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Abstract

We consider some 3D wave equation problems defined in an unbounded domain, possibly
with far field sources. For their solution, by means of standard finite element methods, we
propose a Non Reflecting Boundary Condition (NRBC) on the chosen artificial boundary B,
which is based on a known space-time integral equation defining a relationship between the
solution of the differential problem and its normal derivative on B. Such a NRBC is exact,
non local both in space and time. We discretize it by using a fast convolution quadrature
technique in time and a collocation method in space. The computational complexity of the
discrete convolution is of order N logN , being N the total number of time steps performed.
That of the fully discretized NRBC is O(N2

BN logN), where NB denotes the number of mesh
points taken on B.

Besides showing a good accuracy and numerical stability, the proposed NRBC has the
property of being suitable for artificial boundaries of general shapes. It also allows the
treatment of far field (multiple) sources, that do not have to be necessarily included in the
finite computational domain, being transparent not only for outgoing waves but also for
incoming ones. This approach is in particular used to solve multiple scattering problems.

Keywords: wave equation; absorbing boundary conditions; space-time boundary integral
equations; numerical methods; multiple scattering

1. Introduction

A key issue for solving PDE problems in unbounded domains is the introduction of proper
absorbing artificial boundaries, with associated boundary conditions, to define a bounded
computational domain of interest where the solution of the initial boundary value problem
defined in this domain coincides with the corresponding restriction of the solution of the
original problem. Since the mid 90’s, two classes of methods have emerged as especially
powerful: the Perfectly Matched Layer (PML) method and the method of using local high-
order Absorbing (or Non Reflecting) Boundary Conditions (ABC or NRBC).

The PML method, first introduced by Bérenger in 1994 [5], is a very popular technique
for constructing artificial boundary conditions which absorb outgoing waves. Since its first
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appearance, it is continuously seeing significant developments. This method essentially con-
sists in surrounding the domain of interest by an artificial absorbing layer in which waves
are trapped and (exponentially) attenuated. Thus sources must necessarily be included in
the above domain. Then, the new problem defined in the bounded domain is solved by
using classical finite difference or finite element methods. For a survey see, for example, [37],
Chapter 7, [6], [29]. Besides having some good properties, which make PML an efficient
approach for solving several wave propagation problems, it also has some limitations; for a
list of these, see for example [20]. In particular, at the moment it does not appear to be an
efficient method for solving multiple sources/multiple scattering problems. Therefore, since
the solution of these latter is the main goal of our paper, from now on we will consider only
the NRBC approach.

The NRBC method consists of introducing an artificial boundary B that truncates the
infinite domain and determines two distinct regions: a bounded one of interest Ω and a
residual infinite domain D. By analyzing the problem in D, a non reflecting boundary
condition on B is derived in order to avoid spurious reflections. Once a NRBC has been
defined, this is coupled with the condition given on the boundary of the original problem
physical domain and with the known initial values, to uniquely define the solution of the
corresponding problem in Ω. Then, this latter can be solved, by coupling a time integrator
with, for example, a finite difference or a finite element method.

The earlier approximate NRBCs, still widely used, are those proposed by Engquist and
Majda [11], which are local and of order up to 2. Much later, high order local non reflecting
boundary conditions for the wave equation, which do not involve derivatives of order greater
than 2, were proposed by Collino [9], Givoli and Neta [21] and Hagstrom and Warburton
[27]. In all these three cases, the methods proposed require a straight-edge boundary, and
special treatment of the corner effects. When B is a disk/sphere, Hagstrom and Hariharan
[26] derived a new formulation of the classical Bayliss and Turkel [4] NRBC of arbitrarily
high order, without using derivatives of order greater than 2. For a review of these methods,
see [19].

Many papers have been published on this topic, in particular in the last two decades; their
number is too large to mention them. For a review, see for example [17], [18], [19], [14]. All
these papers, except for [37], Sections 5.5, 5.6, [23], [24], [14], deal with the construction of
NRBC with the property of absorbing only outgoing wave, not waves that are either outgoing
or incoming. Therefore, known sources must necessarily be included in the computational
domain. However, this can be a severe drawback when, for example, sources are far away
from the physical domain. Moreover, the NRBC holds only for a single convex artificial
boundary having a special shape, like a circle (sphere) or ellipse (ellipsoid). Only in the last
years multiple scattering problems have been examined (see [23], [24]).

Very recently, in [14], we have proposed a global non reflecting boundary condition for
the solution of two-dimensional exterior problems for the classical wave equation, which is
given by a linear combination of a single and a double layer operators. It is defined by a
known space-time boundary integral relationship that the problem solution and its normal
derivative must satisfy at the chosen artificial boundary B. It is of exact type, and it holds for
a (smooth) curve of arbitrary shape; therefore, it can be used also in situations of multiple
scattering, and even in more general ones. Moreover, it allows the problem to have non
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trivial data, whose (local) supports do not have necessarily to be included in the Ω domain,
as it is usually done, in particular when they are away from the domain of interest. In such a
case, the proposed NRBC naturally includes the effects of these data and it is automatically
transparent for outgoing waves as well as for incoming ones.

For the discretization of the artificial condition, namely for the approximation of the
single and double layer operators, we have proposed a numerical scheme which is based on a
second order Lubich discrete convolution quadrature formula (see [33]) for the discretization
of the time integral, coupled with a classical collocation method in space. The computational
complexity of the discrete convolution rule is of order N logN , being N the total number
of time steps performed. That of the fully discretized NRBC is O(N2

BN logN), where NB
denotes the number of mesh points taken on B. When the discretization of the bounded
domain Ω, where we apply the chosen finite element scheme, is refined, and the time stepsize
is simultaneously reduced, the accuracy of the NRBC discretization increases.

The numerical examples presented in [14] for the two-dimensional case, show that indeed
the proposed NRBC is very competitive, from both the accuracy and the computational
cost points of view, with some of local type, such as the second order Engquist-Majda and
Bayliss-Turkel ones.

In this new paper, we extend the results presented in [14] to the three-dimensional case,
and also consider multiple scattering/multiple source problems. The computational cost of
this NRBC is significantly higher than that of corresponding local conditions; however, we
believe that its generality and new applications should justify it. In any case, a first attempt
to reduce it is described in Section 3.4. Five numerical examples are presented in Section
6, while in the last section we draw some conclusions and outline some possible further
improvements.

2. Exact non reflecting boundary conditions for multiple scattering

For the reader convenience, here we recall the NRBC representation and the associated
PDE problem formulation in the 3D multiple scattering case. These are obtained by gener-
alizing those described in [14] for the 2D simple scattering problem.

Thus, we consider the problem of a wave propagating through a homogeneous medium in
three dimension and impinging upon a scatterer made up of κκκ bounded obstacles of arbitrary
shape. We assume that the scatterers are impenetrable and well separated from each other.
We denote by Ωi

k ⊂ R
3, with k = 1, · · · ,κκκ, Ωi

k∩Ωi
` = ∅ for k 6= `, the open bounded domains

with smooth boundaries Γk, and by Ωi = ∪κκκ
k=1Ω

i
k ⊂ R

3 the connected open domain bounded
by the union of the obstacle boundaries Γ = ∪κκκ

k=1Γk. Then, we set Ω
e = R

3\Ωi, and consider
the following wave propagation problem in Ωe:



















uett(x, t)−∆ue(x, t) = f(x, t) inΩe × (0, T )

u(x, t) = g(x, t) in Γ× (0, T )

ue(x, 0) = u0(x) inΩe

uet (x, 0) = v0(x) inΩe.

(1)

As often occurs in practical situations, we assume that the initial values u0, v0 and the source
term f have local supports.
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When one has to determine the solution ue of the above problem in a bounded subregion
of Ωe, surrounding the physical obstacles Ωi

k, it is necessary to truncate the infinite domain
Ωe by introducing an artificial smooth boundary B. However, the idea of introducing a
single artificial boundary B that encloses all the obstacles becomes too expensive when, for
example, the scatterers are far from each other, and one has to determine the solution ue

only in a neighborhood of each scatterer. In this case, it is preferable to surround each single
obstacle by an artificial boundary Bk and compute the problem solution in the domains of
interest.

We denote by Ωk the subdomain bounded internally by Γk and externally by Bk, and by
Ω = ∪κκκ

k=1Ωk the bounded computational domain of interest. Finally, we set D = R
3 \Ω. To

solve our problem in the Ω domain, we need to prescribe Non Reflecting Boundary Conditions
on B = ∪κκκ

k=1Bk, which allow outgoing waves leave Ωk without spurious reflections. These
waves propagate to all other subdomains, and are then reflected by the other scatterers;
therefore, subsequently they reenter in Ωk.

We remark that the artificial boundary is chosen to detect the (bounded) region where
one has to compute the problem solution. This region does not necessarily have to contain
the supports of the source term and of the initial data. Thus, in general, the support of a
datum will be either in the (bounded) region of interest Ω, or in the residual domain D. In
the latter case it will be taken into account by a corresponding term of the artificial boundary
condition formulation.

Following [12], where a BIE has been derived for the non homogeneous wave equation
with non trivial initial data, the derivation of a NRBC in the case of multiple connected
artificial boundaries is fairly simple. To write it in a more compact form, we introduce the
single and double layer integral operators, defined by

Vψ(x, t) :=

∫ t

0

∫

B
G(x− y, t− τ)ψ(y, τ)dBydτ

=

κκκ
∑

k=1

∫ t

0

∫

Bk

G(x− y, t− τ)ψ(y, τ)dBydτ,

and

Kϕ(x, t) :=

∫ t

0

∫

B
∂nD

G(x− y, t− τ)ϕ(y, τ)dBydτ

=
κκκ
∑

k=1

∫ t

0

∫

Bk

∂nD
G(x− y, t− τ)ϕ(y, τ)dBydτ,

respectively, where ∂nD
denotes the outward unit normal derivative on the boundary B for

the problem defined in the residual domain D, and G(x, t) is the fundamental solution of
the wave equation given in (1), that is:

G(x, t) =
δ(t− ‖x‖)
4π‖x‖ , (2)

δ(·), being the well known Dirac delta function. The NRBC on B is then given by:

1

2
u(x, t) = V∂nD

u(x, t)−Ku(x, t) + Iu0(x, t) + Iv0(x, t) + If(x, t) x ∈ B, (3)
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where the “volume” terms Iu0 , Iv0 and If are generated by the non homogeneous initial
conditions and the non trivial source, respectively. These volume terms have the following
integral representations:

Iu0(x, t) =







∂

∂t

∫

supp(u0)

u0(y)G(x− y, t)dy, if supp(u0) ⊂ D

0, if supp(u0) ⊂ Ω

(4)

Iv0(x, t) =







∫

supp(v0)

v0(y)G(x− y, t)dy, if supp(v0) ⊂ D

0, if supp(v0) ⊂ Ω

(5)

If (x, t) =











∫ t

0

∫

supp(f)

f(y, τ)G(x− y, t− τ)dydτ, if supp(f) ⊂ D

0, if supp(f) ⊂ Ω.

(6)

Thus, denoting by ∂n = ∂
∂n

the outward unit normal derivative defined on the boundary
B, for the problem defined in the domain Ω, and noting that ∂n = −∂nD

, the model problem
(defined in the domain of interest Ω) takes the following form:






























utt(x, t)−∆u(x, t) = f̃(x, t) inΩ× (0, T )

u(x, t) = g(x, t) in Γ× (0, T )
1
2
u(x, t) + V∂nu(x, t) +Ku(x, t) = Iu0(x, t) + Iv0(x, t) + If(x, t) inB × (0, T )

u(x, 0) = ũ0(x) inΩ

ut(x, 0) = ṽ0(x) inΩ,

(7)

where

ũ0 =

{

0 if supp(u0) ⊂ D.
u0 if supp(u0) ⊂ Ω

ṽ0 =

{

0 if supp(v0) ⊂ D.
v0 if supp(v0) ⊂ Ω

f̃ =

{

0 if supp(f) ⊂ D.
f if supp(f) ⊂ Ω

To discretize the NRBC, i.e., the single and double layer operators, we propose a numeri-
cal scheme which is based on a discrete convolution quadrature formula, for the time integral
approximation, and a classical collocation method for the space integral discretization. If
N denotes the number of time steps to be performed, the proposed NRBC discretization
requires O(N logN) operations to compute, for each given collocation (space) point, the
associated temporal convolution at all chosen instants.

We set u(t)(x) = u(x, t) and introduce the additional unknown function λ(x, t) =
λ(t)(x) := ∂nu(x, t), which is defined only on the boundary B. Following [14], but in a more
general setting here, for any given t ≥ 0 we also introduce the functional spaces

Xk = Xk(t) = {uk(t) ∈ H1(Ωk) : uk(t)|Γk
= g(t)|Γk

}, X = X(t) =

κκκ
∏

k=1

Xk

5



and

Xk,0 = {uk(t) ∈ H1(Ωk) : uk(t)|Γk
= 0}, X0 =

κκκ
∏

k=1

Xk,0.

Similarly, we set

H−1/2(B) =
κκκ
∏

k=1

H−1/2(Bk).

Then, the problem defined in the domain of interest Ω takes the following form:
given f̃ ∈ L2(Ω × (0, T )), ũ0 ∈ X, ṽ0 ∈ L2(Ω), find u(t) ∈ C0([0, T ];X) ∩ C1([0, T ];L2(Ω))
and λ(t) ∈ C0([0, T ];H−1/2(B)) such that



















d2

dt2
(u(t), w)Ω + a(u(t), w)− (λ(t), w)B = (f̃(t), w)Ω, ∀w ∈ X0

1
2
u(x, t) + Vλ(x, t) +Ku(x, t) = Iu0(x, t) + Iv0(x, t) + If (x, t) on B
u(0) = ũ0 in Ω
du
dt
(0) = ṽ0 in Ω.

(8)

holds in the distributional sense in (0, T ), where a : X ×X → R is the bilinear form

a(v, w) =

∫

Ω

∇v · ∇w =

κκκ
∑

k=1

∫

Ωk

∇vk · ∇wk,

and, (v, w)D =
∫

D
vw =

∑κκκ
k=1

∫

Dk
vkwk, where, depending on its occurrence, D is either Ω

or B.

3. Discretization of the NRBC

In this section we outline the discretization formulas we will use to solve the problem
formulation (8). These are very similar to those obtained in [14] for the 2D case; however,
in the 3D case we have some favorable properties that we will point out.

3.1. Approximation in time

As in [14], we approximate the single and double layer operators appearing in the NRBC
by combining a second order (time) convolution quadrature formula of Lubich (see [33]) with
a classical space collocation method. For its time discretization, we split the interval [0, T ]
into N steps of equal length ∆t = T/N and collocate the equation at the discrete time levels
tn = n∆t, n = 0, . . . , N :

1

2
u(x, tn) + (Vλ)(x, tn) + (Ku)(x, tn) = Iu0(x, tn) + Iv0(x, tn) + If(x, tn) (9)

After having exchanged the order of integration, the time integrals appearing in the def-
inition of the single and double layer operators are discretized by means of the Lubich
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convolution quadrature formula associated with the second order Backward Differentiation
Method (BDF) for ordinary differential equations (see [12]). We obtain:

(Vλ)(x, tn) ≈
n
∑

j=0

κκκ
∑

k=1

∫

Bk

ωV

n−j(∆t; ||x− y||)λ(y, tj) dBy, n = 0, . . . , N (10)

(Ku)(x, tn) ≈
n
∑

j=0

κκκ
∑

k=1

∫

Bk

ωK

n−j(∆t; ||x− y||)u(y, tj) dBy, n = 0, . . . , N (11)

whose coefficients ωJ
n ,J = V ,K, are given by

ωJ
n (∆t; ||x− y||) = 1

2πı

∫

|z|=ρ

KJ
(

||x− y||, γ(z)
∆t

)

z−(n+1) dz

where

KV(r, s) =
1

4πr
e−rs, KK(r, s) = − 1

4πr
e−rs

(

1

r
+ s

)

∂r

∂n
. (12)

γ(z) = 3/2− 2z + 1/2z2 is the so called characteristic quotient of the chosen BDF method
of order 2, and the parameter ρ > 0 is chosen as described below. Note that, contrary to
the 2D case, where the corresponding kernels KJ (r, s) have a weak singularity at s = 0 (see
Sect. 3.1 in [13], in particular Remark 3.1), for r > 0 the above ones are (analytic) entire
functions with respect to the variable s. Furthermore, the associated convolution coefficients
ωJ
n have a more favorable behavior (see [34]), which gives rise to more sparse matrices, whose

elements actually decay to zero as the time step-size tends to zero (see Sect. 3.4). Also the
computation of the matrix elements (16) and (17) below benefits from this behavior.

By introducing the polar coordinate z = ρeı̇ϕ, the above integrals are efficiently computed
by using the trapezoidal rule with L ≥ N equal steps of length 2π/L:

ωJ
n (∆t; r) ≈

ρ−n

L

L−1
∑

l=0

KJ
(

r,
γ(ρ exp(ı̇l2π/L))

∆t

)

exp(−ı̇nl2π/L). (13)

As suggested in ([33]) (see also [14]), we choose L = 2N and ρ = 10−5. This gives a relative
accuracy of order 10−5 ÷ 10−6, which is more than sufficient for our numerical testing. For
each given x ∈ B, all the ωJ

n can be computed simultaneously by the FFT, with O(N logN)
flops. Note that when we choose L > N , as in our case, the required ωJ

n are given by the
first N components of the coefficient vector determined by the FFT.

3.2. Approximation in space

For the space discretization, each surface Bk, of the global artificial boundary B, is
approximated by a continuous piecewise triangular surface Bk,∆, interpolating Bk at the
triangle vertices {xk,i, i = 1, . . . ,Mk}. We denote by ∆x,k the mesh size of Bk,∆, which is
given by the maximum triangle diameter.

Further, we set uBk
(x, t) = u(x, t)|Bk

and λBk
(x, t) = λ(x, t)|Bk

, k = 1, · · · ,κκκ. At each
time instant tj , the unknown function uBk

(·, tj) and its normal derivative λBk
(·, tj) on Bk are
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approximated by

u∆x,k
(x, tj) :=

Mk
∑

i=1

ujk,ibk,i(x), x ∈ Bk,∆ (14)

and

λ∆x,k
(x, tj) :=

Mk
∑

i=1

λjk,ibk,i(x), x ∈ Bk,∆ (15)

respectively, where ujk,i ≈ uBk
(xk,i, tj), λ

j
k,i ≈ λBk

(xk,i, tj), and {bk,i}Mk

i=1 are the classical
continuous piecewise linear basis functions associated with the given triangulation.

3.3. Time-space discretization

After having introduced the above time and space discretizations, we collocate the re-
sulting discretized BIE at the (collocation) points xk,h, h = 1, . . . ,Mk, for each k = 1, · · · ,κκκ.
To write the final system of equations in vectorial notation, we define the matrices

(Vk,`
n−j)hi =

∫

B`

ωV

n−j(∆t; ‖xk,h − y‖)b`,i(y)dBy, i = 1, · · · ,M` (16)

(Kk,`
n−j)hi =

∫

B`

ωK

n−j(∆t; ‖xk,h − y‖)b`,i(y)dBy, i = 1, · · · ,M` (17)

` = 1, . . . ,κκκ, and the vectors

Ik,nu0
= [Iu0(xk,1, tn), Iu0(xk,2, tn), · · · , Iu0(xk,Mk

, tn)]
T

Ik,nv0
= [Iv0(xk,1, tn), Iv0(xk,2, tn), · · · , Iv0(xk,Mk

, tn)]
T

I
k,n
f = [If (xk,1, tn), If(xk,2, tn), · · · , If(xk,Mk

, tn)]
T .

Then, we introduce the unknown vectors uj
B`

=
[

uj`,1, . . . , u
j
`,M`

]T
and λλλjB`

=
[

λj`,1, . . . , λ
j
`,M`

]T
,

for ` = 1, . . . ,κκκ and j = 0, . . . , n, and obtain the following system of equations (see [14] for
the case of a single scatterer):

(

1

2
Ik +K

k,k
0

)

un
Bk

+
κκκ
∑

`=1
` 6=k

K
k,`
0 un

B`
+

κκκ
∑

`=1

n−1
∑

j=0

K
k,`
n−ju

j
B`

+
κκκ
∑

`=1

V
k,`
0 λλλnB`

+
κκκ
∑

`=1

n−1
∑

j=0

V
k,`
n−jλλλ

j
B`

= Ik,nu0
+ Ik,nv0 + I

k,n
f , k = 1, . . . ,κκκ; n = 0, . . . , N (18)

where the matrix Ik denotes the identity matrix of order Mk.
From the computational point of view, supposing to know u

j
B`

and λλλjB`
for each ` =

1, . . . ,κκκ, at the time steps j = 0, . . . , n− 1, the absorbing condition at time tn is given by
(

1

2
Ik +K

k,k
0

)

un
Bk

+
κκκ
∑

`=1
` 6=k

K
k,`
0 un

B`
+

κκκ
∑

`=1

V
k,`
0 λλλnB`

= −
κκκ
∑

`=1

n−1
∑

j=0

K
k,`
n−ju

j
B`

−
κκκ
∑

`=1

n−1
∑

j=0

V
k,`
n−jλλλ

j
B`

+ Ik,nu0
+ Ik,nv0 + I

k,n
f (19)

for each k = 1, . . . ,κκκ.
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Remark 3.1. For each row index, the corresponding row elements of all the above matrices
can be computed simultaneously by means of the FFT algorithm, after replacing, in the repre-
sentations (16), (17), the ω kernel by its discretization (13), and exchanging the integration
symbol with that of the quadrature sum (for details see [12]). As described in Example 1
(see Section 6), the computation of the required integrals is performed by using a classical
approach based on a ν-point Gauss-Legendre quadrature.

The evaluation of the volume integrals Ik,nu0
, Ik,nv0

, Ik,nf has been discussed in [35], where an
efficient numerical approach has been proposed for the 2D case and for compactly supported
data (see also [12]). For simplicity, in the forthcoming numerical tests we will consider only
sources concentrated at a point. This choice extremely simplifies the evaluation of the volume
term appearing in the NRBC equation.

3.4. NRBC computational cost and memory space

For simplicity, we consider a single scatterer and the corresponding artificial boundary;
the results we obtain can be easily extended to more general situations of multiple scattering.
We assume that the chosen Finite Element (FE) grid is regular; furthermore, we denote by
Nh the number of its interior points and by NB that of the points lying on the boundary B.
Note that in this case we have NB = O(N

2/3
h ) as Nh → ∞, i.e., as ∆x → 0. Furthermore, as

we have already tested in the 2D case, the robustness of the proposed NRBC discretization,
and its higher accuracy with respect to that of the associated FEM, may allow a decoupling
of the NRBC grid from that of the FEM. That is, one might construct the discretization of
the ABC on a subset of the boundary nodes defined by the FE grid. The coupling of the
two grids can be performed by a local linear interpolation process.

We further recall that all sums

n−1
∑

j=0

K
k,`
n−ju

j
B`
,

n−1
∑

j=0

V
k,`
n−jλλλ

j
B`
, n = 1, . . . , N (20)

are simultaneously computed by applying a FFT-based algorithm (see [7], Sect. 8.3.1), with

a computational cost of O(N2
BN logN) = O(N

4/3
h N logN) flops.

The working space at a first glace appears to be that of 2N2
BN real numbers; that is,

that due to the construction of the above matrices Km,Vm, m = 0, . . . , N . However, this
can be significantly reduced. Indeed, as mentioned in Remark 3.1, for each row index,
the corresponding row elements of all matrices Km,Vm, m = 0, . . . , N , are simultaneously
computed by means of the FFT algorithm. However, before computing, for all matrices, the
elements of all rows having the next row index, we set equal to zero those whose size is less
than a threshold value; for example, 10−5 or 10−8, depending of the final accuracy we want
to achieve. Then, we will store, and later use, only the remaining “non zero” row elements.
At the end, the total number of elements of each couple of matrices Km,Vm that need to be
stored is only a fraction of 2N2

B (see also the following Figures 1÷6). Also the corresponding
matrix-vector products will have a computational cost much lower than N2

B.
Some theoretical results, which partially allows us to understand the behavior of the

matrices Vm, are reported below. Unfortunately, we cannot derive similar ones for the Km

matrices, since an explicit representation for the ω-coefficients which define them is not

9



known. However, the numerical testing we have performed seem to confirm that, as in the
2D case, the behaviors of both matrices are very similar.

Since for the ω-coefficients associated with the V operator, an explicit analytic repre-
sentation is known, to verify if the matrices Vm have some properties, which may be useful
to reduce the computational cost of the discretized NRBC, we have obtained the following
bounds.

Lemma 3.2. Let ∆t = T/N , with T > 0 fixed and N arbitrary positive integer. For the
ω-coefficients associated with the operator V the following bounds hold.

(i) For all integers 1 ≤ n ≤ N and reals r > 0,

r|ωn(∆t; r)| < 0.05462× n− 1
4

(

rN

nT
e−

rN
nT

+1

)n/2

. (21)

(ii) Let n be a fixed positive integer. For 0 < r0 ≤ r ≤ r1, with r0, r1 arbitrary real
numbers, we have:

|ωn(∆t; r)| ≤ Cn

(

Ne−αnN
)n/2

, (22)

where

Cn =
0.05462

r0
n−1/4

(r1e

nT

)n/2

, αn =
r0
nT

.

Proof. In the case of the operator V , the following explicit representation for the ω coeffi-
cients has been derived in [25] (see also [34]):

ωn(∆t; r) =
1

4πrn!
e
− 3r

2∆t

(

r

2∆t

)n/2

Hn

(
√

2r

∆t

)

, n ≥ 0, (23)

where r = ‖x − y‖,x,y ∈ B, and Hn(x) = 2nxn + . . . is the n-degree Hermite orthogonal
polynomial.

First we consider the case n = 1 . . . , N , with N → ∞, that is, ∆t → 0. Using the
well-known Stirling’s formula for the factorial:

n! =
√
2πnn+ 1

2 e−n+ θ
12n , 0 < θ < 1

and the bound (see [1], (22.14.17))

|Hn(x)| < 1.0865× 2
n
2 e

x2

2

√
n!

from representation (23) we obtain:

r|ωn(∆t; r)| <
1.0865

29/4π5/4
n−n

2
− 1

4 e
n
2 e−

1
2

rN
T

(

rN

T

)n/2

,

from which (21) follows.
Then, we consider the case n fixed and ∆t → 0. We also assume 0 < r0 ≤ r ≤ r1, with

r0, r1 given real numbers. In this case, bound (22) follows immediately from (21). 2

Starting from (21) above, and noting that the function y = xe−x+1 is always positive in
(0,∞), is increasing from 0 to its maximum value 1 in the interval [0, 1], and exponentially
decaying to zero in [1,∞), a straightforward calculation then gives the following results.

10



Corollary 3.3. Let assume T > kdB, where 0 < r ≤ dB, dB denoting the diameter of the
artificial boundary B. Then, for all integers n, N/k ≤ n ≤ N , with k ≥ 1 fixed, we have:

r|ωn(∆t; r)| < 0.05462× n−1/4

(

kdB
T

e−
kdB
T

+1

)
n
2

, (24)

where 0 < kdB
T
e−

kdB
T

+1 < 1.

Note that if in bounds (24) we set x = kdB/T , for 0 ≤ x ≤ 1/4, i.e. T ≥ 4kdB, we have,
for example, y < 0.53, hence 0.5332 < 1.51E − 9 and 0.5364 < 2.26E − 18. The smaller is
x the smaller is y, hence the faster is the convergence to zero of the associated powers. In
particular, for all r > 0, the right hand side of (24) tends to zero exponentially, as NT → ∞.
In general, as long as x is away from the abscissa x̄ = 1, the corresponding value of yn/2

decay exponentially to zero, as N → ∞.

Remark 3.4. From bound (24) it also follows that the larger is T with respect to the diameter
of the artificial boundary B, the larger is the value of k that can be taken. Thus for all integers
N sufficiently large, all the matrices Vn, N/k ≤ n ≤ N , can be neglected.

In the following Figures 1-6, we consider an artificial boundary given by a sphere of radius
R = 0.1, final time instants T = 0.5, 1, 10, respectively, and time step T/N . In particular,
on the left hand side figures, we report the maximum absolute value of the matrix elements
of the matrices Vn and Kn, for n = 0, . . . , N . On the right hand side figures, we plot, for
each n, the number of each matrix element whose size is larger or equal than the threshold
value 1E − 8.

Figure 1: Left plot: behavior of the maximum absolute value of the elements of the matrix Vn (Single Layer)
versus time. Right plot: number of the non zero entries of the matrix Vn after threshold. R = 0.1, T = 0.5
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Finally, we recall that in a very general situation, to apply our NRBC we also have to
evaluate 3NBN logN volume integrals (see (19)).

4. Discretization of the boundary value problem

4.1. Time discretization

In principle, any integration scheme can be used for the time discretization of the first
equation in (8) (see for example [14], where different time schemes have been considered and
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Figure 2: Left plot: behavior of the maximum absolute value of the elements of the matrixKn (Double Layer)
versus time. Right plot: number of the non zero entries of the matrix Kn after threshold. R = 0.1, T = 0.5
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Figure 3: Left plot: behavior of the maximum absolute value of the elements of the matrix Vn (Single Layer)
versus time. Right plot: number of the non zero entries of the matrix Vn after threshold. R = 0.1, T = 1
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Figure 4: Left plot: behavior of the maximum absolute value of the elements of the matrixKn (Double Layer)
versus time. Right plot: number of the non zero entries of the matrix Kn after threshold. R = 0.1, T = 1
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compared). For simplicity, we choose to use the Crank-Nicolson integration method, which
is of second order and unconditionally stable. Thus, denoting by v := ∂u

∂t
and by un = un(x),

vn = vn(x), λn = λn(x) and f̃n = f̃n(x) the approximations of u(x, tn), v(x, tn), λ(x, tn)
and f̃(x, tn), respectively, and applying the Crank-Nicolson discretization, a straightforward
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Figure 5: Left plot: behavior of the maximum absolute value of the elements of the matrix Vn (Single Layer)
versus time. Right plot: number of the non zero entries of the matrix Vn after threshold. R = 0.1, T = 10
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Figure 6: Left plot: behavior of the maximum absolute value of the elements of the matrixKn (Double Layer)
versus time. Right plot: number of the non zero entries of the matrix Kn after threshold. R = 0.1, T = 10
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calculation leads to the following time-marching scheme (for more details see [14])











(un+1, w)Ω +
∆2

t

4
a(un+1, w)− ∆2

t

4
(λn+1, w)B = (un, w)Ω − ∆2

t

4
a(un, w) +

∆2
t

4
(λn, w)B

+ ∆t(v
n, w)Ω +

∆2
t

4
(f̃n+1 + f̃n, w)Ω, ∀w ∈ X0

vn+1 = 2
∆t
(un+1 − un)− vn.

(25)

4.2. Space discretization

At each time tn, to compute the unknowns un and λn we will use a finite element method.
To this end, we consider a finite decomposition of each computational domain Ωk (defined in
Section 2) into tetrahedra and we denote by Ωk,∆ = ∪T ∈Tk,hT the finite polyhedral domain,
whose mesh size is bounded by h and whose inner and outer boundaries are denoted by Γk,∆

and Bk,∆, respectively. Then, we associate with this decomposition the functional spaces

Xk,h = {wk,h ∈ C0(Ωk) : wk,h|T ∈ P
1(T ), T ∈ Tk,h, wk,h|Γk,∆

= g|Γk,∆
} ⊂ H1(Ωk),

Xk,h,0 = {wk,h ∈ C0(Ωk) : wk,h|T ∈ P
1(T ), T ∈ Tk,h, wk,h|Γk,∆

= 0},⊂ H1
0 (Ωk)
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of (piecewise) linear conforming finite elements in the domain Ωk associated with the mesh
Tk,h. We also introduce the space Wk,h of (continuous) functions defined on the boundary
Bk by the finite element basis {bk,i(x)}Mk

i=1 (see (14), (15)). Finally, we set

Xh =
κκκ
∏

k=1

Xk,h, Xh,0 =
κκκ
∏

k=1

Xk,h,0, Wh =
κκκ
∏

k=1

Wk,h.

The Galerkin formulation of (25) then reads: for each n = 0, · · · , N − 1, find (un+1
h , λn+1

h ) ∈
Xh ×Wh such that, for all wh ∈ Xh,0 we have:

(un+1
h , wh)Ω +

∆2
t

4
a(un+1

h , wh)−
∆2

t

4
(λn+1

h , wh)B = (unh, wh)Ω − ∆2
t

4
a(unh, wh)

+
∆2

t

4
(λnh, wh)B +∆t(v

n
h , wh)Ω +

∆2
t

4
(f̃n+1 + f̃n, wh)Ω

(26)

For every k = 1, . . . ,κκκ, let {NΩk

i }i∈Sk
denote the set of finite element basis functions

defined on the decomposition Tk,h, where: Sk = SIk ∪SBk
, SIk is the set of the internal mesh

nodes of the polyhedron Ωk,∆ and SBk
is the set of the mesh nodes lying on the artificial

boundary Bk. Note that bk,i = NΩk

i |Bk
, i ∈ SBk

. By properly reordering the unknown
coefficients of unk,h := unh|Ωk

, we obtain the (unknown) vector un
k = [un

Ik
,un

Bk
]T , whose two

components un
Ik

and un
Bk

represent the unknown values associated with the internal nodes of
Ωk,∆ and with those on the boundary Bk, respectively. Similarly for the vector vn

k , containing
the unknown coefficients of vnk,h. Finally, we denote by λ

n
Bk

the unknown vector whose
components are the coefficients of the approximant λ4x,k

(xk, tn) defined in (15).
To rewrite (26) in the matrix form, we consider the system of equations associated with

a single computational domain Ωk,∆, k = 1, . . . ,κκκ, which is given by

(

Mk +
∆2

t

4
Ak

)

un+1
k − ∆2

t

4
Qkλλλn+1

Bk
=

(

Mk − ∆2
t

4
Ak

)

un
k +

∆2
t

4
QkλλλnBk

+∆tM
kvn

k

+
∆2

t

4

(

f̃n+1
k + f̃nk

)

(27)

where

Mk =

[

Mk
II Mk

IB
Mk

BI Mk
BB

]

, Ak =

[

Ak
II Ak

IB
Ak

BI Ak
BB

]

, Qk =

[

Qk
IB

Qk
BB

]

.

The matrix elements

(Mk)ij =

∫

Ωk

NΩk

i NΩk

j , (Ak)ij =

∫

Ωk

∇NΩk

i · ∇NΩk

j , i, j ∈ Sk

are those of the mass and stiffness matrices, respectively, while those of Qk are given by

(Qk)ij =

∫

Bk

bk,ibk,j, i ∈ Sk, j ∈ SBk .
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Equation (27) is finally coupled with

vn+1
k =

2

∆t

(un+1
k − un

k)− vn
k (28)

and with the discretized NRBC equation

(

1

2
Ik +K

k,k
0

)

un+1
Bk

+

κκκ
∑

`=1
` 6=k

K
k,`
0 un+1

B`
+

κκκ
∑

`=1

V
k,`
0 λλλn+1

B`

= −
κκκ
∑

`=1

n
∑

j=0

K
k,`
n+1−ju

j
B`

−
κκκ
∑

`=1

n
∑

j=0

V
k,`
n+1−jλλλ

j
B`

+ Ik,n+1
u0

+ Ik,n+1
v0

+ I
k,n+1
f .

Having set µ =
∆2

t

4
, and letting k = 1, . . . ,κκκ, we obtain a final linear system AX = B

having the following block structure:

A =



































[

M1 + µA1 −µQ1

1
2
I1 +K

1,1
0 V

1,1
0

] [

O O

K
1,2
0 V

1,2
0

]

. . .

[

O O

K
1,κκκ
0 V

1,κκκ
0

]

[

O O

K
2,1
0 V

2,1
0

] [

M2 + µA2 −µQ2

1
2
I2 +K

2,2
0 V

2,2
0

]

. . .

[

O O

K
2,κκκ
0 V

2,κκκ
0

]

...
...

. . .
...

[

O O

K
κκκ,1
0 V

κκκ,1
0

]

. . .

[

Mκκκ + µAκκκ −µQκκκ

1
2
Iκκκ +K

κκκ,κκκ
0 V

κκκ,κκκ
0

]



































X =



























[

un+1
1

λλλn+1
B1

]

[

un+1
2

λλλn+1
B2

]

...
[

un+1
κκκ

λλλn+1
Bκκκ

]


























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B =



























































(M1 − µA1)un
1 + µQ1λλλn1 +∆tM

1vn
1 + µ

(

f̃n+1
1 + f̃n1

)

−
κκκ
∑

`=1

n
∑

j=0

K
1,`
n+1−ju

j
B`

−
κκκ
∑

`=1

n
∑

j=0

V
1,`
n+1−jλλλ

j
B`

+ I1,n+1
u0

+ I1,n+1
v0

+ I
1,n+1
f

















(M2 − µA2)un
2 + µQ2λλλn2 +∆tM

2vn
2 + µ

(

f̃n+1
2 + f̃n2

)

−
κκκ
∑

`=1

n
∑

j=0

K
2,`
n+1−ju

j
B`

−
κκκ
∑

`=1

n
∑

j=0

V
2,`
n+1−jλλλ

j
B`

+ I2,n+1
u0

+ I2,n+1
v0

+ I
2,n+1
f









...








(Mκκκ − µAκκκ)un
κκκ + µQκκκλλλnκκκ +∆tM

κκκvn
κκκ + µ

(

f̃n+1
κκκ + f̃nκκκ

)

−
κκκ
∑

`=1

n
∑

j=0

K
κκκ,`
n+1−ju

j
B`

−
κκκ
∑

`=1

n
∑

j=0

V
κκκ,`
n+1−jλλλ

j
B`

+ Iκκκ,n+1
u0

+ Iκκκ,n+1
v0 + I

κκκ,n+1
f



























































To discretize, hence solve, our problem (7) we have followed the same approach used
in [14] for a single scatterer in the 2D case. However, in the 3D case under consideration,
having κκκ scatterers, we have imposed κκκ NRBC. The efficient discretization of these latter
is then a key issue for the success of the overall method, both in terms of space memory
requirement and computational time.

Note that the matrix A does not depend on n. Therefore, at each time step only the
right hand side B needs to be updated.

Remark 4.1. We have tested the stability and convergence of the proposed method. From the
results we have obtained, it appears that unconditional stability and convergence is guaranteed,
in the given time interval [0, T ], as long as all the integrals required by the (discretized) NRBC
are exactly evaluated. When these integrals are evaluated with a given accuracy ε, then, for
any chosen space discretization parameter ∆x, there exists a time step barrier ∆0 = ∆0(ε),
with ∆0 → 0 as ε → 0, such that for ∆t < ∆0 instabilities arise before reaching the final
time T .

For example, if in the first example of Section 6, where T = 10, we choose N =
32, 64, 128, 256, 512, 1024 and consider the first two levels of space discretization, no instabil-
ity appears when we perform the required integration by using a ν-point Gauss-Legendre rule,
with ν = 2, 2, 2, 8, 12, 20 in the case of the first discretization level, and ν = 2, 2, 2, 2, 8, 12 in
the case of the second level. In both cases, for example, if we take ν = 4 when N = 512, 1024,
instabilities appear before reaching the endpoint T = 10. Thus, the efficient evaluation of
the above mentioned integrals is a crucial point for the success of the proposed NRBC. Note
however that, as ∆x decreases, the accuracy given by the chosen ν-point rule increases, hence
the value of ∆0 decreases.

5. An exact solution for a wave equation problem in the exterior of the unit

sphere

To test the convergence of the proposed numerical scheme, and in particular the effec-
tiveness of the proposed NRBC, it is important to have a reference solution at hand.
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In the special case of an homogeneous problem (u0 = v0 = f = 0) defined on the surface
Γ = S

2 of the unit sphere, for the particular Dirichlet datum g(x, t) = g(t)Y m
n (x), where Y m

n

are the spherical harmonics of degree n and order m, with n = 0, 1, . . . and −n ≤ m ≤ n, it
is possible to derive an explicit analytic representation for the solution of problem (1).

To this end, by proceeding as the authors of [36] did for an analogous question (the exact
solution of the associated BIE defined below in (34)), we consider the Laplace transform of
u(x, t)), here denoted by û(x, s), which is the solution of the wave equation reformulated in
the frequency domain (Helmholtz equation). Furthermore, we set

u(x, t) = u(t)Y m
n (ξ), with x = rξ ∈ R

3, ξ ∈ Γ = S
2 (29)

where, for notational simplicity, we denote by u(t) a function which depends also on r. Then,
we use the property that the solution û of the associated Helmholtz problem satisfies the
relationship

û(s) = ĝ(s)
h
(1)
n (isr)

h
(1)
n (is)

, (30)

where h
(1)
n denotes the spherical Bessel functions of third kind (see [8]). By computing the

inverse Laplace transform of (30), we retrieve an analytic expression for the solution of the
homogeneous wave equation. This is given by representation (29), with

u(t) = L−1

(

ĝ
h
(1)
n (ir·)
h
(1)
n (i·)

)

(t) = g ∗ L−1

(

h
(1)
n (ir·)
h
(1)
n (i·)

)

(t).

By using known properties of the Bessel functions (see in particular [1] (Sec. 10.1.1) and
[22] (formula in Sec. 8.466)), and following [36], we easily get

h(1)n (s) =

√

π

2s
H

(1)

n+ 1
2

(s) =

√

π

2s

√

2

πs
(i)−(n+1)eis

n
∑

k=0

(−1)k
(n + k)!

k!(n− k)!

1

(2is)k

=
1

s
(i)−(n+1)eisyn

(

− 1

is

)

,

where yn(s) :=
∑n

k=0(n, k)s
k, (n, k) := (n+k)!

2kk!(n−k)!
and H

(1)
ν is the first kind Hankel function

of order ν. Using this latter expression we obtain:

h
(1)
n (irs)

h
(1)
n (is)

=
1

r
e−(r−1)s yn(

1
rs
)

yn(
1
s
)
.

In the simplest case n = 0 we have yn(s) = 1, wherefrom
h
(1)
0 (irs)

h
(1)
0 (is)

= 1
r
e−(r−1)s. By using

classical properties of the inverse Laplace transform, we easily get

L−1

(

h
(1)
0 (ir·)
h
(1)
0 (i·)

)

(t) =
1

r
H(t− (r − 1))δ(t− (r − 1)),

17



being H the Heaviside function. Thus, we obtain

u(t) =
1

r

∫ t

0

g(t− τ)H(τ − (r − 1))δ(τ − (r − 1))dτ

=

{

0 if t ≤ r − 1
1
r
g(t− (r − 1)) otherwise.

(31)

Since Y 0
0 (x) = 1/(2

√
π), the solution of our problem is:

u(x, t) =
1

2
√
π
u(t) (32)

with u(t) defined by (31). Note that this latter is a radial function. In Figure 7 we show the
behavior of u(x, t), with respect to the time variable, corresponding to the Dirichlet data
g(x, t) = 1

2
√
π
t4e−2t (left plot) and g(x, t) = 1

2
√
π
sin(2t)te−2t (right plot).

Figure 7: Exact solutions of the homogeneous wave equation for Γ = S
2 corresponding to the choice of

the Dirichlet data g(x, t) = 1

2
√

π
t4e−2t (left plot) and g(x, t) = 1

2
√

π
sin(2t)te−2t (right plot). Each curve

corresponds to its behavior with respect to time at points having distance r from the origin.
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6. Numerical results

In the numerical tests we will perform, the discretization of the three dimensional spatial
domain is generated by using the open source Freefem++ library. In particular we use the
TetGen software, which allows to generate the tetrahedral mesh of the Ω domain starting
from the triangular meshes we define on its two boundaries (see [28]). The computational do-
mains that we will consider for our numerical examples are three dimensional shells bounded
internally by a surface Γ and externally by a surface B. The model that represents the shell,
which is constructed by TetGen, is a three dimensional Piecewise Linear Complex (PLC).
We recall that TetGen does not generate the surface mesh of the PLC; this, together with
the choice of the maximum diameter of the triangles generated to approximate the surfaces,
must be given as input by the user. Moreover, TetGen does not take the curvature of the
surface into account. In what follows, nT denotes the number of tetrahedra of the decom-
position of the computational domain Ω, while ntΓ and ntB denote the number of triangles
belonging to the boundaries Γ and B, respectively.
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To define a discretization with the TetGen sofware we have downloaded, we first set, on
each couple of boundary surfaces B and Γ, the ”sizes” of the corresponding triangulations;
these sizes are denoted by hB and hΓ, respectively. Starting from these data, TetGen then
constructs the associated Ω discretization. Halving hB and hΓ does not necessarily implies
halving the Ω discretization maximum diameter. Since the discretizations obtained by pro-
ceeding as described above were not satisfactory, we have modified them in the central part
of Ω, to make them more uniform.

For simplicity, all the problems we will consider have trivial initial data u0 and v0, since
the evaluation of the corresponding integrals would require a further ad hoc discussion.
Unfortunately, we are not aware of published numerical results obtained by solving ”true”
3D scattering problems using a FEM+NRBC approach alternative to ours. Those we have
found in the literature refer to special cases, such as those of spherical domains and plane
waves (see for example [24]), that are first reduced to 2D problems and then solved as such.
Therefore, we will not compare the results we obtain using our method with those that could
be produced by alternative approaches.

In the first example, we consider a problem whose solution is given by the representation
derived in Sect. 5. In the following four examples, since the corresponding exact solutions
are not known, to measure the accuracy of the approximations we obtain, we construct a ref-
erence “exact” solution obtained by using the following single-layer potential representation
associated to (1) (see [12]):

u(x, t) =

∫ t

0

∫

Γ

G(||x−y||, t−τ)ϕ(y, τ) dΓy dτ+Iu0(x, t)+Iv0(x, t)+If (x, t) x ∈ Ωe (33)

The unknown density function ϕ is the solution of the following BIE:

∫

Γ

∫ t

0

G(r, t− τ)ϕ(y, τ) dτdΓy = g(x, t)− Iu0(x, t)− Iv0(x, t)− If (x, t), x ∈ Γ, (34)

and represents the jump of the normal derivative of u along Γ. The density function is
obtained by applying the Lubich-collocation method to equation (34), with a very fine space
and time discretization. The solution at any point in the infinite domain Ωe is then retrieved
by computing the associated potential integral representation (33), using the previous dis-
cretization. In the following, this solution will be denoted by the acronym BEM.

Since the BEM approach is itself an alternative option for solving problem (1), before
proceeding further, we compare it with our FEM+NRBC method, both from the compu-
tational complexity and the storage requirement.

As in Sect. 3.4, for simplicity we consider the case of a single scatterer with the corre-
sponding artificial boundary. We denote by NΓ the number of mesh points on the boundary
Γ. Following the observations made in the first part of Sect. 3.4, and using the same symbols,
the numerical solution of BIE (34), by means of the method proposed in [12], requires the
evaluation of N2

ΓN logN matrix elements and, in general, of 3NΓN logN volume integrals.
The associated working space is that of N2

ΓN real numbers. The evaluation of the solution
u(x, t) at all Nh interior grid points, as well as at the NB artificial boundary mesh points,
for all N time instants, requires the computation of (Nh +NB)NΓN logN matrix elements,
plus 3(Nh + NB)N logN volume integrals. Thus the total computational cost of the BEM
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approach is given by the evaluation of (Nh +NΓ +NB)NΓN logN matrix elements and, in a
very general situation, of 3(Nh +NΓ +NB)N logN volume integrals.

If we ignore, for simplicity, the volume integral computation, the ratio between the BEM
and FEM+NBBC computational complexities is of order NΓ(Nh+NΓ+NB)

N2
B

. Note also that in

the BEM approach, the computational cost of the corresponding volume integral evaluation
is much higher than that of the volume integrals required by the FEM+NRBC method (see
the last sentence of Sect. 3.4); their ratio is of order Nh+NΓ+NB

NB
. Thus, since in the case of

a regular grid we have NΓ, NB = O(N
2/3
h ), the behavior of these two ratios, as Nh → ∞,

is O(N
1/3
h ) for both of them. The ratio between the working space required by the two

approaches is
(

NΓ

NB

)2

.

Example 1. As a first example, we consider Problem (1) in the case where Ωi consists of a
single scatterer (κκκ = 1). We assume that the source f is zero throughout the infinite exterior
domain Ωe. The boundary Γ is the unit sphere, where we prescribe the Dirichlet condition
g(x, t) = 1

2
√
π
t4e−2t for all t ≥ 0. The solution of this problem is a radial function and its

analytical expression is given by (32) and (31).
Case a). First we choose a spherical artificial boundary B having radius R = 2, so that

Ω is the shell bounded internally by Γ and externally by B. In Figure 8 we show a section
of three different refinements of the shell.

Here, and in the following examples, to evaluate the integrals that appear in the ele-
ments of the matrices Vk,`

m and Kk,`
m (see (16) and (17)), we first map each triangle of the

approximated artificial surface, where the integrand in non null, into the (standard) refer-
ence triangle; then we introduce the polar coordinates and apply a ν-point Gauss-Legendre
quadrature rule to each one-dimensional integral. In this first example we take ν = 4. We
remark that, because of the discrepancy between the artificial boundary B∆ of the PLC Ω∆

and that (B) of the NRBC, and of the presence of the normal derivative in the kernel KK

(see (12)), the solution obtained by integrating over the plain triangles of B∆ is not satisfac-
tory for coarse spatial discretizations and presents spurious reflections that disappear with
spatial refinements. Therefore, we perform the integration over the curvilinear triangles by
simply projecting a point belonging to the plane triangle to the corresponding point of the
surface (see for example Figures 18 and 19 where we compare both types of approximation).

Being the exact solution known, we also compute the following error norm:

Err := max
0≤n≤N

‖u(·, tn)− u∆x
(·, tn)‖L2(Ω). (35)

The numerical computation of the quantity

‖u(·, tn)− u∆x
(·, tn)‖2L2(Ω) ≈

∑

T ∈Th

∫

T
|u(x, tn)− u∆x

(x, tn)|2dx

has been obtained by applying on each tetrahedron T a 4-point quadrature rule of order 2
(see [30] for details).

We must remark that, not knowing the maximum diameter reduction produced by halving
the sizes of the above defined surfaces triangulations, it becomes impossible to test the
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convergence rate of our method. Nevertheless, we believe that the results reported in the
two tables below can give some useful information.

In Table 1 we report the error norm defined in (35) with respect to some space and time
mesh refinements. The successive spatial refinements have been obtained by halving each
time the mesh size of both the internal (hΓ) and external (hB) boundaries of the shell. The
associated refinements of the Ω decomposition are automatically determined by the software
TetGen. It is our opinion that the above errors are essentially due to the FE computation.
Those due to the NRBC discretization appear negligible. Indeed, if we compute, for example,
all the needed integrals with higher accuracy, using a 16-point Gauss-Legendre rule, we obtain
the same errors reported in Table 1. As we have already noted in the 2D case, the NRBC is
very robust (see the comment we have made at the end of the first paragraph in Sect. 3.4).

Figure 8: Example 1. Case a). A section of the shell having the unit sphere as internal boundary and the
sphere of radius 2 as external one: three discretizations into nT tetrahedra.

nT = 1627 nT = 6079 nT = 44892

We have also computed the problem solution, at three of the grid points produced by
TetGen, by using the BEM approach described above, with the same FEM mesh. Since the
three grids we have consider do not have interior common points, the tree points P1, P2, P3

we have taken for each grid are those having minimum distance from Q1 = (2, 0, 0), Q2 =
(1.5, 0, 0), Q3 = (1.2, 0, 0). The associated errors are also reported for a comparison.

For each chosen discretization level L1-L3, and t ∈ [0, 10], in the left plots of Figures 9,
10 and 11 we compare the exact solution with the approximations we have obtained at the
grid points P1, P2 and P3 defined above. On the right plots of the same figures we report the
associated absolute errors.

In Table 2, for the same mesh refinements of Table 1, we compare the absolute errors
given by our method and by the BEM, at the grid points P1, P2 and P3. The label npoints
denotes the total number of degrees of freedom (internal and B-boundary points). In the
last column of Table 2 we report the ratio between the CPU times required by the BEM and
by the FEM+NRBC approaches, to determine the solution at all the above defined npoints,
and for all chosen time instants tn, n = 1, . . . , N . As expected, the proposed method is
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Figure 9: Example 1. Case a). Comparison between the exact solution and the approximate ones at P1 (left
plot) and associated errors (right plot), for the space and time mesh refinements defined in Table 1.
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Figure 10: Example 1. Case a). Comparison between the exact solution and the approximate ones at P2

(left plot) and associated errors (right plot), for the space and time mesh refinements defined in Table 1.
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Figure 11: Example 1. Case a). Comparison between the exact solution and the approximate ones at P3

(left plot) and associated errors (right plot), for the space and time mesh refinements defined in Table 1.
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much faster.
As already remarked, the choice of the artificial boundary B should be flexible and should

be dictated by the area where one is interested in knowing the solution, rather than by the
property of the ABC of being more or less transparent according to where B is located. It
is well known, for example that local ABCs of low order perform better when B is located
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Table 1: Example 1. Case a). Behavior of the error norm (35) with respect to the space and time mesh
refinements, for t ∈ [0, 10].

level hΓ ntΓ hB ntB nT N ErrFEM
L1 .5 122 1 122 1627 32 9.70E-03
L2 .25 440 .5 440 6079 64 5.75E-03
L3 .125 1772 .25 1772 44892 128 2.63E-03

Table 2: Example 1. Case a). Absolute errors at P1, P2, P3 and FEM+NRBC vs BEM CPU comparison, for
the space and time mesh refinements defined in Table 1, t ∈ [0, 10].

Err(P1) Err(P2) Err(P3)
level npoints FEM BEM FEM BEM FEM BEM RCPU
L1 265 2.73E-03 3.52E-03 2.51E-03 2.91E-03 9.72E-03 1.66E-03 3.6
L2 973 1.46E-03 1.29E-03 1.19E-03 9.18E-04 1.71E-03 4.67E-04 3.4
L3 7001 4.92E-04 3.44E-04 4.56E-04 2.52E-04 4.08E-04 1.15E-04 5.7

far from Γ. In our case the choice of B is arbitrary, both for what concerns its location (see
the following example) and its shape (see Example 3).

Case b). Next we take the spherical artificial boundary B having radius R = 1.1, so that
the shell Ω is a very thin one (see Figure 12).

Figure 12: Example 1. Case b). A section of the shell having the unit sphere as internal boundary and the
sphere of radius 1.1 as external one: two discretizations into nT tetrahedra.

nT = 2895 nT = 12646

We consider two levels of discretization, corresponding to the choice L1 : nT = 2895, N =
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32, and L2 : nT = 12646, N = 64. In Figure 13 we show the good agreement of the
approximate solution with the reference BEM one at a point P ≈ (1.1, 0, 0) belonging to the
artificial boundary and the corresponding absolute errors.

Figure 13: Example 1. Case b). Comparison between the exact solution and the approximate ones at
P ≈ (1.1, 0, 0) (left plot) and associated errors (right plot), for the space and time mesh refinements L1 and
L2.
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Example 2. Case a). We consider the case of a wave generated by a single source and
impinging upon a single body acting as a soft obstacle. The data of the problem are u0 = 0,
v0 = 0, g = 0 and f 6= 0. We recall that, if a source is far from the area of interest, the
existing local NRBCs would require to take a much larger domain Ω, to include the source,
thus wasting computational time and space memory. This is not the case when we use our
NRBC. Indeed, when a source is located in the residual domain D, the source action is taken
into account by the proposed artificial boundary condition.

To simplify the computation of the volume term If , we consider a source concentrated
at a point x0: f(x, t) = h(t)δ(x − x0), where h(t) is a given smooth function. With this
choice, taking into account the presence of the delta Dirac function in the expression of the
fundamental solution (2), we deduce the following simple form of the volume integral If
defined in (6):

If (x, t) =

{

h(t−‖x−x0‖)
4π‖x−x0‖ , for all x : ‖x− x0‖ < t

0 otherwise.
(36)

We place the source f(x, t) = t2 sin(4t)e−tδ(x− x0) at the point x0 = (5, 0, 0); Γ and B
are the surfaces of the spheres of radius r0 = .25 and R = .5, respectively, both centered at
the origin (see Figure 14 left plot). In Figure 14, right plot, we compare the approximate
and the reference (BEM) solutions at the B∆ mesh point P closest to (.5, 0, 0), for t ∈ [0, 20].
The reference solution has been obtained by a discretization of Γ into ntΓ = 122 triangles
and N = 1E + 03 time steps. The approximate solution has been obtained by using a
decomposition of the spherical shell into nT = 226 tetrahedra and taking N = 500 time
steps. We note that the reference and the approximate solutions perfectly match and that
the wave is null until the signal f reaches the point P at the time t ≈ 4.5. Moreover, because
of the presence of the term e−t in the source f , the wave vanishes for large times without
showing spurious reflections.
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Figure 14: Example 2. Case a). Scatterer surrounded by the artificial boundary and external source f (left
plot). Comparison between the reference solution and the approximate one at P ≈ (.5, 0, 0) (right plot).
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Figure 15: Example 2. Case b). Scatterer surrounded by the artificial boundary and external sources f1 and
f2 (left plot). Comparison between the reference solution and the approximate one at P ≈ (.5, 0, 0) (right
plot)

0 2 4 6 8 10 12 14 16 18 20
−0.1

−0.05

0

0.05

0.1

time

 

 

BEM
ABC , n

T
 = 873 nt

B
 = 440

Case b). The treatment of a single source, external to the finite computational domain,
can be easily extended to several sources, compactly supported and having disjoint supports.
In this case, the volume term If that appears in the NRBC consists of the sum of several
volume terms Ifi, each of which is generated by the corresponding source fi. In the next
example, in the same setting of the case a), we consider the two point sources

f1(x, t) = h1(t)δ(x− x1) = t2 sin(4t)e−tδ(x− x1)

f2(x, t) = h2(t)δ(x− x2) = cos(10t)δ(x− x2),

located in x1 = (1, 0, 0) and x2 = (0, 5, 0), respectively. It is easy to check that the volume
term of the NRBC is given by If = If1 + If2, where Ifi, i = 1, 2 are given by (36).

In Figure 15 we show the history of the wave at the B∆ mesh point P ≈ (.5, 0, 0), for
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t ∈ [0, 20]. Also in this case the reference and the approximate solutions match. At a time
t ≈ 0.5 the effect of the first source f1 is visible at P , and when the effect of this source
vanish (because of the presence of the e−t term) the oscillatory behavior of the wave is due
to the persistence of the signal f2.

Example 3. The ductility of the artificial boundary is another important characteristic of
the proposed NRBC. In this example we consider a single scatterer whose boundary Γ is the
nut shape surface obtained by rotating the one dimensional curve

x(θ) = ρ(θ) cos(θ)
y(θ) = ρ(θ) sin(θ),

where ρ(θ) = c(1 + e cos(nθ)), c = 0.5, e = 0.7, n = 2 and θ ∈ [0, 2π], along the x-axis (see
Figure 16). The parametric representation of the three dimensional nut is therefore given by

X(θ, ϕ) = x(θ)
Y (θ, ϕ) = cos(ϕ)y(θ)
Z(θ, ϕ) = sin(ϕ)y(θ).

(37)

Figure 16: Example 3. The nut shape curve for the choice c = 0.5, e = 0.7 and n = 2 (left plot) and the
corresponding three dimensional surface (right plot)
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We prescribe on Γ the Dirichlet datum g(x, t) = 1
2
√
π
t4e−2t for all t ≥ 0. In order to

study the behavior of the solution in a thin region surrounding Γ, we choose the artificial
boundary B having the same shape of Γ, that is the nut shape surface obtained with the
choice of the parameters c = 1, e = 0.7 and n = 2. A cross section of the resulting finite
computational domain, bounded internally by Γ and externally by B, and a decomposition
of it into tetrahedra, is represented in Figure 17. In Figure 18 we plot the behaviors of the
BEM reference solution and of the approximate ones at a B∆ mesh point P1 ≈ (1.7, 0, 0),
for t ∈ [0, 10]. The approximations are obtained with different refinements of the spatial
mesh and for a fixed refinement of the time interval into N = 100 steps. In particular we
compare the approximation obtained when the matrix elements of the matrices Vm and Km

are computed by integrating over the plain triangles (”ABC plain” acronym for the solution,
right plot) and the one obtained when the matrix elements are computed by integrating over
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the curvilinear triangles (”ABC curv” acronym for the solution, left plot). We note that, with
the same mesh refinement, the second approach produces a more accurate approximation
with respect to the first one. In Figure 19 we compare the reference and approximate
solutions at the B∆ point P2 ≈ (0, 0.3, 0) ∈ B∆, located in the nut narrowing part.

Figure 17: Example 3. A decomposition of the finite computational domain into tetrahedra

Figure 18: Example 3. Comparison between the reference solution and the approximate one at P1 ≈ (1.7, 0, 0)
by curvilinear triangles (left plot) and plain triangles (right plot), N = 100.
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Example 4. In this example, we consider a multiple scattering problem. In particular we
consider two disjoint spherical bodies whose boundaries Γ1 and Γ2 are spherical surfaces
both of radius r = 1, centered at the origin and at C = (6, 0, 0), respectively. As in Example
1, we assume that the source f and the initial data u0 and v0 are zero throughout the infinite
exterior domain Ωe. For all t ≥ 0, we prescribe the Dirichlet condition g(x, t) = 1

2
√
π
t4e−2t on

Γ1, and set g(x, t) = 0 on Γ2. Therefore, the second body acts as a soft reflecting obstacle.
We compare the solution of this problem with the one of Example 1, case a), where a single
scatterer is considered. To this end we choose the artificial boundary B1 as the spherical
surface centered at the origin and with radius R1 = 2, and the artificial boundary B2 as the
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Figure 19: Example 3. Comparison between the reference solution and the approximate one at P2 ≈ (0, 0.3, 0)
by curvilinear triangles (left plot) and plain triangles (right plot), N = 100.
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spherical surface centered at C and with radius R2 = 2. We recall that the choice of B1

and B2 is quite flexible also in the multiple scattering case; indeed we have performed many
other tests with different choices of the radius of B1 and B2 that are not shown here because
redundant.

In Figure 20 we compare the BEM reference solution and the corresponding approximate
one at the points P1 ≈ (2, 0, 0), P1 ∈ B1,∆ and P2 ≈ (4, 0, 0), P2 ∈ B2,∆, for t ∈ [0, 20]. Each
reference solution has been obtained by a discretization of both surfaces into ntB1 = ntB2 =
122 triangles, and by performing N = 1E +03 (equal) time steps in the interval [0, 20]. The
approximate solutions are given by a decomposition of both spherical shells into nT = 24224
tetrahedra and N = 200. It can be noticed that the solution at P1 coincides with the exact
solution represented in Figure 9 (right plot) until the time instant t ≈ 7, when the effect of
the second obstacle comes into play.

Figure 20: Example 4. Comparison between the reference solution and the approximate one at P1 ≈ (2, 0, 0)
(left plot) and at P2 ≈ (4, 0, 0) (right plot), corresponding to the choice nT = 24224 and N = 200.

0 2 4 6 8 10 12 14 16 18 20
−0.01

0

0.01

0.02

0.03

0.04

0.05

P
1
 ≈ (2,0,0)

time

 

 

BEM
ABC

0 2 4 6 8 10 12 14 16 18 20
−0.005

0

0.005

0.01

0.015

0.02

0.025

P
2
 ≈ (4,0,0)

time

 

 

BEM
ABC

28



Example 5. Case a). As last example, we consider an incident plane wave uinc(x, t) =
e−5(x3−0.3−t)2 that impinges upon two spherical scatterers. The two spheres have radius
r = 0.25 and are centered at C1 = (0, 0,−3) and C2 = (0, 0, 3.1), along the axis z. The total
wave field is given by the sum of the incident wave uinc and the scattered one uscatt; this
latter is the solution of (1) with null initial data, null source and Dirichlet boundary condition
g(x, t) = −uinc(x, t) on the surface of the two obstacles. We compute the solution in two
distinct regions: the two spherical shells Ω1 and Ω2 bounded externally by the spherical
surfaces of radius 0.5 and centered at C1 and C2, respectively.

We point out that at the time instant t = 0 the Dirichlet condition takes values that
are of the order of the machine precision, so that the required compatibility conditions
are numerically satisfied. In Figure 21 we plot the behavior, in the time window [0, 20],
of the total field at four points: the points P1 ≈ (0, 0,−2.5) and P2 ≈ (0, 0, 2.6) that
belong to the artificial boundaries of Ω1 and Ω2, respectively, and P3 ≈ (0, 0,−2.625) and
P4 ≈ (0, 0.375,−3) that are points interior to the spherical shell Ω1. The numerical solution
has been obtained with a partition of the shells into nT = 5299 tetrahedra and N = 400
time steps.

The incident wave is centered at x3 = 0.3, t = 0, and starts moving from the bottom
to the top in the z direction. It first enters the computational domain Ω2 at t ≈ 2 and
bumps against the obstacle centered at C2, thus generating a scattered wave that leaves Ω2

at t ≈ 4 and reaches the domain Ω1 at t ≈ 8 (see right and left top plots in Figure 21). At
the interior points P3 and P4 the effect of the wave that is further scattered by the obstacle
centered at C1 and propagates in Ω1 is visible (see left and right bottom plots in Figure 21).
For the sake of comparison, we have reported on the same graph the behavior of the solution
obtained by the BEM.

Case b) Finally, in Figure 22, we report the solution obtained by adding, to the problem
described above, the exterior source term f(x, t) = H(t − 2)f1(x, t − 2), where f1(x, t) =
t2sin(4t)e−tδ(x) is the source function centered at the origin of the axis. The effect of the
wave generated by the source f is clearly visible at the point P1, at t ≈ 4, before that the
effect of the wave generated by the scattered signal starts summing to it at t ≈ 8. Similar
considerations hold for the points P3 and P4 too. On the Contrary, at P2 the effect of the
scattered wave remains unchanged until t ≈ 6, when the external source comes into play,
since the incident wave reaches the obstacle centered at C2 earlier than the wave generated
by the source f .
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Figure 21: Example 5. Case a). Comparison between the reference solution and the approximate one at
P1 ≈ (0, 0,−2.5) (top-left plot), P2 ≈ (0, 0, 2.6) (top-right plot), P3 ≈ (0, 0,−2.625) (bottom-left plot) and
P4 ≈ (0, 0.375,−3) (bottom-right plot) corresponding to the choice nT = 5299, T = 20 and N = 400.
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Figure 22: Example 5. Case b). Comparison between the reference solution and the approximate one at
P1 ≈ (0, 0,−2.5) (top-left plot), P2 ≈ (0, 0, 2.6) (top-right plot), P3 ≈ (0, 0,−2.625) (bottom-left plot) and
P4 ≈ (0, 0.375,−3) (bottom-right plot) corresponding to the choice nT = 5299, T = 20 and N = 400.
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7. Conclusions

In [24] the authors have constructed a fully local ABC, to deal with 3D multi-scattering
problems. As for all local conditions, sources must be included in the computational domain.
Moreover, the shape of artificial boundary the authors consider is that of a spherical surface,
one for each obstacle, although they remark that ellipsoidal ones could also be taken. Its
computational cost is O(NBN). We must however remark that this ABC requires, as stated
by the authors, a number of auxiliary functions that must be judiciously chosen, depending
on the problem or desired accuracy. Furthermore, a local spline interpolation on the obstacle
boundaries is also required. All the examples they present have a symmetry that allows their
reduction to corresponding 2D problems, which are then solved by coupling the proposed
ABC with a finite-difference scheme. It is however not clear how their approach should be
applied in the case of obstacles having more general shapes, and with the finite difference
method replaced by the FE one.

Our approach is more general. Obstacles and artificial boundaries can have any (smooth)
shape. Furthermore we can even have multi sources, which do not have to be necessarily
included in the computational domain. The NRBC naturally takes into account their effects.
One does not have to separate incoming waves from outgoing ones. The NRBC will be
transparent for each one of them. Finally, we also mention that in principle, we could even
have obstacles which are rotating independently from each other. Indeed, some numerical
testing we have already performed in the 2D case have given very promising results.

This generality has however a cost, both in terms of CPU and space memory, which is
certainly higher than that of the above mentioned local condition. But we believe that a
deeper investigation on these aspects should lead to further savings. The goal is to have a
computational cost close to that of the associated FEM.

Besides the computational cost and the space memory, another possible drawback of the
proposed NRBC is that the time interval of integration must be fixed in advance. Moreover,
if the computation of the integrals defining the NRBC is not performed with the needed
accuracy, as pointed out in Remark 4.1, instabilities might arise before reaching the final
instant T . But increasing the number of quadrature nodes means to increase the NRBC
computational cost. Nevertheless, in our opinion there is still room for reducing these draw-
backs, including the computational complexity and the working space. This includes the use
of discrete convolution quadratures alternative to those of Lubich (see [10], [36], [16]), which
should allow the construction of highly sparse Km and Vm matrices, with the position of
the non zero elements known a priori, but at the cost of loosing the FFT benefits; the use of
higher order Lubich convolution rules (see for example [34], [2]) or of time integration formu-
las which do not require to fix a priori the final time instant T and to proceed with constant
time step-size (see [31], [32]). Finally, we recall that very recently data-sparse techniques,
such has panel-clustering, H-matrices and high-frequency fast multipole methods, have been
used to reduce the overall computational cost of a 3D space-time BIE Galerkin discretization
(see [15], [3]). However, the use of these strategies for reducing the computational cost of
our NRBC is still at an early stage and needs further investigation.

All the numerical computation has been performed on a PC with Intel Core2r Quad
Q6600 (2.40GHz). To perform our numerical testing we have written standard (i.e., sequen-
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tial) Matlabr codes.
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