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Abstract—Expressions for the Gallager’s Random Coding
Error Exponent (RCEE) and the corresponding Expurgated
Error Exponent (EEE) are derived in a unifying framework,
as functions only of the squared singular values of the channel
matrix. The results encompass spatially Kronecker-correlated
Rayleigh channels (whose error exponents expressions are al-
ready present in the literature), Line of Sight MIMO systems,
multiple-scattering channels, multi-hop Amplify and Forward
MIMO channels with non-noisy relays and noisy destination. As
an instance of application of our framework, we evaluate closed-
form expressions for both RCEE and EEE for multiple-scattering
Rayleigh MIMO channels, with an arbitrary but finite number
of scattering stages.

I. INTRODUCTION

The error exponent of a channel code is an important
metric to understand the performance of a communication
system. Indeed, it gives expression to the trade-off that exists
between the average block-error probability (corresponding
to the optimum code) and the required coding length at a
prescribed rate below the channel capacity.

Owing to the difficulty in evaluating it, bounds have been
proposed since early stage of information-theoretic analysis
of communication systems. Among these, the largely adopted
Random Coding Error Exponent (RCEE), proposed by Gal-
lager [1], is based on random selection of the codewords
with equal weight. Its refined version (see again [1]) assumes
that bad codewords are expurgated from the actual set of
codewords in order to decrease the error probability. In the
case of MIMO channels, evaluation of the error exponent
hinges upon the exploitation of Harish-Chandra-Itzykon-Zuber
(HCIZ)-like integrals on matrix spaces, and it has been carried
out in some particular scenarios with Rayleigh fading1. In
particular, error exponents of MIMO block-fading channels
have been already evaluated for spatially correlated Rayleigh
fading in [3], and for the case of single and multi-keyholes in
[4] and [5], respectively. Rayleigh-product channel exponents
have been evaluated in [4], too, assuming the channel matrix to
be the product of two rectangular matrices, with i.i.d. complex
standard Gaussian entries.

In this paper, we first provide general expressions for both
RCEE and EEE in the MIMO case, assuming that Channel

1In [2], where first the problem was set down, there is no final analytic
expression for the error exponent.

State Information (CSI) is available at the receiver only. These
expressions only depend on the joint law of the squared non-
zero, singular values of the channel matrix. They can be
further elaborated to express the error exponent bound in nice
closed form, for most channel models of interest. We then
specialize our findings to a MIMO system whose channel
matrix is the product of an arbitrary number of independent
rectangular matrices with standard Gaussian i.i.d. entries.
This case models both a Rayleigh-faded, multiple-scattering
channel with uncorrelated scatterers, as well as a multi-hop
MIMO relay channel with Uniform Power Allocation (UPA)
at each relay stage, non-noisy relays and noisy received signal.

We remark that, without CSI at either link ends, the unique
available result on the error exponent in MIMO systems is for
Rayleigh channels and is derived in [6].

The rest of the paper is organized as follows. Section II
describes the system model under study. Section III provides
the expressions for the error exponent in the general case
of a MIMO system with block-memoryless fading channel.
Such expressions are then evaluated in the case of multiple-
scattering in Section IV. Concluding remarks are provided in
Section V, while proofs of main statements are relegated to
the Appendices.

II. SYSTEM MODEL

Let the input-output relationship2

Y = HX + N (1)

model a block-memoryless fading MIMO channel with nt
transmit and nr receive antennas and coherence time equal
to nc channel uses3. In (1), the nr × nc matrix Y represents
the output, the nt × nc matrix X is the channel input, the
entries of the nr × nt matrix H represent the channel gains,
and N represents AWGN noise. We assume that information

2Uppercase and lowercase boldface letters denote matrices and vectors,
respectively and the identity matrix is denoted by I. For notation simplicity
we denote the pdf of a random matrix A, pA(A), simply by p(A). E[·] rep-
resents statistical expectation, (·)H indicates the conjugate transpose operator.
Also Tr{A} and |A| denote, respectively the trace and the determinant of
the square matrix A. Moreover ‖A‖2 = Tr{AAH} stands for the Euclidean
norm of A.

3This is tantamount to assume that the channel remains constant for nc

symbol periods and changes independently to a new value every successive
nc symbols.



is encoded in such a way that each codeword spans over
nbnc channel uses, i.e., we collect nb independent realizations
of (1).

Under the assumption of CSI available at the receiver only,
one can bound the average error probability achievable by a
code of rate R with maximum likelihood decoding as [1, Ch.
7]:

Pe ≤
(

2erδ

χ

)2

exp (−nbncE(p(X), R, nc)) , (2)

where r, δ > 0, χ ≈ δ√
2πnbσ2

χ

,

σ2
χ = EX

[(
‖X‖2 − ncP

)2]
. (3)

and E(p(X), R, nc) is the RCEE. In (3), P denotes the
average input-power constraint, i.e.,

EX[‖X‖2] ≤ ncP (4)

for a given distribution of the input matrix p(X). The RCEE
in (2) is given by

E(p(X), R, nc) = max
0≤ρ≤1

{
max
r≥0
− ln E
nc
−ρR

}
, (5)

where E is defined as

E = EH

[∫
Cnr×nc

EX

[
p(Y|X,H)

1
1+ρ er(‖X‖

2−ncP)
]1+ρ

dY

]
. (6)

Rigorously, random coding equally weights both good as well
as bad codewords. An improved bound for the average error
probability can be obtained by expurgating bad codewords
from the code ensemble (see, e.g., [1]). Such an expurgating
procedure leads to the following error probability upper bound

Pe ≤ exp (−nbncEe(p(X), R, nc) + o(1)) , (7)

where

Ee(p(X), R, nc) = max
0≤ρ≤1

{
max
r≥0
− ln Ee

nc
− ρR

}
, (8)

is the EEE, with Ee denoting the matrix integral

E = EH

[
EX,X′

[
er(‖X‖

2+‖X′‖2−2ncP)w(X,X′,H)
1
ρ

]ρ]
(9)

and

w(X,X′,H) =

∫
Cnr×nc

√
p(Y|X,H)p(Y|X′,H) dY . (10)

In (9) X′ shares the same distribution as X and represents the
input signal of good codewords.

Note that, without CSI at the receiver, the expressions in (6)
and (9) would depend on p(Y|X) and p(Y|X′) rather than on
p(Y|X,H) and p(Y|X′,H). However, p(Y|X) and p(Y|X′)
are difficult to evaluate, but for the case of uncorrelated
Rayleigh fading. The case where CSI is not available at
the receiver is currently under investigation and will not be
reported in this work.

We further observe that the optimal distribution p(X) is the
one that maximizes the error exponents E(p(X), R, nc) and

Ee(p(X), R, nc). However, in the following, as usually done
in the literature (see, e.g., [3]–[5] and references therein) we
assume that p(X) follows the Gaussian distribution, i.e,

p(X) = e−Tr{Q
−1XXH}|πQ|−nc , (11)

where the covariance matrix Q should satisfy the average
power constraint

EX[‖X‖2] = ncTr{Q} ≤ ncP.

This assumption simplifies the evaluation of the error expo-
nent. Also, the Gaussian law for X is optimal if the rate R
approaches channel capacity.

When R is close to the capacity and CSI is available at
the receiver but not at the transmitter, UPA across transmit
antennas yields optimal performance. Under UPA, the covari-
ance matrix of the channel input is scalar. That is, it can be
written as Q = γI where γ = P

nt
represents the per-antenna

transmit power, assuming the average power constraint is met
with equality.

III. ERROR EXPONENT ANALYSIS

In this section, we state two theorems providing the expres-
sion of the error exponents. More specifically, in Section III-A
we provide the expression of the random coding error exponent
in (6), while in Section III-B we obtain an analytic expression
of the expurgated error exponent given in (9).

A. RCEE evaluation
Theorem 3.1: Consider a block-fading channel as in (1)

where the channel pdf, p(H), depends on H through HHH
only. Then the RCEE related to an observation window of nb
independent fading blocks of nc channel uses each, can be
expressed as per (5) with4

E = k

∫
R+m

p(Λ)

m∏
`=1

(
α+

γλ`
1 + ρ

)−ncρ
dΛ, (12)

where k = e−rncP(1+ρ)

αnc(nt+ρ(nt−m)) , α = 1 − γr, m = min{nt, nr},
and Λ = diag(λ1, . . . , λm) denotes the diagonal matrix of the
eigenvalues HHH.
Proof: The proof is given in Appendix A.

B. EEE evaluation
Theorem 3.2: Consider a block-fading channel as in (1)

where the channel pdf, p(H), depends on H through HHH
only. Then the EEE related to an observation window of nb
independent fading blocks of nc channel uses each, can be
expressed as per (8) with

Ee = ke

∫
R+m

p(Λ)

m∏
`=1

(
α2 +

αγλ`
2ρ

)−ncρ
dΛ (13)

where ke = e−2rncPρ/α2ncρ(nt−m) and m, Λ, and r are
defined as in Theorem 3.1.
Proof: The proof is given in Appendix A.

4We have to remark that our derivation, albeit slightly more compact,
partially overlaps with contents of [3, Appendix], where however no general
considerations on the channel matrix spectrum are made. Therein, the analysis
is focused on some instances of Rayleigh-faded channels.



IV. APPLICATION TO MULTIPLE-SCATTERING CHANNELS

As an instance of application of our Theorems 3.1 and 3.2,
we now provide closed-form expressions for RCEE and EEE
in case where the channel H is subject to multiple scattering
and where the channel between any two successive scattering
stages, included the link between the transmitter and the first
scatter and the link between the last scatter and the receiver are
subject to Rayleigh fading. This is tantamount to assume that
the channel matrix H is the product of an arbitrary number of
independent, rectangular matrix-variate factors. In the case of
M − 1 successive scattering stages, the matrix H is given by

H = HM . . .Hi . . .H1 , (14)

where matrix Hi has size ni × ni−1, for i = 1, . . . ,M ,
n0 = nt, and nM = nr. If the entries of Hi are independent,
Gaussian distributed, circularly-complex with zero mean and
unit variance, the pdf of Hi is given by

p(Hi) = e−Tr{HiH
H
i }π−nini−1 .

This scenario can be thought as an extension of the model
in [7] to an arbitrary but finite number of Rayleigh factors
with uncorrelated sensors and scatterers.

Proposition 4.1: For a block-fading channel as in (1) and
in case of M − 1 Rayleigh scattering stages and absence of
spatial correlation at either link ends, the RCEE error exponent
is given by (5) where

E =
m!k

Zm
|Z| (15)

k is given after (12) and Zm is a normalization constant. The
elements of the m×m matrix Z are given by

(Z)i,j =

[
α(1 + ρ)

γ

]j
α−ncρ

Γ(ncρ)
× (16)

GM+1,1
1,M+1

(
1− j
ncρ− j, nM , . . . , n2, n1+i−1

∣∣∣∣α(1 + ρ)

γ

)
where G(·) is the the Meijer G function [11, Ch. 8]. Similarly,
the EEE is given by (13) where

Ee =
m!ke
Zm
|Ze| , (17)

and where ke is defined after (13). The elements of the m×m
matrix Ze are given by

(Ze)i,j =

GM+1,1
1,M+1

(
1− j
ncρ− j, nM , . . . , n1+i−1

∣∣∣ 2αργ )
Γ(ncρ)(2ρ)−jγjα2ncρ−j

(18)
Proof: The proof is given in Appendix B.

V. CONCLUSION

We presented a unifying framework to evaluate in closed
form the error exponent bounds for MIMO block-fading
channels when CSI is available at the receiver, and under
widely used constraints on the channel matrix distribution.
Within this setting, RCEE and EEE are evaluated for the case

where the channel is composed of a cascade of M MIMO
Rayleigh fading links, with a finite number of antennas and
uncorrelated scatterers. This analysis paves the way for the
optimal design of multi-hop MIMO relay channels, which will
be the subject of our future work.

APPENDIX A
PROOF OF THEOREMS 3.1 AND 3.2

Under the assumption of UPA, i.e., Q = γI, the density of
the input specified in (11) is given by

p(X) = exp
(
−‖X‖2/γ

)
(πγ)−ncnt . (19)

The conditional law p(Y|X,H) appearing in (6) is Gaussian
non-central matrix-variate and can be written as

p(Y|X,H) = exp
(
−‖Y −HX‖2

)
π−nrnc . (20)

Let t(Y,H) be the average over X appearing in (6). Then

t(Y,H) = EX

[
p(Y|X,H)

1
1+ρ er(‖X‖

2−ncP)
]

=

∫
Cnt×nc

p(X)p(Y|X,H)
1

1+ρ er(‖X‖
2−ncP) dX .

By substituting in the above equation the expressions for p(X)
and p(Y|X,H), we obtain

t(Y,H) = c

∫
eTr{−LXXH+ 1

1+ρ (HHYXH+XYHH)} dX

(a)
= c

e
Tr

{
1

(1+ρ)2
HL−1HHYYH

}
π−ncnt |L|nc

, (21)

where c = e−rncP−
‖Y‖2
1+ρ /(γncntπncnt+

nrnc
1+ρ ) and

L =

(
1

γ
− r
)

I +
HHH

1 + ρ
, (22)

and where the equality (a) relies on the result in [8, Appendix
B]. We now compute the integral w.r.t. Y appearing in (6).
We have

s(H) =

∫
Cnr×nc

t(Y,H)1+ρ dY

=

∫
Cnr×nc

ce
Tr

{
1

(1+ρ)2
HL−1HHYYH

}
π−ncnt |L|nc

(1+ρ)

dY

=
e−rncP(1+ρ)

|γL|nc(1+ρ)

∫
Cnr×nc

e−Tr{(I−
1

1+ρHL−1HH)YYH}

πnrnc
dY .

The above integral can be solved by using the property∫
Cnr×nc

e−Tr{A
−1YYH}

πnrnc |A|nc
dY = 1

which holds for any invertible square matrix A. Then we get

s(H) =
e−rncP(1+ρ)

|γL|nc(1+ρ)

∣∣∣∣I− 1

1 + ρ
HL−1HH

∣∣∣∣−nc
=

e−rncP(1+ρ)

|γL|nc(1+ρ)(γ−1 − r)ncnt
|L|nc

=
e−rncP(1+ρ)

|γL|ncραncnt
(23)



where α = 1 − γr. We immediately observe that s(H) is a
function of the non-zero eigenvalues, Λ = diag(λ1, . . . , λm),
of HHH, through |L|. Indeed, by using the definition of L
given in (22), we have

|γL| = αnt−m
m∏
i=1

(
α+

γλi
1 + ρ

)
were m = min{nr, nt}. Thus we can write

s(H) = s̃(Λ) =
e−rncP(1+ρ)

αnc(nt+ρ(nt−m))

m∏
i=1

(
α+

γλi
1 + ρ

)−ncρ
.

If, as in our assumptions, the density of H depends only on
HHH, the outer integral in the expression of the error exponent
(i.e., the integration over H) can be computed as

E = EH[s(H)]

=

∫
Cnr×nt

p(H)s(H) dH

=

∫
R+m

p(Λ)s̃(Λ) dΛ (24)

where in the last equality we first applied the change of
integration variable HHH = UΛUH (with U being a unitary
matrix) and then the result in [9, eq. (93)]. By substituting
in (24) the expression for s̃(Λ), we obtain (12).

Theorem 3.2 can be proved in a similar way. Specifically,
the integral in (10) is evaluated by using the expression for
p(Y|X,H) in (20) and by resorting to [8, Appendix B], i.e.,

w(X,X′,H) =
e−‖HX‖2/2−‖HX′‖2/2

πnrnc
·∫

Cnr×nc
e−Tr{YYH−Y(X+X′)HHH

2 −H(X+X′)YH

2 } dY

= e−‖HX‖2/2−‖HX′‖2/2+‖H(X+X′)‖2/4

= e−‖H(X−X′)‖2/4 . (25)

As for the computation of (9), we first average w.r.t. X′. This
average too admits closed-form expression by virtue of [8,
Appendix B]. Indeed, we have

v(X,H) = EX′

[
er‖X

′‖2w(X,X′,H)
1
ρ

]
=

∫
Cnt×nc
p(X′)er‖X

′‖2e−‖H(X−X′)‖2/4ρ dX′

=
e−‖HX‖2/4ρ

(πγ)ntnc
·∫

Cnt×nc
e
−Tr

{
X′X′HLe−HHHXX′H

4ρ −XHHHHX′
4ρ

}
dX′

=
e−‖HX‖2/4ρ

(γ)ntnc |Le|nc
eTr{WXXH} (26)

where
Le =

(
1

γ
− r
)

I +
1

4ρ
HHH

and

W =
HHHL−1e HHH

16ρ2
.

We now average w.r.t. X and we obtain

se(H) = EX

[
er‖X‖

2

v(X,H)
]

=

∫
Cnt×nc

e−Tr{(Le−W)XXH}

(πγ2)ntnc |Le|nc
dX

= |γ2Le(Le −W)|−nc

=

∣∣∣∣α2I+
αγ

2ρ
HHH

∣∣∣∣−nc
= α−2nc(nt−m)

m∏
i=1

(
α2 +

αγλi
2ρ

)−nc
(27)

where we recall that α = 1− γr and m = min{nr, nt}. Note
that also se(H) depends on the eigenvalues Λ of HHH. Under
the assumption that the density of H depends only on HHH,
the integral in (9) provides the result reported in (13).

APPENDIX B
PROOF OF PROPOSITION 4.1

Following Theorems 3.1 and 3.2, the only quantity that has
to be provided to perform error exponents evaluation is the
joint law of the non-zero ordered eigenvalues of HHH. If H
is given by (14), where each factor is an i.i.d. Gaussian matrix,
then [10]

p(Λ) =
V(Λ)

Zm
|G(Λ)| . (28)

In (28), V(Λ) =
∏

1≤`<k≤m(λk − λ`) is the Vandermonde
determinant of Λ, Zm a normalizing constant such that

Zm =

∫
R+m

V(Λ)|G(Λ)|dΛ

and G is an m×m matrix such that

(G)i,j = GM,0
0,M

(
−
nM , . . . , n2, n1 + i− 1

|λj
)
,

for i, j = 1, . . . ,m and G(·) is the the Meijer G function [11,
Ch. 8].

Then, the matrix integral E boils down to

E =
k

Zm

∫
R+m

V(Λ)|G(Λ)|
m∏
i=1

(
α+

γλi
1+ρ

)−ncρ
dΛ . (29)

As far as the EEE evaluation is concerned,

Ee =
ke
Zm

∫
R+m

V(Λ)|G(Λ)|
m∏
i=1

(
α2+

αγλi
2ρ

)−ncρ
dΛ (30)

is to be computed. Both (29) and (30) can be expressed in
closed-form according to [12, Corollary I], so that

E =
m!k

Zm
|Z|, (31)

with the entries of Z given by

∫ +∞

0

λj−1
GM,0

0,M

(
−
nM , . . . , n2, n1+i−1

|λ
)

(
α+ γ

1+ρλ
)ncρ dλ .



The above integral can be solved by using the result in [11,
7.811.5] yielding (16). Similarly

Ee =
m!ke
Zm
|Ze| (32)

where after applying [12, Corollary I] the entries of Ze are
given by

∫ +∞

0

λj−1
GM,0

0,M

(
−
nM , . . . , n2, n1+i−1

|λ
)

(
α2 + αγλ

2ρ

)ncρ dλ .

Again, this integral can be expressed in closed form by virtue
of [11, 7.811.5] yielding (18).
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