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SUMMARY: Stochastic Resonance (SR) is a phenomenon studied and exploited for telecommunication, which 
permits the detection and amplification of weak signals by the assistance of noise. The first papers on this topic 
date back to the early 80s and were developed to explain some periodic natural phenomena. Other applications 
are in neuroscience, biology, medicine and, obviously, mechanics. 
Recently, a few researchers have tried to apply this technique for detecting faults in mechanical systems and also 
bearings. In this paper we discuss the best way to select the parameters to augment the performance of the 
algorithm. This is probably the main drawback of SR, since in system identification the procedure should be as 
blind as possible to be efficient and widely applicable. The classical bi-stable potential form is adopted in our 
study, with three parameters to be selected. Based on numerical tests, a characteristic trend of the amplification 
factor has been found with respect to the parameters variation, so that a general rule is consequently determined 
which gives the best performances in terms of detection and amplification. The SR algorithm is tested on both 
simulated and experimental data showing a good capacity of increasing the signal to noise ratio. 
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1.  INTRODUCTION 
 
The phenomenon of stochastic resonance (SR) has applications in a number of different fields and scientific 
domains. The possibility of resonance in dynamical systems, which behave stochastically, was introduced by R. 
Benzi et al. [1] in 1981 and originally exploited for studying the evolution of the Earth's climate. Its first 
applications were in a wide range of problems connected to physical and life sciences. Other observations of this 
phenomenon concern experiments on electronic circuits, chemical reactions, semiconductor devices, nonlinear 
optical systems, magnetic systems and superconducting quantum interference devices [2]. 
The studies of SR for mechanical applications, especially for mechanical fault diagnosis, began in the mid-90s 
and great improvements have been achieved in particular during the last years. Several techniques exist and are 
applied for the detection of defects in rotating machines such as gears or bearings in many industrial 
applications, but SR is the only one that takes advantage of noise. In fact mechanical acquisitions are generally 
strongly corrupted by background noise from other elements of the system: this component is usually neglected, 
but on the contrary it is used by SR to enhance the features of faults [3]. 
 
 
2.  STOCHASTIC RESONANCE 
 
Stochastic Resonance is a tool used in signal processing to increase the signal-to-noise ratio (SNR) of the output 
of a non-linear dynamic system, in order to extract the characteristic features of the system under investigation 



from background noise. This is obtained by adding a nonlinear dynamic system to the measured signal corrupted 
by noise and, by properly tuning, enhancing the signal of interest (Figure 1). 
Usually noise is considered as a disturbance that may make measured data unusable, so that the basic idea behind 
each data processing procedure includes the filtering or removal of noise. However, useful information may 
happen to be corrupted or destroyed by this procedure, so much attention has to be paid. In SR, instead, noise is a 
basic element of the process: in fact, according to the classical theory of SR, by adding a well-tuned noise to the 
full measurement, signal detection is facilitated. 
The amplification of weak signals is obtained by varying the noise level, through the addition of a potential, but 
keeping the input modulation signal. SR mechanism implies that, if a sinusoidal driving frequency mixed with 
noise is given as input to a nonlinear system, its output contains a high peak in the spectrum corresponding to the 
driving frequency which varies its amplitude as a function of the noise added through the system [3-5]. 
The algorithms for SR, especially for weak impulses or aperiodic signals, work in time domain and several types 
of implementation exist through the use of different kind of potentials.  
 
 

 
 

Figure 1 – Stochastic resonance scheme 

 
 
The dynamic behavior of SR can be described by the following Brownian motion equation of particles, where ���� and ���� are respectively the input signal and the noise, whose sum is in practice the measurement signal, 
and ���� is the potential function: 
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The quantity ���� is the system output and denotes the trajectory of the Brownian particle in the potential 
function ����. Classical SR [3-4] uses the following polynomial expression as a potential function: 
 

  ���� = − �
� �� + �

� �� (2) 

It represents a bi-stable symmetric system where � and � are positive real parameters, whose two stable points 
are located at �� = ±��/�	 and the height of the potential barrier is baV 42=δ . Substituting this in the 

Brownian particle motion equation and considering a periodic signal ���� of amplitude � and driving frequency �� and a Gaussian white noise ���� with zero mean and given variance, the main equation of the process is 
obtained: 
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�
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In case there is no external excitation the position is only determined by the initial conditions and never changes. 
If a periodic input function at frequency f0 is given as input, the potential function is modulated and changes 
periodically, and in case there is also noise in the input, the particle will jump between the potential wells with a 
period corresponding to that of the input function (Figure 2). So, by properly tuning the potential to the noise 
present in the signal it is possible to detect weak signals by simply solving the above first-order differential 
equation using the discrete Runge–Kutta method. 
At this stage it is necessary to find the correct values of � and � potential parameters so that ���� takes the form 
of a wave with the same oscillation frequency as the driving frequency of the periodic signal. In fact, the system 
output ����, which represents the motion of a Brownian particle inside the potential ����, should oscillate 
between the two potential wells at a transition rate that matches the period of the input signal. Consequently the 
periodic input signal is enhanced only by adjusting the dynamic system parameters. 
In a more realistic case of impact signals given as input s�t� to the system, the output x�t� will be made of a 
series of impulses located in the exact position as the original signal. For example, by considering only a single 
impact event, the equation of motion becomes: 

NONLINEAR 
SYSTEM INPUT OUTPUT 

NOISE 



 

  
�	
�
 = �� − ��� + �&'(
 sin�2"���� + ���� (4) 

 
In this case the Brownian particle can jump between the potential wells in a few oscillation periods or just in one 
by properly tuning the potential parameters, while in the remaining parts of the signal it will get stuck inside the 
potential well because no sufficient energy is provided by noise. 
 
 

 
Figure 2 – State transition of the bistable system in the presence of periodic input and noise: (a) initial state when t=0; (b) t 
=1/4f0; (c) t=1/2f0; (d) =3/4f0. Figure from [4] 
 
 
2.1.  The algorithm for impact signal detection 
The main difficulty for an efficient implementation of SR is the selection of the parameters of the potential. In 
fact, a criterion is necessary to determine if the selected set of values gives good results in the output, which 
means its capability of enhancing signal. 
Several measurement indexes exist to assess the quality of the procedure, for example kurtosis, crest factor or 
others. The first is defined as the ratio between the fourth central moment and the square of the variance and it is 
a measure of the peakness of a probability distribution of a real-valued random variable. The more the peaks are 
narrow and sharp the more kurtosis is high, in contrast to the case in which there is a normal distribution when 
the kurtosis tends to 3: 
 

  +,-���� = ./�	'	̅�12
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Crest factor is defined as the absolute peak value over the root mean square of the distribution. The higher are 
the peaks emerging from the background noise after the application of the method, the more this factor increases. 
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Whatever index is selected, the parameters of the potential have to be selected in order to maximize it. 
The first step after signal pre-processing is the initialization of the range of the coefficients in terms of minimum 
and maximum values but also step size. By substituting them in the SR equation, the output signal is computed 
with a fourth-order Runge–Kutta algorithm and then evaluated through the criterion previously selected. 
Generally, after the solution of each equation is obtained, the transient response is removed in order to correctly 
compute the corresponding criterion function, otherwise numerical peaks could be included in its evaluation. 
Once all possible values of the coefficients have been used, the maximum value of the criterion is chosen 
together with the corresponding values of the coefficients. The improved waveform is then computed and, from 
this, it is possible to get all the information on the characterization of the impacts. 
 
 
2.2.  Re-scaling ratio 
The main problem of the classical bi-stable stochastic resonance is the small parameters restriction, which is in 
contrast with bearing fault diagnostics. Essentially SR focuses on low frequency and weak periodic signal 
submerged in small noise, this meaning that the values of the frequency and amplitude of periodic signal and 



noise intensity are less than 1. But defect frequencies are usually much higher than 1 Hz and as a consequence it 
is necessary to adapt SR algorithm to large parameters signals. 
The approach usually adopted makes use of a re-scaling factor applied to the sampling frequency �@ in order to 
make it much lower by linearly compressing the frequency scale. A is a rescaling ratio that satisfies the 
requirement of small parameters [6]. 
  �@B = �@/A (7) 
 
 
3.  NUMERICAL SIMULATIONS 
 
The SR method has been tested on several numerical data. A first simulation has been performed to show the 
benefits of the SR approach on a dataset generated by summing an impulse response function (IRF) to a 
Gaussian noise: 
 

���� + ���� = �&'(�
'CD� sinE2"���� − FG�H + I�0, L�  (8) 

Figure 3 shows the output produced by SR with the following parameters: natural frequency �� = 16	OP, 
attenuation rate Q = 12	�'R, impulse starting time Ti = 1 s and amplitude A = 0.15. A Gaussian white noise	���� 
with zero mean value and standard deviation σ = 0.07 has been added to the IRF. The sampling frequency is set 
to �@ = 500	OP, N = 1000 is the number of considered samples and the rescaling ratio is R = 200. Fig. 3 shows 
that for a particular realization of the noise and by selecting a = 0.7 and b = 9 the SR process can increase the 
kurtosis index from 3 to 29 and the presence of an IRF is clearly detectable. 
 

 
Figure 3 – Example of SR effect: the Kurtosis of the output signal has been considerably increased. 

 
 
It also results that if the height of the potential barrier is too low the Brownian particle can jump between the 
potential wells many times, and not only when the actual impact occurs. In this case, the capability of identifying 
the actual IRF is lost and the Kurtosis index of the SR output doesn’t show any increase. To demonstrate this 
phenomenon, 500 realizations of the Gaussian noise have been considered with the above-mentioned parameters. 
For each realization, parameter a varies between 0.1 and 1 and parameter b between 1 and 10. The corresponding 
variation steps are defined in such a way to obtain a 10×10 search grid. Results of maximum, minimum and 
mean values of the Kurtosis index computed over these realizations are depicted in Fig. 4a as a function of the 
height of the potential barrier baV 42=δ : this figure shows that an optimum value of Vδ exists. 

To study the IRF amplitude A influence on the Kurtosis gain, the Kurtosis index is depicted in Figure 4b with 
several amplitudes A: this figure confirms that an optimum value of the height of potential barrier Vδ exists and 
that this value moves to the right if the IRF amplitude grows. It is stressed that this amplitude is related to the 
damage severity. 



(a) 

 

(b) 

 
Figure 4 –Kurtosis of the output signal as a function of the height of the potential barrier (500 simulations and 10×10 search 
grid): (a) A = 0.15, (b) A from 0.05 to 0.30 
 
 
4.  SIMULATIONS OF BEARING FAULTS 
 
Bearings can manifest several kinds of damage due to different causes, such as fatigue, wear, poor installation, 
improper lubrication and occasionally manufacturing faults. Defects could arise in all constituting elements and 
each has a distinct pattern in the time signal acquisition and could be identified by its deep examination. Bearing 
is made of the following components: outer race, inner race, cage and rolling elements (Table 1). 
 

 Table 1 – Bearing elements and defect frequencies. 
 

 

Ball Pass Frequency of the Outer race TU7V = ��B2 W1 − X
Q YZ�[\ 

Ball Pass Frequency of the Inner race TU7] = ��B2 W1 + X
Q YZ�[\ 

Fundamental Train Frequency (cage speed) 7F7 = �B2 W1 − X
Q YZ�[\ 

 
Ball Spin Frequency T^7 = �B Q

2X _1 − WXQ YZ�[\�` 

 

When a bearing spins, any irregularity in the surface of inner or outer race, or in the roundness of the rolling 
elements excites periodic frequencies called fundamental defect frequencies. These depend on the geometry of 
the bearing and clearly on the shaft speed. In Table 1 there is a list of these frequencies in which X is ball 
diameter, Q is pitch diameter, [ is contact angle, �B is shaft speed, � is the number of rolling elements. It is 
assumed that outer race is fixed and inner race rotates. 
All previously listed formulas are valid only when pure rolling contact exists between balls, inner race and outer 
race, but actually there is always some random slip when a bearing is under load and after some wear and 
consequently frequencies are not found exactly as predicted by Table 1. 
In this paper faulty bearing time histories are generated through a Matlab code as repeated impulse response 
functions, submerged by background noise. These data are given in input to the SR algorithm for signal fault 
enhancement. The simulated bearing has the characteristics listed in Table 2, where its defect frequencies are 
computed as function of shaft speed. 
The standard deviation of noise was set to σ = 0.07 and the defect was simulated as the impulse response of a 
SDOF system with resonance frequency of 5500 Hz and damping ratio 5%. In the simulation, which is carried 
out at fb = 96000	Hz for 1	s, the shaft speed is 100	Hz, and the amplitude of the IRF is set at A = 0.30. The 
model also includes the typical modulation for unidirectional load, which is at the cage speed for rolling element 
faults. A re-scaling factor R=20000 is used in order to satisfy the small parameter requirement. By varying the a 
and b parameters in the same grid as in the previous example, it was found that the dependence of the Kurtosis 
index on the height of the potential barrier shows a “resonance curve” which is similar to Fig. 4a. The optimal 
value of Vδ  produces a Kurtosis gain of about 6 as shown in Fig. 5a. To demonstrate the effectiveness of the SR 
algorithm the normalized power density spectrum of both input and output is depicted in Fig. 5b: the defect 
frequency peak is increased by one order of magnitude. Note that the ballspin frequency (BSF) is the frequency 
of fault passage over the same race (inner or outer), so that in general there are two shocks per basic period. 
 
 
 



Table 2 – Bearing dimensions and defect frequencies as functions of the shaft frequency. 
 X Q [ � TU7V TU7] 7F7 T^7 9	ff 40.5	ff 0° 10 3.89	�B 6.11	�B 0.39	�B 2.14	�B 

 
 

(a) (b) 

Figure 5 – Example of SR effect (bearing model): (a) the Kurtosis of the output signal and (b) the peak corresponding to the 
defect frequency have been considerably increased. 
 
 
5.  EXPERIMENTAL CASE 
 
Finally an experimental application of SR is presented in order to show its effectiveness. The test rig, set up in 
the laboratory of the Department of Mechanical and Aerospace Engineering of Politecnico di Torino, is made of 
three bearings and a rotating shaft, see Figure 6. The radial load is applied to the central bearing while the other 
two serve as supports for the shaft: one of the lateral bearing exhibits different levels of damage. Damage 
monitoring is performed by equipping the structure with triaxial accelerometers at different shaft speeds, load 
levels and oil temperature. 
The bearing under exam has the characteristics and defect frequencies as in Table. 2. Results shown hereafter 
concern a bearing with a defect in a rolling element, with shaft speed of 278	OP. The central support is loaded 
by a force of 1800	m and the sampling frequency is �@ = 51200	OP. 
The optimal value of Vδ  produces a Kurtosis gain of about 7 as shown in Fig. 7a. The normalized power density 
spectrum of both input and output is depicted in Fig. 7b: the defect frequency peak was not detectable in the raw 
spectrum, while it clearly appears in the SR output together with its harmonics. The identified defect frequency 
differs from the theoretical value (Tab. 2) by an amount of 3%, which is a typical value of change in bearing 
defect frequencies. 
 
 

 

 
 

 
Figure 6 – The test rig, the axes orientation of the triaxial accelerometers and the damaged roller used in the tests. 
 
 
 
 



(a) 

 

(b) 

 

Figure 7 – Example of SR effect (experimental case): (a) the Kurtosis of the output signal has been considerably increased 
and (b) the peak corresponding to the defect frequency and its harmonics have been highlighted. 
 
 

 
6.  CONCLUSIONS 
 
The mathematics behind the mechanism of stochastic resonance is relatively simple and easy to be implemented. 
Theoretically SR works really well in the detection of pulses submerged by background noise even with low 
levels of excitation. However, the main limitation of the procedure is the choice of the parameters a and b. In this 
paper it is shown that an optimum value of the height of the potential barrier Vδ exists, which produces a 
considerable increase in the Kurtosis index. This property reduces the user-selected parameters from two (a and 
b) to one ( Vδ ), thus decreasing dramatically the computational effort in the parameter tuning process. This 
computational time reduction is of paramount interest in the automatic health monitoring. 
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