparent, with the effective fraction of the volume of influence being
smaller than θ. The above issue is usually encountered in the framework
of Continuum Percolation Theory (CPT). Under the assumption of ran-
domly placed volumes, a classical result of CPT suggests that, in order to
properly recover the effective fraction, the apparent volume fraction should
be corrected as [177, 178]

θ
′

= 1− exp (−θ). (2.18)

Hence, the above correction applies in the presence of overlap of the vol-
umes of influence (e.g. several particles within the computational box).

As seen in Equation 2.16, the evaluation of θ is also influenced by the esti-
mation of the overall water volume in the considered nanoconfined config-
uration (Vw). For fully hydrated simple geometries, Vw can be computed
by considering the nominal size of a particle/pore. However, in general,
the volume Vw can be defined as:

Vw = Nsol/ρn, (2.19)

where Nsol and ρn are the number of water molecules within the compu-
tational periodic box and the average water number density, respectively.
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As a consequence, the volume occupied by a solvated particle p is Vp =
Vbox−Vw, where Vbox is the volume of the computational box. For complex
configurations (e.g. several nanoparticles surrounded by water or within
nanopores), the volume Vw can be estimated as Vw = Vout −

∑Np
p=1 V

(p)
p ,

where V (p)
p and Np are the volume of the p−th particle and the total num-

ber of particles, respectively, whereas Vout is the volume of the surround-
ing space (i.e. Vout = Vbox for particles not loaded in nanopores, while
Vout = Vpore for cases where particles are loaded within a pore whose vol-
ume, computed by Equation 2.19, is Vpore). The use of Equation 2.19 relies
upon the computation of the number density ρn. Using available packages
in standard molecular dynamics software, an estimate of the average value
for ρn can be easily computed after solvation of a dry geometry. Here, the
overall water volume is estimated in a few realizations of each configura-
tion of interest: several measures of ρn are collected and used to compute
an average value and the corresponding standard deviation. The latter
standard deviation generates uncertainties when computing the volume
Vw, and consequently uncertainties of the scaling parameter (horizontal
error bars in Figure 2.21). Alternative approaches based for instance on
Monte-Carlo integration can be also used to calculate Vw accurately.

Finally, assuming θ as the sole, independent variable for D, all computed
values relax within a narrow band around a linear curve (Figure 2.21) that
can be readily described by the relationship

D (θ) = DB

[
1 +

(
DC

DB
− 1
)
θ

]
, (2.20)

where DB is the self-diffusion coefficient of bulk water, while DC the self-
diffusion coefficient of totally confined water. Remarkably, Figure 2.21
presents data from 58 different cases analyzed in this work as well as
data available in the published literature. Here, despite the variety of the
considered configurations, particles and sources of the results, a simple
law is found to be sufficiently accurate to describe the phenomenon under
study, thus confirming that θ is indeed an important controlling parameter
under very diverse conditions and geometrical configurations. In order
to have a more explicit formulation of Equation 2.20, details about the
evaluation of DC are provided in the next Section.

Note that, in Figure 2.21, results from the literature are also reported
and compared with MD ones. First, by referring to the work of Milischuk
et al. [179], the corresponding scaling parameters for the reported silica
nanopores (with diameters 2, 3 and 4 nm) are computed. Second, the
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Figure 2.21.: Scaling behavior for the water diffusion coefficient D. The
self-diffusion coefficient of water has been calculated for over
60 different cases, including spherical nanoparticles in water,
water within nanopores with and without spherical nanopar-
ticles, proteins and carbon nanotubes in water. 58 cases are
the results of molecular dynamics simulations performed in
this Chapter, under isothermal conditions. Results from the
literature are also provided, for which the scaling variable θ is
computed. The solid and the dashed lines represent Equation
2.20 for DC = 0 and DC = 0.39× 10−9 m2 s−1, respectively.
Equation 2.20 accurately recovers simulation and literature
results with high coefficient of determination (R2 > 0.90).
The uncertainties on the value of D (vertical bars) refer to
the fitting of the mean square displacement; whereas the un-
certainties on the value of θ (horizontal bars) refer to the
estimate of the total volume accessible to water molecules
Vw. Figure adapted from Reference [27].

self-diffusivities evaluated by Liu et al. within five single walled carbon
nanotubes (CNTs) are also reported in Figure 2.21 [180]. Finally, the
results of water self-diffusivity around Myoglobin found by Makarov et al.
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are also analyzed, and the corresponding scaling parameter θ estimated
and reported in Figure 2.21 [181, 182]. Further details of those calculations
are reported in Reference [27].

2.5. Thermodynamics insights

In this Section, the scaled results reported in Figure 2.21 are interpreted
by a model based on experimental data of nanoconfined water.

Nanoconfined water shares some features with supercooled water, in that it
may not crystallize upon cooling below the melting temperature of TM ≈
273.15 K [17, 19]. Within the thin δ layer of water molecules next to
a solid surface, the thermodynamic state depends on the characteristic
confinement length scale, but only few experimental data are available
[24]. In particular, the specific heat capacity cp of nanoconfined water has
been experimentally measured in narrow silica nanopores, and its variation
with the temperature T is plotted in Figure 2.22a for a pore diameter of
1.7 nm [22]. This thermodynamic property depends on the diameter of
the nanopore; however, for very small nanopores (i.e. < 1.7 nm), the heat
capacity shows no meaningful peak, which suggests that no ice is present
(effectively too far from the virtual LLCP because of the surface spreading
pressure). In case of strong nanoconfinement, the heat capacity cp seems to
move gradually from a temperature-independent plateau, which starts at
room temperature, to a linear function of the temperature, which is typical
for ice, at very low temperature (i.e. <100 K). Using these experimental
data and assuming θ ≈ 1 for such a strong nanoconfinement conditions,
the energy variation associated with the transition from bulk to confined
water can be readily computed as

∆h = −
∫ T0

T

cpdT = f (T ) , (2.21)

with f (T0) = 0 at the bulk water temperature T0 = 300 K. From this,
the inverse function T = f−1 (∆h) can be derived as plotted in Figure
2.22b.

The volume occupied by the water molecules can be partitioned in two
regions, the one with higher molecular mobility (B), coinciding with the
bulk water, while the other with lower molecular mobility (C), including
the confined molecules in the water boundary layer at the liquid-solid
interface. Let hB be the molar enthalpy of the bulk region and hC ≤ hB

53



2. Scaling mass transport of nanoconfined water

the molar enthalpy in the adsorbed region. Clearly, the energy variation
associated with water nanoconfinement (i.e. energy of adsorption) can be
written as

∆h = hC − hB ≤ 0, (2.22)

where hB and hC are the energy of bulk and confined water, respectively
[25]. Since the confined region is typically limited to 1–2 layers of wa-
ter molecules (for all the considered structures, δ < 0.6 nm), it can be
assumed that ∆h ≈ −ε, which is the minimum of the effective potential
(Ueff ) generated by the solid surface. The function f−1 can be used to
compute the supercooled temperature of nanoconfined water correspond-
ing to the energy variation −ε, that is to say T = f−1 (−ε). In the work of
Chen and colleagues [17], the diffusion coefficient of water molecules under
strong nanoconfinement (i.e. within silica pores with diameter of 1.4 – 1.8
nm) is reported as a function of the temperature. From the latter experi-
mental data, the diffusion coefficient of totally confined water DC can be
readily expressed in the form DC = DBg

′ (T ) (Figure 2.22c). Therefore,
by combining the two sets of experimental data and knowing the value of
ε, the diffusion coefficient of totally confined water DC can be computed
as

DC/DB = g′ (T ) = g′
(
f−1 (−ε)

)
= g (−ε) . (2.23)

The ratio DC/DB is plotted in Figure 2.22d for the different 58 cases
analyzed here. For the iron oxide nanoparticles and carbon nanotubes,
which are characterized by a fairly strong effective potential (large ε),
DC ≈ 0. As the strength of the effective potential reduces, the value for
the diffusion coefficient of totally confined water increases. However, even
for the silica nanoparticles and nanopores, and for the proteins which are
characterized by lower ε, in our computations DC is at most 15% of DB .
We stress that the function g(∆h) is a property of water, and here we have
chosen to estimate it on the basis of measurements in silica nanopores only,
because such experiments are among the very few that are well documented
in literature.

In general, the volume of water can be partitioned into bulk (B) and
confined (C). Invoking the mixing rule, the average diffusivity D of the
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Figure 2.22.: Derivation of the function DC = g(−ε). (a) The specific
heat capacity cp (T ) of water confined in the narrowest silica
pore reported in Nagoe et al [22]. (b) By integrating the
latter function cp (T ), the energy of nanoconfinement is eval-
uated as ∆h = f (T ) = −

∫ T0
T
cpdT . (c) The inverse function

T = f−1(∆h) provides the temperature corresponding to a
given energy ∆h, hence it can be used in combination with
the experimental results from Chen et al. where the diffusion
coefficient (in narrow silica pores) is given as a function of T
[17]. (d) The ratio between the diffusion DC of fully confined
water and the bulk diffusion DC of water, DC/DB = g(∆h),
is reported and the corresponding values for all the consid-
ered configurations are shown, where g (∆h) < 0.15. Figure
adapted from Reference [27].

system can be presented as

D = limt→∞
1
6t

〈
‖−→ri (t)−−→ri (0)‖2

〉
i∈VB+VC

=

= 1
NB+NC limt→∞

1
6t
∑NB
i ‖−→ri (t)−−→ri (0)‖2+

+ 1
NB+NC limt→∞

1
6t
∑NC
i ‖−→ri (t)−−→ri (0)‖2 =

=
(

1− NC
NB+NC

)
DB + NC

NB+NCDC .

(2.24)
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where NC and NB are the number of water molecules in the confined and
bulk regions, respectively. Considering that NC = ρCVC/mw, being ρC
the water (mean) density in the adsorbed region and mw the mass of one
water molecule, it follows:

D (θ, ε) = DB

[
1 +

(
DC

DB
− 1
)

ρCθ

ρCθ + ρB (1− θ)

]
. (2.25)

Equation 2.25 is the fundamental one of the proposed model. Here, the
average diffusivity for the considered volume depends on a geometrical
parameter (θ) and an energetic parameter (ε). For the setups here consid-
ered, some simplifications are possible. First of all, the function

qι = ρCθ

ρCθ + ρB(1− θ) = 1 + ι

ι+ 1/θ , (2.26)

with ρC = (1 + ι)ρB , can be safely approximated as qι ≈ θ for the values
of ρC of interest. In fact, here a maximum value for ι is observed to be:
ι = 0.1 − 0.2 (e.g. based on the density profile shown in Figure 2.16e
for an SPIO particle), where the (average) value for ρC is computed by∫ r0+δ

r0
ρC4πr2dr∫ r0+δ

r0
4πr2dr

. In Figure 2.23 the exact function qι = 1+ι
ι+1/θ for two quite

large values of ι (ι = 0.25, ι = 0.5) are shown. The negligible deviations
between the above and the approximated function qι ≈ θ (even in such
conservative cases) support the above simplifying assumption.

Therefore, Equation 2.25 degenerates into Equation 2.20, demonstrating
that the diffusion of nanoconfined water can be interpreted invoking the
thermodynamics of supercooled water. Moreover, based on the above dis-
cussion on DC (see Figure 2.22d), for a large variety of nanoconfined sys-
tems the simplifying assumption DC/DB ≈ 0 can be safely made. In such
cases, the much simpler law

D (θ, ε) ≈ D (θ) = DB (1− θ) (2.27)

is readily derived, showing the direct linear dependence of the water dif-
fusion coefficient on the sole scaling parameter θ. Note that no empirical
factor is needed to derive D (θ), with the latter law matching the values
of the 58 MD simulations as well as 13 further configurations from the
literature with a quite good coefficient of determination (R2 = 0.93, solid
line in Figure 2.21). The dashed line in Figure 2.21 represents, instead,
Equation 2.20 with DC/DB = 0.15, corresponding to the largest value of
DC observed only in a few simulated cases (Figure 2.22d).

56



2.6. Conclusions

Figure 2.23.: Approximation of qι(θ) function. The function qι(θ) = 1+ι
ι+1/θ

is plotted against the θ scaling variable at two (conservative
/ large) values of ι (symbols). The approximating function
qι(θ) = θ (line) is also depicted.

2.6. Conclusions

In summary, the MD results and thermodynamics arguments reported in
this Chapter show that the self-diffusion coefficient of nanoconfined water
can be described by a unique dimensionless parameter θ, representing the
ratio between the confined and total water volumes. The coefficient D
scales linearly with θ and can be readily estimated, knowing the bulk (DB)
and totally confined (DC) self-diffusion coefficient of water. This has been
validated on the basis of almost sixty different cases and five different
geometrical configurations, including the analysis of the water molecule
dynamics within nanopores and carbon nanotubes, around nanoparticles
and proteins. The coefficient of diffusion for totally confined water is
quantified on the basis of the thermodynamics of supercooled water.

The proposed approach may be used to interpret experimental data col-
lected in different scientific disciplines on the dynamics of water molecules
under confined conditions, and to rationally design nanostructures for
modulating the diffusion of water. This is of relevance in nanomedicine,
nanotechnology as well as in more traditional engineering fields such as
heat transport, fluid dynamics, and energy storage.
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2. Scaling mass transport of nanoconfined water

As an example, in Chapter 4 theD(θ) scaling law is exploited for proposing
novel molecular sieves and sensors made out of carbon nanotube arrays,
whereas in Chapter 6 the relaxivity enhancement encountered in case of
nanoconfined contrast agents is successfully interpreted in the light of the
scaling nature of self-diffusivity of nanoconfined water.
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