
17 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Memcomputing NP-complete problems in polynomial time using polynomial resources and collective states / Traversa, F.
L.; Ramella, Chiara; Bonani, Fabrizio; Di Ventra, M.. - In: SCIENCE ADVANCES. - ISSN 2375-2548. - STAMPA. -
1:6(2015), pp. e1500031-e1500031. [10.1126/sciadv.1500031]

Original

Memcomputing NP-complete problems in polynomial time using polynomial resources and collective
states

Publisher:

Published
DOI:10.1126/sciadv.1500031

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2615026 since: 2015-07-16T09:42:25Z

American association for the advancement of science

2015 © The Authors, some rights reserved;

R E S EARCH ART I C L E
COMPUTER SC I ENCE

nsee American Association for

ment of Science. Distributed

ative Commons Attribution

rcial License 4.0 (CC BY-NC).

dv.1500031
Memcomputing NP-complete problems in
polynomial time using polynomial resources
and collective states
Fabio Lorenzo Traversa,1,2 Chiara Ramella,2 Fabrizio Bonani,2 Massimiliano Di Ventra1*

exclusive lice

the Advance

under a Cre

NonComme

10.1126/scia
Memcomputing is a novel non-Turing paradigm of computation that uses interacting memory cells (memproces-
sors for short) to store and process information on the same physical platform. It was recently proven mathemat-
ically that memcomputing machines have the same computational power of nondeterministic Turing machines.
Therefore, they can solve NP-complete problems in polynomial time and, using the appropriate architecture, with
resources that only grow polynomially with the input size. The reason for this computational power stems from
properties inspired by the brain and shared by any universal memcomputing machine, in particular intrinsic par-
allelism and information overhead, namely, the capability of compressing information in the collective state of the
memprocessor network. We show an experimental demonstration of an actual memcomputing architecture that
solves the NP-complete version of the subset sum problem in only one step and is composed of a number of
memprocessors that scales linearly with the size of the problem. We have fabricated this architecture using standard
microelectronic technology so that it can be easily realized in any laboratory setting. Although the particular ma-
chine presented here is eventually limited by noise—and will thus require error-correcting codes to scale to an
arbitrary number of memprocessors—it represents the first proof of concept of a machine capable of working with
the collective state of interacting memory cells, unlike the present-day single-state machines built using the von
Neumann architecture.
INTRODUCTION

There are several classes of computational problems that require time
and resources that grow exponentially with the input size when solved.
This is true when these problems are solved with deterministic Turing
machines, namely, machines based on the well-known Turing paradigm
of computation, which is at the heart of any computer we use now-
adays (1, 2). Prototypical examples of these difficult problems are those
belonging to the class that can be solved in polynomial (P) time if a
hypothetical Turing machine—named nondeterministic Turing
machine—could be built. They are classified as nondeterministic poly-
nomial (NP) problems, and the machine is hypothetical because, un-
like a deterministic Turing machine, it requires a fictitious “oracle” that
chooses which path the machine needs to follow to get to an appropriate
state (1, 3, 4). To date, it is not known whether NP problems can be
solved in polynomial time by a deterministic Turing machine (5, 6).
If that were the case, we could finally provide an answer to themost out-
standing question in computer science, namely, whether NP = P (1).

Recently, a new paradigm, named “memcomputing” (7), has been
advanced. It is based on the brain-like notion that one can process and
store information within the same units (memprocessors) by means of
their mutual interactions. This paradigm has its mathematical founda-
tions on an ideal machine, alternative to the Turing one, that was for-
mally introduced by two of the authors (F.T. and M.D.) and dubbed
“universal memcomputing machine (UMM)” (8). It has been proven
mathematically that UMMs have the same computational power of a
nondeterministic Turing machine (8), but unlike the latter, UMMs are
fully deterministic machines and, as such, they can actually be fabri-
cated. A UMMowes its computational power to three main properties:
1Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA.
2Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin,
Italy.
*Corresponding author. E-mail: diventra@physics.ucsd.edu

Traversa et al. Sci. Adv. 2015;1:e1500031 3 July 2015
intrinsic parallelism—interactingmemory cells simultaneously and col-
lectively change their states when performing computation; functional
polymorphism—depending on the applied signals, the same interacting
memory cells can calculate different functions; and finally, information
overhead—a group of interacting memory cells can store a quantity of
information that is not simply proportional to the number of memory
cells itself.

These properties ultimately derive from a different type of architec-
ture: the topology of memcomputing machines is defined by a network
of interacting memory cells (memprocessors), and the dynamics of
this network are described by a collective state that can be used to
store and process information simultaneously. This collective state is
reminiscent of the collective (entangled) state of many qubits in quan-
tum computation, where the entangled state is used to solve efficiently
certain types of problems such as factorization (9). Here, we prove
experimentally that such collective states can also be implemented
in classical systems by fabricating appropriate networks of mempro-
cessors, thus creating either linear or nonlinear combinations out of
the states of each memprocessor. The result is the first proof of con-
cept of a machine able to solve an NP-complete problem in polyno-
mial time using collective states.

The experimental realization of the memcomputing machine
presented here, and theoretically proposed in (8), can solve the NP-
complete (10) version of the subset sum problem (SSP) in polynomial
time with polynomial resources. This problem is as follows: if we con-
sider a finite set G ∈ Z of cardinality n, is there a non-empty subset K ∈ G
whose sum is a given integer number s? As we discuss in the following
paragraphs, the machine we built is analog and hence would be scal-
able to very large numbers of memprocessors only in the absence of
noise or using some error-correcting codes. This problem derives from
the fact that in the present realization, we use the frequencies of the
collective state to encode information, and to maintain the energy of
1 of 8

R E S EARCH ART I C L E
the system bounded, the amplitudes of the frequencies are dampened
exponentially with the number of memprocessors involved. However,
this latter limitation is due to the particular choice of encoding the in-
formation in the collective state and could be overcome by using other
realizations of digital memcomputing machines and using error-correcting
codes. For example in (8), two of the authors (F.T. and M.D.) proposed a
different way to encode a quadratic information overhead in a network
of memristors that is not subject to this energy bound.

Another example in which information overhead does not need ex-
ponential growth of energy is, again, quantum computing. For instance,
a close analysis of Shor’s algorithm (11) shows that the collective state of
the machine implements all at once (through the superposition of quantum
states) an exponential number of states, each one with the same prob-
ability that decreases exponentially with the number of qubits involved.
Successively, the quantum Fourier transform reorganizes the probabil-
ities encoded in the collective state and “selects” those that actually solve
the implemented problem (the prime factorization in the case of the Shor’s
algorithm). It is worth noticing, however, that quantum computing algo-
rithms also necessarily require error-correcting codes for their practical
implementation because of several unavoidable sources of noise (9).

Here, it is also worth stressing that our results do not answer the
NP = P question, because the latter has its solution only within the
Turing machine paradigm: although a UMM is Turing-complete (8),
it is not a Turing machine. In fact, (classical) Turing machines use states
of single memory cells and do not use collective states. Finally, we mention
that other unconventional approaches to the solution of NP-complete
problems have been proposed (6, 12–16); however, none of them re-
duces the computational complexity or keeps the physical resources from
growing exponentially with the size of the problem. On the contrary, our
machine can solve an NP-complete problem with only polynomial re-
sources. As anticipated, this last claim is strictly valid for an arbitrary
large input size only in the absence of noise.
RESULTS

Implementing the SSP
The machine we built to solve the SSP is a particular realization of a
UMM based on the memcomputing architecture described in (8);
namely, it is composed of a control unit, a network of memprocessors
(computational memory), and a readout unit, as schematically depicted
in Fig. 1. The control unit is composed of generators applied to each
memprocessor. The memprocessor itself is an electronic module fabri-
cated from standard electronic devices, as sketched in Fig. 2 and detailed
in Materials and Methods. Finally, the readout unit is composed of a
frequency shift module and two multimeters. All the components we
have used employ commercial electronic devices.

The control unit feeds the memprocessor network with sinusoidal
signals (that represent the input signal of the network) as in Fig. 1. It is
simple to show that the collective state of the memprocessor network
of thismachine (which can be read at the final terminals of the network)
is given by the real (up terminal) and imaginary (down terminal) part of
the function

gðtÞ ¼ 2−n∏
n

j¼1
ð1þ exp½iwj t�Þ ð1Þ

where n is the number of memprocessors in the network and i the
imaginary unit [see Materials and Methods or (8)]. If we indicate with
Traversa et al. Sci. Adv. 2015;1:e1500031 3 July 2015
aj ∈ G the jth element (integer with sign) of G, and we set the frequen-
cies as wj = 2paj f0, with f0 (fundamental frequency) equal for any
memprocessor, we are actually encoding the elements of G into the
memprocessors through the control unit feeding frequencies. There-
fore, the frequency spectrumof the collective state (1) [ormore precisely
the spectrumof g(t)− 2−n] will have the harmonic amplitude, associated
with the normalized frequency f=w/(2pf0), proportional to the number
of subsets K ⊆ G, whose sum s is equal to f . That is, if we read the
spectrum of the collective state (1), the harmonic amplitudes are the
solution of the SSP for any s. From this first analysis, we can make the
following conclusions.

Information overhead. The memprocessor network is fed by n
frequencies encoding the n elements of G, but the collective state (1)
encodes all possible sums of subsets of G into its spectrum. It is well
known (5) that the number of possible sums s (or equivalently the
scaled frequencies f of the spectrum) can be estimated in the worst
case as O(A), where A ¼ max½∑aj>0 aj;−∑aj<0 aj� . Obviously A (some-
times called the capacity of the problem) has exponential growth (17)
on the minimum number p of bits used to represent the elements of G
[p is called precision of the problem, and we have A = O(2p), if we take
the precision in bits]. Thus, the spectrum of the collective state (Eq. 1)
encodes an information overhead that grows exponentially with the
precision of the problem.

Computation time. The collective state (Eq. 1) is a periodic func-
tion of t with minimum period T = 1/f0 because all frequencies involved
in Eq. 1 are multiples of the fundamental frequency f0. Therefore, T is
the minimum time required to compute the solution of the SSP within
the memprocessor network, and so it can be interpreted as the compu-
tation timeof themachine.However, this computation time is independent
of both n and p.

Energy expenditure. The energy required to compute the SSP can
be estimated as that quantity proportional to the energy of the col-
lective state in one period E ¼ ∫T0 jgðtÞj2dt . By using Eq. 1, we have
E ≤ ∫T0 dt ≤ 1=f0, so the energy needed for the computation is also
independent of both n and p. It is worth remarking here that, to keep
the energy bounded, all generators have the coefficient 0.5 (see Fig. 1)
and then introduce (see Materials and Methods) the factor 2−n in Eq. 1.
This means that all frequencies involved in the collective state (Eq. 1)
are dampened by the factor 2−n. In the case of the ideal machine, that
is, a noiseless machine, this would not represent an issue because no
information would be lost. On the contrary, when noise is accounted
for, the exponential factor represents the hardest limitation of the
experimentally fabricated machine, which we reiterate is a technolo-
gical limit for this particular realization of a memcomputing machine
but not for all of them.

Reading the SSP solution
With this analysis, we have proven that the UMM represented in Fig. 1 can
solve the SSP with n memprocessors, a control unit formed by n + 1
generators and taking a time T and an energy E independent of both n
and p. Therefore, at first glance, it seems that this machine (without
the readout unit) can solve the SSP using only resources polynomial
(specifically, linear) in n. However, we need one more step: we have to read
the result of the computation. Unfortunately, we cannot simply read the
collective state (Eq. 1) using, for example, an oscilloscope and perform-
ing the Fourier conversion. This is because the most optimized algorithm
to do this [see Materials and Methods and (8)] is exponential in p, that
is, it has the same complexity of standard dynamic programming (17).
2 of 8

R E S EARCH ART I C L E
However, a solution to this problem can be found by just using
standard electronics to implement a readout unit capable of extracting
the desired frequency amplitude without adding any computational bur-
den. In Fig. 1, we sketch the readout unit we have used. It is composed
of a frequency shift module and two multimeters. The frequency shift
module is, in turn, composed of two voltage multipliers and two sinus-
oidal generators as depicted in Fig. 2, and it works as follows. If we
connect to one multiplier the real part of a complex signal v(t) and to
the other multiplier the imaginary part, we obtain at the outputs vup(t) =
Re[v(t)](exp[iwst] + exp[−iwst])/2 and vdown(t) = − iIm[v(t)](exp[iwst]) −
exp[−iwst]/2. The sum and difference of the two outputs are vup + vdown =
Re[v(t)exp[−iwst]] and vup − vdown = Re[v(t)exp[iwst]]. From basic
Fourier calculus, v(t)exp[−iwst] and v(t)exp[iwst] are the frequency
spectrum shifts of ws/(2p) and −ws/(2p) for the function v(t), respec-
tively. Consequently, if we read the DC voltages VDCup and VDCdown of
vup(t) and vdown(t) using two multimeters and perform the sum VDCupþ
VDCdown and difference VDCup− VDCdown , we obtain the amplitudes Vs
Traversa et al. Sci. Adv. 2015;1:e1500031 3 July 2015
and V−s of the harmonics at the frequencies ws /(2p) and −ws /(2p),
respectively (see Fig. 1).

Hence, by feeding the frequency shift module with the Re[g(t)] and
Im[g(t)] from Eq. 1, reading the output with the two multimeters, and
performing the sum and difference of the final outputs, we obtain the
harmonic amplitude for a particular normalized frequency f according
to the external frequency ws of the frequency shift module. In other
words, without adding any additional computational burden and time,
we can solve the SSP for a given s by properly setting the external fre-
quency of the frequency shift module.

Notably, if we wanted to simulate our machine by including the
readout unit, the computational complexity would be O(2p) [close
to the standard dynamic programming that is O(n2p) (17)]. From
the Nyquist-Shannon sampling theorem (18), the minimum number
of samples of the shifted collective state (that is, the outputs of the
frequency shift module) must be equal to the number of frequencies
of the signal [in our case of O(2p)] to accurately evaluate even one of
0.5[(1+cos(ω1t)]

~
0.5[1+cos(ω2t)]

~
0.5[1+cos(ω3t)]

~
0.5[1+cos(ω4t)]

~
0.5[1+cos(ω5t)]

~
0.5[1+cos(ω6t)]

~

1
V

Memprocessor
Internal collective state

Frequency

shift
module

- ωs/2π ωs/2π

~

Multimeters

Vs=VDCup
+VDCdown

V–s=VDCup
VDCdown

Control unit

Read-out unit

~
cos(ωst) sin(ωst)

Fig. 1. Scheme of the memcomputing architecture used in this work to solve the subset sum problem. The central spectrum was obtained by the
discrete Fourier transform of the experimental output of a network of six memprocessors encoding the set G = {130, −130, −146, −166, −44, 118} with

fundamental frequency f0 = 100 Hz.
3 of 8

R E S EARCH ART I C L E
the harmonic amplitudes (19). The last claim can be intuitively seen
from this consideration: the DC voltage VDCup must be calculated in
the simulation by evaluating the integral VDCup ¼ T−1∫T0 vupðtÞdt, and
this requires at least O(2p) samples for an accurate evaluation (18). On
the other hand, the multimeter of the hardware implementation, being
essentially a narrow low-pass filter, performs an analog implementa-
tion of the integral over a continuous time interval T (independent of
n and p), directly providing the result and thus avoiding the need to
sample the waveform and compute the integral.

In Fig. 3, the absolute value of the spectrum of the collective state
for networks of four, five, and six memprocessors is compared with
the theoretical results given by the spectrum of Eq. 1 (see Materials
and Methods for more details on the hardware and measurement pro-
cess). Non-idealities of the circuit and electronic noise in general are
the sources of the small discrepancies with respect to the theoretical
results. Nevertheless, the machine we fabricated demonstrates that
using the collective state of all memprocessors, instead of the uncou-
pled states of the individual memory units, we can carry out difficult
computing tasks (NP-complete problems) with polynomial resources.
Finally, in Table 1, the measurements at the readout circuit are listed
for different harmonics for a six-memprocessor network. The preci-
sion is up to the third digit as can be seen from the comparison with the
theoretical results.
Traversa et al. Sci. Adv. 2015;1:e1500031 3 July 2015
DISCUSSION

Scalability and error correction
As anticipated, the machine we have built would ultimately be limited
by unavoidable noise sources, thus requiring error-correcting codes.
However, we prove here that under the assumption of low noise, ad-
ditive white noise does not affect the machine output. Therefore, only
non-idealities of the devices and colored noise represent a limit for this
particular machine. To analyze this issue, we first consider the simplest
case of independent white Gaussian additive noise sources for each
memprocessor. Under this hypothesis, each memprocessor has com-
plex noisy input of the form vjin ¼ 2−1ð1þ exp½iwjt�Þ þ ejðtÞ . When
we connect two memprocessors, the output at the terminals of the
second memprocessor is given by

v2out ¼ v1 inv2 in ¼ 2−2ð1þ eiw1 tÞð1þ eiw2tÞþ
2−1ð1þ eiw1tÞe2ðtÞ þ 2−1ð1þ eiw2 tÞe1ðtÞ þ e1ðtÞe2ðtÞ

: ð2Þ
If the noise term is small enough (low noise components), the
quantity e1(t)e2(t) is negligible compared to the other terms and
can be neglected. Following the same steps, the network composed
of n memprocessors has collective state (under low noise conditions)
of the form

gðtÞ ¼ vnout ¼ 2−n∏
n

j¼1
ð1þ eiwj tÞþ

2−nþ1 ∑
n

k¼1
ekðtÞ∏

j¼1
j≠k

n

ð1þ eiwj tÞ ¼ gS ðtÞ þ gN ðtÞ ð3Þ
Using Eq. 3, we can calculate the signal-to-noise ratio as the ratio
between the power of the signal and the power of the noise. The signal
power (neglecting noise) is simply given by S ¼ E ¼ ∫T0 jgS ðtÞj2dt ≈ T ,
and the noise power is given by N ¼ ∫T0E½jgN ðtÞj2�dt, where E[·] is the
expectation value operator. Because the noise sources are independent,
we have E½jgN ðtÞj2� ≈ ∑nk¼1E½jekðtÞj2�, and, since the sources are white,
E[|gN(t)|

2] is independent of time. Finally, assuming E[|ek(t)|
2] = E[|ej(t)|

2]
for any j and k, we have E[|gN(t)|

2] ≈ TnE[|e|2], and the signal-to-noise
ratio reads
S

N
≈

1

nE½jej2� : ð4Þ

However, the noise being white, the noise power spectrum, ac-
cording to Eq. 3, is distributed among the different harmonics with
weights given by the coefficients in Eq. 3 that are exponentially de-
creasing with n. Therefore, the signal-to-noise ratio for each harmonic
has the same order of magnitude of Eq. 4, and hence, the white noise
(under conditions of low noise) does not affect the machine when we
scale it up.

On the other hand, non-idealities, colored and 1\f noise and other
non-Gaussian noise sources, have spectra that are not distributed on
the harmonics as white noise. For example, the 1\f noise accumulates on
the output harmonic during the process of measurement. Nevertheless,
if the total noise can be considered low, Eq. 3 is still valid but the ratio
(Eq. 4) should be computed on a frequency by frequency basis. In this
case, we can apply Shannon’s noisy-channel coding theorem (20) with
our machine interpreted as a noisy channel with capacity C. The input
–ω–1
d
dt
_

v

v1

v2

vv1+ ω–1vv2
.

vv2 – ω –1vv1
.

cos(ωst)

Re[v]
Re[v] cos(ωst)

sin(ωst)

Im[v]
Im[v] sin(ωst)

A

B Frequency shift module

Fig. 2. Schematic of the modules. (A) Simplified schematic of the mem-
processor architecture used in this work to solve the SSP (more details can

be found in Materials and Methods). (B) Schematic of the frequency shift
module.
4 of 8

N
s

R E S EARCH ART I C L E
is given by the control unit, and the output is the collective state g(t).
The Shannon theorem then states that for any e > 0 and R < C, there
exists a code of length N and rate ≥ R and a decoding algorithm, such
that the maximal probability of block error is ≤e.

In addition, using the Shannon-Hartley theorem (21) we have for
frequency-dependent noise, the capacity C can be calculated as
C ¼ ∫
B

0 log2 1þ Sð f Þ
Nð f Þ

� �
df ; ð5Þ

where B is the bandwidth of the channel. In our case, the lower bound
of B can be taken as linear in the number of memprocessors, that is,
Traversa et al. Sci. Adv. 2015;1:e1500031 3 July 2015
B = B0n, with B0 a constant, and S/N is given by Eq. 4. We finally have
(for large n)

C ≈ ∫
B

0 log2 1þ 1

nE½e2ð f Þ�
� �

df≈
B0

E½e2�ln2
where E½e2�

−1

¼ limn→∞∫
nB0

0 E½e2ð f Þ�−1df
⋅ ð6Þ

We therefore conclude that our machine compresses data in an
exponential way with constant capacity. At the output, we have an
exponentially decreasing probability of finding one solution of the
SSP when we implement the algorithm by brute force, that is, without
any error-correcting coding. However, from the Shannon theorem, there
exists a code that allows us to send the required information with bounded
error. The question then is whether there is a polynomial code that
accomplishes this task. We briefly discuss the question here heuristically.
If our machine were Turing-like, then the polynomial code could exist
only if N P = P. Instead, our machine is not Turing-like, and the channel
can perform an exponential number of operations at the same time.
Because this is similar to what quantum computing does when solving
difficult problems such as factorization, and we know that for quan-
tum computing polynomial correcting codes do exist (9), we expect
that similar coding can be applied to our specific machine as well.
CONCLUSION

In summary, we have demonstrated experimentally a deterministic
memcomputing machine that is able to solve an N P -complete pro-
blem in polynomial time (actually in one step) using only polynomial
resources. The actual machine we built clearly suffers from technological
limitations, that impair its scalability due to unavoidable noise. These
limitations derive from the fact that we encode the information directly
0
0

1

2

0
0

1

2

N
um

be
r

of
 s

ub
se

ts

0 10 20 30 40 50
0

−50 −40 −30 −20 −10

1

2

Frequency (kHz)
Fig. 3. Spectra of the internal collective state of three different networks with fundamental frequency f0 = 100 Hz. The four-memprocessor
network encodes the set G = {130, −130, −146, −166}. The five-memprocessor network encodes G = {130, −130, −146, −166, −44}. The six-memprocessor

network encodes G = {130, −130, −146, −166, −44, 118}.
Table 1. Measurements from the readout unit of Fig. 1 for a six-
memprocessor network with fundamental frequency f0 = 100 Hz encod-
ing the set G = {130, −130, −146, −166, −44, 118}. In the fifth and sixth
columns, the voltages are respectively given by Vs = 26(VDCup+ VDCdown) and
V−s = 26(VDCup+ VDCdown). The last two columns are the analytical results.
|S|

ws/(2p)
(kHz)
VDCup

(mV)

VDCdown

(mV)

Vs

(V)

V-s

(V)
No. of
subset
sum s
No. of
subset
−s

o. of
ubset
−s
0
 0
 31.7
 0
 1.02
 1.02
 1
 1
74
 7.4
 15.3
 15.0
 1.94
 0.02
 2
 0
130
 13.0
 −0.2
 14.9
 0.94
 −0.97
 1
 1
146
 14.6
 14.8
 15.8
 −0.06
 1.96
 0
 2
248
 24.8
 7.6
 7.2
 0.95
 0.02
 1
 0
485
 48.5
 −0.4
 −0.7
 −0.07
 0.02
 0
 0
486
 48.6
 −8.9
 6.6
 −0.14
 0.99
 0
 1
5 of 8

R E S EARCH ART I C L E
into frequencies, and so ultimately into energy. This issue could, how-
ever, be overcome either using error correcting codes or with other
UMMs that use other ways to encode such information and are digital
at least in their input and output. Irrespective, this machine represents
the first experimental realization of a UMM that uses the collective state
of the whole memprocessor network to exploit the information over-
head theoretically introduced in (8). Finally, it is worth mentioning that
the machine we have fabricated is not a general purpose one. However,
other realizations of UMMs are general purpose and can be easily built
with available technology (22–26). Their practical realization would thus
be a powerful alternative to current Turing-like machines.
MATERIALS AND METHODS

Experimental design
The operating frequency range of the experimental setup needs to be
discussed with the measurement target in mind. For the measurement
of the entire collective state, the limiting frequency is due to the oscil-
loscope we use to sample the full signal at the output of the mempro-
cessor network. On the other hand, the measurement of some isolated
harmonic amplitudes using the readout unit transfers this bottleneck
to the voltage generators and internal memprocessor components. It is
worth stressing that measuring the collective state is not the actual
target of our work because it has the same complexity of the standard
algorithms for the SSP as discussed in Results and in (8). Here, for
completeness, we provide measurements of the collective state only
to prove that the setup works properly. The actual frequency range
of the setup is discussed in the next section.

Setup frequency range
Let us consider aj ∈ G and the integer
A ¼ max
n
− ∑
aj<0

aj; ∑
aj>0

aj
o
: ð7Þ

We also consider f0 ∈ ℝ and we encode the aj in the frequencies by
setting the generators at frequencies fj = |aj|f0 so the maximum fre-
quency of the collective state is fmax = Af0. From these considerations,
we can first determine the range of the voltage generators: it must al-
low for the minimum frequency (resolution)
fgmin ≤ f0 ð8Þ
and maximum frequency (bandwidth)

fgmax ≥ f0 max
G

fjajjg: ð9Þ

WeusedAgilent 33220AWaveformGenerator (27), whichhas 1-mHz
resolution and 20-MHz bandwidth. This means that, in principle, we
can accurately encodeGwhen composed of integers with a precision
up to 13 digits (which is the same precision as the standard double-
precision integers) provided that a stable and accurate external clock
reference, such as a rubidium frequency standard, is used. This is be-
cause the internal reference of such generators introduces a relative
uncertainty on the synthesized frequency in the range of some parts-
per-billion (10−9), thus limiting the resolution at high frequency, down to
a fewmillihertz at themaximum frequency. However, as anticipated, this
issue can be resolved by using an external reference providing higher
accuracies. On the other hand, note that the frequency range can be,
Traversa et al. Sci. Adv. 2015;1:e1500031 3 July 2015
in principle, increased by using wider bandwidth generators, up to
the gigahertz range.

Another frequency limitation concerning the maximum operating
frequency is given by the electronic components of the memproces-
sors. In fact, the active elements necessary to implement the mempro-
cessor modules in hardware have specific operating frequencies that
cannot be exceeded. Discrete operational amplifiers (OP-AMPs) are
the best candidates for this implementation because of their flexibility
in realizing different types of operations (amplification, sum, differ-
ence, multiplication, derivative, etc.). Their maximum operating fre-
quency is related to the gain-bandwidth product (GBWP). We used
standard high-frequency OP-AMP that can reach GBWP up to a few
gigahertz. However, such amplifiers usually show high sensitivity to
parasitic capacitances and stability issues (for example, a limited stable
gain range). The typical maximum bandwidth of such OP-AMPs that
ensures unity gain stability and acceptable insensitivity to parasitics is
of the order of a few tens ofmegahertz, thus compatible with the band-
width of the Agilent 33220AWaveform Generator. Therefore, we can
set quantitatively the last frequency limit related to the hardware as
fOP‐AMPmax > Af0; ð10Þ

and ensure optimal OP-AMP functionality. Finally, using Eqs. 8 to 10,
we can find a reasonable f0 satisfying the frequency constraints.

Memprocessor
The memprocessor, synthetically discussed in Results and sketched
in Fig. 2, is shown in fig. S1A, and a more detailed circuit schematics
is given in fig. S1B. Each module has been realized as a single printed
circuit board (PCB), and connections are performed through coaxial
cables with BNC terminations. According to Fig. 2, eachmemprocessor

must perform one derivative −w−1
j

d

dt
, four multiplications, one sum,

and one difference. Because v(t) = 0.5[1 + cos(2pf0aj t)] and wj =
2pf0aj , then −w−1

j
⋅vðtÞ ¼ 0:5sinð2pf0ajtÞ, that is, the quadrature sig-

nal with respect to the input v(t). This can be easily obtained with the
simple OP-AMP–based inverting differentiator depicted in fig. S1B,
designed to have unitary gain at frequency wj . Similarly, an inverting
summing amplifier and a difference amplifier can be realized as
sketched in fig. S1B to perform the sum and difference of voltage
signals, respectively. The OP-AMP selected is the Texas Instruments
LM7171 Voltage Feedback Amplifier.

Implementing multiplication is slightly more challenging. OP-AMP–
based analogmultipliers are very sensitive circuits. Therefore, they need
to be carefully calibrated. This makes a discrete OP-AMP–based real-
ization challenging and the integration expensive. We thus adopted a
preassembled analog multiplier: the Texas Instrument (Burr-Brown)
MPY634 Analog Multiplier, which ensures four-quadrant operation,
good accuracy, and wide-enough bandwidth (10 MHz). The only
drawback of this multiplier is that the maximum precision is achieved
with a gain of 0.1. Therefore, because the input signals in general are
small, this further lowering of the precision can make the output signal
comparable to the offset voltages of the subsequent OP-AMP stages. For
this reason, we have included in the PCB a gain stage (inverting ampli-
fier) before each output to compensate for the previous signal inversion
and lowering. These stages also permit manual offset adjustment by
means of a tunable network added to the non-inverting input, as shown
6 of 8

R E S EARCH ART I C L E
in the schematic. Finally, a low-pass filter with corner frequency fc ≫
Af0 has been added to the outputs to limit noise. Figure S1A shows a
picture of one of the modules, which have been realized on a 100 ×
80–mm PCB. The power consumption of each module is high be-
cause all of the 10 active components work with ±15 V supply. OP-
AMPs have a quiescent current of 6.5 mA, whereas themultipliers have
a quiescent current of 4mA, yielding a total DC current of about 50mA
per module.

Finally, we briefly discuss how connected memprocessors work.
From Fig. 2, if we have v(t) = 0.5[1 + cos(wt)], v1 = Re[f(t)] and v2 =
Im[f (t)] for an arbitrary complex function f (t), at the output of the
memprocessor, we will find

v1out ¼ 0:5½1þ cosðwtÞ�Re½ f ðtÞ�−
0:5sinðwtÞIm½ f ðtÞ� ¼ Re½0:5ð1þ eiwtÞf ðtÞ� ð11Þ

v2out ¼ 0:5½1þ cosðwtÞ�Im½ f ðtÞ�þ
0:5sinðwtÞRe½ f ðtÞ� ¼ Im½0:5ð1þ eiwtÞf ðtÞ� ð12Þ

Because we can only set positive frequencies for the generators, to
encode negative frequencies (that is, a negative aj) we can simply in-
vert the input and output terminals as depicted in fig. S1C. Therefore,
if we set f(t) = 1 for the first memprocessor, that is, v1 = 1 and v2 = 0
at the output of the first memprocessor, we will find the real and
imaginary parts of 0.5(1 + exp[iw1t]) that will be the new f(t) for
the second memprocessor. Proceeding in this way, we find the collec-
tive state (1) at the end of the last memprocessor.

Analysis of the collective state
To test if the memprocessor network correctly works, we carried out
the measurement of the full collective state g(t) at the end of the last
memprocessor. This task requires an extra discussion on the operating
frequency range. Indeed, the instrument we used to acquire the output
waveform is the LeCroy WaveRunner 6030 Oscilloscope. The mea-
surement process consists of acquiring the output waveforms and ap-
plying the fast Fourier transform in software. The collective state being
a purely periodic signal, that is, a signal containing only frequency mul-
tiples of f0 and with knownmaximum frequency fmax = Af0, from the
discrete Fourier transform theory and the Nyquist-Shannon sampl-
ing theorem (8, 18), we need to sample the interval [0, 1/f0] into N =
2fmax/f0 + 1 subinterval of width Dt = (Nf0)

−1 to compute the exact
spectrum of g(t). That is, we need samples g(tj) with tj = kDt and k =
0,…, N − 1 to compute the exact spectrum of g(t). Therefore, with the
oscilloscope, we must be able to acquire at least N + 1 samples of g(t)
into the time interval [0, 1/f0].

This relationship turns out to be a constraint on the usable fre-
quency range because we must perform the measurement in a reason-
able time and we cannot exceed the maximum sampling frequency of
the instrument that we use for acquisition or its maximum memory
capability. In our experimental proof, the LeCroy WaveRunner 6030
Oscilloscope is characterized by 350 MHz bandwidth, 2.5 GSa/s
sampling rate, and 105 discretization points when saving waveforms
in ascii format (that is, NOmax = 105). The bandwidth of the oscillo-
scope is very large; thus, it is not really a constraint, whereas the limit
NOmax is. We have the constraint

fmax ≤
f0
2

NOmax−1ð Þ: ð13Þ
Traversa et al. Sci. Adv. 2015;1:e1500031 3 July 2015
With this value, choosing f0 = 1Hz allows us to haveA≤ (105− 1)/2,
fmax≲ 50 kHz and requires 1-s measurement time, which is a long time
in electronics. Therefore, without varying A, we can choose a larger f0
that allows for a smaller measurement time. We choose f0 = 100 Hz,
which means a measurement time of only a few tens of milliseconds,
and fmax ≲ 5 MHz.

Experimental setup
The laboratory setup we used is sketched in fig. S2A, whereas fig. S3
shows a picture of the same. The order of cascade connection of the
memprocessors is arbitrary. For this test, we ordered the module such
thatG= {130,−130,−146,−166,−44, 118} (see fig. S2A) to have the two
memprocessors related to the twopositive numbers (130 and 118) at the
beginning and end of the chain, respectively, thusminimizing the num-
ber of “swapped” connections (see fig. S1C). A two-output power sup-
ply (model Agilent E3631A) is used to generate both the 0 and 1 V at
the inputs of the first memprocessor and the ±15 V supply for all the
modules (parallel connection). The input v(t) of each module is gen-
erated by the Agilent 33220A waveform generator, whereas the output
is observed through both an oscilloscope (model LeCroy WaveRunner
6030; see fig. S2C) and a multimeter (model Agilent 34401A). In par-
ticular, the oscilloscope is used for theACwaveform,whereas themulti-
metermeasured theDC component to avoid errors due to the oscilloscope
probes, which are very inaccurate at DC andmay showDCoffsets up to
tens of millivolts.

Another issue concerns the synchronization of the generators.
The six generators we used must share the same time base, and they
must have the same starting instant (the t = 0 instant) when all the
cosine waveforms must have an amplitude of 0.5 V. To have a com-
mon time base, we used the 10-MHz time base signal of one of the
generators (master), and we connected themaster output signal to all
the other (slave) generators at the 10-MHz input. In this way, they
ignore their own internal time base and lock to the external one. To
have a common t = 0 instant, we must run the generators in the in-
finite burst mode. In this mode, the generators produce no output
signal until a trigger input is given, and then they run indefinitely
until they are manually stopped. The trigger input can be external
or manual (soft key): the master device is set up to expect a manual
input, whereas the slave devices are controlled by an external trigger
coming from the master. Finally, to correctly visualize the output
waveforms, we must also “synchronize” the oscilloscope. The trigger
signal of the oscilloscope must have the same frequency of the signal
to be plotted, or at least one of its subharmonics. Otherwise, we see
the waveformmoving on the display, and in case two or more signals
are acquired, we lose the information concerning their phase relation.
To solve this problem, we connect the external trigger input of the os-
cilloscope to a dedicated signal generator, producing a square wave-
form at frequency f0, which is the greatest common divisor of all the
possible frequency components of the output signals. This dedicated
generator is also used as the master for synchronization. Figure S2B
shows how the generators must be connected to obtain the required
synchronization.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/
full/1/6/e1500031/DC1
Fig. S1. Memprocessor module.
7 of 8

R E S EARCH ART I C L E
Fig. S2. Schematic and picture of the test bench for the laboratory experiment.
Fig. S3. Pictures of the laboratory test bench.
REFERENCES AND NOTES

1. M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness
(W. H. Freeman & Co., New York, 1990).

2. J. L. Hennessy, D. A. Patterson, Computer Architecture: A Quantitative Approach (Morgan
Kaufmann Publishers Inc., San Francisco, CA, ed. 4, 2006).

3. A. M. Turing, On computable numbers, with an application to the Entscheidungsproblem.
Proc. London Math. Soc. 42, 230 (1936).

4. A. M. Turing, The Essential Turing: Seminal Writings in Computing, Logic, Philosophy, Artificial
Intelligence, and Artificial Life, Plus The Secrets of Enigma (Oxford Univ. Press, New York,
2004).

5. S. Arora, B. Barak, Computational Complexity: A Modern Approach (Cambridge Univ. Press,
Cambridge, 2009).

6. K. Wu, J. G. de Abajo, C. Soci, P. P. Shum, N. I. Zheludev, An optical fiber network oracle for
NP-complete problems. Light Sci. Appl. 3, e147 (2014).

7. M. Di Ventra, Y. V. Pershin, The parallel approach. Nat. Phys. 9, 200–202 (2013).
8. F. L. Traversa, M. Di Ventra, (preprint on arXiv:1405.0931) IEEE Transaction on Neural Networks

and Learning Systems, DOI: 10.1109/TNNLS.2015.2391182 (2015).
9. M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information (Cambridge

Series on Information and the Natural Sciences) (Cambridge Univ. Press, Cambridge, ed. 10,
2010).

10. R. M. Karp, Reducibility among combinatorial problems. In 50 Years of Integer Programming
1958–2008 (Springer, Berlin/Heidelberg, 2010), pp. 219–241.

11. P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on
a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997).

12. D. Woods, T. J. Naughton, Optical computing: Photonic neural networks. Nat. Phys. 8, 257
(2012).

13. T. D. Kieu, Quantum algorithm for Hilbert’s tenth problem. Int. J. Theor. Phys. 42, 1461–1478
(2003).

14. L. M. Adleman, Molecular computation of solutions to combinatorial problems. Science
266, 1021–1024 (1994).

15. Z. Ezziane, DNA computing: Applications and challenges. Nanotechnology 17, R27
(2006).

16. M. Oltean, Solving the Hamiltonian path problem with a light-based computer. Nat. Comput.
7, 57–70 (2008).

17. S. Dasgupta, C. Papadimitriou, U. Vazirani, Algorithms (McGraw-Hill, New York, 2008).
Traversa et al. Sci. Adv. 2015;1:e1500031 3 July 2015
18. F. Bonani, F. Cappelluti, S. D. Guerrieri, F. L. Traversa, Harmonic balance simulation and analysis.
In Wiley Encyclopedia of Electrical and Electronics Engineering (Wiley, New York, 2014).

19. G. Goertzel, An algorithm for the evaluation of finite trigonometric series. Am. Math. Mon.
65, 34–35 (1958).

20. C. E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J., 27, 379 (1948).
21. H. Taub, D. L. Schilling, Principles of Communication Systems (McGraw-Hill Higher Education,

New York, ed. 2, 1986).
22. F. L. Traversa, F. Bonani, Y. V. Pershin, M. Di Ventra, Dynamic computing random access

memory. Nanotechnology 25, 285201 (2014).
23. R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840

(2007).
24. D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, The missing memristor found. Nature

453, 80–83 (2008).
25. T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra,

D. N. Basov, Memory metamaterials. Science 325, 1518–1521 (2009).
26. A. Chanthbouala, V. Garcia, R. O. Cherifi, K. Bouzehouane, S. Fusil, X. Moya, S. Xavier, H. Yamada,

C. Deranlot, N. D. Mathur, M. Bibes, A. Barthélémy, J. Grollier, A ferroelectric memristor.
Nat. Mater. 11, 860 (2012).

27. Note that when we use digital voltage generators, we need to control the frequency with
precision proportional to p Therefore, generating waveforms with digital generators should
require exponential resources in p because of the time sampling. However, this can be, in
principle, overcome using synchronized analog generators designed for this specific task.

Acknowledgments: The hardware realization of themachine presented here was supported by
Politecnico di Torino through the Neural Engineering and Computation Lab initiative. M.D.V.
acknowledges partial support from Center for Magnetic Recording Research. This work was also
partly supported by EURAMET and by the European Union under an EMRP Research Grant. Author
contributions: F.L.T., C.R., F.B., and M.D.V. designed the experiment and analyzed the data. C.R.
assembled the circuits and performed the measurements. F.L.T., C.R., F.B., and M.D.V. co-wrote
the paper. Data and materials availability: Data can be requested directly from C.R. (chiara.
ramella@polito.it) or F.L.T. (ftraversa@physics.ucsd.edu). Competing interests: The authors de-
clare that they have no competing interests.

Submitted 9 January 2015
Accepted 6 May 2015
Published 3 July 2015
10.1126/sciadv.1500031

Citation: F. L. Traversa, C. Ramella, F. Bonani, M. Di Ventra, Memcomputing NP-complete
problems in polynomial time using polynomial resources and collective states. Sci. Adv. 1,
e1500031 (2015).
8 of 8

