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BV CONTINUOUS SWEEPING PROCESSES

VINCENZO RECUPERO

Abstract. We consider a large class of continuous sweeping processes and we prove that they
are well posed with respect to the BV strict metric.

1. Introduction

Let X be real Hilbert space with inner product 〈·, ·〉 and let C(t) ⊆ X be a family of
nonempty closed convex sets parametrized by the time variable t ∈ [0, T ] , where T > 0 . A
sweeping process is the following evolution differential inclusion in the unknown ξ : [0, T ] −→ X :

− ξ′(t) ∈ NC(t)(ξ(t)), for a.e. t ∈ [0, T ], (1.1)

ξ(0) = ξ0, (1.2)

where ξ0 ∈ C(0) is a prescribed initial datum and

NK(x0) := {ν ∈ X : 〈ν, x0 − w〉 ≥ 0 ∀w ∈ K} (1.3)

is the exterior normal cone to a closed convex set K ⊆ X at the point x0 ∈ K . Notice that it
is implicitly assumed that

ξ(t) ∈ C(t) ∀t ∈ [0, T ]. (1.4)

Sweeping processes were introduced by J.J. Moreau in the fundamental paper [21] and originated
a research which is still active: see, e.g., the monograph [20], the expository papers [17, 29], and
the references therein.

In the present paper we continue the analysis of [27], where we studied some continuity prop-
erties of the solution operator C 7−→ ξ of the sweeping processes by setting it in the wider
framework of rate independent operators, indeed problem (1.1)–(1.2) has the following property,
called rate independence: if φ : [0, T ] −→ [0, T ] is an increasing surjective reparametrization
of time and ξ is the solution associated to C(t) , then ξ(φ(t)) is the solution corresponding
to C(φ(t)) . Rate independent evolution problems are strictly connected to elasto-plasticity
and hysteresis and have been deeply studied from the mathematical point of view in the
monographs[12, 30, 6, 13, 19]. The study of continuity properties with respect to various topolo-
gies has been recently performed also in, e.g., [17, 5, 16, 31] and these properties are important
since they ensure robustness of the model.

Here we address the sweeping process in the following formulation provided in [5]: a Banach
space Y , two functions u : [0, T ] −→ X , r : [0, T ] −→ Y , and a family of closed convex sets
Z(r) ⊆ X parametrized by r ∈ Y are given, and we have to find a function ξ : [0, T ] −→ X
such that

〈u(t)− ξ(t)− z, ξ ′(t)〉 ≥ 0, for a.e. t ∈ [0, T ], ∀z ∈ Z(r(t)), (1.5)

u(0)− ξ(0) = x0. (1.6)
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Again it is implicitly assumed that u(t) − ξ(t) ∈ Z(r(t)) for all t ∈ [0, T ] (all the precise
definitions, assumptions and formulations will be given in the next Sections 2 and 3).

Note that (1.5)–(1.6) is actually a reformulation of (1.1)–(1.2), indeed, as observed in [5], one
can reduce (1.5)–(1.6) to (1.1)–(1.2) by setting u(t) = 0 , r(t) = t , x0 = −ξ0 , C = −Z ; vice
versa with the position C(t) = u(t)−Z(r(t)) , ξ0 = u(0)− x0 one can reduce the first problem
to the second. However formulation (1.5)–(1.6) introduces the new parameters u(t), r(t) that
are relevant in applications, so that it is useful to study the properties of the sweeping process
with respect to u and r . This analysis is performed in [5] where it is shown that the solution
operator S : (u, r) −→ ξ of (1.5)–(1.6) is continuous with respect to the W1,1 -topology (or the
strong BV topology, see (2.9)), i.e. if un → u in W1,1(0, T ;X ) and rn → r in W1,1(0, T ;Y) ,
then S(un, rn) → S(u, r) in W1,1(0, T ;X ) . This property is essentially proved under some
geometrical assumptions on Z(r) (cf. Assumption 3.1) which however turn out to be not so
restrictive for applications.

In [21, 15, 16] the BV -generalization of (1.5)–(1.6) is considered: Z(r) is given as above, but
u and r are with bounded variation, and one has to find a continuous function ξ : [0, T ] −→ X
of bounded variation such that (1.6) holds together with the condition

∫ T

0
〈u(t)− ξ(t)− z(t),dDξ(t)〉 ≥ 0,

∀z ∈ BV([0, T ];X ), z(t) ∈ Z(r(t)) ∀t ∈ [0, T ], (1.7)

where the integral is meant in the sense of the Stieltjes or differential measures (see [21, 16]).
In [16] it is proved that also in this case the corresponding solution operator S : (u, r) 7−→ ξ is
continuous with respect to the BV -norm.

Here instead we prove that the well posedness of (1.7)–(1.6) (and (1.5)–(1.6)) with respect
to the BV strict metric (cf. (2.10)) when u and r are continuous in time (for non-continuous
data the BV -strict discontinuity is proved in [26] when Z(r) = Z for every r , Z belonging
to wide class of constant convex sets). The strict metric is very natural, especially when one
deals with approximation procedures (see [1]): indeed given a function of bounded variation v ,
by means of the classical convolution operation one can find a sequence of regular functions vn
converging strictly to v . The geometric meaning is clear, two curves u and v are near with
respect to the strict metric if they are near in the L1 -norm and if their lengths are near.

In connection with rate independent problems the strict metric has been studied for instance
in [7, 30, 13, 22, 24, 25]. In particular, concerning the specific sweeping process when the
data are continuous and Z(r(t)) = Z , a fixed closed convex subset of X , in [13] it is proved its
continuity with respect to the strict metric provided the boundary Z satisfies certain smoothness
assumptions. This requirement was completely removed in [26]. Since in the present paper we
address the more general case (1.7)–(1.6), where the product X ×Y of a Hilbert and a Banach
space is involved, the Hilbert technique used in [26] does not apply due to some uniform convexity
issues (see Remark 4.2).

A byproduct of our result is that only the analysis of the sweeping process for Lipschitz
data is needed: then the analogous results for the continuous BV case are a straightworward
consequence of standard measure theory arguments.

We conclude this introduction with a brief plan of the paper. In the next section we recall
all the necessary rigorous and precise preliminaries. In Section 3 we state the main theorems
of the paper and in Section 4 we prove them. Finally in the Appendix we prove some technical
properties about the strict convergence of sequences of Banach valued functions of bounded
variation.
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2. Preliminaries

If B is a real Banach space with norm ‖·‖B , then B∗ will denote its topological dual space and

B∗〈·, ·〉B the duality between B and B∗ . We use the notation Bρ(v0) := {v ∈ B : ‖v−v0‖B < ρ}
for open balls with center v0 ∈ B and radius ρ > 0 . The topological interior of a set S is
indicated by int(S) . If v, vn ∈ B for every n ∈ N and vn converges weakly to v as n → ∞ ,
we will write vn ⇀ v in B as n→∞ . We also set

CB := {K ⊆ B : K nonempty, closed and convex}. (2.1)

If
K ∈ CB is bounded and 0 ∈ int(K) , (2.2)

we recall that the Minkowski functional associated with K is the function MK : B −→ [0,∞[
defined by

MK(v) := inf
{
λ > 0 :

v

λ
∈ K

}
, v ∈ B. (2.3)

Here are some properties of the Minkowski functional that will be implicitly used in the sequel
(cf., e.g., [28, Theorems 1.34–1.36] and recall that (2.2) holds):

M(x+ y) ≤M(x) +M(y), M(λx) = λM(x) ∀x, y ∈ B, ∀λ ≥ 0, (2.4)

M is continuous, (2.5)

K = {x ∈ K : M(x) ≤ 1}, (2.6)

M(x) = 0 ⇐⇒ x = 0. (2.7)

In the sequel T > 0 will be a fixed positive number denoting the final time of the sweeping
process. If L1 is the one-dimensional Lebesgue measure and if p ∈ [1,∞] , then the space of
B -valued Lebesgue functions which are integrable on [0, T ] with respect to L1 will be denoted
by Lp(0, T ;B) (see [18, Chapter III]).

For a function v : [0, T ] −→ B we set ‖v‖∞ := supt∈[0,T ] ‖v(t)‖B . Moreover if J ⊆ [0, T ] is

an interval, the variation of v on J is the real extended number V(v, J) defined by

V(v, J) := sup

{
m∑
j=1

‖v(tj)− v(tj−1)‖B : m ∈ N, tj ∈ J, t1 < . . . < tm

}
, (2.8)

and we say that v is of bounded variation on J if V(v, J) <∞ . We set

BV([0, T ];B) :=
{
v : [0, T ] −→ B : V(v, [0, T ]) <∞

}
.

Let us recall two natural topologies in BV : the strong topology induced by the semimetric

dBV (u, v) := ‖u− v‖L1(0,T ;B) + |V(u− v, [0, T ])| , u, v ∈ BV([0, T ];B), (2.9)

and the strict topology, induced by the strict semimetric

ds(u, v) := ‖u− v‖L1(0,T ;B) + |V(u, [0, T ])−V(v, [0, T ])| , u, v ∈ BV([0, T ];B). (2.10)

When we restrict to continuous functions, then dBV and ds are actually metrics. If v, vn ∈
BV([0, T ];B) , we say that vn → v strictly on [0, T ] if ds(vn, v)→ 0 as n→∞ . Geometrically
this means that vn → v in L1 and the lengths of the curves vn converge to the length of v .

If p ∈ [1,∞] we denote by W1,p(0, T ;B) the Sobolev spaces of B -valued function: we recall
that v ∈ W1,p(0, T ;B) if and only if there exists w ∈ Lp(0, T ;B) such that v(t) = v(0) +∫ t
0 w(s) ds for every t ∈ [0, T ] , in other words w is the distributional derivative of v . If

v ∈W1,p(0, T ;B) then we have that v is differentiable L1 -a.e. and any representative of v′ is

the distributional derivative of v , moreover v ∈ BV([0, T ];B) and V(v, [0, T ]) =
∫ T
0 ‖v

′(t)‖B dt .

If 1 ≤ p ≤ q ≤ ∞ we obviously have that W1,q([0, T ];B) ⊆ W1,p([0, T ];B) ⊆ C([0, T ];B) , the
space of B -valued continuous functions. For any v : [0, T ] −→ B we set Lip(v) := supt6=s ‖v(t)−
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v(s)‖B/|t− s| and Lip([0, T ];B) := {v : [0, T ] −→ B : Lip(v) <∞} . Clearly W1,∞(0, T ;B) ⊆
Lip([0, T ];B) . If B is reflexive then W1,∞(0, T ;B) = Lip([0, T ];B) (we refer to [3, Appendix]
for vector valued Sobolev spaces).

3. Main results

In the sequel of the paper we will assume that

X is a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖X = 〈·, ·〉1/2, (3.1)

Y is a reflexive real Banach space with norm ‖ · ‖Y , (3.2)

R ∈ CY and int(R) 6= ∅. (3.3)

There will be given a multivalued map

Z : R −→ CX (3.4)

and the functional M : X × Y −→ [0,∞] defined by

M(x, r) := MZ(r)(x), (x, r) ∈ X ×R. (3.5)

the Minkowski functional of Z(r) .
Now we can state the problem defining the sweeping process in the absolutely continuous

framework.

Problem 3.1. Assume that Z : R −→ CX , u ∈ W 1,1(0, T ;X ) , r ∈ W 1,1(0, T ;Y) , and
x0 ∈ Z(r(0)) are given such that r([0, T ]) ⊆ R . Find ξ ∈W 1,1(0, T ;X ) such that

u(t)− ξ(t) ∈ Z(r(t)) ∀t ∈ [0, T ], (3.6)

u(0)− ξ(0) = x0, (3.7)

〈u(t)− ξ(t)− z, ξ ′(t)〉 ≥ 0, for L1-a.e. t ∈ [0, T ], ∀z ∈ Z(r(t)). (3.8)

We need the following set of assumptions (cf. [5]).

Assumption 3.1. There exists C > 0 such that

0 ∈ Z(r) ⊆ BC(0) ∀r ∈ R. (3.9)

There exist the partial (Fréchet) derivatives ∂xM(x, r) ∈ X , ∂rM(x, r) ∈ Y∗ for every (x, r) ∈
X × R , and there are positive constants K0 , CJ , CK such that the maps J : (X r{0}) ×
int(R) −→ X , K : (Xr{0})× int(R) −→ Y∗ defined by

J(x, r) := M(x, r)∂xM(x, r), (x, r) ∈ (Xr{0})× int(R), (3.10)

K(x, r) := M(x, r)∂rM(x, r), (x, r) ∈ (Xr{0})× int(R), (3.11)

can be continuously extended to (0, r) ∈ X ×R for any r ∈ R , and

‖J(x1, r1)− J(x2, r2)‖X ≤ CJ(‖x1 − x2‖X + ‖r1 − r2‖Y), (3.12)

‖K(x1, r1)−K(x2, r2)‖Y∗ ≤ CK(‖x1 − x2‖X + ‖r1 − r2‖Y), (3.13)

‖K(x, r)‖Y∗ ≤ K0. (3.14)

for every x1, x2 ∈ BC(0) and r1, r2 ∈ R .

Remark 3.1. The map J can be seen as the partial derivative with respect to x of the function
(x, r) 7−→ (M(x, r))2 /2 , i.e. J associates to every (x, r) the vector ∂xM(x, r) multiplied by
the scalar M(x, r) . A similar remark holds for K .
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Let us recall two consequences of Assumption 3.1. In [16, Lemma 2.3] it is proved that there
exists c ∈ ]0, C[ such that

Bc(0) ⊆ Z(r) ∀r ∈ R. (3.15)

Moreover if r ∈ R then (cf. [5, Lemma 3.1])

J(x, r) 6= 0, NZ(r)(x) =

{
λ

J(x, r)

‖J(x, r)‖X
: λ ≥ 0

}
∀r ∈ R, ∀x ∈ ∂Z(r) (3.16)

where NZ(r)(x) := {ν ∈ X : 〈ν, x0−w〉 ≥ 0 ∀w ∈ K} is the normal cone of convex analysis. In
other words the normal cone to Z(r) at x is a half-line whose direction is J(x, r)/‖J(x, r)‖X .

Observe that condition (3.9) assumed here and in [5] is not very restrictive for applications,
indeed the function u(t) allows a translation of the moving convex set C(t) of (1.2), whereas
(3.9) and (3.15) require that C(t) remains uniformly bounded and does not shrink to a point.

In [5, Proposition 4.1, Theorem 7.1] the following theorem is proved.

Theorem 3.1. Let us assume that Assumption 3.1 holds. Then Problem 3.1 admits a unique
solution. Let

D :=
{

(u, r, x0) ∈W1,1(0, T ;X )×W1,1(0, T ;Y)×X : r([0, T ]) ⊆ R, x0 ∈ Z(r(0))
}

(3.17)

and let S : D −→W1,1(0, T ;X ) be the operator assigning to each (r, u, x0) ∈ D the unique ξ ∈
W1,1(0, T ;X ) satisfying (3.6)–(3.8). Then S is continuous with respect to the W1,1 -topology,
in the following sense: if (u, r, x0), (un, rn, x

0
n) ∈ D for every n ∈ N and

un → u in W1,1(0, T ;X ), (3.18)

rn → r in W1,1(0, T ;Y), (3.19)

x0n → x0 in X (3.20)

as n→∞ , then S(un, rn, x
0
n)→ S(u, r, x0) in W1,1(0, T ;X ) .

A key tool in our arguments will rely on the following proposition whose proof is straightfor-
ward. Its content is described by saying that Problem 3.1 (or the operator S ) is rate independent.

Proposition 3.1. Let S : D −→ W1,1(0, T ;X ) be the operator defined by Theorem 3.1. If
φ : [0, T ] −→ [0, T ] is absolutely continuous and increasing, then

S(u ◦ φ, r ◦ φ, x0) = S(u, r, x0) ◦ φ (3.21)

for every (u, r, x0) ∈ D .

Remark 3.2. In the previous proposition the function φ may have some constancy intervals.

In [16] it is considered the following BV version of the sweeping processes (analogous to the
BV -version in [21]):

Problem 3.2. Assume that Z : Y −→ CX , u ∈ BV([0, T ];Y)∩C([0, T ];Y) , r ∈ BV([0, T ];Y)∩
C([0, T ];Y) , and x0 ∈ Z(r(0)) are given such that r([0, T ]) ⊆ R . Find ξ ∈ BV([0, T ];X ) ∩
C([0, T ];X ) such that

u(t)− ξ(t) ∈ Z(r(t)) ∀t ∈ [0, T ], (3.22)

u(0)− ξ(0) = x0, (3.23)∫ T

0
〈u(t)− ξ(t)− z(t), dDξ(t)〉 ≥ 0,

∀z ∈ BV([0, T ];X ), z(t) ∈ Z(r(t)) ∀t ∈ [0, T ], (3.24)
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where the integral in (3.24) is meant in the Riemann-Stieltjes sense (cf., e.g., [18, Chapter 10])
or equivalently in the ordinary Lebesgue sense with respect to the Stieltjes vector measure Dξ ,
the function ξ being continuous (see [8, Section III.17] or [26, Section 2]).

Remark 3.3. In the reference [16], the integral of (3.24) is considered in the sense of Kurzweil
or Young (cf. [14, 15]). However in [26] it is proved that when ξ is left continuous and with
bounded variation, then these integrals coincide with the ordinary Lebesgue integral with respect
to the differential measure Dξ . Moreover in [16] the test functions of (3.24) are allowed to belong
to Reg([0, T ];Y) , the space of regulated functions on [0, T ] , i.e. those functions v : [0, T ] −→ Y
such that there exist the left and right limits u(t−), u(t+) in Y at any point t ∈ [0, T ] , with
the convention that u(0−) = u(0) and u(T+) = u(T ) . Actually this more restrictive condition
is implied by (3.24), indeed it is enough to approximate any z ∈ Reg([0, T ];X ) with a uniformly
convergent sequence zn ∈ BV([0, T ];X ) (cf. [2, Section II.1.3]) and pass to the limit in (3.2)
where z is replaced by zn (see also [14, Theorem 3.9]).

In [15] it is shown that Problem 3.2 admits a unique solution by means of an approximation-a
priori estimates-limit procedure. In Theorem 4.1 below we will give a different short proof of this
result making use of basic measure theory tools. This proof will provide a sort of representation
formula for the solution that will allow to prove our main result, i.e. that Problem 3.2 is
well-posed with respect to he strict metric. Here is the precise formulation.

Theorem 3.2. Let us assume that Assumption 3.1 holds. Let

D :=
{

(r, u, x0) ∈
[
BV([0, T ];X ) ∩ C([0, T ];X )

]
×
[
BV([0, T ];Y) ∩ C([0, T ];Y)

]
×X :

r([0, T ]) ⊆ R, x0 ∈ Z(r(0))
}
. (3.25)

For every (r, u, x0) ∈ D there exists a unique ξ =: S(r, u, x0) ∈ BV([0, T ];X ) ∩ C([0, T ];X )
satisfiying (3.22)–(3.24). The resulting solution operator S : D −→ BV([0, T ];X ) ∩C([0, T ];X )
is continuous with respect to the strict metric, in the following sense: if (u, r, x0), (un, rn, x

0
n) ∈ D

for every n ∈ N , and

un → u strictly on [0, T ], (3.26)

rn → r strictly on [0, T ], (3.27)

x0n → x0 in X (3.28)

as n→∞ , then S(un, rn, x
0
n)→ S(u, r, x0) strictly on [0, T ] .

4. Proofs

In general, for a real Banach space B and a function v ∈ BV(0, T ;B) ∩ C([0, T ];B) , we can
define the following increasing (continuous) surjective arc length function `v : [0, T ] −→ [0, T ]
by setting

`v(t) :=


T

V(v, [0, T ])
V(v, [0, t]) if V(v, [0, T ]) 6= 0

0 if V(v, [0, T ]) = 0
(4.1)

(the only difference with the usual arc length function is given by a multiplicative factor allowing
the range of `v to be [0, T ] ). Arguing as in [11, Section 2.5.16, p. 109] we infer that there exists
a unique ṽ ∈ Lip([0, T ];B) such that

v(t) = ṽ(`v(t)) ∀t ∈ [0, T ], (4.2)

‖ṽ ′‖L∞(0,T ;B) ≤
V(v, [0, T ])

T
. (4.3)
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The function ṽ is the reparametrization of v by the arc length `v . Clearly we have

V(ṽ, [0, T ]) = V(v, [0, T ]). (4.4)

In the sequel we will set
B := X × Y (4.5)

endowed with the norm

‖(x, y)‖B := ‖x‖X + ‖y‖Y , (x, y) ∈ B. (4.6)

Note that with this norm the space B is not uniformly convex because R2 is not uniformly
convex with the 1 -norm. This fact prevents from applying the Hilbert techniques used in [26]
(cf. Remark 4.2 below). Nevertheless B is reflexive, due to the reflexivity of X and Y and to
Kakutani’s theorem (cf., e.g., [4, Theorem 3.17]). In this case if

v = (vx, vy) : [0, T ] −→ B, (4.7)

from (2.8), (4.5) and (4.6) we immediately infer that

V(v, [0, T ]) = V(vx, [0, T ]) + V(vy, [0, T ]). (4.8)

Therefore if vx ∈ BV([0, T ];X ) ∩ C([0, T ];X ) and vy ∈ BV([0, T ];Y) ∩ C([0, T ];Y) then v =
(vx, vy) ∈ BV([0, T ];B) ∩ C([0, T ];B) and there exist vx ∈ Lip([0, T ];X ) , vy ∈ Lip([0, T ];Y)
such that

ṽ = (vx, vy) : [0, T ] −→ B (4.9)

and
(vx(t), vy(t)) = v(t) = ṽ(`v(t)) = (vx(`v(t)), vy(`v(t))) ∀t ∈ [0, T ]. (4.10)

By Proposition 3.1 we immediately have that

S(u, r, x0) = S(u, r, x0) ◦ `v ∀(u, r, x0) ∈ D. (4.11)

We start by showing that such formula also holds for BV -solutions. The following theorem
also provides an alternative proof for the existence of Problem 3.2.

Theorem 4.1. If (u, v, x0) ∈ D then

S(u, r, x0) = S(u, r, x0) ◦ `v (4.12)

is the unique solution of Problem 3.2.

Proof. The uniqueness of a solution for Problem 3.2 is standard and we refer to [15]. Now we
prove formula (4.12). We set v := (u, r) ∈ BV([0, T ];B) ∩ C([0, T ];B) and we prove that

ξ := S(u, r, x0) ◦ `v
solves Problem 3.2. Formulas (3.22), (3.23) are obvious. In order to check (3.24) let z ∈
Reg([0, T ];Y) be such that z(t) ∈ Z(r(t)) for every t ∈ [0, T ] . Then by a change of variable in
the Stieltjes integral (cf. [23, Lemma 5.1]) we have∫ T

0
〈u(t)− ξ(t)− z(t), dDξ(t)〉 (4.13)

=

∫ T

0

〈
u(`v(t))− (S(u, r, x0) ◦ `v)(t)− z(t), d(S(u, r, x0) ◦ `v)(t)

〉
=

∫ T

0

〈
u(`v(t))− S(u, r, x0)((`v)(t))− z(t), (S(u, r, x0))′(`v(t))

〉
dD`v(t) (4.14)

Now let

A =
{
σ ∈ [0, T ] :

〈
u(σ)− S(u, r, x0)(σ)− z,

(
S(u, r, x0)

)′
(σ)
〉
< 0 ∀z ∈ Z(r(σ))

}
.
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From (3.8) it follows that A has Lebesgue measure zero, hence D`v(`
−1
v (A)) = 0 (cf. [23,

Proposition 2.2]) and, since z(t) ∈ Z(r(t)) = Z(r(`v(t))) , we find that

D`v

({
t ∈ [0, T ] :

〈
u(`v(t))− S(u, r, x0)(`v(t))− z(t),

(
S(u, r, x0)

)′
(`v(t))

〉
< 0
})

≤D`v ({s ∈ [0, t] : `v(s) ∈ A}) = 0

Consequently from (4.14) we infer that
∫ T
0 〈u(t)− ξ(t)− z(t), dDξ(t)〉 ≥ 0 and we are done. �

Remark 4.1. Let us observe that Theorem 4.1 provides a proof for the existence/uniqueness of
Problem 3.2 which allows to reduce to the Lipschitz case by means of basic measure theoretical
facts. The same argument shows that the operator S is rate independent.

Proposition 4.1. Assume that u, un ∈ BV([0, T ];X )∩C([0, T ];X ) and r, rn ∈ BV([0, T ];Y)∩
C([0, T ];Y) for every n ∈ N and set

v := (u, r) : [0, T ] −→ B, (4.15)

vn := (un, rn) : [0, T ] −→ B, n ∈ N. (4.16)

If un → u and rn → r strictly as n→∞ , then

ṽn → ṽ strictly on [0, T ] , (4.17)

where ṽn and ṽ are the arc length reparametrizations defined above in (4.2)–(4.3). Moreover if
ṽ := (u, r) and ṽn := (un, rn) , then

un → u uniformly on [0, T ], (4.18)

rn → r uniformly on [0, T ]. (4.19)

Proof. From the continuity of the functions involved and from (4.8), it follows that v, vn ∈
BV([0, T ];B) ∩ C([0, T ];B) for every n ∈ N and

vn → v strictly in BV([0, T ];B) (4.20)

as n→∞ . Moreover u, un ∈ Lip([0, T ];X ) , r, rn ∈ Lip([0, T ];Y) and

u(t) = u(`v(t)), r(t) = r(`v(t)), (4.21)

un(t) = un(`vn(t)), rn(t) = rn(`vn(t)) (4.22)

for every t ∈ [0, T ] and every n ∈ N .
If s ∈ [0, T ] and n ∈ N we have that

‖ṽn(s)‖B ≤ ‖ṽn(0)‖B + V(ṽn, [0, T ]) = ‖vn(0)‖B + V(vn, [0, T ]),

therefore from (4.2), (4.20) and Lemma 5.4 of the Appendix we infer that

‖ṽn‖L∞(0,T ;B) ≤ C1 (4.23)

for some C1 > 0 independent of n ∈ N . Moreover by (4.3) we have ‖ṽ′n‖∞ ≤ V(vn, [0, T ])/T
for every n ∈ N , hence there exists C2 > 0 such that

‖ṽn′‖∞ ≤ C2 (4.24)

for all n ∈ N . It follows that ṽn is bounded in W1,p(0, T ;B) for every p ∈ [1,∞] . The reflexivity
of Lp(0, T ;B) for p ∈ ]1,∞[ (cf. [10, Theorem 8.20.5, p. 607]) and a standard Sobolev spaces
argument imply that there exists v̂ ∈ W1,1(0, T ;B) such that, at least for a subsequence that
we do not relabel,

ṽn ⇀ v̂ in W1,p(0, T ;B) ∀p ∈ ]1,∞[ . (4.25)

Now let us fix σ ∈ [0, T ] and for every x∗ ∈ B∗ let us consider the linear functional φσx∗ :
W1,p(0, T ;B) −→ R : v 7−→ B∗〈x∗, v(σ)〉B . Since W1,p(0, T ;B) is continuously embedded in
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C([0, T ];B) (cf. Corollary 5.2), we have that φσx∗ is also continuous, thus from (4.25) we infer
that

lim
n→∞B

∗〈x∗, ṽn(σ)〉B = lim
n→∞

φσx∗(ṽn) = φσx∗(v̂) = B∗〈x∗, v̂(σ)〉B,

i.e.

ṽn(σ) ⇀ v̂(σ) in B ∀σ ∈ [0, T ] (4.26)

as n→∞ . Now for every x∗ ∈ B∗ and every n ∈ N let us define the functions fx
∗

n : [0, T ] −→ R
and fx

∗
: [0, T ] −→ R by

fx
∗

n (σ) := B∗〈x∗, ṽn(σ)〉B, fx
∗
(σ) := B∗〈x∗, v̂(σ)〉B, σ ∈ [0, T ]. (4.27)

From the continuity of ṽn and ṽ we infer that fx
∗

n and fx
∗

are continuous, moreover from
(4.29) it follows that fx

∗
n → fx

∗
pointwise in [0, T ] . Moreover if σ, τ ∈ [0, T ] we have, thanks

to (4.24), that

|fx∗n (σ)− fx∗n (τ)| ≤ ‖x∗‖‖ṽn(σ)− ṽn(τ)‖ ≤ ‖x∗‖‖ṽ′n‖L∞(0,T ;B)|τ − σ| ≤ C‖x∗‖|σ − τ |,

thus (fx
∗

n )n is equicontinuous and fx
∗

n → fx
∗

uniformly on [0, T ] for every x∗ ∈ B∗ . But
`vn(t) → `v(t) pointwise on [0, T ] by Lemma 5.2, hence fx

∗
n (`vn(t)) → fx

∗
(`v(t)) for every

t ∈ [0, T ] , i.e.

ṽn(`vn(t)) ⇀ v̂(`v(t)) in B ∀t ∈ [0, T ] . (4.28)

On the other hand by the strict convergence of vn and by Lemma 5.4 we have that

lim
n→∞

ṽn(`vn(t)) = lim
n→∞

vn(t) = v(t) = ṽ(`v(t)) ∀t ∈ [0, T ],

hence, as `v is surjective, we get that v̂ = ṽ . Hence from (4.25)–(4.26) we infer that

ṽn(σ) ⇀ ṽ(σ) in B ∀σ ∈ [0, T ] (4.29)

and

ṽn ⇀ ṽ in W1,p(0, T ;B) ∀p ∈ ]1,∞[ . (4.30)

If σ ∈ [0, T ] is fixed, then for every n ∈ N there exists tn ∈ [0, T ] such that

ṽn(σ) = ṽn(`vn(tn)) = vn(tn). (4.31)

Passing to a subsequence, not relabeled, we have that tn → t∗ for some t∗ ∈ [0, T ] . Hence,
thanks to the uniform convergence of vn , vn(tn) → v(t∗) as n → ∞ . It follows, as v(t∗) =
ṽ(`v(t∗)) , that

ṽn(σ)→ ṽ(`v(t∗)) (4.32)

as n→∞ . From (4.29) we get that

ṽn(σ)→ ṽ(σ) in B ∀σ ∈ [0, T ] (4.33)

and the whole sequence is converging by the uniqueness of the limit. Hence, taking into account
(4.23), we can apply the dominated convergence theorem and infer that ṽn → ṽ in L1(0, T ;B) .
Since it is clear that V(ṽn, [0, T ]) → V(ṽ, [0, T ]) , we have that ṽn → ṽ strictly on [0, T ] .
Therefore, by Proposition 5.1, we get that ṽn → ṽ uniformly on [0, T ] and (4.18)–(4.19) follow.

�

Lemma 4.1. Assume that (u, r, x0), (un, rn, x
0
n) ∈ D for every n ∈ N , un → u , rn → r strictly

on [0, T ] , and x0n → x0 in X , as n → ∞ . With the same notations of Proposition 4.1, we
have that S(un, rn, x

0
n)→ S(u, r, x0) strictly on [0, T ] .
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Proof. Let us set
ξ := S(u, r, x0), ξn := S(un, rn, x

0
n)

and
x := u− ξ, xn := un − ξn

for every n ∈ N . Observe that from (4.24) we get

max{‖u′n‖∞, ‖r′n‖∞} ≤ ‖ṽ′n‖∞ ≤ C2. (4.34)

Since u, r, un, rn are Lipschitz continuous, the following basic estimate holds (cf. [17, Theorem
4] or [5, Formulas (36)–(38), (46)]):

‖ξ(t)− ξn(t)‖X ≤ (‖x0 − x0n‖X + ‖u(0)− un(0)‖X )2

+ Ln

∫ t

0
(‖u(s)− un(s)‖X + C3K0‖r(s)− rn(s)‖Y) ds (4.35)

where
Ln := 2

(
‖u′‖∞ + ‖u′n‖∞ + C3K0(‖r′‖∞ + ‖r′n‖∞)

)
. (4.36)

The sequence Ln is bounded by virtue of (4.34), therefore from (4.18)–(4.19) and from (4.35)–
(4.36) we infer that

ξn → ξ uniformly on [0, T ] , (4.37)

which together with (4.18) yields

xn → x uniformly on [0, T ] . (4.38)

Therefore from (3.12), (4.38), and (4.19) we infer that

J(xn(t), rn(t))→ J(x(t), r(t)) ∀t ∈ [0, T ]. (4.39)

as n → ∞ . If (v, ρ, z0) ∈ D , η := S(v, ρ, z0) , and y := v − η , then [5, Lemma 5.2] yields the
following implication:

η′(t) 6= 0 =⇒


y(t) ∈ ∂Z(ρ(t))

‖η′(t)‖X =

〈
η′(t),

J(y(t), ρ(t))

‖J(y(t), ρ(t))‖X

〉 for L1 -a.e. t ∈ [0, T ] . (4.40)

Let us define H : X ×R −→ X by

H(y, ρ) :=


M(y, ρ)

J

(
y

M(y, ρ)
, ρ(t)

)
∥∥∥∥J ( y

M(y, ρ)
, ρ(t)

)∥∥∥∥
X

if x 6= 0

0 if x = 0

(4.41)

The map H is well-defined thanks to (3.16) and to the fact that y/M(y, ρ) ∈ ∂Z(ρ) , therefore
we have that

‖η′(t)‖X =
〈
η′(t), H(y(t), ρ(t))

〉
for L1 -a.e. t ∈ [0, T ] . (4.42)

Moreover, since M(x) → 0 as x → 0 , from (3.5) and Assumption 3.1 we infer that H is
continuous, hence H(xn(t), rn(t)) → H(x(t), r(t)) for every t ∈ [0, T ] . On the other hand the
sequence H(xn(·), rn(·)) is uniformly bounded, thus by the dominated convergence theorem

H(xn(·), rn(·))→ H(x(·), r(·)) in Lq(0, T ;X ) ∀q ∈ ]1,∞[ . (4.43)

Observe that (cf. [5, Formula 50])

‖ξ′n(t)‖X ≤ ‖u′n(t)‖X + CK0‖r′n(t)‖Y for L1 -a.e. t ∈ [0, T ] , (4.44)
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hence, thanks to (4.34), ξn is bounded in W1,p(0, T ;X ) for every p ∈ ]1,∞[ , and (4.37) implies
that

ξn ⇀ ξ in W1,p(0, T ;X ) for every p ∈ ]1,∞[ . (4.45)

Thus from (4.42), (4.43), and (4.45) we get that

lim
n→∞

V(ξn, [0, T ]) = lim
n→∞

∫ T

0
‖ξ′n(t)‖X dt = lim

n→∞

∫ T

0

〈
ξ
′
n(t), H(xn(t), rn(t))

〉
dt

=

∫ T

0

〈
ξ
′
(t), H(x(t), r(t))

〉
dt =

∫ T

0
‖ξ′(t)‖X dt = V(ξ, [0, T ]), (4.46)

which together with (4.37) proves the lemma. �

Proof of Theorem 3.2. We are left to prove the continuity property. to this aim let (u, r, x0) ,
(un, rn, x

0
n) ∈ D be such that un → u , rn → r strictly on [0, T ] and x0n → x0 in X . If

v = (u, r) and vn = (un, rn) then by Lemma 5.2 we have that

`vn(t)→ `v(t) ∀t ∈ [0, T ]. (4.47)

Observe that by Theorem 4.1 we have

S(u, r, x0)(t) = S(u ◦ `v, r ◦ `v, x0)(t) = S(u, r, x0)(`v(t)), (4.48)

S(un, rn, x
0
n)(t) = S(un ◦ `vn , rn ◦ `vn , x0n)(t) = S(un, rn, x

0
n)(`v(t)). (4.49)

Moreover from Lemma 4.1 we get that

S(un, rn, x
0
n)→ S(u, r, x0) strictly on [0, T ] , (4.50)

in particular S(un, rn, x
0
n)→ S(u, r, x0) uniformly on [0, T ] thanks to Proposition 5.1, therefore

from (4.47) we get

lim
n→∞

S(un, rn, x
0
n)(t) = lim

n→∞
S(un ◦ `vn , rn ◦ `vn , x0n)(t)

= lim
n→∞

S(un, rn, x
0
n)(`vn(t))

= S(u, r, x0)(`v(t))

= S(u ◦ `v, r ◦ `v, x0)(t)
= S(u, r, x0)(t) (4.51)

Now ‖S(un, rn, x
0
n)‖∞ = ‖S(un, rn, x

0
n) ◦ `vn‖∞ = ‖S(un, rn, x

0
n)‖∞ , thus S(un, rn, x

0
n) is uni-

formly bounded because of the strict convergence of S(un, rn, x
0
n) , and by the dominated con-

vergence theorem we infer that

S(un, rn, x
0
n)→ S(u, r, x0) in L1(0, T ;X ) . (4.52)

Finally we have to prove the convergence of the variations. From (4.48)–(4.49) and from the
continuity of `v we have that

V(S(un, rn, x
0
n), [0, T ]) = V(S(un, rn, x

0
n), [0, T ]), (4.53)

V(S(u, r, x0), [0, T ]) = V(S(u, r, x0), [0, T ]), (4.54)

moreover (4.50) yields

lim
n→∞

V(S(un, rn, x
n
0 ), [0, T ]) = V(S(u, r, x0), [0, T ])

and the theorem is completely proved. �
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Remark 4.2. As we mentioned in the Introduction, when Z(r(t)) = Z , a fixed closed convex
subset of the Hilbert space X , the solution operator S is actually acting on BV([0, T ];X ) ∩
C([0, T ];X ) only, and its strict continuity was deduced in [26] by applying the general implication

R dBV -continuous =⇒ R ds -continuous, (4.55)

holding for a rate independent operator R : BV([0, T ];X ) ∩ C([0, T ];X ) −→ BV([0, T ];X ) ∩
C([0, T ];X ) . Property (4.55) (proved in [26, Theorem 3.4]) cannot be applied in our new
framework where B = X × Y replaces X in the domain of R , because the norm (4.6) is not
uniformly convex, and property (4.55) does not hold in the non-uniformly convex case, even if
B is reflexive. Let us show this fact with a counterexample by considering the space B1 = R2

endowed with the 1 -norm ‖(x, y)‖B1 := |x| + |y| , (x, y) ∈ R2 . Notice that B1 is reflexive but
is not uniformly convex. By B2 we denote the space R2 endowed with the euclidean norm
‖(x, y)‖B2 := (|x|2 + |y|2)1/2 , (x, y) ∈ R2 . If an interval J ⊆ [0, T ] and v : [0, T ] −→ R2

are given, for k = 1, 2 we denote by Vk(u, J) the variation of u on J with respect to the
norm ‖ · ‖Bk , and we also set Vk(u)(t) := Vk(u, [0, t]) , t ∈ [0, T ] . Accordingly we denote by
dkBV and by dks the distances defined in (2.9) and in (2.10) with B = Bk , k = 1, 2 , while
dBV will be used for the case B = R . Observe that the metrics d1BV and d2BV are equivalent,
hence they generate the same topology. Let us define R : BV([0, T ];B1) ∩ C([0, T ];B1) −→
BV([0, T ];B1) ∩ C([0, T ];B1) by

R(u)(t) := (V1(u)(t),V2(u)(t)) , u ∈ BV([0, T ];B1) ∩ C([0, T ];B1)
(we could take V2(u) in both components, but we prefer to keep them distinct). Clearly R is rate
independent. In order to prove that it is d1BV -continuous, assume that d1BV (un, u) → 0 , thus
d2BV (un, u) → 0 as well. Since Vk(un) and Vk(u) are increasing functions, a straightforward
computation shows that

V(Vk(v)−Vk(w), J) = Vk(u− w, J) (4.56)

for every v, w, and J , therefore, using also the inequality |Vk(v, J)−Vk(w, J)| ≤ Vk(v−w, J) ,
we have

dBV (Vk(un),Vk(u)) = ‖Vk(un)−Vk(u)‖L1(0,T ;R) + |V(Vk(un)−Vk(u)), [0, T ])|

=

∫ T

0
|Vk(un)(t)−Vk(u)(t)|dt+ Vk(un − u, [0, T ])

≤
∫ T

0
Vk(un − u, [0, t]) dt+ Vk(un − u, [0, T ])

≤ (T + 1) Vk(un − u, [0, T ]),

hence dBV (Vk(un),Vk(u))→ 0 as n→∞ for k = 1, 2 , and this implies that d1BV (R(un),R(u))
→ 0 as n → ∞ , and R is d1BV -continuous. Now we show that R is not d1s -continuous. To
this aim we consider a sequence of Lipschitz curves un whose trace is a kind of “staircase with
n steps” laid upon the line y = x , going from the origin to the point (1, 1) . More precisely, for
every n ∈ N we split [0, 1] into n subintervals [(j − 1)/2n−1, j/2n−1] , j = 1, . . . , 2n−1 , and let
un : [0, 1] −→ R2 be the unique Lipschitz curve such that

un(t) =

{
((j − 1)/2n−1, gn(t)) if t ∈ [(j − 1)/2n−1, (2j − 1)/2n]

(hn(t), j/2n−1) if t ∈ [(2j − 1)/2n, j/2n−1]
, j = 1, . . . , 2n−1,

where gn : [(j − 1)/2n−1, (2j − 1)/2n] −→ [(j − 1)/2n−1, j/2n−1] and hn : [(2j − 1)/2n, j/2n−1]
−→ [(j − 1)/2n−1, j/2n−1] are affine increasing surjective functions. If u : [0, 1] −→ R2 is
defined by u(t) := (t, t) , then we have ‖un−u‖L1(0,1;Bk) → 0 for k = 1, 2 . Since V1(un, [0, 1]) =

V2(un, [0, 1]) = 2 for every n ∈ N , by (4.56) we have that V1(R(un), [0, 1]) = V(V1(un), [0, 1])+
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V(V2(un), [0, 1]) = 2 + 2 = 4. On the other hand V1(u, [0, 1]) = 2 and V2(u, [0, 1]) =
√

2 ,
therefore V1(R(u), [0, 1]) = V(V1(u), [0, 1]) + V(V2(u), [0, 1]) = 2 +

√
2, hence R(un) is not

d1s -convergent and R is not d1s -continuous.

Remark 4.3. In the simpler case Z(r(t)) = Z the strict continuity of the solution operator S
was deduced in [26] without any smoothness assumption on Z . Therefore it seems natural to
wonder if Assumption 3.1 can be relaxed in the present framework. This question is still open.

5. Appendix

In this section we show some properties about the strict convergence in BV([0, T ];B) .

Lemma 5.1. Assume that vn, v ∈ BV([0, T ];B)∩C([0, T ];B) and let J ⊆ [0, T ] be an interval.
If vn(t)→ v(t) for a.e. t ∈ J , then V(v, J) ≤ lim infn→∞V(vn, J) .

Proof. Let 0 = s0 < · · · < sm = T be such that

V(v, J) < ε/2 +

m∑
j=0

‖v(sj)− v(sj−1)‖B.

The set E := {t ∈ [0, T ] : vn(t)→ v(t) as n→∞} has full measure in [0, T ] , therefore we can
find points tj ∈ E , j = 1, . . . ,m such that 0 < t1 < · · · < tm = T and ‖v(tj)−v(sj)‖B < mε/4
for j = 1, . . . ,m , and we have

V(u, [0, T ]) < ε/2 +
m∑
j=0

‖v(sj)− v(sj−1)‖B

≤ ε/2 +

m∑
j=0

(‖v(sj)− v(tj)‖B + ‖v(tj)− v(tj−1)‖B + ‖v(tj−1)− v(sj−1)‖B)

< ε+

m∑
j=0

‖v(tj)− v(tj−1)‖B.

For every n ∈ N we have

V(vn, [0, T ]) ≥
m∑
j=0

‖vn(tj)− vn(tj−1)‖B, (5.1)

therefore taking the lower limit we get

lim inf
n→∞

V(vn, [0, T ]) ≥ lim inf
n→∞

m∑
j=0

‖vn(tj)− vn(tj−1)‖B

≥
m∑
j=0

lim inf
n→∞

‖vn(tj)− vn(tj−1)‖B

=
m∑
j=0

‖v(tj)− v(tj−1)‖B > V(v, [0, T ])− ε.

and the statement follows from the arbitrariness of ε . �

Corollary 5.1. Let v, vn ∈ BV([0, T ];B) ∩ C([0, T ];B) be such that vn → v strictly on [0, T ]
as n→∞ . Let J ⊆ [0, T ] be an interval. Then

V(v, J) ≤ lim inf
n→∞

V(vn, J).
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Proof. Let (nk)k be a sequence of positive integers such that nk → ∞ and V(vnk
, I) → ` as

k →∞ for some ` ≥ 0 . By the strict convergence it follows that there is a further subsequence
nkh such that vnkh

→ u almost everywhere. Hence by Lemma 5.1 V(v, J) ≤ ` and we are

done. �

Lemma 5.2. Assume that vn, v ∈ BV([0, T ];B) ∩ C([0, T ];B) for every n ∈ N . If vn → v
strictly on [0, T ] as n→∞ , then V(vn, [s, t]) → V(v, [s, t]) for every s, t ∈ [0, T ] , s < t .

Proof. Thanks to Corollary 5.1 we have that

V(v, [s, t]) = lim inf
n→∞

V(vn, [s, t]).

On the other hand, using again Corollary 5.1 and the strict convergence, we infer that

lim sup
n→∞

V(vn, [s, t]) = lim sup
n→∞

(V(vn, [0, T ])−V(vn, [0, s])−V(vn, [t, T ]))

≤ V(v, [0, T ])−V(v, [0, s])−V(v, [t, T ]) = V(v, [s, t]).

�

Lemma 5.3. Assume that vn, v ∈ BV([0, T ];B) ∩ C([0, T ];B) for every n ∈ N . If vn → v
strictly as n→∞ , then for all ε > 0 there exists δ > 0 such that if c, d ∈ [0, T ] we have

0 < d− c < δ =⇒ sup
n∈N

V(vn, [c, d]) < ε. (5.2)

Proof. Thanks to Lemma 5.2, the sequence of real functions Vn : [0, T ] −→ R : t 7−→ V (vn, [0, t])
is pointwise converging to the continuous function V : [0, T ] −→ R : t 7−→ V (v, [0, t]) . Moreover
Vn is a monotone function for every n ∈ N , therefore from the Polya Lemma (cf. [9, Theorem
10, p. 166]) we deduce that Vn → V uniformly on [0, T ] , hence for every ε > 0 there exists
δ > 0 such that supn∈N |V (d)− V (c)| < ε whenever 0 < d− c < δ , c, d ∈ [0, T ] . This is what
we wanted to prove. �

Lemma 5.4. Assume that vn, v ∈ BV([0, T ];B) ∩ C([0, T ];B) for every n ∈ N . If vn → v
strictly as n→∞ , then vn(t)→ v(t) as n→∞ for every t ∈ [0, T ] .

Proof. If t ∈ [0, T ] is fixed and a subsequence vn′(t) of vn(t) is given, we can extract a further
subsequence (n′k)k such that vn′k → v a.e. in [0, T ] . If ε > 0 there exists δ > 0 such that (5.2)

holds. We can find a point t0 such that 0 ≤ t− t0 < δ and vn′k(t0)→ v(t0) . Hence we get

‖vn′k(t), v(t)‖B ≤ ‖vn′k(t0)− v(t0)‖B + ‖vn′k(t)− vn′k(t0)‖B + ‖vn′k(t)− v(t0)‖B
≤ ‖vn′k(t0)− v(t0)‖B + V(vn′k , [t0, t]) + V(v,[t0, t]) ≤ 3ε,

provided k is large enough. The thesis follows. �

Proposition 5.1. Assume v, vn ∈ BV([0, T ];B)∩C([0, T ];B) and vn → v strictly as n→∞ .
Then vn → v uniformly on [0, T ] .

Proof. It is enough to apply the Ascoli theorem for B valued functions (cf. [18, Theorem 3.1,
p. 57]). The pointwise convergence of vn is proved in Lemma 5.4, the equicontinuity follows
immediately from Lemma 5.3. �

Notice that as a consequence of Proposition 5.1 we can also obtain the following

Corollary 5.2. W1,1([0, T ];B) is continuously embedded in C([0, T ];B) .
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