
28 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Automatic discovery of software attacks via backward reasoning / Basile, Cataldo; Canavese, Daniele; D’Annoville,
Jerome; De Sutter, Bjorn; Valenza, Fulvio. - ELETTRONICO. - ICSE 2015 International Workshop on Software
Protection (SPRO 2015):(2015). (Intervento presentato al convegno ICSE International Workshop on Software
Protection (SPRO 2015) tenutosi a Firenze nel 19 Maggio 2015) [10.1109/SPRO.2015.17].

Original

Automatic discovery of software attacks via backward reasoning

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/SPRO.2015.17

Terms of use:

Publisher copyright

©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2615485 since: 2021-01-27T18:03:53Z

IEEE Computer Society

Automatic discovery of software attacks via
backward reasoning

Cataldo Basile∗, Daniele Canavese∗, Jerome d’Annoville†, Bjorn De Sutter‡ and Fulvio Valenza∗
∗ Dipartimento di Automatica e Informatica, Politecnico di Torino, Torino, Italy

Email: {cataldo.basile, daniele.canavese, fulvio.valenza}@polito.it
† Gemalto, Technology & Innovation, Meudon, France

Email: jerome.d-annoville@gemalto.com
‡ Computer Systems Lab, Ghent University, Ghent, Belgium

Email: bjorn.desutter@elis.ugent.be

Abstract—Security risk management and mitigation are two
of the most important items on several companies’ agendas.
In this scenario, software attacks pose a major threat to the
reliable execution of services, thus bringing negative effects on
businesses. This paper presents a formal model that allows the
identification of all the attacks against the assets embedded in a
software application. Our approach can be used to perform the
identification of the threats that loom over the assets and help to
determine the potential countermeasures, that is the protections
to deploy for mitigating the risks. The proposed model uses a
Knowledge Base to represent the software assets, the steps that
can be executed to mount an attack and their relationships.
Inference rules permit the automatic discovery of attack step
combinations towards the compromised assets that are discovered
using a backward programming methodology. This approach is
very usable as the attack discovery is fully automatic, once the
Knowledge Base is populated with the information regarding the
application to protect. In addition, it has been proven highly
efficient and exhaustive.

I. INTRODUCTION

Nowadays, protecting the assets embedded in the software
is one of the most challenging tasks in our technology-centric
world. Examples of software assets are cryptographic keys
that, if extracted, may be used to gain illegitimate access to
services, impersonate users, emulate the application and abuse
of its algorithms and protocols (that may contain intellectual
properties).

Guaranteeing that the attackers cannot extract the assets is
nearly unfeasible as in unprotected applications the attackers
have white-box access to them. They have at their disposal
a wide range of so called Man-At-The-End (MATE) attacks,
which can be mounted against software stored and running
on a device under the full control of the attacker himself. In
MATE scenarios, the attackers have both the maximum system
knowledge and a very high degree of freedom. They have
the binaries of the target application and can execute static
and dynamic tools that allow a better understanding of the
code (e.g. by reconstructing higher level representations) and
its manipulation. Companies are making huge monetary and
resource investments to protect their software assets because
successful MATE attacks can cause high losses of money and
reputation for the firm.

To protect the software, companies have to perform some
tasks that fall under the umbrella of the risk analysis. All
threats need to be identified and their impact on the software
assets must be estimated to permit the decision of how to mit-
igate the risks, that is to determine the protections to deploy.
Hence, the first challenge to face is the threat identification
phase, that is, finding all the feasible attacks against the assets.
Discovering in a (quasi-)exhaustive way all the attacks that
loom over the assets is a (potentially) very long and complex
job, thus error prone, especially if done manually or with
minimal automatic support.

In this paper we propose a formal model which is able
to automatically determine the attacks against the assets.
In our approach, a Knowledge Base consist of a set of
facts about the software assets, the attack steps and their
relationships. A number of inferences permits the definition
of valid combinations of attack steps, named attack paths,
that describe the sequence of activities an attacker has to
perform for compromising one or more assets. The actual
attack paths identification is performed using an automatic
backward programming methodology, thus strongly easing
the attack identification phase. Once the Knowledge Base is
populated with the information about the application to protect,
the attack path discovery phase is fully automatic and requires
no human intervention at all. Furthermore, it is highly efficient
(it can found thousands of attack paths in few seconds) and
it is (theoretically) exhaustive, by finding all the attack paths
that can be executed using the steps modeled in the Knowledge
Base.

To the best of our knowledge, this is the first approach
that uses of logical inferences to build the threat model of an
application and to discover the attack paths. However, some
analogous counterparts exists, but they make use of different
approaches and usually are not specialized for software risk
analysis. For instance, Ekelhart et al. in [3] propose an
ontology-centric method for generic security risk management,
while Dahl et al. in [1] use Petri nets for modeling (but not
discovering) multi-agent and multi-stage attacks.

This paper is structured as follows. Section II briefly intro-
duces the terminology that we will use through the rest of the
paper. Section III presents a motivating example which we will

use to discuss and introduce our approach, while Section IV
discuss the formal model which is the core of our approach. In
Section V we show and discuss the results of the Prolog-based
implementation of or approach. Finally, Section VI contains a
list of related works and Section VII presents our conclusions
and the future work.

II. BACKGROUND

Before discussing in detail our approach and providing a
motivating example, we define here the terminology that will
be used through the rest of the paper.

A generic attack usually is performed by executing a series
of attack steps in a specific order to achieve a particular goal,
which is usually the disruption of a security property for a
particular software asset (e.g. a function, a code snippet or a
variable). We can identify two main security properties:

• confidentiality. A confidential asset is broken if the at-
tacker is able to read its content (e.g. the attacker was
able to locate in the code a function/code snippet);

• integrity. The integrity of an asset is compromised when
the attacker can freely modify its content (e.g. the attacker
can alter the value of a specific variable at will during the
run-time).

Given any two attack steps, they can related by:
• a sequential relationship, that is an attack step must

executed before (or after) another one;
• a concurrent relationship, that is two attack steps can be

executed in any order (or at the same time, if possible).
A traditional way to represent an attack and its steps is

through the mean of a graph such as the one depicted in Fig. 1.

goalstep1 step4

step3

step2

Fig. 1. An example attack graph.

The sequentiality is represented as a successor/predecessor
relationship between two graph nodes, otherwise we have a
concurrency relationship (for instance between siblings). For
example, step3 and step4 are sequential while step1 and step2
are concurrent.

We name attack path an ordered sequence of attack steps
that is used to mount a particular attack. For instance, the
attack paths represented in Fig. 1 are:

1) (step1, step2, step3, step4);
2) (step1, step3, step2, step4);
3) (step2, step1, step3, step4);
4) (step3, step1, step2, step4);
5) (step2, step3, step1, step4);
6) (step3, step2, step1, step4);
7) (step2, step3, step4, step1);
8) (step3, step2, step4, step1).

Graphs are a compact way to represent a set of attack
paths, but their simplicity can be misleading since finding all
the attack paths by visual inspection is very hard and clearly
unfeasible when the number of nodes increases.

III. OTP GENERATOR: A CASE STUDY

For the sake of clarity, we will first introduce our approach
by analyzing a concrete example. We will start by informally
discussing the scenario depicted in Fig. 2, then we will show
how to model it in a formal way and how to use such data to
infer a number of attack paths.

Client ServerWeb site

User

{seed, counter}OTP

PIN

Fig. 2. The OTP generator scenario.

In this example we have a client device that contains
an OTP (One-Time Password) generation application. These
disposable passwords can be used to log in to some service,
for instance an on-line banking web site or an e-mail account.

When the OTP generator is installed and runs for the
first time, it automatically connects to a server that sends
the client two (random) values (a seed and a counter). To
increase the security of the system, these two values are sent
encrypted so that only the client can internally decrypt them.
After that, whenever the client wants to generate an OTP, a
PIN (Personal Identification Number) is asked to the user for
blocking the access to unauthorized users. If the PIN check
is passed, an OTP is produced by using the values of seed
and counter. After that, the counter value is updated and the
system is ready again to produce another password.

In order to simplify the scenario and the formulas we then
assume that the following facts hold:

• the algorithm which generates the OTPs is designed in
a such way that it is impossible to predict the next OTP
by knowing the current password (and all the previous
ones);

• the attacker has a very high degree of expertise (which
in some real cases might not be true);

• the attacker has at his disposal every tool that he might
need (e.g. debuggers, memory scanners, . . .).

Since we are dealing with a MATE attack scenario, the
attacker has the full source code of the client at his disposal.
The ultimate goal of the attacker, in this case, is to be able to
use the OTP generation function every time he wants, thus
being able to impersonate a user from the web site point-of-
view. In order to achieve this, the attacker must be able to
accomplish three goals:
G1) avoid the PIN-based authentication, needed to access

the OTP generation function;
G2) know the value of counter and how it is updated;
G3) know the value of seed.

A. Goal G1: circumventing the PIN authentication

Since the OTP generation function is PIN-protected and
the attacker does not know it, he has to avoid somehow such
authentication phase.

A way to do it is to steal the PIN code from some legitimate
users (sub-goal G1a). One way to gain this knowledge is to
inject some malicious code in a victim’s client application so
that it will send the PIN to a server controlled by the attacker.
Implementing this strategy requires several attack steps:
〈1〉 a server where to store the PINs must be set up and a

suitable communication protocol must be designed;
〈2〉 the PIN verification function authF must be located in

the code;
〈3〉 the authF function must be modified in order to send

the PIN to the server.
An alternative to the previous approach is to bypass the

PIN verification function (sub-goal G1b), thus performing the
following steps:
〈4〉 the PIN verification function authF must be located in

the code;
〈5〉 the authF function must be statically modified in order

to skip the check;
〈6〉 or the authF function must be dynamically modified in

order to skip the check.

B. Goal G2: obtaining the counter and its update code

Knowing the value of counter is not enough for achieving
the goal G2 since its value is meaningful only for the current
OTP. In order to guess all the next passwords also the counter
update code must be known.

To gain these current value of counter the following steps
are necessary:
〈7〉 the OTP generation function otpF must be located in

the code;
〈8〉 the current counter value must be identified, by per-

forming a dynamic analysis of the otpF function.
And to gain the knowledge of the counter update code (sub-

goal G2b), the attacker has to:
〈9〉 the OTP generation function otpF must be located in

the code;
〈10〉 the counter update code in otpF must be located.

This can be done statically by inspecting the code by
searching some well-known patterns such as chains of
binary or arithmetic operations.

C. Goal G3: obtaining the seed

The last goal of the attacker is to know the value of the seed.
He can do this using two different attack strategies. In the first
one, the attacker can observe the application during the OTP
generation and find the location of seed in the memory. In the
second one, the attacker can try to intercept the seed during
the initial seed/counter provisioning phase.

The first methodology (sub-goal G3a) is analogous to the
procedure used to obtain the counter and its update function.
Hence, the required steps are:

〈11〉 the OTP generation function otpF , must be located in
the code;

〈12〉 the instructions that read seed in the OTP generation
function must be located;

〈13〉 the seed value must be read by performing a dynamic
analysis of the application.

On the other hand, the second approach is quite different.
We recall that the provisioning phase is performed only once
for each client when it performs the first connection after
that the application is installed. Therefore, on a untampered
application, an attacker can execute at most once provisioning
phase if he does not reinstall the application. In this case (sub-
goal G3b), the steps are:
〈14〉 the application must be reinstalled;
〈15〉 analyze the untampered application when it interacts

with the server in order to locate the seed decryption
function decryptF ;

〈16〉 read seed when it is returned by the decryption function
decryptF .

Executing the provisioning phase several times is however
a suspicious activity that the developers could and should
monitor. If the server tracks these suspicious activities, an
attacker can create a fake server which imitates the real one
without risking to be detected and use a different approach
(sub-goal G3c). First, to speed-up the attack time, the attacker
can also remove the limitation of only one provisioning
phase by modifying the client code by producing a tampered
application, for instance by:
〈17〉 locating the provisioning limitation function limitF ;
〈18〉 statically modify limitF in order skip the limitation

check;
〈19〉 or dynamically modify limitF in order skip the limita-

tion check.
After that the attacker can mount the attack as follows:
〈20〉 setup up a fake server which send a valid seed to the

client;
〈21〉 analyze the tampered application when it interacts with

the fake server to locate the seed decryption function
decryptF . Note that this step can be repeated several
times without any risk;

〈22〉 analyze the untampered application when it interacts
with the original server to read the seed knowing the
decryption function decryptF . Note that this step need
to be executed only once.

IV. FORMALIZING THE KNOWLEDGE BASE

In Section III we have seen several kind of attacks that
can be mounted against a sample application. Practically, we
have informally defined there a Knowledge Base with a set
of premises and conclusions that can be used to check if the
OTP generator can be attacked using a particular attack path.

In this section we will formalize the rules that are used
to infer the attack paths. Note that only a few rules about the
application to protect must be written by the user, while others
are generic enough to be valid in any context, hence they are

‘given’ by the system itself. We will call the former type of
rules user-defined rules.

A. Modeling the attacker goals

The first step is to specify the security properties of the
assets contained in a software component by a set of simple
user-defined rules. We will denote the confidentiality with C(·)
and integrity with I(·) in the following lines. To ease this
process, the software source code itself can be annotated with
some special tags or comments and then parsed to produce
the assertions. Regarding the OTP generator example, we can
easily verify that we need the following axioms

{
C(PIN) C(counter) C(seed) for the variables

I(authF) C(otpF) for the functions.

The basic idea is that the attacker will try to break the secu-
rity properties of the assets, that is, he will try to compromise
the confidentiality or integrity of at least one function, code
snippet or variable1. Therefore, he will try to achieve these set
of conclusions:

{ ¬C(x) }x ∪ { ¬I(y) }y.

For instance, in our example, we have

¬C(PIN) ⇐⇒ G1a

¬I(authF) ⇐⇒ G1b

¬C(counter) ⇐⇒ G2a

¬C(otpF) ⇐⇒ G2b

¬C(seed) ⇐⇒ G3.

Generally speaking, in order to break the confidentiality of
an asset x we must know its content, if it is a variable, or its
instructions, if it is a function or piece of code. On the other
hand, to break the integrity of an asset y we must be able
to change it, dynamically or statically. Formally, we can then
write the following generic rules

know(x)

¬C(x)
staticChange(y)

¬I(y)
dynamicChange(y)

¬I(y)
.

B. Modeling the attack steps

An attack step can be modeled as a rule of inference

P
C

id,

Where:
• id is an identifier of the attack step, that is its name;
• P is a set of premises, that is a set of facts that must be

true in order to trigger the attack step;
• C is a set of conclusions, that is a set of facts that hold

when after that the attack step is performed.

1Here, we are assuming a worst case scenario, where breaking at least one
security property is considered a successful attack.

For example, the attack step 〈5〉 (statically modify the
authentication function authF in order to skip the PIN check)
has one premise, know where authF is located in the code,
and one conclusion, a static modification of authF . So, we
can write:

know(authF)

staticChange(authF)
〈5〉.

Several attack steps, as the previous one, can be generalized,
so that the user does not need to describe every attack step in
detail. For instance, if we have located a function x, then we
can modify it statically or dynamically, so that:

know(x)

staticChange(x)

know(x)

dynamicChange(x)
.

These two parametric rules synthesize the attack steps 〈5〉,
〈6〉, 〈18〉 and 〈19〉.

It is also obvious that if we have located a function x, then
we know the code snippet y that it is contained in x and the
variable z that it access during the run-time when x is called,
so that we can write

know(x) y B x

know(y)

know(x) called(x) z B x

know(z)
.

These parametric rules synthesize the attack steps 〈8〉, 〈10〉,
〈12〉, 〈13〉, 〈16〉 and 〈22〉.

Nevertheless, some attack steps may be more specific and
may need some user-defined rules. For instance, this is the
case of the attack step 〈3〉, which can be modeled as

setup(pinServer) know(authF)

know(PIN)
〈3〉.

C. Modeling additional facts

Modeling the attacker goals and the available attack steps
is not enough to find all the attack paths. It is also needed
to model some other attack facts that are used by the more
complex attack steps.

For instance, we must specify that the otpF function
contains the counter update code snippet updateCode and that
it can access the seed and counter variables. By abuse of
notation we will write xBy when the code snippet x is in the
function y or when the variable x is accessed by the function
y. Then we can formally write the following five independent
user-defined rules (axioms):

counter B otpF updateCodeB otpF

seedB seedCode seedCodeB otpF

seedB decryptF
.

Furthermore, we must specify also when a function is
invoked. This is especially important in this case for the
provisioning phase, since it is executed only once per installa-
tion. We can use an execution counter exec, initially at zero,

that is also cleared when the application is reinstalled and
incremented by one each time the OTP generator is launched.
Only when the execution counter is one the provisioning phase
is executed. Formally, we can write:

reinstalled
exec← 0

launched
exec← exec+ 1

exec = 1
called(decryptF)

.

D. Inferring the attack paths

Using the notations introduced before we can rewrite the
informal discussion about the OTP generator in Section III
using the inference rules shown in Fig. 3.

Once a suitable Knowledge Base has been populated, it is
relatively simple to find all the attack paths by means of a
backward programming approach. That is, we adduce facts
that make the premises of the inferences that make the ultimate
goal true and we proceed backward from this goal until we
reach the axioms. Note that not all the inferences are attack
steps, as other types of inferences are needed to mediate the
relationship between different attack steps.

For instance we can infer that the sub-goal G1a is feasible
since

setup(pinServer)
〈1〉

know(authF)
〈2〉

know(PIN)
〈3〉

¬ C(PIN)

G1a

.

Thus, it obviously leads to the attack paths 〈1〉, 〈2〉, 〈3〉 and
〈2〉, 〈1〉, 〈3〉.

By defining the final goals and modeling the attack steps,
any inferential engine of choice can easily retrieve such attack
paths in an automatic way.

V. EXPERIMENTAL RESULTS

We have tested our approach by implementing the attack
steps described in the example scenario analyzed in Section III.
We have developed the knowledge base in Prolog and pack-
aged the whole system as a set of Eclipse plug-ins in order to
have a more user-friendly interface.

Table I shows several statistics related to the OTP generator
case. All the tests were executed on an Intel Core2 Duo P8600
@ 2.40GHz processor with 4GiB of memory under Debian
Linux (kernel 3.16.0) using SWI-Prolog 6.6.6 and Logtalk
3.00.0.

TABLE I
ATTACK PATHS STATISTICS.

Goal Time [ms] Attack paths Attack path length

Total Unique Min Average Max

G1a 584 1158 105 3 5.3 6
G1b 417 1158 105 2 5.3 6
G2a 331 642 73 2 5.4 6
G2b 3226 15158 73 2 12.6 19
G3 2837 5502 143 3 6.4 7

In the table we list, for each goal:
• the time needed to compute all the attack paths, in

milliseconds;
• the total number of attack paths found and the number

of unique attack paths found. When counting the unique
attack paths we consider equivalent two attack paths
which have exactly the same attack steps but with a
different order;

• the length of the attack paths, that is their attack steps
count. For this metric we show the minimum, average
and maximum values.

Even in this relatively simple example, our approach clearly
shows that searching all the feasible attack paths is definitely
beyond a purely manual process and that an automatic ap-
proach is needed, if a comprehensive risk analysis is required.

VI. RELATED WORKS

Due to the potentially harsh consequences of security
breaches, risk management is carefully addressed in corporate
scenarios, therefore, several works exist in this research field.
In literature, ontological systems, Petri nets, graphs, Web-
based systems and Bayesian networks have been already
proposed but in different contexts, as risk management is
mainly concerned with network security.

A. Ontology system

Ekelhart et al. proposed an ontology-based decision support
system for security risk management [3] for corporate net-
works. In this work, the authors make use of a methodology,
named AURUM (which is derived from ‘AUtomated Risk
and Utility Management’), to estimate risks, perform risk
reductions and estimate the costs of defense. The proposed
approach supports decision makers in risk assessment, risk
mitigation and safeguard evaluation.

Recently, Fenz et al. have introduced FORISK, an ex-
pert system for semi-automatically infer the security controls
needed to protect a system using the aforementioned ontologi-
cal systems [6]. FORISK is an extension of their previous work
[4], [5]. It addresses the problems of formal representation
of information security standards and domain knowledge, the
reliable risk determination, and finally the (semi-)automated
countermeasure identification.

B. Petri nets

Dalton et al. showed how a generalized stochastic Petri
net can be applied to attack trees requiring probabilistic
analysis [2]. The ultimate goal is automating the analysis
with a simulation tools that, once integrated with attack tree
methodologies, can also identify countermeasures.

Dahl et al. described a mechanism based on interval timed
colored Petri nets for the partial analysis of multi-agent and
multi-stage attacks [1]. These mechanisms should provide the
ability to identify vulnerabilities in network-based systems
where the manual identification is impractical.

Wu et al. used coloured Petri nets for hierarchical attack
modelling [9]. Attacks are categorized in two levels. The

setup(pinServer)
〈1〉

setup(fakeServer)
〈20〉

know(authF)
〈2〉, 〈4〉

know(otpF)
〈7〉, 〈9〉, 〈11〉

know(limitF)
〈17〉

reinstalled
〈14〉 reinstalled

exec← 0
launched

exec← exec+ 1
exec = 1

called(decryptF)

counter B otpF updateCodeB otpF seedB seedCode seedCodeB otpF seedB decryptF

setup(pinServer) know(authF)

know(PIN)
〈3〉

called(decryptF)

know(decryptF)
〈15〉

setup(fakeServer) launched

know(decryptF)
〈21〉

know(x)

staticChange(x)
〈5〉, 〈18〉

know(x)

dynamicChange(x)
〈6〉, 〈19〉

know(x) y B x

know(y)
〈8〉, 〈13〉, 〈16〉, 〈22〉

know(x) called(x) z B x

know(z)
〈10〉, 〈12〉

∀x ∈ { authF, limitF, decryptF, seedCode }, y ∈ { seed, counter, PIN }, z ∈ { updateCode, seedCode }

Fig. 3. The OTP generation Knowledge Base.

higher level presents all possible attack paths and the vulnera-
bilities exploited if they are successful, which in turn provides
sound foundations for attack cost estimation and network risk
measurement. In the lower level, all transitions presented in
the high level are described in detail with separate colored
Petri nets, which can facilitate the attack understanding and
enhance the effective identification of countermeasures.

C. Web-based system and Bayesian network
Xie et al. used Bayesian networks for security analysis

under uncertainty [10]. Authors claimed that their approach
may be used to improve enterprise security analysis. They
built the Bayesian network from a security graph model,
validated their modeling approach through attack semantics
and experimental studies, and finally showed that the resulting
system is not sensitive to parameter perturbation.

Poolsappasit et al. proposed a risk management framework
using Bayesian networks that enable a system administrator to
quantify the chances of network compromise at various levels
and to use this information to develop a security mitigation and
management plan [7]. Towards this end, the authors defined
a genetic algorithm capable of performing both single and
multi-objective optimization of the administrator‘s objectives.
The single objective analysis uses administrator preferences
to identify the optimal plan, while multi-objective analysis
provides a complete trade-off information before a final plan
is chosen.

Steffan et al. compared common methods for sharing secu-
rity related knowledge with regard to their ability to support
avoidance and discovery of vulnerabilities [8]. They suggested
a method of collaborative attack modeling that combines a
graph-based attack modeling technique with the ideas behind
a Web-based collaboration tool.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an approach and a formal
model that automatically identifies the attacks against the

assets embedded in a software application. The approach
builds the necessary logical framework to determine the attack
paths that can be mounted against the software assets using
backward programming. The tool that we implemented allows
the identification of the threats, i.e. the attacks, that loom over
the software assets, which is the first phase of a software risk
analysis. Our validation showed that the tool is usable and
useful for an exhaustive attack identification.

As future work, we will select more applications to protect
and populate the Knowledge Base with other attack steps and
maintain it up to date, to allow a better and larger practical
usability. In particular, we will extend the Knowledge Base
to enable the generalization of distributed attacks such as the
ones used to reach the goal G1a, thus decreasing the number
of user-defined rules.

The most important improvement in our approach consists
in adding in the Knowledge base the description of software
protections, their relations with the attacks they prevent and
the assets to which they relate. With this additional step, it will
be possible to identify the countermeasures that mitigate the
risks, and allow a complete risk analysis of software assets.

ACKNOWLEDGEMENT

The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement number 609734.

REFERENCES

[1] Ole Martin Dahl and Stephen D Wolthusen. Modeling and execution
of complex attack scenarios using interval timed colored petri nets. In
Information Assurance, 2006. IWIA 2006. Fourth IEEE International
Workshop on, pages 12–pp, Royal Holloway, UK, April 13 – 14 2006.

[2] GC Dalton, Robert F Mills, John M Colombi, and Richard A Raines.
Analyzing attack trees using generalized stochastic petri nets. In
Information Assurance Workshop, 2006 IEEE, pages 116–123, West
Point, NY, 2006.

[3] Andreas Ekelhart, Stefan Fenz, and Thomas Neubauer. Ontology-based
decision support for information security risk management. In Systems,
2009. ICONS’09. Fourth International Conference on, pages 80–85,
Guadeloupe, France, March 1–6 2009.

[4] Stefan Fenz and Andreas Ekelhart. Formalizing information security
knowledge. In Proceedings of the 4th international Symposium on
information, Computer, and Communications Security, pages 183–194,
Sydney, Australia, March 10– 12 2009.

[5] Stefan Fenz, Andreas Ekelhart, and Thomas Neubauer. Information
security risk management: In which security solutions is it worth
investing? Communications of the Association for Information Systems,
28(1):329–356, May 2011.

[6] Stefan Fenz, Thomas Neubauer, Rafael Accorsi, and Thomas Koslowski.
Forisk: Formalizing information security risk and compliance manage-
ment. In Dependable Systems and Networks Workshop (DSN-W), 2013
43rd Annual IEEE/IFIP Conference on, pages 1–4, Budapest, Hungary,
June 24–27 2013.

[7] Nayot Poolsappasit, Rinku Dewri, and Indrajit Ray. Dynamic security
risk management using bayesian attack graphs. Dependable and Secure
Computing, IEEE Transactions on, 9(1):61–74, January 2012.

[8] Jan Steffan and Markus Schumacher. Collaborative attack modeling. In
Proceedings of the 2002 ACM symposium on Applied computing, pages
253–259, Madrid, Spain, March 10 – 14 2002.

[9] Ruoyu Wu, Weiguo Li, and He Huang. An attack modeling based on
hierarchical colored petri nets. In Computer and Electrical Engineer-
ing, 2008. ICCEE 2008. International Conference on, pages 918–921,
Phuket, Thailand, Dicember 20 – 22 2008.

[10] Peng Xie, Jason H Li, Xinming Ou, Peng Liu, and Renato Levy. Using
bayesian networks for cyber security analysis. In Dependable Systems
and Networks (DSN), 2010 IEEE/IFIP International Conference on,
pages 211–220, Chicago, Illinois, June 28 - July 1 2010.

