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Abstract: - Problems caused by the increasing freight transportation demand in cities call for integrated solutions 
where all stakeholders’ efforts are coordinated, in order to both reduce the negative impacts of freight 
transportation, such as pollution and congestion, and carry no disadvantages to public and private operators. 
Among the solutions that can be implemented for these purposes, one of the most studied and applied one is the 
partial or total substitution of commercial vans with low emission vehicles. Previous studies have been focused 
mainly on the vehicle-related factors that make such adoption sustainable for the private stakeholders. However, 
there is a lack of contributions that also take into account the operational aspects of a city logistics system. In 
order to contribute to this literature, our work develops a System Dynamics model that assesses the adoption of 
low emission vehicles by analysing the most important operational factors typical of a freight distribution system. 
Results of the simulation and the sensitivity analyses demonstrate that the adoption of low emission commercial  
vehicles is feasible within a reasonable time period if some strategies are put in place. For instance, public 
contribution including both incentives to low emission vehicles and disincentives to traditional ones could 
effectively increase the adoption process, along with effective advertising campaigns about the operational 
benefits given by such distribution model.   
 
 
Key-Words: - System Dynamics; Diffusion model; Hybrid and electric commercial vehicles; Sustainable 
City Logistics; sensitivity analysis  
 

1 Introduction 
In recent years, problems caused by the increasing 
freight transportation demand within cities, such as 
pollution and congestion, have led both researchers 
and public authorities to concentrate their efforts on 
City Logistics (CL) initiatives. CL fosters the 
development of integrated logistics systems, where 
all the stakeholders are coordinated so to reduce 
negative impacts on citizens. In this sense, a CL 
model should be planned and managed with the aim 
of improving the quality of life of communities, 
while at the same time carrying no disadvantages to 
both public and private operators. In literature, there 
is a substantial amount of works focusing on the 
positive and negative impacts of urban freight 
distribution from an operational and economic point 
of view, taking into account the effects on both public 
and private stakeholders [1], [2].  

Several policies can be implemented to reduce the 
negative impacts of CL. For instance, restricting or 

even banning commercial vehicles from circulating 
in city centres might improve quality of life of 
citizens in a considerable way [3]. Other policies 
include for instance the installation of Intelligent 
Transportation Systems (ITS) for monitoring road 
traffic information, the use of reserved lanes for 
goods vehicles, load factor control and road pricing 
(e.g. congestion charge) for charging the entrance in 
restricted areas [4], [5].   

CL initiatives often include also the partial or total 
substitution of existing commercial vehicles with low 
emission ones, mainly electric or hybrid vehicles. 
However, in order to make these initiatives 
sustainable for private stakeholders, such as logistics 
service providers and other freight carriers, it is 
necessary to deeply understand the main factors for 
the adoption of these kind of vehicles. In such a 
context, [6] investigate the case of Amsterdam and 
notice that the efforts made by the municipality to 
stimulate the diffusion of electric vehicles, even by 



 

 

ceasing the incentives programme for Euro 6 
vehicles, are not necessarily backed up by the private 
companies that have adopted both the types of 
vehicles (i.e. Euro 6 and electric). This behaviour is 
a consequence of the technological gap that exists 
between Euro 6 vehicles, which by the way have a 
low environmental impact themselves, and electric 
vehicles. Moreover, [7] show that investing in 
electric commercial vehicles turns profitable only 
under certain operational conditions. In particular, 
they find that the most profitable strategy would be 
to purchase the vehicle while renting the batteries; in 
this case in fact the initial high cost of batteries does 
not counterweight the advantage of having lower 
variable costs for operating the vehicle. 

In order to contribute to the existing body of 
literature on the factors for adopting low emission 
vehicles, we propose a model that assess the diffusion 
of a CL system based on electric and hybrid vehicles 
in the city of Torino (Italy), by taking into account all 
the typical operational factors of a freight distribution 
system. As a matter of fact, current literature on CL 
lacks studies that analyse the diffusion of low 
emission commercial vehicles by focusing on the 
operational aspects of the associated logistics 
systems.  We compare economic and environmental 
costs and benefits of the proposed system with the 
existing CL system, which mostly uses traditional 
diesel powered vehicles. The results of the simulation 
and the consequent sensitivity analysis allow us to 
identify some factors that might drive the adoption 
and diffusion of this distribution system.  

We apply System Dynamics (SD) methodology to 
develop our model given its proven ability to 
represent and simulate the behaviour of systems like 
CL ones. The SD approach was originally introduced 
in the 1960s at the Massachusetts Institute of 
Technology to study the evolution over time of 
complex systems composed by numerous and 
heterogeneous variables and nonlinear connections 
between them [8], [9]. The variables and parameters 
of the model are based on reviews of similar case 
studies, interviews with the main stakeholders in the 
CL system at issue, as well as detailed data on the 
characteristics of the vehicles that were provided by 
a main manufacturer of commercial vehicles.  

The paper is structured as follows. In Section 2 we 
review relevant literature in SD modelling, in order 
to build significant knowledge on which aspects 
should be represented in a model of a CL system. In 
Section 3 we depict the main aspects of the 
methodology and provide the theoretical background 
for the selected diffusion model. The development of 
the model is presented in Section 4 and its calibration 
is proposed in Section 5. The results of the 

simulations and of the sensitivity analysis are 
discussed in Section 6. Then, we propose our 
interpretation of the results and some policy 
implications in Section 7. Finally, we draw some 
conclusions and identify further research 
opportunities in Section 8. 
 
 

2 Literature review 
We review SD models along two research fields that 
are relevant for our purpose: i) traffic related issues, 
such as congestion and pollution, along with 
mitigating strategies and policies, and ii) adoption 
factors for low emission vehicles. Our aim is twofold: 
first of all to highlight the advantages and limitations 
of the SD methodology to our field of research; 
second, to identify the main CL variables and 
relationships among them available in literature, 
which will form the background for developing our 
model. 

Some authors have focused on traffic congestion 
and on the consequent problem of polluting 
emissions. [10] developed a casual loop diagram (see 
Section 3) for the city of Accra, to investigate the 
congestion factors and their mutual relationships, 
along with the associated levels of emission. [11] 
simulate the behaviour of the parameters influencing 
pollution levels in Teheran and assess the 
effectiveness of some environmental policies. 
Among the policies investigated, the most effective 
ones are deemed to be technological improvement of 
vehicles and fuels and construction of public 
transportation infrastructures. Several SD models 
have been developed specifically with the aim of 
evaluating CO2 mitigating policies and strategies. 
Some models consider intercity private transport as 
their study object [12], [13]. In particular, [13] focus 
on American highways and test different policy 
scenarios aiming at reducing CO2 emission levels. 
Three policy-making strategies are investigated and 
found to be effective when combined together: 
increasing fuel efficiency, subsidizing the use of 
public transportation, and stimulating the adoption of 
electric vehicles. Strategic choices of private 
stakeholders are also examined through SD models. 
[14] qualitatively estimate the effectiveness of 
incentives to the use of alternative fuels vehicles by 
considering a timespan equal to the average vehicle 
lifetime. Besides the strategic decisions of 
manufacturers, the model also includes consumers’ 
preferences, industry dynamics, and the 
environmental impacts during the life cycle of a 
vehicle.  

We have found a wide presence in literature of SD 
models on the diffusion of low emission vehicles. 



 

 

[15] focus on the adoption of low emission heavy 
goods vehicles. The authors highlight the importance 
of having both a potential market and an efficient 
refuelling network for the adoption of such vehicles. 
[16] investigate the Colombian market and show that 
good communication is more effective than fiscal 
policies to encourage low emission private 
transportation. [17] study the diffusion and 
competition between low emission vehicles, in 
particular electric and hydrogen vehicles. They find 
that a critical mass should exist for adopting 
alternatives technologies and that this critical mass is 
dependent on economic and behavioural factors. 
Among them the word of mouth appears to be crucial 
in order to stimulate diffusion.  

Some authors have focused specifically on the 
diffusion of electric and hybrid vehicles. [18] build 
on the work of [17] to examine the adoption factors 
for hybrid plug-in vehicels and electric vehicles in the 
United Kingdom, considering a 40 year time span. 
The sensitivity analysis reveals that word of mouth, 
average life of the vehicles and emission rates could 
influence the adoption of such vehicles more 
consistently than other aspects such as incentives or 
specific features of vehicles. Lastly, the model 
developed by [19] takes into account fuel prices 
fluctuation, incentives, network effects (e.g. word of 
mouth), operational costs, and ownership costs in 
order to model the adoption of light hybrid and 
electric vehicles. 

However, we find a lack of works that investigate 
the diffusion of low emission vehicles by taking into 
account the main operational factors of the CL. In 
fact, SD models in this field usually focus on the 
impact of policies, operating and acquisition costs of 
the vehicles and other traditional adoption factors 
such as word of mouth or advertising. We aim 
therefore at integrating these factors together with the 
aspects that define urban freight distribution systems, 
such as freight demand, daily vehicle routes and 
distance travelled.  
 
 

3 Modelling diffusion with System 
Dynamics 
Several diffusion models can serve the purpose of 
developing a framework for assessing and identifying 
the socio-economic and cultural drivers that explain 
the adoption of an innovation, such as the Gompertz 
model, the logistic model, the Fisher-Pry model and 
the Bass model [20], [21], [22]. Among them, the 
Bass model [20] has been applied to various fields, 
such as retail, industrial and consumer goods, 
agriculture, education, and pharmaceutical.  

Our own model is based on the SD representation 
of  the Bass diffusion model developed by [9], which 
provides also the theoretical background for other 
existing models in the CL arena, mainly aimed at 
studying the adoption of low emission vehicles [17], 
[23]. Moreover, the Bass model has been chosen 
because of its qualities, namely simplicity and great 
capacity of predicting the behaviour of a system [24].  

From a methodological point of view, three main 
elements compose a SD model: Causal Loop 
Diagrams, Stock and Flow Diagrams, and equations 
representing the relationships between the variables. 
The Causal Loop Diagram (CLD) is a qualitative and 
graphical representation of variables and their mutual 
connections. These connections are depicted through 
feedback loops, both negative (balancing) and 
positive (reinforcing) ones. Feedback loops, or causal 
loop, are best defined as closed sequences generated 
by causes and effects triggered between variables. In 
particular, reinforcing loops connect variables that 
are positively linked: for each increase in one 
variable within the loop, the growth generated in the 
linked variables originates an additional increase in 
the first variable. The opposite process happens for 
balancing loops: the increase in the value of one 
variable causes changes in the values of the linked 
variables that then result in a decrease in the value of 
the first variable. It is worth noting that CLDs do not 
comprehend equations. Stock and Flow Diagrams 
(SFD) are made up of four funding elements: stocks, 
flows, auxiliary variables, and connectors. Stocks are 
cumulated quantities given by the difference between 
the inflow and the outflow of a process. They can 
represent accumulations of goods, money, customer 
orders, etc. over time. Flows can be physical, 
economical or informational quantities that either 
increase (inflows) or decrease (outflows) the value of 
a stock. Auxiliary variables can be either constant or 
variable over time. In the second case they are 
functions of stocks, flows or other auxiliary 
variables. Connectors represent the relationships 
between the previous mentioned three elements. 
Finally, the equations of a SD model can be either 
algebraic or differential in nature, they are 
independent from one another, and are functions of 
the state of the system in the previous time steps. 
They can define for instance the values of flows 
connecting two stocks or the stock levels.  
 
 

4 Model development 
In the next sections we present in detail the structure 
of our SD model with its main feedback loops.  

It is worth mentioning that since the SD approach 
does not allow flows of different elements (e.g. 



 

 

different kinds of adopters) to be easily modelled and 
simulated as flowing together out of the same stock 
(e.g. the total number of potential adopters), we 
assume that any commercial unit (C.U.), that is any 
retail store operating in the city of Torino, that adopts 
the new distribution system makes an exclusive 
choice on the type of vehicle. For this reason, two 
configurations of the model have been developed: the 
first one for the adoption of electric vehicles 
(variables marked with the prefix E) and the second 
one for the adoption of hybrid vehicles (variables 
marked with the prefix H). A second assumption has 
been made on the type of adopters. In fact, we 
investigated the adoption by the C.Us as a direct 
consequence of the adoption by logistics providers. 
Hence, the population stock of the diffusion model is 
composed by the potential C.Us that could be served 
by the new CL system. 

For developing the model we used Vensim DSS 
by Ventana Systems and we performed simulations 
over a time period of 120 months, with a time step 
equal to one month. 

 
 

4.1 The general structure of the model 
Our model presents a general structure subdivided 
into four parts:     
 Number of vehicles in the system and associated 

number of  kms travelled, which are estimated on 
the basis of some operational and demand factors 
depicted in section 4.2.  

 CO2 emissions savings. We consider only CO2 
emissions since the level of PM10 emissions is 
significantly lower. In fact, the PM10 emissions for 

traditional vehicles are on average 0.03 g/km, 
while the CO2 emissions are approximately equal 
to 275 g/km.  

 Total vehicle costs savings. They include the 
acquisition cost (amortization), the fuel cost, the 
maintenance cost (e.g. tire substitution) and the 
insurance cost. These savings stimulate the 
adoption of the new distribution system.  

 Charging station costs. The charging stations are 
not part of a public infrastructure because we 
assume that they are located within the premises 
of the logistics providers or the C.U. suppliers.  

The model also takes into account a possible 
public contribution for purchasing the vehicles and 
the charging stations. This contribution is dependent 
on the savings in the level of CO2 emissions 
generated by the CL system.  

The dynamics of the four parts of the model are 
represented via three main feedback loops which are 
detailed in section 4.5. Due to space constraints the 

present paper only describes the main aspects 
characterising the developed SD model. The 
complete model structure as well as the associated 
equations are available from the authors.  
 
 
4.2 The sub-models 
We developed three sub-models in order to provide a 
detailed and thorough representation of the general 
structure of the model. The first one is named   
“Electric/Hybrid TO BE” sub-model and assesses the 
vehicles diffusion by comparing the new system with 
the traditional one, whose operating variables are in 
turn estimated in the “AS IS Model (DIESEL)” sub-
model. Then, the “C.U. adoption Electric/Hybrid” 
sub-model studies the adoption process of the C.Us, 
and is directly linked to the first one. 
 
4.2.1 “Electric/Hybrid Model TO BE”  
As mentioned above, this sub-model aims at 
representing causes and effects that lie behind the 
diffusion of electric and hybrid vehicles within the 
new distribution system.  

The number of vehicles depends on a variety of 
factors such as:  
 Quantity of goods delivered, equal to the average 

monthly freight demand of each C.U. multiplied 
by the total number of adopters. The latter is 
taken from the “C.U. Diffusion Electric/Hybrid” 
sub-model. 

 The carrying capacity of the vehicle.  
 The monthly utilization factor of the vehicle, 

calculated in the model as the reciprocal of the 
number of monthly routes to serve the C.Us.  

The increase in the number of vehicles generates 
both a reinforcing and a balancing loop.  

As the number of vehicles in the new distribution 
system increases, the total number of kilometres they 
travel increases as well. If we consider a lower 
operating cost for hybrid and electric vehicles than 
for traditional vehicles, we can say that for each 
increase in the total amount of kilometres travelled 
savings are generated in comparison with the 
traditional system (from the AS IS sub-model). 
Consequently, such savings generate more adoptions 
of electric and hybrid vehicles, closing a reinforcing 
loop. 

On the contrary, the more the vehicles the more 
the total investment in charging stations leading to 
increased investment costs, which negatively affect 
the adoption (balancing loop). The higher the initial 
investment costs, for instance because of higher 
acquisition costs or lower public contributions, the 
higher the effect of the balancing loop and the 



 

 

disincentive to the adoption of the new distribution 
system. 

 
4.2.2 “C.U. Adoption Electric/Hybrid”  
This sub-model studies the dynamics of the adoption 
process of the C.Us.  

The diffusion sub-model is an elaboration of the 
SD representation of the Bass model developed by 
[9]. In our model, the adoption process takes place as 
a consequence of different factors:  
  The advertising performed by the vehicles 

themselves, which will carry a sign stating that 
they are part of an eco-friendly distribution 
system.   

 Formal advertising campaigns. 
 Word of mouth actions between adopters and 

non-adopters.  
 Observation of the cost savings generated by 

the new distribution system. 

As a matter of fact, non-adopters are stimulated to 
adopt in order to take advantage of the lower 
operating costs comparing with the traditional 
distribution system.  In this way, they are able to offer 
lower distribution fares to their customers, avoiding 
the possibility of decreasing their market share 
because of customers turning to the adopters of the 
new CL model. 

  
4.2.3 “AS IS Model (DIESEL)” 
The present sub-model was developed to make 
comparisons between the new and the traditional 
logistics system. It is indeed the simplest part of the 
SD model.  

In each time step the operating costs of a 
traditional system are calculated for the same number 
of vehicles and kilometres travelled as in the TO BE 
sub-model. Likewise, we calculated the taxation 
costs for traditional vehicles by adding a carbon tax 
and the ownership tax. Operating costs and taxation 
costs makes up for the total costs of the AS IS system. 
 
 
4.3 Analysis of the main feedback loops  
The adoption of the new distribution system through 
the obtained savings, in terms of both CO2 emissions 
and operating costs, gives rise to interesting feedback 
loops involving all the sub-models. For example, 
Figure 1 shows the positive impact of the savings in 
polluting emissions on the adoption. As Adoption 
from Savings in Cost increases, the number of 
adopting C.Us increases (C.U. Adoption Rate) 
generating more freight  and transportation demand 
in the distribution system (Total C.U. Demand; Total 

# Monthly New km). Consequently, when the number 
of kilometres travelled increases also the value of 
Total CO2 Saved grows in comparison with a 
traditional distribution system, increasing in turn the 
value of the variable Initial Public Contribution for 
Plugin. The higher this contribution the lower the 
cost carried  by private operators to buy charging 
stations (Plugin Total Cost) and the higher the 
savings (Savings in Investment Costs and Total Cost 
Savings). As a consequence of these economic 
benefits generated by the positive impact of the CO2 
emissions, Adoption from Savings in Cost increases, 
closing a reinforcing loop.        

 
Fig. 1: Effect of CO2 savings on adoption 

Figure 2 depicts the effect on the adoption of the 
variable Savings in Operating Costs. If this variable 
increases, the variables Total Cost Savings as well as 
Adoption from Savings in Cost increase. As 
mentioned above, the total transportation demand 
grows, together with the number of vehicles 
necessary (# Vehicles). If logistics providers and C.U. 
suppliers used the same number of traditional 
vehicles to fulfil the C.U. demand (D. # Vehicles), 
they would bear the costs related to the taxation of 
the vehicles, which include ownership taxation and 
carbon tax (D. Total Monthly Vehicle Taxes). Since 
these types of taxation are not due for electric and 
hybrid vehicles, the associated savings increase the 
value of the total Savings in Operating Costs, closing 
another reinforcing loop.  

During the first months of the simulation, savings 
in operating costs are lower than investment costs, 
hence the sum is negative and the adoption is lagging. 
As the number of C.Us and kilometres travelled 
increases, then savings turn positive, stimulating the 
adoption process. 
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Fig. 2: Effect of savings in operating costs 

 
 

5 Model calibration 
In order to carry out the simulation runs, it is 
necessary to provide the input values for the 
parameters that contribute to define the base case for 
the sensitivity analysis (Section 7). The values are 
here presented for each sub-model: we defined d 
them by crosschecking pertinent literature with data 
coming from a van  manufacturer and other logistics 
operators. Also, the numerical values in the next 
sections are related to parcel delivery since this is the 
product category we will focus on in the subsequent 
discussion of simulation and sensitivity analysis 
results.  
 
 
5.1 Input parameters of the sub-model 
“Electric/Hybrid Model TO BE” 
A first set of parameters is related to the C.Us and the 
necessary routes to serve them. The value of the 
variable Average Distance b/w C.U. has been 
estimated higher in case of C.Us located outside the 
city centre restricted area (ZTL - Zona a traffico 
limitato) than for C.Us located within ZTL because 
we assume a lower density of commercial 
establishments outside ZTL. In particular, this 
parameter is equal to 0.04 km/C.U. in ZTL and 0.9 
km/C.U. outside ZTL. On the contrary, the value of 
the parameter Setup Distance (average distance 
travelled by the vehicle from the depot to the first 
visited C.U. and from the last C.U. back to the depot) 
is higher in case of  ZTL than for the outside areas 
since warehouses are usually located further from 
city centres. Setup Distance is equal to 9.5 km when 
talking about ZTL C.Us and equal to 5.5 km for C.Us 
located outside ZTL. C.U. Monthly Demand is equal 
to 0.44 t/C.U., C.U. Monthly Delivery Factor is a 

dimensionless parameter and is equal to 4 for both 
type of vehicles. 

A second set of parameters relates to the features 
of the vehicles. Monthly Vehicle Utilization Factor is 
equal to 0.05 for electric vehicles and 0.06 for hybrid 
vehicles, while the vehicle load is 1.4 t/vehicle for 
both types. Operating Unit Cost is equal to 1.7 €/km 
for electric vehicles and 1.6 €/km for hybrid vehicles, 
and represents the operating cost of the vehicle before 
public contribution. Public Contribution Factor, 
meaning the contribution for the purchase of low 
emission vehicles, is equal to € 0.005 for each gram 
of CO2 saved.  

The third set of parameters considers CO2 

emissions. CO2 Emissions per km is estimated equal 
to 74.7 g/km for electric vehicles and 180 g/km for 
hybrid vehicles [25], while CO2 Emissions per km AS 
IS is set at 356.5 g/km. In our model we included both 
Well-to-Tank (WTT) and Tank-to-Wheel (TTW) 
emissions.   

The fourth and last set of parameters of this sub-
model is related to the plugin units:  

 Plugin Unit Cost: 7.000 €/unit 

 # Vehicle per Plugin Unit: 4 vehicles/unit 
(electric) and 8 vehicles/unit (hybrid) 

 Public Contribution Factor for Plugin: 0,001 
€/(g*unit).  
 

 

5.2 Input parameters of the sub-model “C.U. 
adoption Electric/Hybrid”    
The input values for the diffusion model have 
beenassumed to be the same for both the types of 
vehicles. For the definition of some standard 
parameters we refer to the Bass diffusion model 
representation by [9]. These values are set 
intentionally low in order not to overestimate the 
impact of the parameters on the adoption process, 
which would lead to unfeasible outcomes. 

The parameters Contact Rate, Adoption Fraction 
and Advertising Effectiveness (see [9] for the 
definition) have been estimated equal to 0.1, 0.04 and 
0.08 respectively (unit of measure 1/month). An 
additional parameter has been introduced: Emulation 
Contact Rate defines how frequently a potential 
adopter observes the benefits obtained by an adopter, 
and it is set equal to 0.14. 
The potential C.U. adopters are equal to 2,462 for the 
distribution system with electric vehicles and to 
9,538 for the one based on hybrid vehicles. These 
values are different because in the base case we 
assume that the distribution with electric vehicles 
takes place only in the ZTL while the distribution 
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with hybrid vehicles is adopted just by the C.Us 
located outside the ZTL. 
 
 
5.3 Input parameters of the sub-model AS IS 
Model (DIESEL) 
The variable D.Operating Unit Cost defines the 
operating cost for a diesel vehicle and it is estimated 
equal to 1.6 €/km. D. Ownership Vehicle tax and D. 
carbon tax are used to calculate the total taxation 
costs for a traditional diesel vehicle. The first one is 
computed on a monthly  basis and it is equal to 6.67 
€/vehicle; the second one is dependent on emission 
levels (g/km) and is not associated with  the actual 
use of the vehicle (e.g. kilometre travelled), it is also 
computed on a monthly basis and it is equal to 1.0 
(€*km)/(Vehicle*g). 
 
 

6 Simulation 
This section shows the results of the simulation runs 
of our SD model. In particular, we will focus on the 
adoption of the new distribution system in terms of 
C.Us and number of vehicles. Two scenarios are 
discussed: one scenario considers parcel delivery by 
electric vehicles within ZTL and the other shows the 
adoption of hybrid vehicles for delivering parcels to 
C.Us  located outside ZTL. 
 
 
6.1 ZTL: electric vehicles 
The entire stock of C.Us at issue (2,462) adopt the 
distribution system in a 51 month period, being 
served by a total number of 40 electric vehicles as 
shown in Figure 3.  

 

 
Fig.3: C.Us. and electric vehicles diffusion 

Simulation also shows that the total cumulated cost 
savings in ten years are around € 2 million (Figure 4).   

 

Fig. 4: Total cost savings for electric vehicles 
distribution  

 
 
6.2 Outside ZTL: hybrid vehicles 
In this scenario market saturation is reached in 47 
months.  The 9,538 C.Us are served by 181 hybrid 
vehicles, each of them performing on average 16 
monthly routes.  

This scenario achieves total cost savings equal to 
€ 10 million, turning positive from the fourth month 
of simulation on.  

 
 

7 Sensitivity analysis 
The aim of the sensitivity analysis is to reveal how 
the outcomes of the model vary when the main input 
parameters change. This objective is instrumental not 
only to understand the dynamics of the diffusion 
process and highlight the most important stimulating 
factors, but also to validate the robustness of the SD 
model at issue [9]. 

We will discuss how the main elements of our 
model, namely the number of vehicles, the number of 
C.Us and the total savings, change as we alter the 
input parameters. In the following sub-sections we 
therefore propose the results of the three most 



 

 

significant scenarios, which rely on both univariate 
and multivariate sensitivity analysis.  

The analysis was performed with Vensim DSS, 
which allowed us to vary the input parameters 
according to a selected probability distribution. The 
software executes a fixed number of simulations, 
usually 200, calculating the output variables for each 
value of the input parameter. In the next figures the 
blue line represents the base case, while the coloured 
bands are the confidence bands where the output 
values can be found with probabilities equal to 50%, 
75%, 95%, and 100%. 
    
                        
7.1 Multivariate sensitivity analysis on 
Advertising Effectiveness, Emulation Contact 
Rate e Contact Rate 
In this scenario we observe how the dynamics of the 
adoption process changes as the three parameters 
Advertising Effectiveness, Emulation Contact Rate 
and Contact Rate vary between 0 and 0.4 [1/month] 
according to a standard normal distribution. Figure 5 
presents the total cost savings trend for the new 
distribution system with electric vehicles. In the first 
months of the simulation period the advertising and 
the emulation effect drive the adoption and the 
associated savings. When a considerable number of 
C.Us has already started being served by the new CL 
system the word of mouth action becomes relevant in 
order to furtherly stimulate the diffusion.   

  
Fig. 5: Sensitivity analysis on Advertising 
Effectiveness, Emulation Contact Rate and Contact 
Rate on the total cost savings – electric vehicles 
 
 
7.2 Univariate sensitivity analysis on 
Monthly Vehicle Utilization Factor   
For this scenario we consider that the parameter 
Monthly Vehicle Utilization Factor follows a uniform 
distribution varying between 0.015 and 0.06.  
This range of values was calibrated so as to obtain a 
number of routes per day of between 0.76 and 3, 
plausible values for the product category at issue. 

With a Monthly Vehicle Utilization Factor equal to 
0.06 a total of 46 electric vehicles is necessary to 
serve all C.Us. On the contrary, if we consider 3 
routes per day (Monthly Vehicle Utilization Factor = 
0.015) we reach a total number of around 12 vehicles. 
For both the output variables analysed, namely the 
number of vehicles in the system and the total cost 
savings, we observe significant variation as the 
values of the selected input parameters change. For 
instance, total cost savings takes values ranging from 
around € 500,000 to € 2 million (Figure 6 and Figure 
7).  

 
Fig. 6: Sensitivity analysis of Monthly Vehicle 
Utilization Factor on the number of electric vehicles 

 
Fig. 7: Sensitivity analysis of Monthly Vehicle 
Utilization Factor on the total cost savings - electric 
vehicles 
 
 
7.3 Multivariate sensitivity analysis on Public 
Contribution Factor, Public Contribution 
Factor for Plugin and D. Carbon Tax Factor 
Through this sensitivity analysis we investigate the 
degree to which public contribution can support and 
influence the adoption of the new distribution system.  

All the three input parameters follow a standard 
normal distribution. Public Contribution Factor 
ranges from € 0 and € 0,009; Public Contribution 
Factor for Plugin ranges from € 0 and € 0.003, while 
D. Carbon Tax Factor can take values from € 0.1 to 
€ 2. 



 

 

As expected, we observed that the public 
contribution dependent on the CO2 emission 
reduction is able to lead to a significant increase in 
the total cost savings of the distribution system, 
because this contribution has a direct impact on the 
adoption from savings. Moreover, we noticed 
moderate indirect effects of the public contribution 
on word of mouth actions.  

The same sensitivity analysis was performed 
excluding the parameter D. Carbon Tax Factor. We 
find out that the positive effects mentioned above are 
weakened, meaning that public intervention is more 
effective on the adoption if it comprises both 
incentives for low emission vehicles and taxation for 
traditional vehicles. 
 
 

8 Discussion of results 
With our analysis we demonstrated that a new urban 
freight distribution system with low emission 
vehicles is feasible both for the city centre restricted 
area (ZTL) and for the whole city of Torino.  

In fact, by focusing on parcel delivery, in both 
areas the market saturation is reached within the 
simulation time horizon, and in particular within 51 
months for electric vehicles and 47 months for hybrid 
vehicles. Moreover, the model simulation reveals that 
the new distribution system could bring significant 
savings over ten years, equal to  around € 2 Mln for 
electric and € 10 Mln for hybrid vehicles  

Such  results are due to two main factors. First, the 
involved technology can be considered mature, in 
terms of costs (the difference in operating costs  
between low emission and traditional vehicles  is less 
than 10 cents per km) and in terms of operating time 
of the batteries that now allow for a whole trip to be 
completed without being recharged. Second, the 
involvement of the public sector could significantly 
support the diffusion of low emission freight 
distribution systems. In our model, such involvement 
includes both disincentives to traditional vehicles and 
incentives to low emission ones. In particular, we 
calculated the emission gap between the two types of 
vehicles: the higher this gap, the higher the public 
contribution. This leads private operators to adopt the 
new system. 

The sensitivity analyses performed show that the 
most determinant aspects for the diffusion process 
are the same for electric and hybrid vehicles. To be 
more precise, Advertising Effectiveness, Public 
Contribution, Initial Public Contribution for Plugin 
and Plugin Unit Cost are the most influential factors 
for stimulating the diffusion process. As a matter of 
fact, the total cost savings deriving from the 
distribution with low emission vehicles are moderate, 

because of the low gap in operating costs and the 
necessary investment in charging stations. This 
means that the economic aspect is less relevant to the 
diffusion process than the awareness of adopting a 
more eco-friendly freight distribution system.  

Therefore, we can state that this new freight 
distribution system should be implemented based on 
structured advertising campaigns aiming at 
delivering the real environmental and operational 
benefits of such a CL model, on a public intervention 
and on consolidated and mature technologies. Only 
with these pillars it is in fact possible to reach a 
complete diffusion in reasonable times.  
 
 

9 Conclusion 
This work studies the dynamics of the adoption of 
electric and hybrid commercial vehicles to perform 
freight distribution activities in the city of Torino 
(Italy). The analysis has been conducted through the 
SD approach since it appears to be very useful to 
describe the behaviour of a complex system and its 
associated variables. The adoption results to be 
influenced by the economic savings, the word of 
mouth and the green image that are related to the 
proposed sustainable logistics model. The parcel 
delivery supply chain has been considered. The 
outcomes show that the market saturation is achieved 
in about three years and the new CL system leads to 
a significant reduction in pollutant emissions.  The 
financial sustainability is ensured by the mature 
vehicle technology and by the public economic 
contribution. Thus, it can be stated that the actual 
environmental benefits of the systems that are 
promoted via advertising campaigns, the 
involvement of the public authorities, and the 
adoption of suitable technologies are the main 
aspects that can stimulate the diffusion. Future 
research efforts will be directed towards applying the 
SD model to other product categories.    
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