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Unsupervised HEp-2 mitosis recognition in Indirect
Immunofluorescence Imaging*

Simone Tonti, Santa Di Cataldo1, Enrico Macii and Elisa Ficarra

Abstract— Automated HEp-2 mitotic cell recognition in IIF
images is an important and yet scarcely explored step in the
computer-aided diagnosis of autoimmune disorders. Such step is
necessary to assess the goodness of the HEp-2 samples and helps
the early diagnosis of the most difficult or ambiguous cases. In
this work, we propose a completely unsupervised approach for
HEp-2 mitotic cell recognition that overcomes the problem of
mitotic/non-mitotic class imbalance due to the limited number
of mitotic cells. Our technique automatically selects a limited
set of candidate cells from the HEp-2 slide and then applies
a clustering algorithm to identify the mitotic ones based on
their texture. Finally, a second stage of clustering discriminates
between positive and negative mitoses. Experiments on public
IIF images demonstrate the performance of our technique
compared to previous approaches.

I. INTRODUCTION AND PREVIOUS WORKS

The antinuclear autoantibodies (ANA) test is a blood exam
based on indirect immunofluorescence (IIF) that is able to
diagnose a large number of autoimmune disorders using
a substrate of HEp-2 cells as markers. The HEp-2 cells
have antigens that selectively react with autoantibodies in
the patient serum that are held responsible for the diseases,
creating a bond that can be observed through a fluorescence
microscope. Depending on the quantity and type of the
autoantibody, the HEp-2 cells will be characterized by a
certain level of fluorescent intensity and by a specific pattern
of fluorescence (see examples in Fig. 1 (1,2,3,4)). Hence,
these two properties of the HEp-2 images allow a differential
diagnosis of the disease.

Besides intensity and pattern, the specialist needs to report
on the presence and type of the mitotic cells (i.e. cells
undergoing cellular division). The aim is two-fold. (i) The
presence of at least one mitotic cell guarantees that the well
has been correctly prepared. Hence, slides without mitoses
should be discarded. (ii) In the presence of mixed fluorescent
patterns, the specific type of the mitoses in the slide, either
positive (Fig. 1-a,b) or negative (Fig. 1-c), helps identifying
the autoantibody.

In the last few years, the automatization of the ANA test
image analysis has gained more and more attention from
the research community, with the aim of improving the
repeatability and objectivity of the diagnosis, as well as of
limiting the need for specialized personnel to observe the
images and, ultimately, of reducing the costs of the test.
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Fig. 1. (1,2,3,4) HEp-2 images with different fluorescent patterns. (a,b)
Positive mitoses. (c) Negative mitosis.

A complete decision support system for ANA testing
includes the following steps: (i) cell segmentation, to au-
tomatically crop the individual HEp-2 cells of the input
image; (ii) mitotic cell recognition, to distinguish the cells
into mitotic (either positive or negative) and non-mitotic,
a.k.a. interphase; (iii) intensity classification, to identify
the fluorescent intensity level of the image; (iv) pattern
recognition, to identify the specific fluorescent pattern of the
interphase cells.

The automated analysis of HEp-2 images is a relatively
new research area. Even though mitotic cell recognition is a
crucial phase of the procedure, so far most of the efforts have
been directed towards the implementation of techniques for
the classification of intensity [1] and pattern [2], [3] or for
HEp-2 cell segmentation [4], [5]. On the other hand, most of
the literature on mitosis recognition addresses very different
imaging applications, such as time-lapse microscopy [6] or
histopathology [7]. Hence, the proposed approaches cannot
be easily adapted to the context of IIF-ANA testing.

To the best of our knowledge, there are only three publi-
cations on HEp-2 mitotic cell recognition in IIF imaging [8],
[9], [10], where [10] extends and improves [8], [9]. Starting
from the idea of using supervised learning classification to
discriminate between mitotic and interphase cells, the authors
in [10] identify the extreme imbalance of these two classes as
the main issue to be tackled. Indeed, the interphase cells are
always in large majority in a HEp-2 slide. This translates into
a major class imbalance of the training sets, which leads most
learning algorithms to failure. Hence, the authors propose a
hybrid ensemble approach with multi-objective optimization
to take account of this problem.



Modified forms of supervised classification, such as the
one presented in [10], are indeed appropriate to handle
extremely imbalanced sets. On the other hand, applying
supervised learning to the specific context of mitotic HEp-
2 cell recognition has two major issues: (i) the need of
collecting and annotating a significant number of represen-
tative images to train a classifier; (ii) the necessity of re-
designing the learning stage of the classifier at every variation
of the imaging conditions (for example, in case of interphase
cells with fluorescent patterns not represented in the original
training set). These issues make the use of supervised mitotic
recognition techniques utterly inconvenient in a standard
clinical practice.

In this paper, we approach the problem of mitotic cell
recognition in a completely different way. Similarly as pre-
vious works, we recognize mitotic cells through the analysis
of their texture. Nevertheless, we carry out this analysis
on a per-image basis, applying an unsupervised technique
that does not need to be trained with labeled data. This
approach has two main advantages. First, it is less severely
affected by class imbalance. Second, it does not leverage on
the characteristics of a fixed set of representative images.
Thus, it is more robust to unexpected variations of such
characteristics, which is a typical issue of biological systems.

The performance of our algorithm is demonstrated on pub-
lic datasets of IIF images (including the one used by [10]),
and experimentally compared with the previous approaches.

II. PROPOSED METHOD

In this work, we focus solely on mitotic cell recognition,
which as discussed in Section I is one of the least addressed
steps of a decision support system for ANA testing. Hence,
consistently with previous works on this topic, we assume of
receiving the cropped images of the individual HEp-2 cells
directly as input of our algorithm.

The main steps of our proposed technique are outlined in
Fig. 2. (i) The first stage, selection of candidate cells, takes
the cells of a HEp-2 slide as input and provides a set of
candidate cells as output. Ideally, such set includes all the
mitotic cells of the HEp-2 slide and only a limited number
of the interphase cells. (ii) The mitosis detection step takes
the candidate cells as input and identifies the mitotic cells
among them. (iii) Finally, the mitotic cells are categorized
into positive and negative by the mitosis categorization step.

A. Selection of candidate cells.

As can be observed from Fig. 1, mitotic cells are distin-
guishable from other cells in the image by their distinctive
fluorescent pattern. Depending on the specific agglomeration
of the chromosomic mass during cell division, this pattern
may assume one among the forms shown in Fig. 1, where
(a,b) are two phases of positive mitosis and (c) is a negative
one. More specifically, a IIF image will contain either
positive or negative mitoses, which are mutually exclusive.

The selection of candidate cells is a preparatory step to
mitosis detection that automatically filters the input cells,
based on their resemblance to a set of a-priori models of

Fig. 2. Outline of the proposed technique.

mitosis. The aim is two-fold: (i) to exclude from the mitosis
detection process the cells that are most surely non-mitotic;
(ii) to decrease the number of interphase cells undergoing
classification, thus softening class imbalance.

The selection of candidate cells is implemented as a set
of rules, each modeling the morphological characteristics
of a specific mitotic phase. For example, with reference to
the scheme of Fig. 2, a HEp-2 cell will be included in the
candidate set if it fulfills any of the following:

Rule 1: dark body with two bright internal regions
Rule 2: dark body with one bright internal region
Rule 3: bright body with one dark internal region

where dark and bright regions (respectively, grey-colored and
white-colored areas in Fig. 2) are distinguished by applying
Otsu thresholding algorithm locally to the intensity histogram
of each individual cell.

The end result of this step will be a candidate set possibly
containing all the mitotic cells of the input image and a
fraction of the interphase cells. Even though the interphase
cells are still prevailing at this stage of the algorithm, class
imbalance is considerably reduced, which facilitates the
following mitosis detection step.

B. Mitosis detection.

The fluorescent pattern of mitotic and interphase cells can
be conveniently described by means of textural analysis. In
our technique, the textural characteristics of the candidate
cells are quantified by means of a well-established method
based on the gray-level co-occurrence matrix (GLCM [11]),
which was successfully applied to other tasks of IIF analysis,
such as the automated classification of HEp-2 fluorescent
patterns [12], [3]. GLCMs are grey-tone spacial dependence
matrices that characterize texture by calculating how often
pairs of pixels with specific values and in a specified spatial
relationship (represented by a neighborhood distance and
angle) occur in the image. In our experiments, this type of
features demonstrated the best discriminative performance
compared to other models of textural analysis such as
GABOR, SURF and several formulations of Local Binary
Patterns (details in Section III).



In our technique, each candidate cell (as obtained in Sec-
tion II-A) is assigned a 12-element feature vector containing
second-order statistical measures derived from the GLCMs1.

The feature vectors are fed into a k-means clustering
algorithm with k = 2, which partitions them into two
separate clusters so as to minimize the within-cluster sum of
squared Euclidean distances. In order to avoid local minima,
the clustering algorithm is replicated ten times with random
starting points. Envisioning the case of HEp-2 images with
no mitotic cells, the algorithm also supports convergence
to only one cluster (i.e. with no elements belonging to the
second cluster).

After convergence, the majority and the minority (or
empty) cluster are assigned, respectively, to the class of the
interphase cells and to the class of the mitotic cells.

C. Mitosis categorization.
The final step is aimed at the categorization of mitoses into

positive and negative. Positive mitoses are characterized by
a weakly fluorescent body and a bright chromosomic mass,
negative mitoses by the opposite situation.

Again, these two categories can be distinguished by means
of textural analysis. In our technique, the textural feature vec-
tors of the mitotic cells (as obtained in Section II-B) undergo
a second round of k-means clustering, which partitions them
into two sub-clusters. The sub-cluster containing the highest
prevalence of cells fulfilling Rule 1 or Rule 2 is labelled as
positive mitosis, while the sub-cluster containing the highest
prevalence of cells fulfilling Rule 3 is labelled as negative
mitosis

III. RESULTS AND DISCUSSION
To assess the performance of our technique, we run

experiments on two publicly available datasets of IIF images.
The first dataset (referred to as dataset 1) is commonly

used as a benchmark for the validation of IIF image analysis
techniques, including the ones for HEp-2 mitosis recog-
nition. It consists of 28 HEp-2 images of six different
fluorescent patterns (homogeneous, fine speckled, coarse
speckled, nucleolar, centromere and cytoplasmic) and two
different intensity levels (intermediate and positive). The
dataset provides cell segmentations performed manually by
a specialist as well as ground truth about mitotic (including
positive/negative categorization) or interphase label of each
cell. The cells are 1527 in total, 70 of which are mitotic. 25
images out of the 28 include interphase cells and also few
mitotic cells (from a minimum of 1 up to a maximum of 7 per
image). Remaining 3 images contain only interphase cells.
For a complete characterization of the dataset, the interested
reader can refer to [3], [10].

If we interpret mitotic and interphase as, respectively, the
positive and negative class of a classical binary classification
problem, mitosis recognition accuracy can be quantified as:

acc =
TP + TN

FP + TN + TP + FN
(1)

112-element feature vector is obtained computing contrast, correlation,
energy and homogeneity on three GLCMs extracted with unitarian neigh-
borhood distance and varying angle {0◦, 45◦, 90◦}.

where TP (true positives) and TN (true negatives) are,
respectively the number of mitotic cells and of interphase
cells correctly identified, while FP (false positives) and FN
(false negatives) are the number of interphase and of mitotic
cells incorrectly assigned to the opposite class.

In presence of strong imbalance of the positive and nega-
tive class (as in our specific case, where less than 5% of
the cells are mitotic) the classical formulation of acc is
not meaningful, because it tends to account only for the
classification accuracy of the majority class [10]. Hence,
the geometric means of accuracies can provide a more
effective measure of the system performance. This metrics
is calculated as:

gacc =
√
acc+ · acc− (2)

where acc+ and acc− are the recognition accuracy over,
respectively, the positive and the negative class. gacc has
the advantage of equally penalizing poor results in any of
the two classes.

Indeed, the performance evaluation is much more mean-
ingful when acc and gacc are considered jointly. As demon-
strated in [10], the ideal performance case on imbalanced
datasets occurs when the values of acc and gacc are high and
well-balanced, which is well characterized by the following
measure, defined in the [0, 1] range:

bm =

√
(1− gacc)2 + (1− acc)2

2
(3)

The lower bm, the closer to the ideal the system performs.
The left section of Table I reports results obtained by our

proposed technique on dataset 1, in terms of acc, gacc and
bm. Besides GLCM, already discussed in Section II-B, we
tested different types of textural features, including the ones
that are generally used for HEp-2 pattern classification (see
second column of Table I). For a characterization of these
descriptors, the interested reader can refer to [3].

TABLE I
MITOTIC RECOGNITION ACCURACY (CELL-WISE RESULTS).

DATASET 1 DATASET 2
Features acc gacc bm acc gacc bm

U
ns

up
er

vi
se

d GLCM 0.842 0.724 0.225 0.925 0.756 0.180
GABOR 0.788 0.548 0.353 0.904 0.582 0.303
SURF 0.837 0.634 0.283 0.930 0.665 0.242
LBP 0.796 0.618 0.306 0.904 0.655 0.253

CoALBP 0.841 0.521 0.357 0.928 0.543 0.327
RICLBP 0.791 0.579 0.333 0.904 0.615 0.281

Supervised [10] 0.851 0.610 0.295 n.a.

In our experiments GLCM consistently obtained the best
results (i.e. highest acc and gacc, lowest bm) among all the
other tested features (see grey-colored row of Table I).

In order to assess the performance of our approach, in
the last row of Table I we show for comparison the results
obtained in the same dataset by the supervised technique
proposed in [10]. For the latter approach, we report only
the most performant configuration presented by the authors,



based on AdaBoost ensemble classifier with all parameters
optimized on the validation set. Our unsupervised approach
with GLCM-based features obtained comparable value of acc
(0.842 against 0.851 of the supervised method) and better
gacc and bm values (respectively, 0.724 against 0.61 and
0.225 against 0.295).

As a final experiment on dataset 1, we measured the
performance of our technique in the categorization of positive
and negative mitoses (see mitosis categorization step in
Section II-C). Since positive and negative mitoses have the
same a priori probability, in this case we can apply classical
evaluation measures for balanced binary classification prob-
lems. Hence, we computed accuracy (as in Equation 1), as
well as precision and recall of the classification, as follows:

precision =
TP

TP + FP
, recall =

TP

TP + FN
(4)

where this time positive and negative mitoses were inter-
preted, respectively, as the positive and the negative class.
The obtained values were 83% for recall, 91% for precision
and 85% for accuracy, which demonstrates the good perfor-
mance of our technique on a cell-wise classification basis.

As anticipated in Section I, one of the major applications
of HEp-2 mitotic cell recognition is the identification of
potentially faulted HEp-2 substrates, based on the absence of
mitotic cells in the IIF image. Hence, in order to thoroughly
assess the usability of our technique in the context of the
ANA test, we need to measure its capability of discrimi-
nating not only between mitotic and non-mitotic cells, but
also between images with and without mitotic cells. This
type of evaluation (here referred to as image-wise) was not
performed by previous literature.

In dataset 1 images not containing any mitoses are only 3
out of 28, which makes the image-wise evaluation unfeasible.
For this purpose, we integrated dataset 1 with 20 additional
images without mitoses, that were recently made available
by the organizers of a contest at the conference ICPR [13].
The additional images have four different fluorescent patterns
(homogeneous, speckled, nucleolar, centromere) and two
intensity levels (intermediate and positive) and contain a total
number of 2605 cells, all interphase. Hence, the resulting
dataset (referred to as dataset 2) contains an almost equal
number of images with and without mitoses (respectively,
25 and 23), which perfectly suits our validation purposes.

On this dataset, we evaluated the image-wise performance
of our technique. This time, we interpreted positive and
negative class as, respectively, images with at least one
mitosis and images with no mitoses (the definitions of TP ,
TN , FP and FN were re-interpreted accordingly). Based on
these assumptions, we measured our technique’s performance
on dataset 2, obtaining a 69% recall, a 100% precision, and
an overall accuracy of 77%.

Cell-wise performance was also calculated on dataset 2,
and was consistent with the results obtained for dataset 1
(see right section of Table I).

IV. CONCLUSIONS AND FUTURE WORK
In this paper we tackled the problem of HEp-2 mitotic

cell recognition in IIF images. Our technique automatically
selects a limited set of candidate cells from the HEp-2 image
and then recognizes mitotic ones by means of a clustering of
textural features based on GLCM. Finally, the mitotic cells
are categorized into positive or negative again based on the
textural characteristics of different mitotic models.

Differently from previous works, we propose an unsu-
pervised learning approach, which is less affected by class
imbalance problem and intrinsically more robust to variations
of the image characteristics, and hence more suitable to the
demands of clinical practice. Experiments on public datasets
of IIF images demonstrate the good performance of our
technique compared to previous approaches.

As a future work, we plan to integrate our automated
technique into a complete pipeline for the computer-aided
analysis of IIF images, including automated techniques for
cell segmentation [5] and for fluorescent pattern classifica-
tion [3], and to test our tool in a real clinical setting.
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