Energy-Efficient Software

Giuseppe Procaccianti

May 11th, 2015

1<

SIKS Dissertation Series No. 2015-13
The research reported in this thesis has been carried out under the auspices of
SIKS, the Dutch Research School for Information and Knowledge Systems.

) /J

Cluster Green Software

This work has been partially sponsored by the European Fund for Regional De-
velopment under project MRA Cluster Green Software.

Promotiecommissie:

Prof. dr. ir. Henri E. Bal (VU University Amsterdam, the Netherlands)
Prof. dr. Coral Calero (Universidad de Castilla - La Mancha, Spain)
Prof. dr. Ivica Crnkovic (Chalmers University of Technology, Sweden)
Dr. Paola Grosso (University of Amsterdam, the Netherlands)

Prof. dr. ir. Roel J. Wieringa (University of Twente, the Netherlands)

ISBN 978-94-6295-150-1

Copyright (©) 2015, Giuseppe Procaccianti

All rights reserved unless otherwise stated

Cover design by Giacomo Marseglia and Uitgeverij BOXPress
Cover image credits to Le Moal Olivier / 123RF Stock Photo
Published by Uitgeverij BOXPress, ‘s-Hertogenbosch

Typeset in BTEX by the author

VRIJE UNIVERSITEIT

Energy-Efficient Software

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus
prof.dr. F.A. van der Duyn Schouten,
in het openbaar te verdedigen
ten overstaan van de promotiecommissie
van de Faculteit der Exacte Wetenschappen
op maandag 11 mei 2015 om 11.45 uur
in de aula van de universiteit,
De Boelelaan 1105

door

Giuseppe Procaccianti

geboren te Palermo, Italié

promotoren: prof.dr. P. Lago
prof.dr. M. Morisio

Contents

1 Introduction 1
1.1 The Unsustainable ICT 1
1.2 The Quest for Energy-Efficient Software 2
1.3 Research Questions L. 4
1.4 Research Methods 6
1.5 Thesis at-a-Glance 7
1.6 Outline of Thesis and Publications 7

2 Background: Software and Energy 13
2.1 Profiling Software Power Consumption 13

2.1.1 Study Design oo 14

2.1.2 Results 23

2.1.3 Discussiono L 29
2.2 Software Energy Measurement and Modeling;:

State-of-the-art 30

2.2.1 Software Energy Measurement 31

2.2.2 Energy Modeling 32
2.3 Conclusion L 35

3 Empirical Evaluation of Best Practices for Energy-Efficient Soft-
ware Development 37
3.1 Imtroduction L 37
3.2 Related Worko 39
3.3 Experiment Planningo 0oL 44

3.3.1 Variable Selection 44
3.3.2 Hypotheses Formulation 47
3.3.3 Instrumentation and Testbed 47
3.4 Execution Lo 49
3.4.1 Preparation L o e 49
3.4.2 Data Collection and Analysis 50
3.5 Threats to Validity oL 52
3.5.1 Conclusion Validity 52
3.5.2 Imternal Validity 53
3.5.3 Construct Validity 53
3.5.4 External Validity 53
3.6 Results. 54
3.6.1 Practice 1: Use Efficient Queries 54
3.6.2 Practice 2: Put Application to Sleep 58
3.7 Reflection 60

3.8 Conclusions 62

Energy Efficiency in Cloud Software Architectures - A System-

atic Literature Review 65
4.1 TIntroduction 65
4.2 Review Protocol oo 66
4.2.1 Search Strategy L oL 67
4.2.2 Study Selectiono 67
4.2.3 Data Extraction 67
424 DataAnalysis. o 69
4.2.5 Traceability oo 70
4.3 Demographic Analysis 70
4.4 Energy Efficiency in Software Architectures 75
4.4.1 Strategies L 75
4.4.2 Techniques 76
4.4.3 Components 79
4.5 Stakeholder Overview 82
4.6 Threats to Validity oo 83
4.7 Conclusions e e 84
A Catalog of Green Architectural Tactics for the Cloud 85
5.1 Introduction 85
5.2 Related Work 86
5.3 Energy Efficiency as a Quality Attribute 87
5.4 Green Architectural Tactics 89
5.4.1 Energy Monitoring oL 89
5.4.2 Self-Adaptation 94
5.4.3 Cloud Federation 97
5.5 Discussion Lo 100
5.6 Next Steps: Tactics Evaluation 101
5.7 Conclusions 102
A Conceptual Framework for Energy-Efficient Software Engi-
neering 103
6.1 Introduction. 103
6.2 Reflection on Empirical Evidence 104
6.3 Conceptual Framework 105
6.4 Stakeholders. 107
6.5 Strategies for Energy-Efficient Software 108
6.5.1 Energy Monitoring: use software energy models to drive
improvementso 108

6.5.2 Refactoring: identify and remove energy inefficiencies . . . 109

6.5.3 Self-adaptation: energy efficiency by design 110

6.6 Conclusions 111
7 The GREENSWEEP Approach for Software Energy Efficiency
Research 113
7.1 Imtroduction. Lo 113
7.2 The GREENSWEEP Approach 114
7.2.1 Background: Energy Hotspots 115
7.2.2 1st stage: Hotspot Identification 116
7.2.3 2nd stage: Hotspot Verification 118
7.3 Research Implications 118
74 Conclusions L 120
8 Conclusions 121
8.1 Main Contributions L o 121
8.1.1 RQ 1. What is the correlation between software and hard-
ware energy consumption? L. 121
8.1.2 RQ 2. What is the impact of using best practices for soft-
ware energy efficiency? oL 122
8.1.3 RQ 3. How can software architectural solutions realize en-
ergy efficiency? L 123
8.1.4 RQ 4. Can we provide strategies to improve software en-
ergy efficiency? o oL 123
8.1.5 Answering the Main Research Question: lessons
learned Lo 123
82 Futurework L 124
Summary 127

Samenvatting 129

Introduction

1.1 The Unsustainable ICT

The environmental impact of Information and Communication Technologies (ICT)
is constantly growing at a brisk pace. A report issued by the Global e-Sustainability
Initiative [75] shows that the greenhouse gas (GHG) emissions of the ICT sector
are projected to rise to 1.3 GtCO2e (2.3% of global emissions) by 2020, with
a growth of 3.8% from 2011. In particular, datacenters are the fastest growing
category in ICT emissions, with a 7.1% annual rate.

According to Koomey [66], electricity used in global data centers in 2010 was
estimated between 203.4 and 271.8 TWh, that is between 1.1% and 1.5% of total
worldwide electricity use, respectively. For the US that number was between 1.7
and 2.2%. In addition to those figures, the rapid adoption of Cloud Computing
technologies will increase the demand for data centers in the next future, as
reported by Greenpeace [44]. In the only 6 years between 2007 and 2012, the
global ICT electricity consumption increased by more than 200 TWh, going from
4 t0 4.7% of the world total (see Figure 1.1).

Putting aside the environmental sustainability aspects, economic sustainabil-
ity concerns are also rising. As energy costs increase due to depletion of tradi-
tional energy sources, the Total Cost of Ownership (TCO) of ICT infrastructures
will become prohibitive for many companies.

This tells us that the energy efficiency of ICT has to improve. The respon-
sibility of dealing with this issue undoubtedly falls upon ICT professionals and
researchers.

To date, most of the achieved improvements in ICT energy efficiency are
hardware-related. Only in the very last years, software technologies are being
considered for energy optimization. To some extent, this has an analogy with
the history of Software Engineering: while at the beginning of the Information
Era software was undistinguished from hardware in the eyes of IT professionals,

1000 - 5.0%

900 - — 4.5%
m Data centers
. 800 : —+ 4.0%
= LCDs
‘é 700 I 35%
5 600 L 3.0% m CRTs Personal
B ||
- computers
E 500 +—] Laptops
3 - | 2.5%
g |
; 400 — R - —+ 2.0% m Desktops
k]
E 300 [1.5% Customer premises
=2 o0 [L 10% equipment
— — - T 1 m Office networks Communication

networks
00— — — — 1| o5%

Telecom operator
0 : ; 0.0% networks

2007 2008 2009 2010 2011 2012

Figure 1.1: Worldwide electricity consumption of communication networks, per-
sonal computers and data centers. [76].

nowadays its complexity and abstraction require a dedicated discipline and an en-
gineering approach. This is precisely the reason why we consider software energy
efficiency as a Software Engineering problem. Recently, the research community
[74] has recognized the potential of energy efficiency in Software Engineering and
defined its grand challenges. Some of those challenges are the object of study of
this thesis.

1.2 The Quest for Energy-Efficient Software

In 1995, Niklaus Wirth stated what became famous as the “Wirth’s law” [136]:
“Software is getting slower more rapidly than hardware becomes faster.”

This observation is sometimes seen as the counterpart of Moore’s law [87] in
the sense that hardware improvements in terms of performance are negated by
software inefficiencies. The reason lies in the fact that as hardware resources (e.g.
CPU, memory, storage) become cheaper, software designers and developers are
not concerned anymore with writing software that makes an efficient use of those
resources. On the contrary, for market reasons, it is more rewarding for them to
provide more features in their products (thus increasing complexity) [136].

This phenomenon has inevitable repercussions on energy consumption. In
Figure 1.2 you see how the energy efficiency of microprocessor-based computer

devices has increased during the years, when compared to computational power!.

However, consider these figures with the trend of the total energy consumption
of ICT, as shown in Figure 1.1. Although hardware devices consume less energy
per computation, the overall ICT electricity consumption still increases.

2008+2009 laptops

1.E+16
SiCortex SC5832
1E+15 Dell Dimension 2400—— ¢
Gateway P3, 733 MHz g
1.E+14 4
1.E+13 1 + Dell Optiplex GXI
IBM PS/2 E + Sun SS1000 *
1.E+12 1 486/25 and 486/33
Desktops
1.E+11 Macintosh 125'(' { Compagq Deskpro 386/20e
IBMPC, /¢ 1BM PC-AT

1.E+10 *
é Cray 1 supercomputer | *® IBM PC-XT
X *¢ Apple lle
5 1.E+09 |
a
2
© 1.E+08 1 Commodore 64
5
a 1.E+07 1
E
o
o

1.E+06 -

1.E+05 1

« *Univacll
.
1.E+04 1 *
*Univac |
-
*
1.E+03 1 EDVAC
4

| Eniac
1.E+02 Regression results:

N=80
1E+01 1 Adjusted R-squared = 0.983
" Comps/kWh = exp(0.4401939 x Year - 849.1617)
Average doubling time (1946 to 2009) = 1.57 years

1.E+00
1940 1950 1960 1970 1980 1990 2000 2010

Figure 1.2: Computations per kilowatt-hour over time [65].

Clearly, this is also due to the fact that the total number of devices has
increased substantially: creating more efficient equipment leads to a decrease in
the price of the provided service or product, which in turn increases the demand
— a phenomenon known as rebound effect [14].

But this is just part of the reason. Modern hardware devices also have more
fine-grained energy management capabilities: multiple power states, sleep modes
and hibernation are common features of end-user equipment. These capabili-
ties, however, impair energy proportionality, i.e. the ability of the system to
consume energy proportionally with its load [127]. For example, a perfectly

n the figure, “computation” is expressed as a normalized index of addition time, where
human performance equals to 1.

energy-proportional system at 100% load would consume five times as much as
at 20% load. Currently, this ratio is much higher. Moreover, as confirmed by the
empirical evidence presented later in this thesis, the percentage increase of power
consumption with respect to idle is much higher on modern hardware devices
than on their technological predecessors.

Inefficient software technologies, i.e. that waste hardware resources, impact
energy consumption even more than system load and performance. Regardless of
how much we improve the hardware, without energy-efficient software the ICT
energy consumption will continue to rise.

1.3 Research Questions

As just discussed, software plays an important role in the energy consumption
of ICT. However, the current State-of-the-Art of Software Engineering does not
provide consolidated knowledge on the deep and complex relationship between
software and energy consumption. This thesis aims at exploring this relationship
from a software-centric perspective.

To do so, the abstraction layers of computing devices are traversed in a
bottom-up fashion: first, we analyze the correlation between energy and software
applications, looking for patterns and mechanisms that affect energy consump-
tion. Then, we look at how software development can influence these mechanisms,
assessing the impact of coding practices. Subsequently, we scale up to the archi-
tectural level, to discover whether energy efficiency can be addressed at the early
stages of software design.

Ultimately, our goal is to provide an approach to engineer energy-efficient
software, both at architecture, design and code level.

The related main Research Question for this thesis can be stated as:

RQ: How can we engineer energy-efficient software?

This RQ can be decomposed into more specific questions, to be addressed
with the methods exposed in the next paragraph.

e Energy is ultimately consumed by hardware resources, used by software. It
is then needed to understand which resources are responsible of consuming
more energy during software execution. This allows to identify the most
promising strategies for optimization. More importantly, if a significant
correlation is found between consumed energy and software behavior in
terms of usage of resources, it is possible to estimate energy consumption
only from run-time software execution metrics.

RQ 1. What is the correlation between software properties and
hardware energy consumption?

— RQ 1a. Is hardware resource usage correlated with energy consumption
during software execution?

— RQ@ 1b. How can software properties be used as a predictor for hardware
energy consumption?

e Once we discover the mechanisms that characterize the relationship be-
tween software behavior and energy consumption, the next step is guiding
developers into creating energy-efficient software or improving the energy
efficiency of existing software applications. For this purpose, a number
of best practices and guidelines have been suggested, mostly in industrial
literature. We have to assess whether the available best practices and guide-
lines for energy efficient software have a quantifiable impact, by empirically
validating them in a controlled environment.

RQ 2. What is the impact of using best practices for software
energy efficiency?

e Traditional software quality aspects (QAs, e.g. security, reliability, main-
tainability) are commonly addressed at a software architectural level. This
is because qualities result from seemingly independent software properties,
determined by architectural design decisions taken at early stages of soft-
ware development [12]. Software architecture captures these decisions and
contextualizes them, facilitating the analysis of quality aspects and provid-
ing reusable solutions to address them. If energy efficiency is a proper QA,
we must be able to analyze it at the architectural level. For this reason, we
have investigated existing large-scale software architectures that consider
energy efficiency as a main concern. By doing so, we aim at discovering
reusable solutions to address energy efficiency at architectural level.

RQ 3. How can software architectural solutions realize energy
efficiency?

— RQ 3a. Are there software architectural solutions that address energy
efficiency aspects?

— RQ 3b. How can architectural solutions for energy efficiency be made
reusable?

e From our bottom-up approach, we have been able to identify software-
hardware mechanisms, coding guidelines and reusable architectural solu-
tions for software energy efficiency. However, these results need to be gen-
eralized and put into a bigger picture, in order to deliver reusable knowl-
edge for practitioners and other researchers. For this purpose, a conceptual

framework is needed, that encapsulates all these elements into high-level
strategies for software energy efficiency i.e. broad, long-term design ap-
proaches, composed of different tactics addressing multiple levels of ab-
straction.

RQ 4. Can we provide strategies to improve software energy
efficiency?

1.4 Research Methods

The relationship between hardware and software is complex, with technologies
acting as confounding factors, such as distributed systems, virtualization, mobile
computation, cloud computing, etc. Our assumption, when addressing the prob-
lem of software energy efficiency, is that it is an emergent property of software
systems in use: the complexity of the hardware-software interactions and the
multiple software layers create an environment that we are currently unable to
deterministically describe.

Consequently, in this thesis we adopt an inductive approach, i.e. we build
knowledge on software energy efficiency by gathering and analyzing empirical ev-
idence [9]. For this purpose, both quantitative and qualitative analysis techniques
were used. In particular:

o Systematic Literature Review (SLR). This qualitative research method is
defined by Kitchenham et al. [64] as “a form of secondary study that uses
a well-defined methodology to identify, analyse and interpret all available
evidence related to a specific research question in a way that is unbiased and
(to a degree) repeatable”. This method is extremely useful in establishing
background knowledge, but also to evaluate the degree of maturity of a
certain field. We adopted this method to identify the state-of-the-art of
energy efficiency in Cloud-based software architectures.

e Literature Review. This qualitative research method differs from the SLR
in that it is less formal and structured, but gives also more freedom in
selecting relevant sources and collecting evidence. When there is no need
of representing the state-of-the-art extensively and systematically, but we
want to provide background information, a literature review is a more ef-
ficient choice. We used this method to provide an overview of software
energy measurement and modeling methods and tools.

e Quasi-experiment. This quantitative empirical enquiry is based upon the
manipulation of one factor (or variable) in a controlled setting. Unlike ran-
domized controlled trials, where treatments are assigned to different sub-

jects through randomization, in quasi-experiments the assignment is done
using a specific criterion. In software engineering, quasi-experiments are
more common than randomized trials, mostly for feasibility reasons [57].
In our case, this choice is motivated by the nature of our subjects (soft-
ware applications) and treatments (usage scenarios, development practices)
which makes randomization unpractical and sometimes not meaningful.
Our quasi-experiment design follows the process and guidelines provided
by Wohlin et al. [138].

1.5 Thesis at-a-Glance

Figure 1.3 gives an overview of this thesis, showing how the RQs relate to the
ultimate goal of this work.

Quasi-empirical experiments were designed and performed to answer RQla
and RQ2, as their lower level of abstraction makes experimentation feasible.
RQ1b was investigated via reviewing the literature on software power measure-
ment and modeling. RQ3 is focused on the architectural level, in particular on
large-scale, Cloud-based software applications. Performing an empirical experi-
mentation on such a scale proved to be unfeasible, thus we adopted a different
research method: a secondary study on existing architectural solutions that ad-
dress energy efficiency. This analysis was conducted by means of a systematic
literature review (SLR). From the results of the SLR, we were able to identify the
stakeholders involved in software energy efficiency, as well as architectural strate-
gies that can be used to address energy efficiency aspects. From the gathered
empirical evidence, we answer RQ4 by analyzing our results and synthesizing
them into holistic strategies for software energy efficiency. The outcome of this
synthesis activity is a conceptual framework to engineer energy-efficient software.

1.6 OQutline of Thesis and Publications

This dissertation is composed of the following chapters:

e Chapter 2. This chapter answers RQ 1 by means of a twofold contribution:
first, it presents the design and results of an experiment on the impact
of software on energy consumption. Secondly, it provides a literature sur-
vey on software power measurement and modeling. The aim is to give a
background on the relationship between software and hardware.

Parts of this chapter have been previously published as:

RQ1:
What is the correlation

between SW properties
and HW energy
consumption?

RQ1a: RQ1b:
Is hardware resource usage How can software

correlated with energy
consumption durin§
software execution?

properties be used as a
predictor for hardware
energy consumption?

Quasi- Literature
Experiment review
(chapter 2) (chapter 2)

RQ2:

What is the impact of
using best practices for
software energy
efficiency?

Quasi-
Experiment
(chapter 3)

(RQ3:
How can software
architectural solutions
realize energy
efficiency?

RQ3a:
Are there software
architectural solutions
that address ener;
efficiency aspects?)

SLR
(chapter 4)

RQ 3b:

How can architectural
solutions for energy
efficiency be made
reusable?

Correlation Software
between SW Green Software Architectural
and HW Guidelines Tactics for EE
resources (chapter 5)
.. RQ4:
: ; . Can we provide
: egenda Synthesis strategies to improve
: software energy
: efficiency?
Eoamerork
: Framework
: — for EE SW
: . . (chapter 6)
Input/Output Breakdown l
Engineer
Energy- Efficient
Software

Figure 1.3: Overview of the RQs of this thesis work, along with performed activ-

ities and outcomes.

— Procaccianti G., Vetrd A., Ardito L., Morisio M. (2011)
Profiling Power Consumption in Desktop Computer Systems. In pro-
ceedings of: Information and Communication on Technology for the
Fight against Global Warming (ICT-GLOW) 2011. Toulouse, France.

Ed. Springer.

Personal contribution: as main author, I conducted the empiri-
cal experimentation and performed the data analysis. The paper was
mainly written by the first, second and third author. The fourth au-
thor provided detailed reviews.

— Procaccianti G., Ardito L., Vetrd A., Morisio M. (2012)

Energy Efficiency in the ICT - Profiling Power Consumption in Desk-
top Computer Systems. In: Energy Efficiency - the Innovative Ways
for Smart Energy, the Future Towards Modern Utilities. Ed. Prof.
Moustafa Eissa, Helwan. Intech

Personal contribution: as main author, I conducted the empiri-
cal experimentation and performed the data analysis. The paper was
mainly written by the first and second author. The third and fourth
author provided detailed reviews.

e Chapter 3. In this chapter, we present the design and results of an empirical
experiment to assess the impact of industrial practices for energy-efficient
software development. This allows us to answer RQ 2.

This chapter has been submitted as:

— Procaccianti G., Fernandez, H., Lago, P. (2014)
Empirical Evaluation of Best Practices for Energy-Efficient Software
Development. Submitted to: IEEE Transactions on Software Engi-
neering
Personal contribution: Together with the second author, I con-
ducted the empirical experimentation and performed the data analy-
sis. The paper was written and reviewed by all of the authors.

e Chapter 4. In this chapter, we present the design and results of a Systematic
Literature Review on energy efficiency in Cloud Software Architectures.
This study answers RQ 3a.

This chapter has been published as:

— Procaccianti G., Bevini, S., Lago, P. (2013)
Energy Efficiency in Cloud Software Architectures. In proceedings
of: 27th Conference on Environmental Informatics (ENVIROINFO
2013). Hamburg, Germany. Ed. Shaker-Verlag.

— Procaccianti G., Lago, P., Bevini, S. (2014)
A systematic literature review on Energy Efficiency in Cloud Software
Architectures. Sustainable Computing (SUSCOM) - Special Issue on
Software Engineering Aspects of Green Computing (SEAGC)
Personal contribution: Together with the third author, I conducted
the systematic review and performed the data analysis. The papers

were mainly written by the first author and reviewed by all of the
authors.

e Chapter 5. In this chapter, we reflect on the results of the SLR and package

them into a set of architectural tactics for energy efficiency. This contribu-
tion answers RQ 3b.

This chapter has been previously published as:

— Procaccianti G., Lago, P., Lewis, G.A. (2014)
Green Architectural Tactics for the Cloud. In proceedings of the 11th
Working IEEE/IFIP Conference on Software Architecture (WICSA
2014). Sydney, Australia. Ed. TEEE.

— Procaccianti G., Lago, P., Lewis, G.A. (2014)

A Catalogue of Green Architectural Tactics for the Cloud. In proceed-
ings of the IEEFE 8th Symposium on the Maintenance and Evolution of
Service-Oriented Systems and Cloud-Based Environments (MESOCA
2014). Victoria, Canada.

Personal contribution: as main author, I developed the tactics and
documented them. The papers were written and reviewed by all of
the authors.

Chapter 6. In this chapter, we build upon the results obtained so far and
we present a conceptual framework to engineer energy-efficient software.
This contribution answers RQ 4.

This chapter has been previously published as:

— Ardito L., Procaccianti G., Vetrd A., Torchiano M. (2014)
Understanding Green Software Development: A Conceptual Frame-
work. In IT Professional, pp.1-6, IEEE.

Personal contribution: The framework was developed by all of the
authors. I personally wrote Part 3 of the contribution. The paper was
reviewed and revised by all of the authors.

Chapter 7. In this chapter, we present an approach to systematically iden-
tify energy efficiency issues (hotspots) in software applications, starting from
the knowledge base we built. The approach is an example of a strategy to
improve software energy efficiency, hence related to RQ 4. However, the
approach has not been properly validated yet, thus we cannot claim it an-
swers the research question. We present it here as a preliminary step for
our future works.

This chapter has been published as:

10

— Procaccianti G., Lago P., Vetro A., Mendez Fernandez, D., Wieringa,
R. (2014)
The Green Lab: Experimentation in Software Energy Efficiency. In:
Proceedings of the 37th International Conference on Software Engi-
neering (ICSE 2015).
Personal contribution: The approach was developed by the first,
second, third and fourth authors. The paper was reviewed and revised
by all of the authors.

11

Background: Software and Energy

This chapter answers RQ 1 by means of a twofold contribution: first, it provides
empirical evidence to provide a background on the relationship between software
and hardware. For this purpose, an experiment has been designed, consisting in
running benchmarks on two common desktop machines, simulating typical sce-
narios and then measuring the energy consumption and resource usage to extract
indicative figures. Secondly, it provides a literature review on software power
measurement and modeling. In spite of its relative immaturity, the state of the
art in energy efficient software engineering already yields a rich set of reusable
techniques to measure and model software energy consumption. As part of our
research effort, we survey this body of knowledge, which as such can be used as a
reference for selection.

2.1 Profiling Software Power Consumption

In this section we presents the design and results of an experiment, consisting in
running benchmarks! on two common desktop machines.
This Section is organized as follows:

e Subsection 2.1.1 describes the experiment design process in all of its steps;
e in Subsection 2.1.2 we present the results of the experiment;

e in Subsection 2.1.3 we discuss the results in detail, providing additional
insights.

LA computer benchmark is typically a computer program that performs a strictly defined
set of operations (a workload) and returns some form of result (a metric) describing how the
tested computer performed. [81] In our benchmark the workload is a set of usage scenarios and
the metric is the power consumption.

13

2.1.1 Study Design

Goal Description

Our experiment design begins by describing our experimental goal. The goal is
defined through the Goal-Question-Metric (GQM) approach [8]. In Table 2.1, we
present the goal, research question and metrics we used in this study.

FEvaluate hardware resource usage
for the purpose of determining their influence
Goal with respect to energy consumption
from the viewpoint of the user
in the context of software applications
Question Is hardware resource usage correlated with energy
consumption?
Metric CPU Usage (percentage)
Metric Memory Usage (reads/writes)
Metric Disk Usage (reads/writes)
Metric Network Usage (Packets/sec)
Metric Consumed Power (Watts)

Table 2.1: The GQM Model

From the goal we derive RQ 1a, namely:

RQ1la: Is hardware resource usage correlated with energy consumption during
software execution?

The research question asks for a quantifiable relationship between power con-
sumption and actual usage of the hardware, by selecting four metrics relative to
the main resources (CPU, Memory, Disk and Network) and one metric related
to power consumption, namely the readings of the consumed power by the test
machine obtained from an external power meter (see Instrumentation).

Variable Selection

In order to answer the Research Question, it is necessary to specify the inde-
pendent variables that will characterize the experiment. In this study, the inde-
pendent variables are represented by 11 usage scenarios. The scenarios represent
a sample of the study population, i.e. common operations for a desktop user.
They provide benchmarks (see Section 1) for the different resources of the com-
puter system. Our usage scenarios are described in detail in the remainder of
this section.

14

0 - Idle. This scenario evaluates power consumption during idle states. In order
to reduce confounding factors, most of the automatic services of the OS
were disabled (i.e. Automatic Updates, Screen Saver, Anti-virus and such).

1 - Web Navigation. This scenario represents one of the most common activities
for a basic user - Web Navigation. During the simulation, the user starts
a web browser, inputs the URL of a web page and follows a determined
navigation path. Google Chrome has been chosen as the browser for this
scenario because of its better performance on the test system, which allowed
us to increase navigation time. The website selected for this scenario is
the homepage of the SoftEng research group http://softeng.polito.it,
which is managed by the authors of this study. This allows to keep constant
the contents and navigation path during all the scenario runs.

2 - E-Mail. This scenario simulates sending and receiving E-Mails. For this
scenario’s purpose, a dedicated E-Mail account has been created in order
to send and receive always the same message. In this scenario, the user
opens an E-Mail Client, writes a short message, sends it to himself, then
starts checking for new messages by pushing on the send/receive button.
Once the message has been received, the user reads it (the reading activity
has been simulated with an idle period), then deletes the messages and
starts over.

8 - Productivity Suite. This scenario evaluates power consumption during the
usage of interactive applications such as productivity suites. For this sce-
nario, Microsoft Word 2007 has been selected, as it is one of the most used
Word Processors. During the scenario execution, the user starts the ap-
plication and creates a new document, filling it with content and applying
several text editing/formatting functions, such as enlarge/shrink Font di-
mension, Bold, Italics, Underlined, Character and background colors, Text
alignment and interline, lists. Then the document is saved on the machine’s
hard drive. For each execution a new file is created. The old file gets deleted
after each scenario execution.

4 - Data Transfer (Disk). This scenario evaluates power consumption during
File System operations, namely the displacement of a file over different
positions of the hard drive, which is a very common operation. For this
scenario’s purpose, a data file of a relevant size (almost 2 GB) has been
prepared in order to match the file transfer time with the prefixed scenario
duration (5 minutes). The scenario structure is as follows: the system user
opens an Explorer window, selects the file and moves it to another location.
It waits for file transfer to end, then closes Explorer and exits.

15

http://softeng.polito.it

5 -

6 -

7 -

8 -

9 -

Data Transfer (USB). As using portable data storage devices has become a
very common practice, this scenario has been developed to evaluate power
consumption during a file transfer from the system hard drive to an USB
Memory Device. This scenario is very similar to the previous one, exception
given for the file size (which is slightly lower, near 1.8 GB) and the file
destination, which is the logical drive of the USB Device.

Image Browsing/Presentation. This scenario evaluates power consumption
during another common usage pattern: a full-screen slide-show of medium-
size images. This scenario simulates a presentation or the activity of brows-
ing through a series of images. In this scenario, the system user opens a
PDF File composed of several images, using the Acrobat Reader applica-
tion. It sets the Full-Screen visualization, then manually switches through
the images every 5 seconds.

Skype Call (Video Disabled). As the diffusion of broadband networks in-
creases, usage scenarios that make a more intensive use of the Internet than
Web Navigation and E-Mails also become more common. For this reason,
we developed the Skype scenario. Skype is the most used application for
video calls and conferences among private users. For the purpose of this
scenario, a dummy Skype Account was created, and the Skype application
was deployed on the test machine. Then, for each run, a test call is made
to another machine (which is a laptop situated in the same laboratory) for
5 minutes, which is the prefixed duration of all scenarios.

Skype Call (Video Enabled). This scenario is similar to scenario 7, but
the video camera is enabled during the call. This allows to evaluate the
impact of the video data stream both on power consumption and on system
resources.

Multimedia Playback (Audio). This scenario aims to evaluate power con-
sumption during the reproduction of an Audio file. For the purpose of this
scenario, we selected a 5-minutes long mp3 file, reproduced through Win-
dows Media Player. WMP has been selected as a reference player, as it is
the default application for multimedia content in Microsoft Windows.

10 - Multimedia Playback (Video). Same as above, but in this case the subject

for reproduction is a Video File, in AVI format, of the same duration.

11 - Peer-to-Peer. Peer-to-Peer applications are extremely diffused among pri-

vate users. For this scenario, BitTorrent was selected as a Peer-to-Peer
paradigm, because of its large diffusion and less-variant usage pattern if
compared to other Peer-to-Peer systems with more complex architectures.
During this scenario, the system user starts the BitTorrent client, opens a

16

previously provided .torrent archive, related to an Ubuntu distribution, and
starts the download, which proceeds for 5 minutes. After every execution,
the partially downloaded file is deleted, in order to repeat the scenario with
the same starting conditions.

In Table 2.2 all the scenarios are summarized, each with a brief description. In
addition, scenarios are classified in different categories, shown in the last column,
from a functional point of view. In detail:

e Idle (Scenario 0): it is the basis of the analysis, evaluates power consump-
tion during the periods of inactivity of the system.

e Network (Scenarios 1,2,7,8,11): it represents activities that involve network
subsystems and Internet.

e Productivity (Scenario 3): it is related to activities of personal productivity.

o File System (Scenarios 4,5): it concerns activities that involve storage de-
vices and File System operations.

o Multimedia (Scenarios 6,9,10): it represents activities that involve audio/video
peripherals and multimedia contents.

Moreover, as anticipated in the previous section, four metrics have been se-
lected to evaluate the system usage. These metrics were measured by means of
software logging (as will be explained in the Instrumentation section) considering
the following values:

e CPU

— CPU Time Percentage, intended as time spent by the CPU doing
active work in a second

— CPU User Time Percentage, intended as time spent by the CPU exe-
cuting user instructions (i.e. applications) in a second

— CPU Privileged Time Percentage, intended as time spent by the CPU
executing system instructions (services, daemons) in a second

— CPU Deferred Procedure Calls Percentage, intended as time spent by
the CPU executing DPC in a second

— CPU Interrupt Time Percentage, intended as time spent by the CPU
serving interrupts in a second

— CPU C1 Time Percentage, intended as time spent by the CPU in
low-power (C1) State [1]

17

Nr. Title Description Category
0 Idle No user input, no applications Idle
running, most of OS’automated
services disabled.
1 Web Navigation Open browser, visit a web-page, Network
operate, close browser.
2 E-Mail Open e-mail client, check e- Network
mails, read new messages, write
a short message, send, close
client.
3 Productivity Suite Open word processor, write a Productivity
small block of text, save, close.
4 Data Transfer Copy a large file from a disk po- File System
(disk) sition to another.
5 Data Transfer Copy a large file from an USB File System
(USB) Device to disk.
6 Presentation Execute a full-screen slide-show Multimedia
of a series of medium-size images.
7 Skype Call (n Open Skype client, execute a Network
video) Skype conversation (video dis-
abled), close Skype.
8 Skype Call (video) Open Skype client, execute a Network
Skype conversation (video en-
abled), close Skype.
9 Multimedia (Au- Open a common media player, Multimedia
dio) play an Audio file, close player.
10 Multimedia Open a common media player, Multimedia
(Video) play a Video file, close player.
11 Peer-to-Peer Open a common peer-to-peer Network

client, put a file into download
queue, download for 5 minutes,
close.

Table 2.2: Software Usage Scenarios Overview

— CPU C2 Time Percentage, intended as time spent

low-power (C2) State [1]

by the CPU in

18

— CPU (C3 Time Percentage, intended as time spent by the CPU in
low-power (C3) State [1]

e Memory

— Memory Page Writings per second
— Memory Page Readings per second

— Memory Available (KiloBytes) per second

e Hard Disk

— Physical Disk Transfers (Read/Write) per second
— Logical Disk Transfers (Read/Write) per second

e Network
— Network Packets per second as seen by the Network Interface Card

The dependent variable selected for the experiment is P i.e. the instant
power consumption (W). Therefore, P, is the average power consumption during
Scenario n = 1...11.

Hypotheses Formulation

Based on the GQM Model, the Research Question can be formalized into an
Hypothesis as following.

RQ 1a. Is hardware resource usage correlated with energy consumption during
software execution?

HO: p(ICPUaP) = p(IMemoryvp) = p(IDisk:aP) = p(INetworle) =0
Ha: max[p(ICPUaP)ap(IMemoryaP)ap(IDiskaP)7p(INetw0rkaP)] 7é 0

p(x,y) expresses the sample correlation coefficient between variables and y.

Instrumentation

Every scenario has been executed automatically by means of a GUI Automation
Software for 5 minutes, obtaining 30 runs per scenario, each composed of 300
observations (one per second) of the instant power consumption value (W).

The test machines selected are two Desktop PCs of different generations. In
Table 2.3, the Hardware/Software configuration of the machines is presented. As
can be seen, the difference in terms of hardware is relevant; this will allow us to

19

Desktop 1 (old genera-
tion)

Desktop 2 (new gener-
ation)

CPU

AMD Athlon XP 1500+

Intel Core i7-2600

Memory

768 MB DDR SDRAM

4 GB DDR3 SDRAM

Display Adapter

ATI Radeon 9200 PRO
128 MB

ATIT Radeon HD 5400

HDD

Maxtor DiamondMax
Plus 9 80GB Hard Drive

Western Digital 1 TB

Network Adapter

NIC TX PCI 10/100
3Com EtherLink XL

Intel 82579V Gigabit Eth-
ernet

(O}

Microsoft Windows XP

Professional SP3

Windows 7 Professional
SP1

Table 2.3: HW/SW Configuration of the test machine

make some evaluations about how power consumption varied over the years, with
the evolution of hardware architectures.

Different software and hardware tools have been used to do monitoring, mea-
surement and test automation. The Software tool adopted is Qaliber? which is
mainly a GUI Testing Framework, composed of a Test Developer Component,
that allows a developer to write a specific test case for an application, by means
of "recording” GUI commands, and a Test Builder Component, which allows to
create complex usage scenarios by combining the use cases. One of the most
important features of Qaliber is its possibility to log system information during
scenario execution, using Microsoft’s Performance Monitor Utility. By defining
a specific Counter Log, adding all the variables of interest, it is possible to tell
Qaliber to start Performance Monitor simultaneously with the Scenario, thus
allowing a complete monitoring of all the statistics needed for this analysis.

The measurement of power consumption was done through two different de-
vices. For the old-generation PC, YouMeter® device was used. This device is ca-
pable of computing Active and Reactive Power, Voltage, Current Intensity, Cosp.
The data is stored within the YouMeter’s 64kB memory and can be downloaded
in a text file format via Zighee wireless connection to a Windows enabled PC or
Laptop or viewed as instantaneous readings on the installed Manager software.

2Qaliber - GUT Testing Framework, http://sourceforge.net/projects/qaliber/, last vis-
ited on December 1st, 2014

3Youmeter - eGlue Technologies,
https://www.youmeter.it/youmeter/prodotto-applicazioni.php, last visited on December
1st, 2014

20

http://sourceforge.net/projects/qaliber/
https://www.youmeter.it/youmeter/prodotto-applicazioni.php

The device drivers were slightly modified to adapt the YouMeter recording capa-
bility to this analysis’ purposes, specifically to decrease the logging interval from
1 minute (which is too wide if compared to software time) to 1 second.

For the new-generation PC, WattsUp PRO ES* device was used. This device
is capable of measuring current power consumption (Watts), power factor, line
voltage and other metrics. The data is stored within the device internal memory,
and then retrievable via USB interface. The sampling rate resolution is 1 second.

4WattsUp Pro ES, https://www.wattsupmeters.com/secure/products.php?pn=0&wai=
O&spec=2, last visited on December 1st, 2014

21

https://www.wattsupmeters.com/secure/products.php?pn=0&wai=0&spec=2
https://www.wattsupmeters.com/secure/products.php?pn=0&wai=0&spec=2

Analysis Methodology

In order to extract a Power Consumption profile for each Usage Scenario, a set
of descriptive statistics was derived from the experimental data. For a single
scenario, a total of 30 runs were executed, each composed of 300 observations
(one per second) of the power consumption value. Thus, the calculations for the
descriptive statistics were made using two approaches: firstly, the average of each
run is extracted, obtaining a short vector of 30 elements, which was used as the
subject of our analysis. This method allowed to speed up the calculations, and
because of the decreased sampling rate, the data was less variant and showed an
almost regular distribution.

Afterwards, the same analysis on the full datasets was applied, which means
a total of 9000 observations. Comparing the results from these two approaches,
focusing on the Index of Dispersion and the variance, the variability of a sin-
gle scenario can be appreciated, which was also a useful tool for validating the
experiment.

First of all, data distribution must be analysed, in order to determine the
appropriate testing method for each hypothesis. The data distribution analysis
was conducted using the Shapiro-Wilk normality test. Since it results pointed out
that the data was not normally distributed, non parametric tests were adopted, in
particular the Spearman’s rank correlation coefficient, also known as Spearman’s
p. This test was also chosen due to his higher robustness in presence of many
outliers, a common situation when dealing with energy measurements, due to
instrumentation glitches.

Since our hypothesis is non—directional, the two-sided variant of the test will
be applied. We will draw conclusions from our tests based on a significance level
a = 0.05, that is we accept a 5% risk of type I error — i.e. rejecting the null
hypothesis when it is actually true.

Validity evaluation

The threats of experiment validity can be classified in two categories: internal
threats, derived from treatments and instrumentation, and external threats,
that regard the generalization of the work.

There are three main internal threats that can affect this analysis. The first
concerns the measurement: measurements were taken with a sampling rate of
1 second. This interval is a compromise between the power metering devices
capability and the software logging service. However, it could be a wide interval
if compared to software time. In addition, the two metering devices used for
the analysis are different, although they have similar characteristics. This might
represent a confounding factor for the differences in energy usage.

22

Subsequently, network confounding factors could arise: as several usage sce-
narios involving network activity and the Internet are included in our treatments,
the unpredictability of the network behaviour could affect some results. Another
confounding factor is represented by OS scheduling operations: the scheduling of
user activities and system calls is out of the experiment control. This may cause
some additional variability in the scenarios, especially for those that involve the
File System.

In addition, the two machines on which our tests are performed are different
in terms of hardware and software configuration. This is done on purpose, be-
cause we wanted to test devices which could represent common machines used
in a wide variety of scenarios, for both generations. Thus, installing an old ver-
sion of an operating system on a new machine or viceversa would have altered
this assumption. However, this introduces another confounding factor, but still,
provides useful information regarding the evolution of these systems, even if no
specific research hypotheses can be verified about the comparison.

Finally, the main external threat concerns a possible limited generalization of
the results: this is due to the fact that the experiment was conducted on only
two different test machines, which is a limited sample to be representative of a
whole population.

2.1.2 Results

Preliminary Data Analysis

We present in Tables 2.4 and 2.5 the following descriptive statistics about mea-
surements for each scenario. Tables report mean (Watts), median (Watts), stan-
dard error (S.E.) on the mean, 95% confidence interval (C.I.) of the mean, sample
variance, sample standard deviation (o), variation coefficient (the standard devi-
ation divided by the mean), index of dispersion (variance-to-mean ratio, VMR).

Power consumptions show an excursion of about 11 W for both PCs, even if
the baseline is quite different (an average of 87 W in Idle scenario for the Old
PC, 51 W for the New PC). Moreover, the very low variability indexes ensure
that the different samples for each scenario are homogeneous.

Hypothesis Testing

The results of hypotheses testing of the research questions are exposed in this
section.

First of all, Tables 2.6 and 2.7 report the results of the Data Distribution
Analysis. In Tables 2.8 and 2.9 are presented the results of the correlation test
using Spearman’s method, with a 95% confidence interval, applied to every couple
(watt,variable) for each scenario. As regards Spearman’s p significance, using

23

Old-Generation PC
Mean | Median | S.E. | C.I. | Variance| o |Var.Co.| VMR
0 - Idle 86.81 86.69 [0.007(0.013 0.424 0.650| 0.007 0.005

1 - Web 89.09 | 88.57 |0.011]0.022| 3.372 1.836| 0.021 0.038

2 - E-Mail | 88.03 | 87.11 |0.024|0.047| 5.195 2.279| 0.026 0.059
3 - Prod 90.12 | 89.40 |0.025|0.500 5.862 2.421| 0.027 | 0.065
4 - Disk 94.12 | 97.21 |0.048|0.095 21.12 |4.595| 0.049 0.224
5 - USB 96.41 97.10 |0.024|0.046 5.047 |2.246| 0.023 0.052
6 - Image 91.97 | 91.48 |0.041]0.081| 15.474 |3.934| 0.043 0.168

7 - Skype 91.87 | 91.69 |0.015]0.029 1.981 1.407| 0.015 | 0.022
8 - SkypeV | 95.40 | 95.75 |0.020|0.040| 3.844 1.960| 0.020 | 0.040
9 - Audio 88.14 | 87.94 |0.013]0.025 1.429 1.195| 0.013 | 0.016
10 - Video | 88.61 88.57 10.009(0.017| 0.677 |0.823| 0.009 | 0.008
11 - P2P 88.46 | 88.25 |0.010(0.019| 0.842 |0.917| 0.010 | 0.009

Table 2.4: Scenarios Statistics Overview: Old-Generation PC

298 degrees of freedom (since 300 observations per scenario are available) the sig-
nificance level of the p coefficient is 5 = 0.113. Thus, only correlations coefficients
resulting higher than this value are listed.

24

New-Generation PC

Mean | Median | S.E. | C.I. | Variance| ¢ |Var.Co.| VMR
0 - Idle 51.39 | 51.20 [0.007|0.015| 0.507 [0.712| 0.013 | 0.009
1 - Web 54.05 53.9 |0.014|0.028| 1.883 |1.372| 0.025 | 0.035
2 - E-Mail | 53.40 | 53.40 |0.011|0.021 1.123 [1.059| 0.019 | 0.021
3 - Prod 53.09 | 52.70 [0.016|0.032| 2.369 [1.539| 0.029 | 0.044
4 - Disk 60.24 | 62.10 [0.037|0.072| 12.38 [3.518| 0.058 | 0.205
5 - USB 61.29 | 61.90 [0.023|0.046| 4.901 [2.214| 0.036 | 0.080
6 - Image 52.75 | 52.50 |0.011|0.023| 1.214 |1.102| 0.021 | 0.023
7 - Skype 56.23 | 56.30 [0.016|0.032| 2.420 |[1.555| 0.027 | 0.043
8 - SkypeV | 62.13 | 62.90 [0.036|0.070| 11.428 |[3.380| 0.054 | 0.184
9 - Audio 52.87 | 52.70 [0.006|0.012| 0.315 [0.561| 0.010 | 0.006
10 - Video | 54.14 | 54.00 |0.007|0.013| 0.420 |0.648| 0.012 | 0.008
11 - P2P 54.32 | 54.50 [0.008|0.016| 0.609 [0.780| 0.014 | 0.011

Table 2.5: Scenarios Statistics Overview: New-Generation PC

120

Power consumption average per scenario

100
!

B Old-Generation PC
B New-Generation PC

Watts [W]
60 80

40

20

0 1 2 3 4 5 6 7 8 9 10 1

Figure 2.1: Bar Plot of per-scenario Power Consumption average values

25

Power consumption increase per scenario

20

B QOld-Generation PC
B New-Generation PC

o

Watts [W]

5 10
" h
¢ r
. _
“ _
e I
N -
“ _

9

10 1

Figure 2.2: Bar Plot of per-scenario Power Consumption increase with respect

to Idle
Old-Gen PC

Scenario Data Distr. Max p-val.
0 - Idle Not Normal 1.5e-63
1 - Web Navigation Not Normal 4.4e-36
2 - E-Mail Not Normal 9e-73
3 - Productivity Suite Not Normal le-45
4 - TO Operation (Disk) Not Normal 1.2e-46
5 - IO Operation (USB) Not Normal 6.4e-52
6 - Image Browsing Not Normal 1.1e-35
7 - Skype Call (No Video) Not Normal 8.2e-30
8 - Skype Call (Video) Not Normal 1.3e-35
9 - Multimedia Playback (Audio) Not Normal 7.9e-54
10 - Multimedia Playback (Video) Not Normal 1.6e-44
11 - Peer-to-Peer Not Normal 8.9e-36

Table 2.6: Data Distribution Analysis (Old-Gen PC)

26

New-Gen PC

Scenario Data Distr. Max p-val.
0 - Idle Not Normal 2.2e-39
1 - Web Navigation Not Normal 1.1e-20
2 - E-Mail Not Normal 1.2e-19
3 - Productivity Suite Not Normal 9.4e-29
4 - IO Operation (Disk) Not Normal 8.7e-51
5 - I0 Operation (USB) Not Normal 2.5e-29
6 - Image Browsing Not Normal 6.7e-22
7 - Skype Call (No Video) Not Normal 3e-67
8 - Skype Call (Video) Not Normal 5.2e-36
9 - Multimedia Playback (Audio) Not Normal 5.2e-44
10 - Multimedia Playback (Video) Not Normal 6.6e-81
11 - Peer-to-Peer Not Normal 2.2e-35

Table 2.7: Data Distribution Analysis (New-Gen PC)

Old-Generation PC

Scenario Title Variable p-value p R2

2 - E-Mail CPUCI1Time. < 0.0001 -0.36 13 %
4 - 10 Operation (Disk) CPUTime. < 0.0001 035 12%
4 - 10 Operation (Disk) CPUC1Time. < 0.0001 -0.35 12%
5 - IO Operation (USB) CPUTime. < 0.0001 047 22%
5 - IO Operation (USB) CPUCI1Time. < 0.0001 -0.47 22 %
7 - Skype Call (No Video) CPUCITime. < 0.0001 -0.39 15 %
8 - Skype Call (Video) CPUTime. < 0.0001 0.63 40 %
8 - Skype Call (Video) CPUUserTime. < 0.0001 053 28 %
8 - Skype Call (Video) CPUC1Time. < 0.0001 -0.7 49 %
11 - Peer-to-Peer MemoryKByteAvailable < 0.0001 -0.34 12 %

Table 2.8: Spearman’s p Coefficient between Power and Resource variables

27

New-Generation PC

Scenario Title Variable p-value p R2

2 - E-Mail CPUUserTime. < 0.0001 042 17%
2 - E-Mail CPUPrivTime. < 0.0001 043 18%
3 - Productivity Suite CPUUserTime. < 0.0001 033 11%
4 - 10 Operation (Disk) PhysicalDiskTransfers < 0.0001 045 20 %
4 - IO Operation (Disk) LogicalDisk Transfers < 0.0001 045 20%
4 - 10 Operation (Disk) MemoryPages < 0.0001 044 19%
4 - 10 Operation (Disk) MemoryKByteAvailable < 0.0001 -0.54 29 %
4 - 1O Operation (Disk) CPUC3Time. < 0.0001 -0.59 35%
4 - 10 Operation (Disk) CPUTime. < 0.0001 055 31%
4 - 10 Operation (Disk) CPUUserTime. < 0.0001 0.58 34 %
4 - IO Operation (Disk) CPUPrivTime. < 0.0001 039 15%
6 - Image Browsing CPUUserTime. < 0.0001 034 12%
7 - Skype Call (no video) NetworkPkts < 0.0001 062 39%
7 - Skype Call (no video) MemoryKByteAvailable < 0.0001 -0.45 20 %
7 - Skype Call (no video) CPUC3Time. < 0.0001 -0.66 43 %
7 - Skype Call (no video) CPUTime. < 0.0001 052 27 %
7 - Skype Call (no video) CPUUserTime. < 0.0001 063 39%
8 - Skype Call (Video) NetworkPkts < 0.0001 0.67 46 %
8 - Skype Call (Video) MemoryKByteAvailable < 0.0001 -0.62 39 %
8 - Skype Call (Video) CPUC3Time. < 0.0001 -0.88 77T %
8 - Skype Call (Video) CPUTime. < 0.0001 0.87 76 %
8 - Skype Call (Video) CPUUserTime. < 0.0001 09 81%
9 - Multimedia (Audio) MemoryKByteAvailable < 0.0001 -0.34 12 %
11 - Peer-to-peer NetworkPkts < 0.0001 045 20%
11 - Peer-to-peer MemoryKByteAvailable < 0.0001 -0.42 18 %
11 - Peer-to-peer CPUPrivTime. < 0.0001 035 12 %

Table 2.9: Spearman’s p Coefficient between Power and Resource variables

28

2.1.3 Discussion

The collected data shows several facts. As observed in Figure 2.3, in both our
test machines every usage scenario consumes more power than the Idle scenario.
This difference is even more evident in the New-Generation PC, where we witness
a power consumption increase up to 20%.

Power consumption increase per scenario

30

B Old-Generation PC
B New-Generation PC

1 2 3 4 5 6 7 8 9 10 "

Figure 2.3: Per-scenario Power Consumption increase with respect to Idle (in
percentage)

25

20

Percentage [%]
15

10

As can be seen from Tables 2.4, 2.5 and Figure 2.1, the most power-consuming
scenarios are those that involve File System, followed by Skype (both with and
without Video Enabled) and Image Browsing. From the hardware point of view,
these scenarios are also the most intensive in terms of system resources. This
also implies that resource utilization can be an accurate way to estimate their
power consumption. For instance, the power consumption profile of Skype is
very different (about 4-5 Watts in average) with and without enabling the Video
Camera.

Another interesting question that arises from the analysis is, in case of apply-
ing these Scenarios in groups, if their power consumption would follow a linear
composition rule (thus summing up the values). That is, for example, supposing
a composed Usage Scenario S that involves a Skype Call, a Web Navigation and
a Disk Operation performed simultaneously, their linear composition would give,
on our Old-Gen PC, an estimated Power Consumption per second of

Pigie + APs = 86.81W + 21.33W = 108.14W

introducing a 25% overhead on power consumption. On the New-Gen PC, the
estimated Power Consumption would be

29

Pigie + APg = 51.39W + 24.90W = 76.29W

which gives a 48% overhead on power consumption.

Taking a look at the results of the correlation analysis, we can observe that
the coeflicients related to the New-Gen PC are higher than those of the Old-
Gen PC. This may suggest that as hardware evolves, the software usage is even
more significant for determining the power consumption of the system. This
assumption is confirmed by Figure 2.3, where we can observe that the percentage
increase of power consumption for the New-Gen PC is higher, in most cases, than
the Old-Gen.

However, it is remarkable that, for both machines, the variables that show
higher correlation coefficients are undoubtedly those related to CPU usage and
memory usage, namely CPU Total Time, CPU User Time, Memory Available and
Memory Pages. High coefficients are also present in the Hard Disk Index, but
only in those scenarios that, unsurprisingly, involve File System operations. This
means that CPU and memory have a greater influence upon power consumption
related to the others selected for the analysis.

Another observation is that, as expected, power consumption has always a
negative correlation with the time spent by the CPU in the low-power C1 and
C3 states and with the available memory. This suggests that using more memory
has a positive correlation with power, as expected. This is also a confirmation
that the analysis was conducted with the right premises.

Moreover, as expected, the scenarios who exhibit higher correlations are those
who use more resources, such as Skype and IO scenarios. In particular, the
Skype scenario with video enabled has a strong correlation with the CPU usage,
probably because the real-time video elaboration makes the CPU the dominant
resource for power consumption.

2.2 Software Energy Measurement and Modeling:
State-of-the-art

From our experimental results, it clearly emerges that the usage patterns of IT
resources by software applications have a clear correlation with energy consump-
tion. This suggests that resource usage can be used as a predictor for software
energy consumption. RQ 1b focuses on this aspect, namely:

RQ 1b. How can software properties be used as a predictor for hardware energy
consumption?

In general, in order to predict software energy consumption, we need to:

30

IT System Power model

—_—
Architecture

Software components, virtual instructions, architectural styles

Source code metrics

Software
Sz it White-Box

Instructions, operands, parameters Software

_ =
S ——— Hardware vendor specs, power states, performance counters
Logical Resources usage ratio (CPU, RAM...)
Hardware N e
e ——— Component design characteristics

— Black-Box

Physical Indirect Measurement (T, V, f...) Component model Hardware

Direct Measurement

Prediction

Process

N pproximati Validation L
Actual power consumption |»(———————— -| Power measure | ———————— Power prediction
L d » ======= > - Power value
Input / Output Process Abstraction level

Figure 2.4: Overview of measurement, prediction and modeling approaches of
software energy consumption

e measure the energy consumption of IT devices to derive quantifiable rela-
tionships between resource usage and energy consumption;

e develop a general software energy model that embeds those relationships
and takes resource usage data as input, providing an energy consumption
prediction.

To answer RQ 1b, we surveyed the existing literature looking for the most
used solutions for software energy measurement and modeling. We classified the
different solutions we found in a conceptual overview provided in Figure 2.4: on
the left side of the picture, you see an IT system represented in terms of abstrac-
tion layer. Out of each layer, it is possible to extract relevant data that concerns
software and energy consumption. On the right side, you see our classification
of the existing prediction models for software energy consumption. Depending
on whether internal properties of software are used for prediction, models can be
either white-box or black-box. The accuracy of the prediction can be validated
and improved by using measurements (either direct or indirect) of energy con-
sumption. In the remainder of this section we describe the measurement and
modeling solutions in detail.

2.2.1 Software Energy Measurement

In order to empirically characterize the relationship between the resource usage
and energy consumption, we need to be able to measure it with sufficient pre-

31

cision. However, this is a hard task, mainly due to the complex relationships
between software systems and the hardware configuration of their execution en-
vironment [126].

Many techniques have been developed for energy consumption measurement of
IT systems. They can be classified in direct or indirect [47]. A direct measurement
occurs when energy consumption is measured directly, right on the device(s),
through an external meter [34]. Direct measurements are typically performed
on self-contained systems, i.e. PCs [47] or embedded devices [104, 126]. As an
example, the experiment presented in the previous Section was conducted making
use of a direct measurement approach, as we obtained our energy consumption
data by plugging our test machines to an external power meter.

Indirect measurements, instead, derive energy consumption from secondary
quantities (e.g., voltages, currents, temperatures). These quantities are usually
observed by means of sensors embedded on the device and made available via
software (software probes).

JouleUnit [134] is an example of a framework for energy profiling of software
applications using both direct and indirect measurements. It provides a general
software-testing environment, able to interface itself with both hardware- and
software-based profilers (i.e. power metering devices for direct measurements),
or software probes provided by the device architecture for indirect measurements.
While direct measurements are, in general, more accurate, they introduce sev-
eral overheads: cost overhead due to metering equipment, an energy consumption
overhead because metering equipment has to be powered, and a skill overhead be-
cause in some cases, installing and using this equipment requires a certain amount
of technical knowledge [146]. Indirect measurements are in general less expensive,
because they make use of already available information from the hardware layer.
However, their accuracy depends on how much information the hardware layer
(i.e. hardware vendors) provides. Often, hardware vendors do not provide access
to all sensors installed on their products. In addition, when many software layers
are built on top of hardware (as in complex architectures like Cloud Comput-
ing environments), tracing indirect measurements to software behavior becomes
extremely challenging.

2.2.2 Energy Modeling

Another option to assess software energy efficiency is using software-based energy
consumption prediction. A prediction is defined as the process of determining the
magnitude of a variable at some future point of time [29]. Unlike measurements,
these methods do not directly observe physical quantities, but rather make use
of an energy model [119], typically characterized through empirical methods.

A fundamental distinction must be made between hardware and software en-

32

ergy models. Hardware energy models simulate the behavior of hardware compo-
nents through circuit-level analysis and subsequently estimate the overall energy
consumption through composition of the different logical blocks [104]. How-
ever, those models typically miss system-level effects, such as those related to
temperature. Moreover, they are mostly focused on modeling processor units
[146, 102, 105] because CPUs are considered as the primary source of energy
consumption in a computer system.

Software energy models express energy consumption as a function of software-
related metrics [104] that act as predictors, i.e. independent variables that have
a relationship of some sort (linear, non-linear) with energy consumption. Those
models differ significantly depending on the system under test, experimental set-
ting, adopted parameters, abstraction level, etc.

An example of a (linear) model underlying the energy consumption of a generic
IT device can be represented as:

E,=F;+ Z FEy.-Sw. where 0< Sw. <1

ceComponents

The total energy consumption E; of an IT device — when turned on — is
composed by an F; part that is present even when the device is sitting idle.
The additional consumption depends on the individual hardware components
maximum consumption E'g. which is modulated by how much work the software
demands them to do, Sw.. Depending on the software requests the hardware
component may run at full throttle or remain idle.

Choosing the most meaningful metrics as predictors, isolating the platform-
dependent aspects from the software abstractions, eliciting the appropriate soft-
ware constructs to analyze are only some of the research problems that must still
be addressed. The accuracy of a predictive model, of course, strongly depends on
the chosen predictors. Usually a preliminary correlation analysis is done, in order
to extract the most meaningful predictors to be embedded in the model. As with
other predictive modelling techniques, accuracy improvements can be achieved
via a larger training dataset, or including other factors — taking into account the
risks of overfitting.

There are two classes of software energy models, that we name white-box
and black-box. White-box models aim at estimating software energy consumption
from internal properties of the software under test. Depending on the abstraction
level (or granularity), we can distinguish between instruction-level, function-level
or block-level models [104]. In white-box software energy models, performance
counters are commonly used [104]. These counters are embedded into hardware
components like CPUs or memory banks and made available through software.
They record component-level events and signals, through which a programmer
can associate the execution of specific instructions with hardware states. In this

33

way, it is possible to model the energy consumption of software tasks. A first
example of such a model was provided, for Assembly language, by Tiwari et
al. [126] in 1994. A more recent example is eProf [111], a profiler able to relate
energy consumption to code locations using a probabilistic sampling of hardware
performance counters. An example of instruction-level model is provided by Song
et al. [121]. They model the energy of a single instruction as a composition of
static energy, independent from software activity and proportional to execution
time, and dynamic energy, as a function of workload, architectural and physi-
cal parameters. Performance counters can also be used to estimate the energy
consumption of virtual processors, such as the energy-aware virtual scheduler
developed by Kim et al. [62]. Along with performance counters, another com-
mon approach is the usage of power states, particular configurations of hardware
components that operate at different levels of performance and energy consump-
tion [145]. Since it is possible to monitor the current state of a component via
software, this information can be used as an input to a energy model. For ex-
ample, SEProf [128] and eLens (for mobile devices) [48] are two energy-profiling
tools that associate source code constructs (either at block, method or instruction
level) to an energy consumption value of one or more system components. All
approaches above share an open research problem: hardware specifications are
not always available for all platforms, and for this reason white-box models are
usually platform-dependent. To be able to generalize a white-box model means to
elicit software properties that impact energy efficiency and that are independent
from the deployment platform.

A complementary approach, that evaluates software energy consumption from
the execution phase, uses black-box models. Black-boxr models consider software
as a self-contained entity, without digging into its internal structure [88]. These
models express the relationship between runtime metrics, typically usage ratios
of system resources (CPU, RAM, etc.) and energy consumption. This relation-
ship is usually modeled through linear regression, or other statistical inference
techniques. A first, explorative attempt was performed by Sinha [119] that built
a model for energy consumption on a StrongARM processor using as input the
number of CPU cycles needed by an application. However, the model was strongly
tailored upon that specific CPU. A more recent example is provided by Morelli
et al. [88] who presented a compositional model that relates the resource usage
data of different applications with energy consumption benchmarks. With this
data, they compose a measurement matrix, which is then fed into a linear alge-
bra model for energy consumption prediction. Another example of a black-box,
resource-based model for mobile devices is presented by Palit et al. [93]. Their
results show how, in mobile contexts, the impact of CPU and other components
such as wireless devices, may be very significant depending on the considered
scenario. In mobile devices, other sources of information may be available for

34

black-box analysis: for example, battery discharge patterns. Carat [92] analyzes
these patterns by comparing them with an a priori probability distribution, in
order to detect abnormal energy consumption by software applications. In cloud
environments, the black-box approach is adopted at cloud node/resource level
(e.g. for task workload [23], energy management and performance tradeoffs [144],
infrastructure management [117]). Most black-box models focus on CPU energy
modeling. In fact, CPU is certainly one of the most energy-consuming com-
ponents. Moreover, its behavior is highly influenced by software. Technological
advancements resulted in highly flexible processor units, capable of several opera-
tional modes with different energy consumption profiles. However, in some cases,
for example in mobile devices [93], certain components, like GPS modules and
Bluetooth/WiFi antennas, may significantly impact energy consumption. This
implies that modeling the CPU is not enough and black-box models should define
predictors for other components, depending on the context.

2.3 Conclusion

In this chapter, we provided a twofold contribution: an empirical experiment on
desktop computer systems and a literature survey on software power models.

The experiment assessed quantitatively the energetic impact of software usage.
It consisted in building up common application usage scenarios (e.g.: Skype call,
Web Navigation, Word writing) and executing them independently to collect
power consumption data. Each single scenario introduced an overhead on power
consumption, which may raise up to 20% for recent systems: if their power
consumption would follow a linear composition rule, the impact could be even
higher.

The relationship between usage and power consumption was also analysed
in terms of correlation between resource usage. From our results, we can safely
reject the null hypothesis, as it clearly stands:

H, : mam[p(ICPUaP)ap(IMemoryvP)ap(IDiskaP)ap(INetworkaP)} 7é 0

Although a clear linear relationship did not arise, the analysis showed that
some resources drive power consumption more than others, such as memory and
CPU usage. This gives the answer to RQ 1a, namely “Is hardware resource usage
correlated with energy consumption during software execution?”. Our experiment
also gives us the indication that modern systems, although being more energy
efficient in standby and idle states, due to their higher scalability, are even more
sensible to the energy consumption impact of software usage.

Our experimental results suggest that using resource usage data, it could
be possible to predict software energy consumption. To assess the feasibility of

35

such an approach, we surveyed the state-of-the-art in assessing software energy
efficiency and framed it in Figure 2.4. Our analysis concludes that many tools
and techniques for software power modeling and measurement are already widely
available. This answer RQ 1b, namely “How can software properties be used as
a predictor for hardware energy consumption?” We showed that resource usage
data is a reliable predictor for energy consumption. In summary, the whole
chapter provides an answer to RQ1, namely ‘What is the correlation between
software properties and hardware energy consumption?”: the software impact
over hardware energy consumption is significant, it is driven and characterized
by the resource usage ratio and as such it can be predicted by them.

By now, the reader should have a clearer picture of the key contribution of
software in the energy consumption performed by hardware. Moreover, in this
chapter we showed the potential of the usage of power models for energy-aware
applications: embedding power prediction models in the application logic enables
it to alter its behavior according to the energy status of the environment. For
example, in mobile contexts (characterized by battery constraints) energy aware-
ness is a crucial requirement. A common energy-driven policy regards offloading
to the cloud [33], i.e. deciding whether to perform a task locally or delegating it
to a cloud computing infrastructure. This is a non-trivial problem, because e.g.
the energy spent for transferring data to the cloud could be higher than the sav-
ings achieved through offloading the computation [93]. These types of tradeoffs
also appear in other contexts: e.g. data compression is usually regarded as a way
to reduce energy consumption by decreasing I/O activity. However, it has been
shown [111][93] that in some cases the computational effort for compression/de-
compression operations wastes significantly more energy than the amount saved
by performing less I/O operations.

This leads to the need for knowledge in software energy efficiency: reusable
software practices, at the level of architecture and design, aimed at capturing
these tradeoffs for improving software energy efficiency. These practices have to
be validated, in order to avoid the second-order effects presented before. In the
following chapter, we describe an empirical experiment aimed at evaluating the
impact of two best practices for energy-efficient software.

36

Empirical Evaluation of Best Practices for
Energy-Efficient Software Development

Current state-of-the-art does not provide empirically validated guidelines for de-
veloping energy efficient software. In this chapter, we present the design and
results of an empirical experiment to assess the impact of two best practices for
energy efficient software development, hence answering RQ 2. We elicited the
practices from previous publications in academic and industrial literature. This
chapter also aims at identifying the possible trade-offs between energy consump-
tion and other software properties. We performed an empirical experiment in a
controlled environment, where we applied two different best practices on two soft-
ware applications. We then performed a comparison of the energy consumption at
system-level and at resource-level, before and after applying the practice. Our re-
sults show that both practices are effective in improving software energy efficiency,
up to a 25% improvement. We observe that after applying the practices, resource
usage is more energy-proportional. We also provide our reflections on empirical
experimentation in software energy efficiency. Our contribution shows that sig-
nificant improvements can be gained by applying best practices during design and
development.

3.1 Introduction

As showed in the previous chapter, many researchers have been working on sophis-
ticated software power models [119, 58], able to estimate and predict the energy
consumption of software applications through different parameters. However,
this effort has not been translated yet into reusable information for practitioners
and developers to create energy-efficient software applications. A step in this
direction has been made by Larsson et al. [77] from Intel Corp., which provided
a number of guidelines and best practices for creating energy-efficient software.

37

However, little to no validation has been performed on those practices, and their
effectiveness in terms of energy consumption has not been precisely quantified.

To understand how software can impact on energy consumption on the large
scale, consider the following example': after launch, the popular Youtube video
of the ”Gangnam Style” song reached a record amount of visualizations during
the first year after its publication — roughly 1.7 billion. The amount of energy
used by Google to transfer IMB across the Internet (as reported by the company
on their website?) is 0.01kWh (a rough average), and displaying it uses 0.002kWh
(depending on the destination device). Hence, the energy needed to stream and
display the ”"Gangnam Style“ video is 0.19 kWh. Multiplying this amount of
energy by the 1.7 billion visualizations gives 312 GWh of total energy consump-
tion, which is roughly the yearly energy demand of a city of 22.000 inhabitants
(as an example, the city of Isernia, Italy, consumed 340 GWh of electricity in
2013 [125)).

This impressive amount of energy may hide huge wastes. A complex software
architecture lies behind modern web applications and services (e.g. webservers,
database servers, middleware) and countless instances are executed every second
in physical and virtual environments. Even a tiny optimization on a single soft-
ware application, on such a massive scale, could potentially lead to significant
energy savings. For this reason, software architects and developers need to think
about energy efficiency and a solid knowledge base is needed to provide guidance
in building energy-efficient software.

The aim of this chapter is assessing the impact of best practices for energy-
efficient software development on energy consumption. This chapter answers RQ
2, namely:

RQ 2. What is the impact of using best practices for software energy efficiency?

Our work follows the guidelines for empirical experimentation in software en-
gineering provided by Wohlin et al. [138] and Basili et al. [11]. For the purpose
of this experimentation, we applied two practices in well-known open source soft-
ware applications (the Apache WebServer and the MySQL Database Server) that
will serve as test cases. These applications were executed in a controlled environ-
ment (the Software Energy Footprint Lab, SEFLab [34]). During the experiment,
we gathered two types of data: power consumption (both of the execution envi-
ronment as a whole and of the single hardware components) and resource usage
of the different hardware components. Then, we performed hypothesis testing on
the data to answer our research questions. Besides assessing the energy impact of
each practice, we elicited, for each test case implementation, the software metrics

Thttps://wuw.2degreesnetwork.com/groups/energy-carbon-management/resources/
gangam-style-it-sustainable/
2http://www.google.com/green/bigpicture/

38

https://www.2degreesnetwork.com/groups/energy-carbon-management/resources/gangam-style-it-sustainable/
https://www.2degreesnetwork.com/groups/energy-carbon-management/resources/gangam-style-it-sustainable/
http://www.google.com/green/bigpicture/

and factors that we identified as most relevant for energy consumption purposes.
From this comparison, we extracted meaningful information to further define the
complex relationship between software and energy.

This chapter is organized as follows: Section 3.2 presents an overview of pre-
vious empirical studies on the energy consumption of software applications. In
Section 3.3 we present our study design, in terms of subjects, objects, depen-
dent/independent variables and instrumentation. In Section 3.4 we describe how
the experiment was executed. In Section 3.5 we discuss the validity aspects and
possible threats arising from our experiment design and execution. In Section
3.6 we present our experimental results for each practice and hypothesis testing.
In Section 3.7 we answer our research questions and discuss the implications of
our findings. In Section 3.8 we draw conclusions and outline our future research
efforts.

3.2 Related Work

A number of empirical experiments on software energy consumption has been
conducted as software energy efficiency became a popular research topic. In this
section, we present those which are more related to our contribution, ordered
by publication date, and summarize their findings. In Table 3.1 we give a more
structured overview: we list the purpose of the study, the experimental con-
text (e.g. on-line vs. off-line [138]), the subjects selected for the study and the
testbed on which the energy measurements were performed (where applicable).
As criteria for selection, we focused on the viewpoint of developers: hence, we
selected studies analyzing the impact of programming techniques or practices
on energy consumption, as well as studies that try to empirically characterize
energy-intensive code elements.

1. Capra et al. [18] analyze the impact of application development environments
over the energy efficiency of software applications. They propose a measure
of the impact of application environments on the development process, called
framework entropy, and evaluate it over a set of 63 open source applications.
Hereby we list the main findings of this work:

e Finding 1. A high framework entropy is beneficial for the energy efficiency
of small and medium applications.

e Finding 2. A high framework entropy is detrimental for the energy effi-
ciency of large applications.

e Finding 3. Different functional types of applications have different energy
efficiency levels.

39

Table 3.1: Summary of the related work.

Ref. Purpose Context Subjects Testbed
[18] Evaluate the energy Off-line, Application Development Server
impact single- Environments (63 open-
object source projects)
[107] Evaluate the energy Off-line, Software Design Patterns Embedded
impact single- (15 Design Patterns in 3 cat- System
object egories)
[89] Evaluate the energy Off-line, Algorithms and Program- Server
impact multi- ming Languages (8 Towers
object of Hanoi implementations)
variation
[62] Trace the evolution Off-line, 3 products (Firefox, Vuze, Laptop
of software energy multi- rTorrent) in different ver- PC
consumption object sions and scenarios
variation
[69] Evaluate the energy Off-line, 8 Distributed Programming Server-
impact multi- Abstractions on 5 scenarios Client
object
variation
[97] Evaluate the energy Off-line, 3 Thread Management Con- Server
impact multi- structs on 8 different bench-
object marks
variation
[78] Evaluate the energy Off-line, 3 best practices for energy- Smart-
impact single- efficient programming in phone
object Android
study
[79] Identify most energy- Off-line, 55 Android applications Smart-
greedy API calls case study phone
[98] Identify most used On-line, 325 questions and 558 an- N/A
programming so- thematic swers on Stack Overflow
lutions for energy- analysis about energy-efficient soft-

efficient software

ware

than FTP clients and servers, and calendars.

e Finding 4. ERPs, text, image editors and games are less energy efficient

2. Sahin et al. [107] investigate the energy impact of using software design pat-
terns. They consider a set of 15 design patters and evaluate the energy con-
sumption of a ”proxy” application developed on purpose for the study. The
application is evaluated in two versions, before and after applying the design
pattern. Hereby we list the main findings of this work:

40

e Finding 1. The impact of applying a design pattern varies greatly, from
less than 1% to more than 700%, among the considered patterns.

e Finding 2. The impact of design patterns is not consistent with respect
to the pattern category (i.e. Creational, Structural, Behavioral [38]).

e Finding 3. The impact of design patterns cannot be predicted by looking
at how it influences high-level design artifacts.

3. Noureddine et al. [89] analyze the energy impact of programming languages
and algorithmic choices. The impact is evaluated through a low-level library
called PowerAPI on 8 different implementations of the Towers of Hanoi pro-
gram, varying the implementation language and the used algorithm (recursive
vs. iterative). Hereby we list the main findings of this work:

e Finding 1. The algorithm choice has a significant impact on energy con-
sumption. The recursive algorithm is more energy-efficient than the iter-
ative one.

e Finding 2. The chosen programming language has a significant impact
on energy consumption as well. The Java implementation is more energy
efficient than the others, not considering compiler optimizations.

e Finding 3. The impact of compiler optimizations is also relevant. Com-
piling the C++ implementation with the O2 compiler option increases
energy efficiency significantly.

4. Hindle [52] investigates the impact of software change on power consumption,
and the relationship with software metrics. Subjects are 3 applications: Fire-
fox, Vuze, rTorrent. For each application a set of different versions and releases
is selected. Hereby we list the main findings of this work:

e Finding 1. Power consumption is not consistent among different versions.

e Finding 2. Performance evolutions can affect power consumption in mul-
tiple ways.

e Finding 3. No significant correlation was found between static OO-
related software metrics (e.g. coupling, cohesion, fan-in/fan-out) and
power consumption. Process-related metrics (e.g. added/removed lines,
file churn) exhibit positive correlation with power consumption in a lim-
ited amount of cases.

5. Kwon and Tilevich [69] analyzed and evaluated the impact in terms of energy
consumption of major Distributed Programming Abstractions (DPA) when
developing communication mechanisms for mobile devices, such as RPC, RMI

41

or SOAP. Authors implemented 8 versions of different benchmarks for middle-
ware platforms, each version adopting a specific communication abstraction.
Hereby we list the main findings of this work:

e Finding 1. Binary-based DPAs (eg. raw sockets) are more energy efficient
than XML-based ones, because of the smaller overhead in communication
data.

e Finding 2. Asynchronous DPA mechanisms have no additional energy
costs.

e Finding 3. Marshaling/unmarshaling consume more energy on network
communication than on CPU processing. Serialization protocols are more
energy-efficient in high-throughput networks.

6. Pinto et al. [97] analyzed and evaluated the impact in terms of energy con-
sumption of 3 different thread management strategies, i.e. explicit threading,
thread pooling, work stealing, applied on 8 different benchmarks. They also an-
alyzed how energy consumption varies in relationship to the number of active
threads. Hereby we list the main findings of this work:

e Finding 1. Different thread management constructs have different im-
pacts on energy consumption. For I/O-bound programs, explicit thread-
ing is the most energy-efficient, whereas work stealing is the least. For
highly parallel benchmarks, the opposite holds.

e Finding 2. Energy consumption typically increases as the number of
threads increases, and then gradually decreases as the number of threads
approaches the number of CPU cores.

e Finding 3. Being faster is not synonymous of being greener. Sequential
execution often leads to the least energy consumption, whereas parallel
execution leads to improved energy/performance trade-off.

7. Li and Halfond [78] evaluate the impact of 3 best practices for Android appli-
cation development extracted from the official Android developers community
forum. The practices can be summarized as: bundle small HTTP requests,
reduce memory usage and improve performance to decrease energy consump-
tion. Authors developed three small software applications to test the impact
of each practice. Hereby we list the main findings of this work:

e Finding 1. Bundling small HTTP requests could save energy.

e Finding 2. Higher memory usage only slightly increases the average en-
ergy consumption of each access.

o Finding 3. Avoiding references to the array length for each loop iteration
can save energy.

42

e Finding 4. Directly accessing fields instead of accessing them through
methods can save energy. The reason is that the virtual methods that
are used to access field values are expensive operations.

e Finding 5. Static invocation appears to be more energy-efficient in An-
droid.

8. Linares-Vdsquez et al. [79] aim at identifying whether some API calls are
more energy-consuming than others, and if sequences of API calls (patterns)
repeat themselves frequently, causing anomalies in energy consumption. The
study analyzed the execution traces of 55 Android applications, looking for
the most energy-greedy Android API calls. Hereby we list the main findings
of this work:

e Finding 1. APIs related to GUI & Image Manipulation and Database
are the most energy-consuming.

e Finding 2. Using getters and setters when accessing internal class fields
causes high energy consumption. This finding is coherent with the previ-
ous study, and creates a trade-off between information hiding and energy
efficiency.

e Finding 3. Refreshing application views and widgets causes high energy
consumption.

9. Pinto et al. [98] mined the StackOverflow platform to find the most common
problems regarding energy efficiency, their causes, and the most recommended
programming solutions for energy-efficient software. The study found a total
of 325 questions and 558 answers from more than 800 software developers.
Hereby we list the main findings of this work:

e Finding 1. There are misconceptions about software energy consumption,
like confusion between power and energy and the correlation between
energy and performance.

e Finding 2. The major causes for energy consumption according to de-
velopers are: unnecessary resource usage, hidden background activities,
excessive synchronization.

e Finding 8. Among the most suggested solutions, those matching with
the scientific state-of-the-art were: reduce I/O to a minimum, buffer I/0
commands, avoid polling, use efficient data structures.

Although our literature search was not conducted systematically, we per-
formed an extensive review that allows us to make some considerations. As
emerges from those findings, there are many preliminary insights and hypotheses

43

about software energy efficiency. For example, it seems that large applications
with many subsequent versions tend to be less energy-efficient than smaller ones.
However, we also observe a certain degree of conflict and uncertainty. For ex-
ample, some studies seem to show that high-level abstractions and languages are
less energy-efficient than low-level ones, while others conclude the opposite. Ob-
viously, the studies analyze different entities (i.e. populations). Many researchers
focus on mobile applications (in mobile environments, battery life is obviously
a high priority), other focus on specific application domains (e.g. Information
Systems) or technologies (DPAs). However, the studies also differ in terms of
research approach: each study adopts a different instrumentation and study de-
sign. We claim that such a difformity of approaches prevents practitioners from
having sound reference and guidance when building energy-efficient software.

3.3 Experiment Planning

This section describes our experiment planning, in terms of dependent and in-
dependent variables, hypotheses formulation, and instrumentation [138]. A sum-
mary is provided in Table 3.2.

Table 3.2: Summary of experiment planning phase.

Object of Study Best Practices for software energy efficiency

Subjects Open-source software applications

Independent variable Application workload

Dependent variables — Energy consumption values (at system- and resource-level)
— Resource usage measures

— Software execution measures

3.3.1 Variable Selection

The main objects of our study are best practices for software energy efficiency.
We elicited those practices inspired by academic literature and industry [118, 110,
56, 122, 5, 77, 46] and collected them in a wiki® to share them with academics
and practitioners.

For the purpose of this evaluation, we selected two practices from our wiki:
Use efficient queries and Put application to sleep. Those practices were selected
for two main reasons: the high relevance for practitioners, as they can be applied

Shttps://wiki.cs.vu.nl/green_software/index.php/Main_Page

44

https://wiki.cs.vu.nl/green_software/index.php/Main_Page

in a wide context of software applications, and ease of implementation. The
practices are described in Tables 3.3 and 3.4, respectively, using the template
described in [46]. More details and the rationale behind our implementation
choices will be presented in Section 3.4.

Due to the nature of the practices and their formalization, it was not possible
to automate and randomize their application to the subjects, i.e. software appli-
cations. Hence, our empirical study qualifies as a quasi-experiment, or more
appropriately as a single-case mechanism experiment [133], where we test
the cause-effect behavior of the best practices on selected experimental subjects.
Our choice fell upon two commonly-used, open-source products: the Apache Web
Server and the MySQL Database Server. The same criteria used for object se-
lection guided this choice: the wide usage of these products ensures relevance
for practitioners, and their open-source nature allowed us to easily access their
source code for instrumentation purposes.

Our study population is the set of all possible executions of these two software
applications in two different scenarios i.e. with and without the practice. Out of
our population, we draw a sample of 10 executions per application per scenario,
thus a total of 40 executions.

Table 3.3: Description of Practice 1: Use efficient queries.

Logical name Use of efficient queries
Category Databases

Description Most of Web applications of any size involve the use of a database.
Typically, a Web application allows the addition or creation of
new records (for example, when a new user registers on the site),
and the reading and searching operations of many records in a
database. Consequently, the traditional performance bottleneck
of Web applications comes from the database. It is often caused
by reading operations of a large number of records, or reading
operations whose complexity requires an expensive data processing
time by the database.

Rationale Often, database queries perform complex operations, such as or-
dering or indexing. Those operations are done to increase the ap-
plication performance at the expense of energy efficiency. Hence,
limiting the utilization of indexation mechanisms or unnecessary
ordering operations (use of ORDER BY keywords) can mitigate
the energy consumption of our queries.

Source Green Software Wiki

Keywords database, coding, query

The dependent variables we monitored and analyzed for answering our

45

Table 3.4: Description of Practice 2: Put application to sleep.

Logical name Put application to sleep

Category Energy-efficient coding

Description

CPU resources.

Rationale A proper use of the Sleep function (e.g. when the application is
no longer active, waiting for I/O or other signals) allows to reduce
CPU utilization, and consequently improves the energy efficiency
of an application.
Source Green Software Wiki, Wikipedia
Keywords sleep, coding, thread
RQs are: the energy consumption at system-level to assess the energy impact

of the practices; the energy consumption values at resource-level and its usage
ratio to identify the most affected resources; and software execution measures
(response time, number of request/query served) to determine their relationship
with energy consumption and how the application of the practice affects them.
The independent variable for our experimentation is the application work-
the parameters we used for benchmarking (e.g. total number of requests,

load, i.e.

database size).

46

This practice makes use of a sleep function (or equivalent) that
puts a process (or main thread) in sleep mode for a specific period
of time, i.e. enter the Not Runnable state. This programming
technique enables to suspend a thread or process, and thus its
use of CPU resources, while continues executing other threads or
processes until the sleep mode has finished. Once the sleep mode
is over the thread or process is allowed to continue making use of

3.3.2 Hypotheses Formulation

In the following we formulate the hypothesis that guides our experimentation,
starting from our research question.

RQ 2: What is the impact of using best practices for software energy efficiency?

The impact (AFE) is measured in watt-hours (Wh) and expresses the differ-
ence between the energy consumption at system level before (Ey) and after (E)
applying the practice, namely:

AFE =F, — Ey
Thus, we have:

H2y: AE =0
H2,: |AE|>0

The null hypothesis implies a negligible impact of the practice over energy con-
sumption. The alternative hypothesis represents instead an evident and signifi-
cant impact of the practice.

3.3.3 Instrumentation and Testbed

In the following we describe the instrumentation we used in our experimentation,
in terms of hardware and software tools. The hardware tools were provided by the
Software Energy Footprint Lab (SEFLab) [34], which served as our laboratory
environment.

Hardware

The test machine is a Dell PowerEdge SC1425 server, with the following specifi-
cations:

2x Intel Xeon CPUs, 3.2GHz
4x Infineon 1GB DDR2-333 SDRAM

Intel E7520 chipset
1x Maxtor 7L250S0 250GB SATA150 HDD

Dell power Supply Unit 450W

47

The instrumentation on this server consists of two Texas Instruments Data
Acquisition Boards (DAQs) connected to the power supply channels of the single
resources (e.g. CPUs, memory banks), in order to record the power consumption
data of the different components of the server. In addition, this server is also
equipped with a Wattsup PRO? meter to record system-level power consumption.

Software

The Software instrumentation consists of tools able to collect power consumption
data and software-related measures, along with resource usage information. All
this data is timestamped, synchronized and stored in comma-separated value
(CSV) files.

To collect software measures, we used the Intel Energy Checker (IEC) SDK [25].
This SDK allows developers to insert counters in the application code, to record
significant events and/or operational metrics (i.e. the number of queries executed
by a DBMS, the time spent in a particular function, etc.). These counters can
be exported through the same API, in order to be accessible from other applica-
tions at runtime. For power consumption data, we used the Intel Energy Server
tool (ESRV). ESRV is part of the IEC SDK and works under the same principle.
Basically, ESRV is a simple application able to interface itself with several power
meters and DAQs and export the values read by those devices through a software
counter, defined in the IEC API. The use of this tool allows to record both soft-
ware events/measures and power consumption information (both per-resource,
through DAQs, and system-level, through WattsUp PRO) using the same soft-
ware construct. This reduces noise due to format conversions and synchronization
issues.

To collect resource usage data, we used Dstat® for Linux/Unix. Dstat allows
to combine the output of various resource monitoring tools commonly used in
Unix environments (vmstat, iostat, netstat, ifstat). In particular, we gathered
the following resources:

e CPU statistics (user time, system time, idle time and more)
e Disk statistics (read/write)
e 1/0 statistics (read/write)

e Memory statistics (paging, used memory, buffered/cached memory, avail-
able memory, swap)

e System load (1m, 5m, 15m)

4https://www.wattsupmeters.com/secure/index. php
Shttp://linux.die.net/man/1/dstat

48

https://www.wattsupmeters.com/secure/index.php

e Network usage (packets sent/received)

The output was collected as CSV files with a granularity of 1 second.

3.4 Execution

3.4.1 Preparation

The context of our experiment is a single-object study: we apply a single object
(i.e. a software practice) to a single subject (i.e. a software application). This
choice has been made due to the intrinsic complexity of the practice application:
as of now, energy-efficient software practices are described in literature as high-
level guidelines, hence there are no formal specifications of how to apply a practice
to an application. In this section, we describe how we implemented the practices
and the assumptions we made.
For each practice, we developed three different scenarios:

e In the first scenario, that we called vanilla, the test application is bench-
marked as-is, without introducing any code instrumentation. We developed
this scenario to test our lab setting and to assess the impact of the instru-
mentation.

e The second scenario features the test application with code instrumentation,
before applying the software practice under test.

e The third scenario features the test application with code instrumentation,
after applying the software practice under test.

Practice 1: Use efficient queries

We implemented this practice using the MySQL Database Server software. As
dataset, we used a full copy of the English Wikipedia articles as of 2008, which has
a size of approximately 30GB. The English Wikipedia dataset has been obtained
from the WikiMedia Foundation. We designed a simple query that iterates over
all Wikipedia pages searching for text fragments. We disabled the MySQL inter-
nal cache, which could potentially be a confounding factor, by using the SQL_-
NO_CACHE keyword in the SQL statement. The application of the practice is
simulated by issuing two different types of queries: one uses the ORDER BY
keyword to order the results, the other one doesn’t. We developed a benchmark
that executes the SQL query 3 times. We decided not to control the duration of
the benchmark for this practice: it varies according to the execution time of the
queries. This allows us to assess the impact of the practice upon performance.
Listings 3.1 and 3.2 show the SQL statements we used.

49

SELECT SQLNO_CACHE a.old_id
FROM text a, revision b
WHERE a.old_id = b.rev_text_id
ORDER BY a.old_id;

Listing 3.1: Query before applying the practice

SELECT SQLNO_CACHE a.old_id
FROM text a, revision b
WHERE a.old_id = b.rev_text_id

Listing 3.2: Query after applying the practice

Practice 2: Put application to sleep

We implemented this practice using a local installation of the Apache WebServer
software v.2.2.25. Actually, the application already makes use of the Put appli-
cation to sleep practice when waiting for an HTTP request. We modified the
WebServer source code removing every call to the sleep() function in the body
of the request handling procedure. This modified version represents the subject
without the application of the practice. For benchmarking, we used the ab util-
ity (Apache Benchmark) included in the WebServer package, with the following
parameters:

ab -kc 50 -t 300 -n 5000000 hitp://localhost/

This configuration issues up to 5000000 requests, with a maximum of 50 con-
current requests and a time limit of 5 minutes (300 seconds). This allows us
to control the length of the experiment and extract performance statistics: as
opposed to the previous practice, where the number of query was fixed and the
execution time was not, in this case the number of requests varies (the WebServer
is not able to process 5 million requests in 5 minutes) but the execution time is
fixed.

3.4.2 Data Collection and Analysis

For each scenario (vanilla, before, after) we performed 10 different executions.
During each execution, we collected resource usage data through the CSV output
of the dstat tool, energy usage through the ESRV tool (at resource level) and the
WattsUp PRO meter (at system level) and software execution measures through
the IEC API. We carefully checked the timestamps between our different logs
to ensure synchronization. As shown in Figure 3.1, all the logs were collected

50

e
Test
Application

Software
execution
measures

Test Machine

Resource usage
data(.csv)

Monitor Machine

NFS
Shared
Folder

0D,

Energy Consumption
(system-level)

A

Energy Consumption
! (component-level)

Wattsup
PRO

DAQ

Energy Samples

Ccsv
Logger
A

Energy Data

> Intel Energy
Server (ESRV)

Energy Logs (.csv)

Figure 3.1: Experiment execution.

on a separate monitor machine, to minimize the measurement overhead on the
test machine. For this reason, the energy meters were electrically connected to
the test machine, but the data channels of the meters (i.e. USB cables of the
DAQs and the WattsUp PRO) were connected to the monitor machine collecting
the data samples. As regards the software measurements and the resource usage
data, the dstat tool and the IEC API calls were performed on the test machine,
but the output CSV logs were remotely written on an NFS shared folder located

on the monitor machine.

The analysis of the data was performed using the R software for statistical
computing®. We applied the following analysis techniques on the data (most of
them are described in [86], references provided otherwise):

e Descriptive statistics (e.g. mean, median)

measure [130]

Shttp://www.r-project.org/

Shapiro-Wilk test of normality [116]

Correlation analysis using Spearman’s rank coefficient

Wilcoxon signed-rank test for assessing the impact of the practice

Effect size computation using Cohen’s d, Hedges’ g and Vargha-Delaney A

51

http://www.r-project.org/

We choose a significance level « = 0.05 for all of our tests, i.e. we accept
a 5% chance of type I error (rejecting the null hypothesis when it is actually
true). When evaluating correlations, due to the high number of comparisons we
perform (21 comparisons for system-level analysis, 168 for resource-level analysis)
we applied the Bonferroni correction to our significance level. Hence, at system
level we have

as = 0.05/21 ~ 0.002

while at resource-level we have
a. = 0.05/168 ~ 0.0003

All the raw data, the reports and the R scripts reproducing the reports are
publicly available online”.

3.5 Threats to Validity

Before reporting our experimental results (in Section 3.6), in this section we
present the threats to validity and their mitigation. Our aim is of illustrating the
premises and the assumptions behind our experimentation, hence increasing the
readability of the experiment results. The classification of the threats follows the
one by Cook and Campbell [24].

3.5.1 Conclusion Validity

Threats to conclusion validity affect the statistical significance of the findings. In
our experimentation, we identify the following conclusion validity threats:

o Reliability of measures. When performing energy consumption analysis, the
precision and accuracy of the measurement equipment is of utmost impor-
tance. For this reason, we performed our measurement in the SEFLab, a
state-of-the-art laboratory purposely built to perform energy consumption
analysis. We also collaborated with the staff and technicians who setup the
lab in order to ensure the highest measurement quality (see Acknowledge-
ments).

o Reliability of treatment implementation. As mentioned in Section 3.4, the
application of the best practices to our application subjects is a complex
process that cannot be standardized or automated, as of the current way
practices are documented (this is also a threat to construct validity, see

"http://www.s2group.cs.vu.nl/wp-content/uploads/2014/07/
green-practices-online-package.zip

52

http://www.s2group.cs.vu.nl/wp-content/uploads/2014/07/green-practices-online-package.zip
http://www.s2group.cs.vu.nl/wp-content/uploads/2014/07/green-practices-online-package.zip

below). Hence, we cannot guarantee that a different implementation would
give similar results. To mitigate this threat, the implementation of the
practice was performed by two different researchers and its meaningfulness
was cross-checked with experts in the field.

3.5.2 Internal Validity

Threats to internal validity affect the causal interpretation of our results. We
identify the following threats to internal validity:

o Treatment assignment. As we stated in Section 3.3, our empirical study
is a quasi-experiment, for feasibility reasons: the assignment of a practice
to a single software application is an operation that cannot be automated
nor randomized at the present time. We are aware that this prevents us
to fully establish causation. Part of our future efforts (see Section 3.8) will
be devoted to generalize the practices in order to make them automatically
applicable on multiple products, hence enabling randomized assignment.

o Code instrumentation. Due to the usage of the IEC API (see Section 3.3),
we had to insert several additional calls in our application subjects. That
might result in a confounding factor. To mitigate this threat, we also per-
formed a benchmark of each application before performing instrumentation
(vanilla scenario). This allowed us to estimate the impact of the instru-
mentation and take it into account.

3.5.3 Construct Validity

Threats to construct validity affect the relationship between theory and obser-
vation. Our main threat to construct validity regards the operational explication
of constructs, meaning that the practices are not formalized in a standard and
objective way, hence their translation into operational constructs is subject to
interpretation. To mitigate this threat, we documented the practices to the best
of our knowledge and we provided references of their sources. We seek, however,
for researchers to challenge our interpretation and provide further examples to
improve our knowledge base on best practices for software energy efficiency.

3.5.4 External Validity

Threats to external validity affect the generalization of our findings. For our
experimentation, we identified the following external validity threats:

o Subject selection. For feasibility reasons, also due to the complexity of the
application of a practice, we designed a single-object study, so we selected

53

only two software applications for our study. Accordingly, we cannot guar-
antee that our subjects are representative of the whole population. To
mitigate this risk, we chose our application subjects to be as representative
as possible, being them widely-used open source software applications.

o Ezxperimental setting. We conducted our experiments in a controlled envi-
ronment. Hence, we cannot guarantee that our results would be the same
in a different setting, e.g. the production environment of a company. How-
ever, the test machine and the application versions were as up-to-date as
possible and they are widely used in industrial settings too.

3.6 Results

In this section, we present the results of our experiment. For each practice, we
present the results of hypothesis testing and other relevant findings. We also
discuss the results for each practice in detail.

3.6.1 Practice 1: Use Efficient Queries

Hypothesis Testing

In Table 3.5 we summarize the results for hypothesis testing. The Wilcoxon
signed-rank test shows that the application of the practice induces a signifi-
cant decrease in energy consumption (Z=-3.915, p-value=0.00009). Thus we
can safely reject the null hypothesis.

Table 3.5: Practice 1: Results of hypothesis testing (energy consumption)

Before After
Median 47.85 35.82
Mean 43.83 35.82
% Diff. -25.1 %
Wilcoxon’s Z -3.915
Cohen’s d -140.206 (large)
Hedges’ g -134.282 (large)
Vargha & Delaney’s A 0 (large)

54

Discussion on Practice 1

Before and after the application of the practice, Spearman’s p correlation coeffi-
cient calculation returned different results in 15 over 21 pairs of resource—energy
variables at system level (all p-values < ay, see Equation 3.1) and in 88 over 168
pairs of resource—energy variables at resource-level (all p-values < a., see 3.2).
In Table 3.6 we report all the significant correlation coefficients at system level.
In Table 3.7, for the sake of brevity, we report only the resource-level coefficients
that had a significant variation (Ap > 0.4) before and after applying the practice.

Table 3.6: Practice 1: Resource usage analysis at system-level

u P cor(uro, Po) cor(uri, P1)
CPUusr Watts 0.673 0.715
CPUsys Watts 0.643 -0.163
CPUidl Watts -0.189 -0.319
CPUwai Watts -0.691 -0.632
CPUsiq Watts 0.108 0.264

DSKread Watts -0.489 0.04
IOread Watts -0.696 -0.688
LOADIm Watts -0.087 -0.177
LOAD5Sm Watts -0.079 -0.143
LOAD15m Watts -0.06 -0.092
MEMbuff Watts 0.045 0.127

Table 3.7: Practice 1: Most significant results of resource usage analysis at
component-level

U P, cor(uro, Pro) cor(uri, Pr1)
CPUusr MB.5V..Watts. 0.043 0.583
CPUsys HDD1.5V..Watts. -0.553 0.156
IOread HDD1.5V..Watts. 0.618 0.177
I0read MEM.12v..Watts. -0.076 -0.628
IOread MB.5V..Watts. -0.07 -0.659

Our hypothesis testing confirms that our first practice, Use efficient queries,
is successful in increasing energy efficiency. However, some additional consid-
erations need to be done. As emerges from Table 3.8, the decrease in power

55

consumption is significantly lower than energy, in percentage terms. This indi-
cates that after the application of the practice, there is also an improvement in
performance, which is reasonable due to the missing ORDER BY clause. Indeed,
we report a significant difference in execution time: before the practice, we mea-
sured an average of 257 seconds per query, while after the practice the average
time per query was 200 seconds.

The decrease in power consumption also indicates a different usage of the
resources, as emerges from the results of RQ2: after applying the practice, we can
observe a direct correlation rising between CPU activity and motherboard/disk
consumption, that indicates a more energy-proportional behavior. This behavior
becomes evident when analyzing the relationship between the CPU activity and
the system-level power consumption, as shown in Figure 3.2.

Scatter plot before the practice (r=0.67 p=0) Scatter plot after the practice (r=0.72p=0)

LI
15
1

CPUusr
20 an
1 1
a &
B
a
>

CPUusr

10
1

T
120 200 220 240 280 180 200 210 220 220

Watts Watts

Figure 3.2: Scatter plots of the variables CPUusr and Watts before and after
practice 1 was applied.

Another interesting insight regards the relationship between the I/O operation
and power consumption: before the practice, there was no significant correlation,
while after we observe negative correlation coefficients. This might be due to

56

the fact that I/O activity is typically less power—intensive, as the most power
consuming resource, the CPU, is inactive. Applying the practice reduces I/0O
activity by removing the ORDER BY clause which translates in less I/O read
and writes, hence the negative impact of I/O over the overall power consumption
is more evident, also due to the reduced execution time. This is also supported
by the enhanced proportionality between energy and memory usage in Table 3.6.

Table 3.8: Practice 1: Effect size analysis (power consumption)

Before After
Median 221.22 214.06
Mean 219.64 213.47
% Diff. -2.81 %
Wilcoxon’s Z -3.468
Cohen’s d -1.775 (large)
Hedges’ g -1.700 (large)
Vargha & Delaney’s A 0.09 (large)

57

3.6.2 Practice 2: Put Application to Sleep

Hypothesis Testing

In Table 3.9 we summarize the results for hypothesis testing. The Wilcoxon
signed-rank test shows that the application of the practice induces a signifi-
cant decrease in energy consumption (Z=-3.929, p-value=0.00008). Thus we
can safely reject the null hypothesis.

Table 3.9: Practice 2: Results of hypothesis testing (energy consumption)

Before After
Median 24.11 22.06
Mean 24.10 22.06
% Diff. -8.48%
Wilcoxon’s Z -3.929
Cohen’s d -42.069 (large)
Hedges’ g -40.292 (large)
Vargha & Delaney’s A 0 (large)

Discussion on Practice 2

Before and after the application of the practice, Spearman’s p correlation coeffi-
cient calculation returned different results in 7 over 21 pairs of resource—energy
variables at system level (all p-values < as, see 3.1) and in 55 over 168 pairs of
resource—energy variables at resource level (all p-values < a., see 3.2). In Table
3.10 we report all the significant correlation coefficients at system level. In Table
3.11, for the sake of brevity, we report only the resource-level coefficients that
had a significant variation (Ap > 0.4) before and after applying the practice.

The results of hypothesis testing, as for Practice 1, confirm the usefulness
of Practice 2 in improving energy efficiency. That being said, the two practices
affect energy consumption and resource usage in different ways.

First of all, for Practice 2 there is almost no difference in the impact between
energy and power consumption, as shown in Table 3.12. This indicates a less
evident impact on performance: indeed, benchmarks before the practice indicated
an average time per request of 0.210 milliseconds, as opposed to 0.196 milliseconds
after the practice, hence a mere 6% improvement. However, the average energy
consumed per request is 16.89 pWh before the practice and 14.41 pWh after,
with a reduction of 14%. Thus, energy savings are not only due to a shorter
execution time.

58

Table 3.10: Practice 2: Results of resource usage analysis at system-level

u P cor(uro, Po) cor(ur, P1)
CPUusr Watts 0.691 0.886
CPUsys Watts 0.159 0.761
CPUidl Watts -0.736 -0.905
CPUsiq Watts 0.527 0.423

MEMused Watts -0.727 -0.849
MEMcach Watts -0.43 -0.392
MEMfree Watts 0.596 0.593

Table 3.11: Practice 2: Most significant results of resource usage analysis at
component-level

U P, cor(uro, Pro) cor(ur1, Pr1)
CPUusr CPUL.12V..Watts. 0.144 0.773
CPUusr CPU2.12V..Watts. 0.078 0.8
CPUusr MB.5V..Watts. 0.086 0.631
CPUsys MEM.12v..Watts. 0.117 0.655
CPUidl CPU1.12V..Watts. -0.158 -0.793
CPUidl CPU2.12V..Watts. -0.075 -0.815
CPUidl MB.5V..Watts. -0.095 -0.655
MEMusedCPU1.12V..Watts. -0.111 -0.771
MEMusedCPU2.12V..Watts. -0.103 -0.788
MEMfree CPU1.12V..Watts. 0.072 0.553
MEMfree CPU2.12V..Watts. 0.111 0.55

The correlation analysis shows us clearly that, as for Practice 1, applying
this practice leads to a more energy—proportional behavior, as all CPU—power
coefficients increase (CPUidl represents the time spent by the CPU in idle time,
which is negatively correlated with power, as expected). This phenomenon be-
comes evident by looking at the scatter plot in Figure 3.4.

However, as shown in the box-plot of Figure 3.3, memory (MEM-12V) also
plays an important role: the average energy consumed by the memory amounts
to 5.297 Wh per run, as opposed to the 5.47 and 5.58 Wh consumed by the
two CPUs (CPU1 and CPU2, respectively). This shows that when optimizing
software for energy efficiency, we need to take into account memory usage as

59

Energy (Wh)

Energy (Wh)

Figure 3.3: Energy consumed per resource before (a) and after (b) applying

Practice 2.

Table 3.12: Practice 2: Effect size analysis (power consumption)

cpPu

cpPu2

HDD-12V -|

MEM-12V

MB-5v -|

MB-3v

cpPU1
cpPu2
HDD-12V -

Before After

Median 297.06 272.63
Mean 296.62 272.06
% Diff. -8.28%
Wilcoxon’s Z -4.548
Cohen’s d -16.890 (large)
Hedges’ g -16.176 (large)
Vargha & Delaney’s A 0 (large)

MEM-12V

MB-5v

MB-3V/

well.

3.7 Reflection

In this section, we provide the reader with some reflection points that emerge
from our results.

The first point regards the main outcome of this study: the impact of the
best practices for software energy efficiency. We reported very significant energy
consumption reductions, up to 25%, that show the relevance of this research and
more in general of software energy efficiency. This relevance even increases when

60

Scatter plot before the practice (r=0.69p=0) Scatter plot after the practice (r=0.89p=0)

an
1

20
1

CPUusr
CPUusr
@

10
1

. -
- 5
g s B
P ° ° & # @
o N - o . .5 .
.
% o & £ © e © o° w e ol

240 250 280 270 280 250 200 180 200 220 240 260 280

Watts Watts

Figure 3.4: Scatter plots of the variables CPUusr and Watts before and after
practice 2 was applied.

considering emerging contexts such as Cloud Computing and Big Data, where
software applications run in countless instances, hence their energy efficiency be-
comes crucial. Another relevant context is High Performance Computing: as
we approach the so-called Exascale Computing era [123], when the power con-
sumption of HPC systems is predicted to be in the order of tens of MWs, energy
efficiency will be among the top priorities of the sector.

Indeed, the related work we summarized in Section 3.2 reports a number of
findings in heterogeneous contexts, sometimes presented as suggestions/guide-
lines for developers. In this work, we present two best practices, documented
with a structured template [46], and we assess their impact. The template gives
an added value in terms of reusability of the practices, while the characterization
of their impact helps developers in planning for reaching a specific level of energy
efficiency, provided the compatibility of the practice with the application domain
and other possible constraints.

If we look at the impact of software energy efficiency on the software engi-

61

neering process, it introduces a new concern that potentially affects all phases of
software development. Reusable best practices guide software architects and de-
velopers in making energy efficient design decisions and implementation choices,
hence ensuring software to be energy efficient in the first place.

Finally, our experimental design and setting represents an important part
of our scientific contribution. A dedicated laboratory environment for assessing
software energy efficiency represents the starting point of a sound methodology for
research in software energy efficiency, as well as a testbench, when software testing
for energy efficiency will be common practice, as it is now for other software
qualities. The tools and analysis methods we adopted fit into a more general,
reusable framework for energy efficiency in software engineering, that we will
further develop in the remainder of this thesis.

3.8 Conclusions

In this contribution, we presented the empirical validation of two best practices
for energy-efficient software development, selected from a collection of practices
elicited from both academic and industrial sources.

For our study we selected two best practices, Put application to sleep and Use
efficient queries, and we applied them on well-known and widely adopted open
source products. This chapter answers RQ 2, namely: “What is the impact of
using best practices for software energy efficiency?” The results of our empiri-
cal experimentation show a significant and consistent impact of adopting both
practices in increasing the energy efficiency of the selected subjects, namely the
Apache WebServer and the MySQL Database Server. A more detailed analysis
also showed that the practices significantly alter the resource usage pattern of
the applications, inducing a more energy-proportional behavior after their appli-
cation.

We have set up a wiki® to distribute our practices, along with a structured
template for their documentation where we will include the results of our em-
pirical validation, so that practitioners can learn how adopting a practice can
improve the energy efficiency of their product. In the next future, we plan to
set up a regular experimentation activity on all the practices collected so far,
formalizing our current experimental design and incrementally building a gen-
eral framework for empirical research on energy-efficient software. Other future
efforts will be aimed at generalizing the energy-efficient software practices, by ab-
stracting the general concepts behind them and eventually providing automated
refactoring procedures to apply them on existing products. This will speed up
our experimentation and hence increase the amount (and maturity) of evidence

Shttps://wiki.cs.vu.nl/green_software/index.php/Main_Page

62

https://wiki.cs.vu.nl/green_software/index.php/Main_Page

we can gather through our methodology. For this purpose, we developed a new
approach for empirical experimentation in energy efficiency, that is presented in
Chapter 7. In the next part of the thesis, we will instead analyze how energy
efficiency can be addressed in the early phases of the software life cycle, i.e. the
architectural phase.

63

Energy Efficiency in Cloud Software
Architectures - A Systematic Literature
Review

In the previous chapters, we focused on how to support developers to increase
the energy efficiency of existing applications. This chapter further elevates the
level of abstraction, by analyzing the architectural implications of addressing en-
erqy efficiency. For this purpose, we look at Cloud-based software architectures.
Although cloud computing is often considered as an energy—efficient technology,
the implications of cloud—based software on energy efficiency lack scientific evi-
dence. At the same time, energy efficiency is becoming a crucial requirement for
cloud service provisioning, as enerqgy costs significantly contribute to the Total
Cost of Ownership of a data center. In this chapter, we present the design and
results of a Systematic Literature Review on energy efficiency in Cloud Software
Architectures. This study provides us the answer to RQ 3a.

4.1 Introduction

Cloud computing infrastructures are often described as an energy-efficient tech-
nology [13]. In principle, improving data center utilization by virtualizing re-
sources is a way to save energy. However, even if it has been proven that cloud
technologies provide benefits in terms of energy savings, this factor is not ade-
quately exploited as an added value for cloud service provisioning.

Nowadays, energy efficiency is starting to be considered as a Service-Level
Objective (SLO), i.e. a specific, measurable characteristic of a service, to be
described as achievement values in Service Level Agreements (SLAs)!. An ex-

Thttp://www.greenbiz.com/news/2009/01/12/energy-efficiency-new-sla, last visited on
June 12th, 2013

65

http://www.greenbiz.com/news/2009/01/12/energy-efficiency-new-sla

ample would be: “The energy bill of the client should be reduced by 20% in one
year”. Cloud service providers (CSPs) could benefit from representing energy
efficiency as a SLO. However, in order to offer cloud services, providers rely on
very complex software architectures. It is yet unclear, and possibly unexplored,
what architecture characteristics do to positively or negatively influence energy
efficiency, and if there are explicit or implicit reference architectures that can
help in increasing energy efficiency.

Nowadays, the role of software in energy consumption is widely discussed
among the scientific community, and a number of metrics for software energy
efficiency has been proposed [15]. Our work tries to advance to the next step:
whether it is possible to quantify the effects on energy consumption when adopt-
ing a certain software architecture, and what architectural solutions can be
adopted to increase energy efficiency in cloud-based software.We performed a
Systematic Literature Review (SLR) [63] to investigate the relationship between
cloud-based software architectures and energy efficiency.

This chapter is structured as follows: Section 4.2 describes our review protocol
in detail. Section 4.3 presents the results of a demographic analysis conducted
on our primary studies. Section 4.4 provides insights about the state—of-the—art
of energy efficiency in cloud software architectures. Section 4.5 gives an overview
of the stakeholders for energy efficiency we identified during our research. In
Section 4.6 we discuss the threats to validity that might affect our study. Section
4.7 concludes the chapter.

4.2 Review Protocol

This study is aimed at answering RQ 3a, namely:

RQ3a. Are there software architectural solutions that address energy efficiency
aspects?

As we stated in Section 4.1, we focus specifically on cloud service provisioning,
and how software architectural solutions can be adopted to achieve Service Level
Objectives on energy efficiency. In order to answer our RQ, we followed a sys-
tematic literature review process. We performed a preliminary analysis of the
research space, and we identified 306 hits (i.e. potentially related studies). We
formulated a review protocol for our study, by defining a search query for aca-
demic databases and inclusion and exclusion criteria. Applying the protocol, we
selected the primary studies for our research. We subsequently classified and
analyzed these studies in order to extract relevant results.

In this section, we extensively describe our protocol, for the sake of repro-
ducibility. All the main components of the protocol will be discussed: search
strategy, study selection, data extraction, data analysis and traceability.

66

4.2.1 Search Strategy

We adopted Google Scholar® as our data source. We defined a query string by
selecting the most appropriate keywords to answer our RQ. We selected five key-
words: “software architecture”, “cloud”, “service”, “SLO”, “energy”. Our query
was defined after different steps, using the results of our preliminary analysis as
pilot to test the coverage of the results. Namely, if one of the studies in our
pilot was not retrieved by the query string, we refined it to add more keywords
(typically, acronyms or alternative spellings, e.g. “service level agreement” vs.
“SLA”.
The final query string was defined as follows:

“software architecture” AND cloud AND service AND “(energy OR power)
efficiency” AND (SLA OR SLO OR “service level)

The query string was applied to titles, abstract and body of the studies,
to enlarge the scope as much as possible. Our time range for the search went
from 2000 to 2013. This period was chosen considering the relatively recent
development of cloud computing technologies.

4.2.2 Study Selection

In order to select our primary studies, we defined a number of criteria for inclusion
and exclusion. The criteria select papers in terms of their relevance to our RQ, but
also in terms of scientific validity and language. In general, a study is selected if
it fulfills all of the inclusion criteria, and excluded if it fulfills any of the exclusion
criteria. Table 4.1 summarizes the Inclusion—Exclusion Criteria for our review
protocol.

4.2.3 Data Extraction

We used an extraction form in order to retrieve and store relevant information
about each primary study. Besides general information, the form records how
energy efficiency is addressed and which architectural elements were identified in
the presented solution. The extraction form is structured as follows:

e Study Identifier: provides an identifier for the study;
e Study Title: the publication title;

e Study Type: the publication type (i.e. journal article, conference article,
thesis);

%http://scholar.google.com/

67

http://scholar.google.com/

Criterion

Rationale

I1 A study that directly proposes soft-
ware architectures, architectural styles or
strategies, or indirectly proposes them
from a service provisioning perspective.

We want to identify how software archi-
tectures affect energy efficiency, thus we
need articles proposing software architec-
tures, or indirectly proposing them from
a service provisioning perspective.

I2 A study that addresses energy effi-
ciency as a quality attribute.

We want to investigate whether energy
efficiency is considered, by providers or
experts, as a quality attribute for cloud
services.

I3 A study that is developed by either of
academics and practitioners.

Both academic and industrial solutions
are relevant to this study.

14 A study that is published in software
engineering/cloud computing field.

Software engineering is our reference
field, but cloud computing research can
provide us an insight on what trends are
set in terms of software architectures for
cloud.

I5 A study that is peer-reviewed.

A peer-reviewed paper guarantees a cer-
tain level of quality and contains reason-
able amount of content.

16 A study that is written in English.

For feasibility reasons papers written in
other languages than English are ex-
cluded.

E1 A study that does not propose soft-
ware solutions for energy efficiency.

Traditionally, energy efficiency has been
regarded as an hardware issue. We want
to drive past this assumption and ad-
dress the software impact of power con-
sumption.

E2 A study that does not imply any type
of service provisioning.

We are not interested in solutions that
generally increase the energy efficiency
of a datacenter, without having in mind
how to provide an energy-efficient service
to a customer.

E3 A study that does not consider energy
efficiency as a primary quality attribute.

We are not interested in studies that con-
sider energy efficiency a secondary con-
cern.

E4 A study that does not aim at opti-
mizing the energy efficiency of the cloud
computing infrastructure.

Mobile devices often leverage cloud ser-
vices by offloading computation tasks, in
order to increase their battery life. Al-
though this is an energy efficiency im-
provement, it is not relevant for the en-
ergy efficiency of the cloud computing
infrastructure, thus we want to exclude
these solutions from our study.

Table 4.1: Inclusion and Exclusion Criteria.

68

e How energy efficiency is addressed: a brief summary of how the pre-
sented solution addresses the energy efficiency of the cloud infrastructure;

e Main architectural elements: the main software elements of the solu-
tion.

e Stakeholders: stakeholders mentioned in the study that can be affected
or involved in the architectural solution presented.

e Validation: whether the proposed solution has been validated in an Aca-
demic or Industrial setting, or no validation was performed. The validation
is considered Academic when the article has been validated through a simu-
lation or a test-bed. The validation is considered Industrial when the article
reports a real case study (i.e. the proposed solution is already implemented
in a software product).

4.2.4 Data Analysis

Our RQ investigates how cloud software architectures deal with energy efficiency
issues. The aim of an SLR is to ”identify, analyze and interpret all available
evidence related to a specific research question” [64]. Hence, we do not aim
at directly providing new reusable solutions or patterns, but rather we aim at
classifying the existing body of knowledge in a systematic way.

To elicit this information, we adopted coding. Coding is a qualitative research
method, commonly used in social sciences, that interprets data and organizes it
in categories or families, using codes, i.e. words or short phrases. Coding allows
to capture the fundamental information of qualitative data in a systematic way,
and enables us to link it and discover patterns and trends [108].

Our first step was an exploratory study of the selected contributions, in order
to define an initial set of codes (or “start-list” [84]). The start-list was built
by analyzing reference literature in software architecture [12][55][96][27]. We
arranged our codes in a conceptual three-level structure, shown in Figure 4.1 and
defined as follows:

e Strategy: the high-level approach through which a software solution ad-
dresses energy efficiency;

e Technique: the instantiation, or enactment, of a strategy through a specific
technical approach;

e Component: an individual architectural component that plays a defined
role in the application of a technique.

69

istantiates J

‘ Technique
1.*

1 *
1

Strategy uses

1
1.*

Figure 4.1: Conceptual structure of our codes.

The concept of architectural strategy [60], technique (or tactic) [12] and com-
ponent [40] are very well known foundational concepts of software architecture
and they are familiar to practitioners and experts in the field. By adopting this
conceptual structure, we aim at communicating our findings more effectively to
software architects.

Finally, our primary studies were iteratively analyzed by two researchers in-
dependently, refining the list at every iteration until general and unambiguous
codes were identified.

4.2.5 Traceability

We recorded the reference information of the studies using JabRef?, a software
tool for reference management. JabRef manages references in BibTeX and many
other formats, and also allows to link and embed full-texts. For every step of
the review process, a different JabRef database file was created that contained
the references of the studies analyzed in that step. Moreover, we used an Excel
sheet to report the matching of the inclusion/exclusion criteria and the stage of
the decision (title, abstract or full-text checking) for each study. As regards the
traceability of our analysis, whenever a code was identified in a primary study
we annotated the corresponding section of the full-text of the contribution. In
this way, the systematic mapping we performed can be verified by independent
reviewers. All the material is available on request.

4.3 Demographic Analysis

In Table 4.4 we present the results of the application of our review protocol. The
search query of Section 4.2 identified 149 initial results in the Google Scholar

3http://jabref.sourceforge.net/, last visited on January 29th, 2014.

70

http://jabref.sourceforge.net/

database. Then we went through the primary study selection process, divided into
three phases: first, we checked the title against our inclusion/exclusion criteria,
then we checked the abstract and finally the full-text. At each step, we were able
to exclude a number of studies from our initial set and we finally ended up with
26 primary studies. Tables 4.2, 4.3 present the list of the primary studies we
identified during our SLR.

Figure 4.2 shows the distribution of our primary studies over time. It can
be noted that the topic of energy efficiency in cloud service provisioning has
become a concern in the past couple of years, as our primary studies have been
mostly published starting from 2011. This distribution is coherent with the cloud
computing hype cycle documented by Gartner [120]: in 2011 cloud computing
was on top of the “Peak of Inflated Expectations”. This reflects the growth of
publications on cloud computing in 2011 that we can observe in Figure 4.2. No
primary studies were identified in 2013: however, this is most likely due to the fact
that when the search was performed (June 2013) many contributions published
in the first months of the year were probably not indexed yet.

The distribution of the type of the articles is as follows:

e 11 journal articles;
e 12 conference articles;

e 3 PhD theses.

Number of works by year
12

10

2007 2008 2009 2010 2011 2012 2013

Figure 4.2: Number of primary studies selected per year.

71

[06]

[29]

[ev]

[eg]

l6€]

[621]

(171

[08]

log]

lo€g]

[ee]

[82]
log]
loz]
[901]

39Y

OTuOPeIY

STuepedy

oL pedy

reLsnpuy

STeped Y

oTwepedy

reLysnpuy

Srwepedy

SIueped Y

STepeIY

uo[epI[EA

Suiyndwoy) s[qeurelsng pue
oluIOUONY I0J SAINFOHYD
-1y pue aIema[ppIN uo doys
-3 I0A\ 1ST 93 JO sSUIpaad0I]

SPUDIT,-{TUYD9)0IeM)JOS D)
(110g TMIN) oW} unIms(e
-poJNl doyssyIop\ [euorjeuray
-u] Y39 oy} jo sSUIPeadol]
(1102

SINVHS) swoisdg SurSeuey
-JleS pue oandepy 1oy Sul
-1ouISuy oIem)jog UO wnrs
-odwAg [eUOIRUISIU] {19
(1102 Yvd-0¥NH)
Surndwoy) [o[RIR UO 290USd
-I19JUO)) [eUOIjRUINU] TILT
sdoysyIopn
SUOIRDIUNUWIUIO)) 1oynd
-wo)) U0 90UdIdJuo)) HHMI
(DSD) Sur

-mndwoy) 921AI9G pue pnoid
UO 9OUSISJUO)) [RUOIJRUIIIU]
SwelsAg ponqLIISI(] pue [9]
-[eIed Uo suoljoesuel], HHMHI

wnisodwAg 3uissad0l g
panqruisiq R Prrered
[euonjeuwrayu] HHHI TT10T

(0102, NDD) dremorp
-pIN Surindwio)) uoeIr) uo
doysyIopy [euoljeurajul 3s|

(NAsn)
[EUWINOf 2IN30YDIY oYTJ,
(NAsv)
[eUINOf 9INJOIYDIY O,
onuaA

20UdIdJUo)

rewanop

20ULdIdJUu0)

20UaIdJuo)

®OQ®.H®WQOO

90ULISJUO))

20UdIdJuo)

[ewanop

s1oU T, " Ud

90UDIOJUO)

sIsey, "d'Ud

®U:®.~®mﬁoo
sseq T, " Ud
rewrnop
ﬁﬁwguSOH

odAT,
uorjeoriqndg

T10C

1102

1102

T10C

T10C

1102

1102

1102

1102

1102

T10C

0T0T

6002

8002

800¢T

Jeax

‘e 90
'y ‘eurppeainoN

‘g ‘adunoy]

e 90 'S ‘230D

e 19 N ‘leqny

e
‘Bren)

¥ 3OS

‘Te 10 e RURZ],

‘e 10 T ‘nx

e % T ‘N
‘d'd ‘Arrey8nog

e 99 "I, ‘119104

e
9 r g ‘zouny
-IRIN urey)

‘e 30

T ‘eIeANO °d
‘N ‘StmpoH

T ‘sany

‘N ‘uurwWoOH

pue ‘q ‘s1o80Yy

sIoyny

SIUSTUOIIAUD POINLISTP

ut suorjeydepe uoalip-A31ous Surproddng
dewipeoy

oIeosoy Ppur UOISIA Y :3utreaurd
-uy] SsweIsAg pue oIem)jog oremy-J[oS
uo13e1303aN

j1oeijuo)) Aq oIemjjosg Jualoye-A3Iouy
10] JuoweSeue]y Aj[IqeLIRA OWIjUNY

SJUSUIUOIIATS PIZI[ENLIIA UT UOITRD
-o[re odoInosal aarydepe-j[os paseq-[oPOIN

Spnor) jo ASusIdIH uoqre))

Suraordw] 10j YIomowrel] Pno[) UIL)
yoeoxdde SYASAHD

oY1, ‘Seanjonajiseryur yiomjou MNQMQQO
pue] pojeidejur ul Adouodiygy ASiouy

I99U0d eYEP PO 9jeatrd ur juow
-o8euewr uoryesijdde pnod areme A3rouy
JueweSRUR]\ 90IN0S9Y 23e101G JULID
- I10J sising proiopp Sursoduiodsq
swo)sAg pappoquiy pue

awIr)-edy paInqrIysi(] 10j sorSojerlg uoly
-ealro(Juowikojde pue uorpeINIYuO))

sorytungrod
-do pue se3ua[ey) :jueweSeurwW PNO[D)

SOOIAIOS PIIN(LISIP o[eds a81e| aarpdepe
-J[@S 10] IOMOWRI] OIBMI[PPIN V

SOIN)09)IYDIY POIUSLI)-90IAIOG Ul
qurrdjoo] AS1oue oYy jo uorjezruigjdo-Jjog
Buruotstaoxd aarpdepe ySnoayy suro)sAs
osuidisjue o81e] JO $1500 A3Ioue JuUlWR],
ul1so(21Ny

-ONI)SRIJU] O[qRUIRISNS A[[RJUSWUUOIIAUN

1] ueaid 10} surejyed uoryeoriddy

SIILL

72

1€eS.

Overview of the primary studi

Table 4.2

l6€T]

(07 1]

[12]
[eeT]

[67]

[g1T]

[1€]

[6g]

[z11]

[16]

[evT]

P g |

STweped Y

OIueped Y

STueped Y

oI pedY

oTwepedy

OTOpPeIY

uorgepIEA

sue)sAg uorjeuLIOU]
uo sioded 3uryiop) :siynoxdg

suorjedIUNWWoy) H][
(210z DHO) Sunndwoy
U99I) pPUR PNO[) UO dOUd
-I9JUO)) [RUOTJRUIDIU] PUODDG
SOOUDIDG W0)SAY
reindwoy) jo [euwInof
orem

-1J0g pue swe)sAg jo [euinor
(8108 NHHUD

-DI) suonmog] UeaIn
UO 9OULIOJUO)) [BUOIJRUIO)
-u] pig oy} jo sSUIPeddOoI]
(z108

A31oug-0) swoysAg ASio
-UG] INjN,] UO 9OUSIDJUO))
[euonjeuIajuU] PIYL ZI0T

pue

swo)sAg 1eqnd

-uwo) UOIYRIDUDL) 9ININg
A3ojouyodaf,
23 SuleeulSuy Ul S9dURA

-PV JO [RUINO[[RUOI}RUIIU]

oouariad

-XG puUe 221)0vId :9Iem)jog
(g10g woppnorp)

9oustog pur A3ojourdsy, Sut
-;ndwo) pnoyy) uo oousIdj
-uoy) reuoryeuraiu] Y3y HHHI

anuoA

[ewanop

rewinop

90UDISJUO)
rewinop

[ewanor

9DUBIDJUO))

20ULdIdJUO)

rewrnop

reuanop

rewinop

90UDIOJUO))
adAT,
uonyeorqnd

10T

(4104

10T

(4104

¢102T

(44

(4104

102

[qi4

(4104

102

Jeax

e 7 ‘DM

‘T8 99 "N ‘Suory

10

10

10

10

10

EE)

‘e 30

v

Te
r ‘rerquadie))
e
‘A ‘sesoIiA
Te
‘N ‘uewnIel

Te
‘N ‘AduleAdS

‘e
‘0 ‘quodn(g

‘e
‘5) ‘soresiey]
[freydeg

‘e 19
‘OuIppPaINoN

Te 30 T ‘nx

sioymy

sorpewrioju] A31e

-ujf] JIO0J 9INJONIJSLIJU] PNO[D) € SPIemo],
Koains e isyIomilou

uo poaseq sowayds Surpnduiod pnoo usaIr)

Iey01g pno[) 92inog ued(JjusdH
A31ouyy ue Jumudise :puo[qlyeduwo))
[epowt

901AI9S poloAR] ® Ul UOIRISPS] PNO[D
00} uorjeziu

-19dQ peseq yoieag st Surresurduy pnord

s1oaleg Surindwo)) jo raquuiny oY}
Surjjorguoy 10j Aro09yJ, Sumeny) Suisn

S9IjUeD ejep
pojeIopo) pno[o ul juowede[d ouryoew
[eniIiA I0J JIOomouwel] aleme A31ou0 uy

spnorn
ur juewedruURW JNA pPue Suniojiuowt
oIeme-A3I0U0 I0J IOMOWRIJ OIIAIS Y

uoIRISIJ 9AIT JNA YSnolyJ, uoryeprjos
-U0)) I9AIRG Juatoljy AS19uf U0 ASAINg Y
SjuLauOI

-IAUS POINqLIISIP Ul juowedeuewt AJI1ous
10j soypreordde orema[ppll JO MOIADI Y

juoweSeurwt drwouojne uoryesrddy
pnorp 10j yoroidde peseq-juele 1qg V

SIMN.L

73

Table 4.3: Overview of the primary studies.

Step Removed | Remaining
Initial search results | N/A 149
Title checking 10 139
Abstract checking 78 61
Full-text checking 35 26

Table 4.4: Overview

expectations
Platform as a Service

of the selection process.

Faas) 5anate Cloud Computing

Cloud Security
Cloud Email
Application Paas (aPaas)

Q Cloud Computing
Q Infrastructure as a Service {laas)
Q Public Cloud Computingthe Cloud

‘ Multitenancy
Elasticity
Cloud Collaboration Service
Browser Client O:

5

S

Database Platform as a Service (dbPaas)
Cloud-Enabled BPM Platrorms

@ Real-Time Infrastructure

Cloud Parallel Processing
Cloud Application D evelopment Services ®
"Big Data" and Extrem e Information Public Cloud Storage o
Processing and Management Dedicated Email Services

Q— Cloud Advertising

Hybrid Cloud Computin

y pung ® Cloudbursting (E
Sales Force Automation 5aas

Tivmuauzamn

Cloud Services Brokerage
Cloud-Optimized Application Design — @ Cammunity Cloud

Cloud/ved
Private Paas @ Piatforms Software as a Service (53a5)
IT Infrastructure Utility
Cloud Security and Risk Standards @ Enhanced Netwark Delivery
DevOps @
As OTJuly 2011
Peak of
Technology Trough of . Plateau of
Trigger Ex;ftl:?:\:i‘ins Disillusionment Slope of Enlightenment Productivity

time ¥

Years to mainstream adoption: obsolete

Olessthan 2years © 2toS5years @ 5to10years A morethan 10 years ® before plateau

Figure 4.3: Cloud Computing hype cycle, 2011 [120].

As regards the validation of the solutions presented in the primary studies,
we found that:

e 14 studies present an Academic validation;
e 2 studies present an Industrial validation;
e 10 studies do not validate the presented solution.

This testifies the low level of maturity of this topic. The lack of industrial
validation indicates that the state-of-the-practice of energy efficiency in cloud
software architectures has still to be determined.

74

4.4 Energy Efficiency in Software Architectures

Our results provide many insights on how energy efficiency is addressed by soft-
ware architectures. As introduced in Section 4.2.4, results have been classified in
terms of Strategies, Techniques and Components.

4.4.1 Strategies

We identified three strategies in the primary studies, namely:

e Energy Monitoring: this strategy is identified when some components of
the software architecture of the presented solution are devoted at monitor-
ing energy consumption;

e Self Adaptation: this strategy is identified when some components of
the software architecture of the presented solution enable the possibility of
adapting the software behaviour in order to increase energy efficiency;

e Cloud Federation: this strategy is identified when the software archi-
tecture of the presented solution comprehends the possibility to “lease” or
“negotiate” the usage of cloud services from other providers according to
energy consumption requirements.

The following list enumerates the occurrences of the different strategies and
their combinations among the articles. A graphical overview is shown in Figure
4.4.

e Energy Monitoring (alone): identified in 1 primary study.

e Self-Adaptation (alone): identified in 11 primary studies.

e Cloud Federation (alone): identified in 3 primary studies.

o Energy Monitoring + Self-Adaptation: identified in 8 primary studies.
o Energy Monitoring + Cloud Federation: absent.

o Self-Adaptation + Cloud Federation: identified in 1 primary study.

e FEnergy Monitoring + Self-Adaptation + Cloud Federation: identified in 2
primary studies.

Among the three architectural strategies we identified, Self-Adaptation is the
most adopted (i.e. identified 21 times). Energy Monitoring is almost never

75

Strategies

12
10
8
' |
6 C= =
& 5 5o
+ [¢] T 3
O [¢]
2y ¢ O w o .
= c o + c C C o
= == O I'e) =+ =
4 = = = B
] 8w o = =] S cw
= = = S © © =2 o =
c c o © c 5 s cC 50
[¢] @ & -~ = o O g ©
s s 2 o a @ o s 2 9
< o o @ o o W
L L
2 > > ne) O - > m°
oo ap <t < © o T
= i v | S Fagid
L] L] = = o [1]
c c [7] [7] = c
I (i} (%] n [i
0 T T T T T !

Figure 4.4: Distribution of strategy combinations among the primary studies.

adopted in isolation, but most of the time (i.e. 10 out of 11 studies) it is com-
bined with Self-Adaptation, as emerges from Figure 4.4. This suggests that En-
ergy Monitoring techniques are usually adopted as enablers for Self-Adaptation
techniques, providing necessary information to drive the adaptation process. The
low adoption of Cloud Federation techniques might be due to the fact that multi-
cloud environments are still uncommon, mostly due to standardization and secu-
rity concerns [35, 16].

4.4.2 Techniques

For each strategy, we identified a number of techniques, through which the strat-
egy is enacted. In Figure 4.5 we show the distribution of the techniques among
the primary studies. A more detailed description can be found in Table 4.5. As
for strategies, techniques are not applied in isolation: in all primary studies, more
than one technique per study is applied.

From Figure 4.5 a clear trend emerges: Consolidation and Workload Schedul-
ing are by far the most adopted techniques (i.e. identified 11 and 18 times of
26 studies, respectively). Both of these techniques are very popular in cloud
systems also for performance purposes, so this result is realistic and not surpris-
ing. Another interesting finding is that many techniques exhibit dependencies
between each other. For example, we observed that scheduling algorithms or VM

76

Workload Scheduling] : : : | | | Self—‘Adaptation
Consolidation] ‘ | | ‘ ‘ Self-Adaptation
Scaling | ‘ | Self-Adaptation
Metering] ‘ | Energy Monitoring
Modeling] ‘ Energy Monitoring
Service Adaptation] ‘ Cloud|Federatjon
Energy Brokering | ‘ Cloud Federation
Static Classification | l Energy Monitoring
0 2‘ 4 6 8 10 12 14 16 18 20

Figure 4.5: Distribution of techniques among the primary studies.

allocation processes are typically driven by components responsible for monitor-
ing the infrastructure/system energy consumption. This implies that Workload
Scheduling and Consolidation techniques depend on Metering and/or other En-
ergy Monitoring techniques. Another dependency lies between the two Cloud
Federation techniques: Service Adaptation needs an Energy Broker in order to
retrieve the energy information of services and perform the service switching.

7

[0¥1] ‘uorpdwnsuod £510ud 110}
l6e1] [ceT] [o€] ¥ uo Surpuadep seolAlds [eUOIOUNY SUIYDIIIMG uorjejdepy-odIaTeg
‘UOTYRULIOJUT
uornydwnsuod AS19us Iy} Yim I97}080% S90IA woryeIopa PO
[zeT] [6€] [9€] € -I0S 1Y} sos0dxXo oINoolIydIe OIeMIJOS O], Suriexorg ASrougy ’
[ev1] [171] 0¥ 1]
[s11] [e11] [06]
(o8] [29] [69]
les] [og] [6¥] ‘sprun reuoryenduwiod ayy Jo peoj
[ev] [og] [o€] -3I0M 9T} S[NPAYDS puB SFRURW 0} POJOAID dIv
[8g] [ze] [62T1] 8T 0INJOO}IYOIR SIBMIOS Y JO sjuouodwiod dwog SUINPOYdS PRO[SIOAL
[evt] [171]
ow1] [e11] [16] ‘SOUIYORW OAI}OR JO ISQUINU O3 SONPOl
[29] [6g] [6¥] 09 ‘stoares Auewr Suowre osreds s|NA dnoiSerx
[te] [901] [12] IT 03 Ajiqissod oY) ‘SOLIBUSDS UOIJeZI[BNIIIA U] UOI}epI[OSUO))
[171] [69] [6¥] ‘A310U0 aAes 0] ‘@8esn 10 sysenbalx uoryeydepy-jlog
[901] [og] [z2] Q9 MO[JO 9SBD UL UMOD d[EdS 0} d[(e SI dIeM}JOS Surpeog
[06] ‘spepowt oArgoIpoId
[te] log]l [82] Suisn uorjewn)se auI-uo UONdWNSUOD IOMOJ Surepo
‘syuouodwod aremprey
oy Jo suoryeoymads uorydunsuod remod o)
lev] 92] [62T] ¢ uodn peseq oIemjjos jo uUOIjedyIssed ASISUG] UOIYedYISse[) JIye)S
[1%1] [06] [69] ‘s1ojow Jomod [eUIoIXS YSNoIyy BuLIO)TUOIN AB1oUy
log] [og] [12] 9 Suuojiuowr owrj-[ear UOdWNSUOD IOMOJ Surrojey
seousIgjey ‘920 uornydrioseqQ sonbruyoay, A39re11g

Table 4.5: Overview of the identified architectural techniques for energy efficiency.

78

4.4.3 Components

For each strategy, we identified the software architecture components primarily
responsible for its implementation. In Figure 4.6 we present their distribution
among the primary studies. A more detailed description can be found in Table
4.6. The relationship between components and techniques is many—to—many: a
technique uses a number of components and each component can be used in more
than one technique.

Internal SLA violation checker IIf—Adaptation

wv
]

Workload scheduler Self-Adaptation

VM Allocator SelftAdaptatign

|
I
I
Adaptation Engine/Optimizer | Self-Adaptation

Energy Collectors Energy Monitoring

Energy Model Energy Monitoring

Energy Database Energy Monitoring

Energy Monitor Energy Monitoring

Energy Indicators Energy Monitoring

Energy Dashboard Energy Monitoring

Energy Communication Bus Energy Monitoring

Energy Orchestrator Cloud Federation
Energy Broker Cloud Federation
Queue Self-Adaptation
External SLA violation checker Cloud Federation
Green Services Directory Cloud Federation
Scale Unit Self-Adaptatign

0 2 4 6 8 10 12 14 16

Figure 4.6: Distribution of components among the primary studies.

The high frequency of Workload Scheduling and Consolidation techniques is
also reflected in terms of components, as shown in Figure 4.6: as expected, the
Workload Scheduler and the VM Allocator are the second and third most fre-
quent component identified (i.e. 14 and 13 times out of 26 studies, respectively).
There are cases in which the component is found outside of its most typical tech-
nique: that is because in those cases, the component plays a role that does not
implement that technique. For example, in [30] the VM Allocator is not used in
a Consolidation technique but rather in a particular case of a Scaling technique.

The high number of occurrences of the SLA Violation Checker is one of our
key findings. In particular, they are present in both of the primary studies that
received an industrial validation. This suggests that the trade-off between energy

79

efficiency and other software quality aspects appears to be a major architectural
concern. In particular, it is relevant to notice the difference between the Internal
and External component: the Internal SLA Violation Checker monitors the ful-
fillment of the SLAs when performing Self-Adaptation techniques (i.e. Scaling,
Consolidation or Workload Scheduling) so it typically has to pose constraints to
the internal adaptation process. The External SLA Violation Checker instead
enforces that when negotiating services between different providers, the resulting
service composition matches the required quality of service for a certain task.
That is, the External SLA Violation Checker poses constraints to the service
composition process.

80

Strategy Components Role Occ. References

Energy Dashboard Provides users or managers with soft- 4 [21] [26] [36]

Energy Monitorihg ware energy consumption information. [59]

Energy Database Stores energy consumption informa- 5 [129] [21] [26]
tion. [59] [90]

Energy Indicators “Rate” or classify software behaviour, 4 [28] [31] [36]
or provide real-time metrics upon en- [59]
ergy consumption.

Energy Collectors Retrieve and collect energy informa- 7 [21] [26] [28]
tion from hardware or software sensors. [36] [59] [90]

[141]

Energy Communi- Provide a common interface for collec- 3 [21] [26] [59]

cation Bus tors to the energy database.

Energy Model Estimate or predict the power con- 6 [28] [30] [31]
sumption of a software application in [43] [90] [141]
real-time.

Energy Monitor Monitor the energy consumption of (a 4 [28] [31] [90]
part of) the software system. [141]

Adaptation En- Find an optimal solution to an objec- 12 [129] [22] [28]

Self-Adaptation gine/Optimizer tive function modeling the energy effi- [43] [49] [50]
ciency of the system. [63] [59] [67]
[80] [141] [142]
Workload Sched- Define, schedule and assign workloads 14 [129] [22] [36]
uler to computational units. [43] [49] [50]
[63] [59] [67]
[80] [112] [140]
[141] [142]

Scale Unit A defined set of IT resources that rep- 1 [106]
resents a certain scaling level.

Queue Organize items (services, VMs, jobs) in 3 [30] [80] [115]
different orders of priority according to
energy consumption.

VM Allocator In virtualized environments, migrate 13 [129] [21] [106]
and displace VMs on servers. [30] [31] [49]

[59] [67] [91]
[112] [140] [141]
[142]

Internal SLA vio- Check and ensure the fulfillment of 15 [22] [106] [28]

lation checker SLAs (NOTE: in this case the checker [30] [31] [43]
evaluates the violation of internal ser- [49] [50] [53]
vices towards external clients). [59] [67] [91]

[80] [141] [142]
. | Energy broker Provides access to energy efficient ser- 3 [36] [39] [132]
Cloud Federatior| :
vices.

Energy Orchestra- In SOA contexts, switch services in 3 [132] [139] [140]

tor case of relevant differences in their en-
ergy efficiency.

Green Service Provides a listing of all available ser- 1 [39]

Directory vices with energy consumption infor-
mation.

External SLA Check and ensure the fulfillment of 3 [31] [36] [132]

violation checker

SLAs (NOTE: in this case the checker
evaluates the violation of external ser-
vices towards internal clients).

Table 4.6: Overview of software components for energy efficiency.

81

4.5 Stakeholder Overview

An important part of our data analysis focuses on the stakeholders that could
have been affected or interested by the architectural solution introduced in the
primary studies. Our aim is to identify stakeholders for energy efficiency, whose
concerns can be targeted as an architectural concern. In Table 4.7 we show the
stakeholders we identified, along with their definition and the criteria behind
their identification. They are mentioned with the following frequency:

e FEnd-User: mentioned in 6 primary studies.

e Service Provider: mentioned in 10 primary studies.

o System Architect: mentioned in 13 primary studies.

e Infrastructure Manager: mentioned in 12 primary studies.

Stakeholder Definition Identification Criteria Occ. References
End User The actual user ~ The proposed architectural so- 6 [26] [36] [39]
of the Cloud lution has a visible impact on [59] [132] [141]
service. the service presented to the
end user.
Service The provider of — The proposed architectural so- 10 [129] [28] [31]
Provider the Cloud ser- lution explicitly monitors the [36] [53] [90]
vice. SLAs fulfillment. [91] [132] [141]
[142)
System Archi- The main re- The proposed architectural so- 13 [129] [21] [26]
tect sponsible of the lution implies an intervention [106] [28] [36]
system design on the business logic of the [59] [43] [67]
[85]. software system (e.g., invasive [132] [139] [140]
monitoring, auto-scaling appli- [141]
cations...)
Infrastructure The respon- The proposed architectural so- 12 [22] [30] [49]
Manager sible for the lution implies only an internal [50] [53] [80]
optimal use reorganization of the comput- [90] [91] [112]
of system ing resources (e.g., consolida- [115] [140] [142]
resources. tion)

Table 4.7: Overview of the identified stakeholders for energy efficiency.

From these numbers, we can observe that Infrastructure Managers and System
Architects are, as expected, the most involved by the solutions identified in the
primary studies. However, we also notice that End Users are the least involved.
This implies that the End User is less aware of the benefits that the solution brings
in terms of energy efficiency. Increasing user awareness could instead justify a
trade-off between energy efficiency and other crucial quality attributes for the
End User (such as performance or usability).

82

4.6 Threats to Validity

The evidence reported in our work is not immune to validity threats. With
respect to the classification done by Wohlin et al. [137], we identify two types of
threats, regarding internal and external validity.

As regards internal validity, the main threat concerns the effectiveness of our
search strategy, as we chose to use only the Google Scholar search engine instead
of multiple bibliographic databases. This choice was done after interviewing
experts in the field of SLRs in SE. Google Scholar has substantially improved its
coverage in the last few years [143] and it is now regarded as an appropriate and
comprehensive source [7]. An additional bonus is that this choice simplified the
implementation of our search, allowing us to focus more on data extraction and
analysis.

Another concern to internal validity regards the selection process of the pri-
mary studies, as it was carried out by a single researcher. This might have
introduced subjective bias in the process. To mitigate those risks, we carefully
defined our inclusion/exclusion criteria, to make them as objective as possible.
Moreover, the selection process was also carried out in multiple steps (title, ab-
stract and full-text checking) to reduce misinterpretations to a minimum. We
adopted a conservative approach, so we are more prone to Type I errors (i.e.
false positives) rather than Type II (i.e. false negatives, exclusion of relevant
studies).

The main threat to external validity is to be found in the data analysis phase.
We adopted a coding technique to classify the architectural concepts extracted
from the primary studies. As coding is a qualitative analysis method, it may be
affected by interpretation bias of the individual researcher. To mitigate this risk,
the coding process was performed independently by two different researchers, and
the resulting lists of codes were merged upon discussion and agreement.

Most of our primary studies present solutions that were never validated in an
industrial setting: some of them were validated in academic contexts, through
simulation or other similar techniques, while others were not validated at all.
Assessing the efficacy of these solutions in tackling energy efficiency issues is out
of the scope of this SLR. Nevertheless, we have to consider the lack of validation
as a threat to external validity, because it might affect the generalization of
our findings. To mitigate this threat, we described the identified architectural
concepts in a structured taxonomy, grounded in literature, along with a definition
for each concept, hence reducing their specificity to a minimum. This will allow to
apply these concepts in real-world case studies, where the impact of our findings
on the energy efficiency of software architectures will be properly assessed.

83

4.7 Conclusions

As data centers are major power consumers, energy efficiency has become a pri-
mary issue for cloud service providers. In this context, both the hardware config-
uration and the software architecture of the cloud computing infrastructure must
be carefully designed in order to accommodate power consumption constraints.

In this chapter, we report the results of a systematic literature review that
answers RQ 3a, namely: “Are there software architectural solutions that address
energy efficiency aspects?” Our search resulted in 26 primary studies, mostly
published in the last 3 years, each describing a software solution for energy ef-
ficiency. Through a coding process, we were able to structure these software
solutions in terms of strategies, techniques and components. These concepts
provide a common ground for architects to describe, analyze and design energy
efficient software solutions.

We identified 3 main strategies: Energy Monitoring, Self-Adaptation and
Cloud Federation. It emerged that Self-Adaptation is the most adopted strategy
to achieve energy efficiency. However, Cloud Federation will need much more re-
search in the future, due to the diffusion of multi-cloud environments and the need
of optimizing the usage of Cloud infrastructures. Regardless of the adopted strat-
egy, fulfilling SLAs constitutes a major concern for software architects. Trade-offs
between energy efficiency and other quality attributes are to be further investi-
gated, in order to predict the impact of energy efficient solutions on other service
aspects.

We also investigated the stakeholders mentioned in our primary studies. Our
results indicate that End-Users are the least involved, which also implies they
are less aware of what software does to reduce its energy consumption. Given
the massive scale of diffusion of software and services, even a small improvement
could contribute greatly. Hence, increasing user awareness could lead to both
environmental and economic benefits, as also pointed out by the European Com-
mission in the Horizon 2020 Framework*. More research is needed to investigate
what to communicate to the user, and how [73].

This chapter gives a comprehensive analysis of the state-of-the-art in energy-
efficient cloud software architectures. In the next chapter, we will extract from
these results reusable software solutions for designing energy efficient software
systems.

4http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/
h2020/topics/2360-ee-10-2014.html

84

http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/2360-ee-10-2014.html
http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/2360-ee-10-2014.html

A Catalog of Green Architectural Tactics
for the Cloud

In the previous chapter, we analyzed the literature and elicited a set of techniques
for addressing energy efficiency in cloud-based software architectures. In this
chapter we codify these techniques in the form of Green Architectural Tactics.
These tactics will help architects extend their design reasoning towards enerqgy
efficiency and to apply reusable solutions for greener software. This contribution
answers RQ 3b.

5.1 Introduction

As the adoption of cloud computing technologies continues to grow, the need
for energy-efficient solutions becomes evident. Cloud-based software holds great
potential for energy efficiency: a recent study [82] showed that migrating all
business applications in the U.S. to the cloud could reduce their energy footprint
by 87%. A previous work [45] started to analyze the cost and energy benefits of
data migration to the cloud.

However, this transition to the cloud is not an easy task. Cloud-based software
must be appropriately designed to address energy efficiency, which is typically not
the case for traditional business applications. If these applications are abruptly
migrated, it is highly likely that the resulting energy waste would significantly
outweigh the expected benefits.

In the previous chapter, we presented the results a Systematic Literature Re-
view (SLR) on software architectural solutions for cloud-based software that ad-
dressed energy efficiency-related issues. The SLR identified a number of recurring
techniques that were potentially reusable in other solutions. In this chapter, we
codify these techniques in the form of Green Architectural Tactics. These tactics
can be adopted by software architects and developers during the design and de-

85

velopment of cloud-based software systems or the refactoring of existing business
applications for cloud migration. This contribution will support decision-making
when dealing with energy efficiency aspects of cloud-based software architectures.
The chapter is structured as follows: in Section 5.2 we present similar ap-
proaches and efforts that address energy efficiency as an architectural concern.
Section 5.3 introduces energy efficiency as a quality attribute. In Section 5.4
the Green Architectural Tactics are presented and described with application
examples extracted from the literature. Section 5.5 discusses the architectural
implications of energy efficiency. Finally, Section 5.6 presents our strategy for
evaluating the impact of the Tactics and Section 5.7 concludes the chapter.

5.2 Related Work

While a steadily growing scientific body is being built on green software engineer-
ing [20], most research focuses on estimating or measuring power consumption
at the system- or source-code level, without suggesting ways to actually develop
energy-aware software (e.g. [45, 82]). Very little research has been carried out
in studying energy efficiency at the software architecture level, neither in gen-
eral nor for cloud-based software. Some preliminary investigations go back to
the work of Rangaraj & Bahsoon [103], who used market-based economics the-
ory to define a framework for optimizing power consumption in energy-unaware
software architectures at runtime. Bahsoon then planned to apply the same
approach to cloud architectures [6]. In [113], Seo et al. come closer to our ob-
jective by defining a framework that estimates the energy consumption of three
distributed system architectural styles. Their goal is to evaluate the most appro-
priate architectural style before implementation. Te Brinke et al.[124] propose a
design method to extend modules with energy optimizers. Although Rangaraj
and Bahsoon agree with us in considering architecture the right abstraction level
for addressing energy-related concerns [103], no work so far has provided sup-
port for architects to actually design software architectures that address energy
efficiency upfront.

For software system architectures the story is not that different. For exam-
ple, energy efficiency in mobile computing is a widely addressed topic because
of battery limitations of mobile devices [33]. Cyber-foraging, a form of mobile
cloud computing in which mobile devices offload expensive computation to more
powerful servers in the cloud, is a common strategy for saving battery power
on mobile devices [109]. However, it is not uncommon for literature on cyber-
foraging to refer to the cloud as having infinite resources; which means that no
reusable cyber-foraging strategies have been defined yet for architecting energy-
aware software systems that address the energy efficiency of the system as a
whole.

86

That being said, there are some existing tools that can be used to imple-
ment tactics for energy efficiency in Cloud-based software. Amazon Web Services
(AWS), for example, provides an Auto Scaling! feature that scales the capacity
of VM instances (EC2, Elastic Compute Cloud) elastically depending on user-
defined conditions. In addition, Amazon also provides CloudWatch?, a Web
Service that monitors several metrics of the EC2 instances that can be used to
trigger Scaling operations. These tools can be used to implement either Energy
Monitoring or Self-Adaptation tactics for energy efficiency, later described in this
chapter.

5.3 Energy Efficiency as a Quality Attribute

According to Bass et al. [12], energy efficiency is to be regarded as a “system”
quality attribute because it is the result of an indirect action of software. How-
ever, Bass et al. also argue that the line between “software” and “system” quality
attributes is very thin. In the end, even if energy is ultimately consumed by hard-
ware, it is software that determines hardware behavior. In order to provide a clear
representation of energy efficiency as a quality attribute, we follow the approach
adopted by Bass et al. [12] and characterize energy efficiency through quality
attribute scenarios. Each scenario is described in terms of six characteristics:

e Stimulus. An event that motivates an action concerning energy efficiency.
o Source of Stimulus. The entity that triggered the event.

o FEnvironment. The set of circumstances under which the scenario takes
place.

o Artifact. The element of the system that is stimulated by the event.
e Response. The action to be performed in response to the event.

e Response Measure. The metric that determines if the response is satisfac-
tory.

We grouped our Green Architectural Tactics in three categories and formulated
a scenario for each category (see Tables 5.1 and 5.2). In all the scenarios, the
response measure is energy consumption values. In the following section, we
describe the identified scenarios for each category, as well as the elicited Green
Architectural Tactics.

lhttp://aws.amazon.com/autoscaling/
2http://aws.amazon.com/cloudwatch/

87

http://aws.amazon.com/autoscaling/
http://aws.amazon.com/cloudwatch/

Table 5.1: Quality Attribute scenarios for Energy Efficiency

sonyeA uory)
-dumsuod A810uy

sonyeA uor)
-dumsuoo AS1ouy

sen[eA UOT)
-dumsuoo AS10uy

2UNSDIPY 2SUOASIY

*SIOIAIS
SUTNSUOI-A3 10U
SS9l M SOOIAIDS
Surunsuoo-A310ua

"SIOATOS IPT
9} UMOP SINYS U}
pUE SIPAISS QAI}OR
-ss9] oY} UO SNA

“199Ud0
RJRD oY) I0J UOI}
-euriojur - uorydwns
-uod A310U0 PporIe)

jsomr oYy sdems | o3 S9)BPI[OSU0D | -op oY} Sjuesaid 109
109RI)SUDI() AT, | IosiaredAy YT, | -TuojN ASiouy oyJ, asuodsayy
I09RI}SOYDI() JostaTodAH JONUOTN A3I0U7] 100134y
pnop-IMmN ouwIruN Yy uorje1odo [eULION JUIULUOLINUST

JOYUOIN ASIous] JIONUOIN A3I0Ur] IOYRISIUTWIPY | SNINWLLG [0 924n0g
uorjewt
119 UOT) 1I91@ UoT) | -Iojul uordwmnsuoo
-dumsuoo ASmouy | -dumsuod ASmeujy | ASIeuwe I0f jsenbeyy SINULLG
UOUDLIPI] PNO)) 7 uouDIdvPY -f1og 7 buraoqruopy fibaousy 7 KL10897e)

sorreuads Aousyjy A31ouy

88

5.4 Green Architectural Tactics

In the previous chapter we identified a set of recurring design solutions, described
in the literature, to achieve energy efficiency in cloud-based software architec-
tures. In this work, we codified these solutions as tactics — that is, “design
decisions that influence the achievement of a quality attribute response” [12].
Each tactic is described in terms of:

o Motivation: rationale behind the tactic.
e Description: components introduced by the tactic and their roles.

e Constraints: necessary conditions for applying the tactic in an existing
software architecture.

e Example: previous application of the tactic.

e Dependencies: whether the tactic requires other tactics to be applied.

In the following, we describe the identified scenarios for each category, as well as
an example of a Green Architectural Tactic.

5.4.1 Energy Monitoring

A typical scenario for energy efficiency that involves Energy Monitoring is the
following: the system administrator of a cloud-based system wants to know the
energy consumption of its infrastructure during operations. The Energy Monitor
gathers the energy consumption information and presents it to the administrator.
The tactics in this category are targeted at monitoring the energy consump-
tion of the cloud infrastructure. These tactics are often combined with tactics
from other categories; Self-Adaptation in particular because information from
monitoring components is typically used to trigger adaptive mechanisms.

Table 5.2: Overview of Energy Efficiency Tactics

Category Tactics
Metering
Energy Monitoring Static Classification
Modeling
Scaling Down
Self-Adaptation Consolidation

Workload Scheduling
Energy Brokering
Service-Adaptation

Cloud Federation

89

Metering

Motivation. Instrumenting a data center with power metering devices is becoming
common practice?. The market is flooded with many different models of power
meters with enhanced capabilities (e.g., wireless communications, high sampling
frequencies, data analysis features). Many devices come with built-in sensors and
tools to monitor power consumption in real-time. The Metering tactic enables to
effectively use the information provided by these devices.

Description. The Metering tactic consists of collecting power metering informa-
tion from the hardware through dedicated software components called Energy
Collectors. Collectors are usually in a many-to-many relationship with physical
power meters. These Collectors share information via an Energy Communication
Bus (ECB) that provides a common interface for energy information. In addition,
the energy consumption information is stored in a dedicated Energy Database
that can have different levels of granularity. Finally, a GUI component called
an Energy Dashboard provides graphical representations of energy information
along with useful reporting for both cloud service providers and customers.
Constraints. The main limitation of this tactic is the need for a physical metering
infrastructure, which can be costly in the case of large data centers. In addition,
the granularity of the information gathered and shared by the metering process
has to be tuned accordingly in order to avoid information overload.

Example. An example of how to apply the Metering tactic is shown in the Com-
patibleOne project [21]. CompatibleOne is a cloud resource management soft-
ware that allows the creation of hybrid cloud platforms through the aggregation
of services from different cloud providers. In this context, an Energy Monitor-
ing framework was developed to monitor the energy consumption of each cloud
provider participating in the platform for subsequent energy billing and environ-
mental impact evaluation. Several power meters and probes are supported by
the framework. As shown in Figure 5.1a, starting from the hardware layer at
the bottom of the figure, the power consumption data flows from the physical
resources through the probes. A Collecting Daemon, of type Energy Collector,
retrieves the data through the GetValue interface of the probes. This data is
then converted into XML format and stored in a BerkeleyDB database (Energy
Database). Another software component, a DatabaseDaemon that acts as an
Energy Communication Bus, provides access to the database to HTML and PHP
front-ends (Energy Dashboard) through an Open Cloud Computing Interface, a
standard set of specifications for cloud computing providers. Finally, the front-
ends present the information to the system administrators.

Shttp://bit.ly/1yqljrq, last visited on October 1st, 2013.

90

http://bit.ly/1yq1jrq

«Energy Dashboard» =])
HTML/PHP Front-end Upper Layers Vi Sefvices
Presentaton —_— e — — = Virtual =]
Infrastructure

Open Cloud Co%uting Interface
create

«Energy Communication Bus» =]

DatabaseDaemon ViCreator =]
access |«use»
«Energy Database») Logical Infrastructure Composition Layer (LICL) __ -
BerkeleyDB
\
A energyDataXML Virtual Resource =]

«Energy Indicator» =]
Energy Saving Indicator

«Energy Collector» =]

Collecting
Daemon

GetVYalue PR Configurator =l

ardware ———————— 2\

Hardw are Energy Probe =]

[| 1

/§I‘)\ create

| Po Col ti | A Technical Specifications
4 Power Consumption _Physical Infrastructure Layer |
| Physical =] [1
l e) Physical =]
- - - - — — — — Resource

A B

Figure 5.1: A. Example of the Metering tactic. B. Example of the Static Classi-
fication tactic.

Static Classification

Motivation. A cloud infrastructure is typically composed of many heterogeneous
IT devices. Direct energy consumption monitoring of each one of these devices
might be infeasible because the physical machines might be external to the orga-
nization of the cloud software provider. The Static Classification tactic provides
a solution to estimate the power consumption of the infrastructure when meter-
ing information is unavailable.

Description. This tactic consists of classifying the different resources in terms
of energy efficiency through the use of Energy Indicators. This classification is
static, i.e., not based on on-line, real-time information, but rather on technical

91

specifications and characteristics of the devices themselves. To some extent, the
Energy Indicators share an analogy with the Energy Labels* designed by the EU
to classify the energy efficiency of appliances.

Constraints. Unfortunately, hardware vendors not always disclose energy con-
sumption specifications of their products. In addition, this tactic is not applica-
ble to any operation that requires an on-line analysis of software behavior on a
fixed physical platform.

Ezxample. An example of this tactic can be seen in the GEYSERS EU project
[129]. The context is a multi-layered software architecture for dynamic cloud
service provisioning in which the Physical Infrastructure Layer (PIL) is decou-
pled from the Logical Infrastructure Composition Layer (LICL). One of the goals
of the project is the selection of the “greenest” physical resources, based on
Static Classification, to create energy-efficient Virtual Infrastructures (VIs). The
example is described in the component diagram in Figure 5.1b: the PR Configu-
rator takes as input the technical specifications of physical resources and assigns
“Energy Saving Indicators” (ESIs), of type Energy Indicator, to created Virtual
Resources. Subsequently, the VI Creator component in the LICL composes Vir-
tual Resources into VIs, using the ESIs to prioritize the selection of the resources.
Finally, the LICL exposes the services provided by the VIs to the upper layers of
the architecture.

Modeling

Motivation. In order to implement self-adaptive mechanisms it is necessary to
have near-real-time energy consumption information. This enables the modifica-
tion of software behavior according to how much energy the system is actually
consuming. When metering systems are unavailable, the Modeling tactic is a
viable option.
Description. The Modeling tactic enables a dynamic estimation of power con-
sumption values through predictive Energy Models. These Models are embedded
in Energy Indicators, similar to those in the Static Classification tactic. However,
these Energy Indicators do not statically classify physical resources, but rather
provide a dynamic estimation of the power consumption of the software compo-
nents. Typically, Energy Models are built through regression analysis based on
software runtime metrics, i.e. resource usage (CPU, disk, memory) [104].
Constraints. The limitation of this tactic lies in the accuracy of the software
Energy Models. To date, many models and tools are available to estimate soft-
ware energy consumption but their accuracy varies greatly based on the selected
hardware platform. In addition, not all hardware resources are good predictors of
energy consumption; identifying the best predictors is still an issue for researchers

4nttp://www.newenergylabel.com/index.php, last accessed on September 18, 2013.

92

http://www.newenergylabel.com/index.php

Cloud Application =
SL M;;rics

Service

Green

| Performance
Indicator

«SLA Violation Checker» |
SLA Manager

notifies
A Power Consumption Estimation Control

|<<Adapta(ion Engine>>

|
|
|
| |
| |
! ! |
PI;
| Energy Model =] | I i = |
Scale unit
| |
| «use» | +addVCRU()
| l““se” | +addMemory GB() |
[Resource Usage Data | I 1 l
| | | controls Scale unit I
. . . '
| Operating =] Effector =]
System | | |
-1 - —
Hardw are | | I |
_____ — = — —
Physical = |

Infrastructure

|
| Resource | monitor
|
|

Virtual =] i
______ REg5trce configures
-vCPU 1.*
-memoryGB

Figure 5.2: A. Example of the Modeling tactic. B. Example of the Scaling Down
tactic.

in the field.

Ezample. A prototype showing the application of this tactic is provided by de
Oliveira et al. [28]. The context is a Service-Oriented Architecture (SOA) applied
to a cloud infrastructure. As shown in Figure 5.2a, for each service of the SOA,
the Operating System of each physical node provides service-related Resource
Usage Data (in the case of the example, CPU, memory and disk [28]). A linear
Energy Model retrieves this data and estimates the power consumption impact
of each service. The estimation is modeled into a Green Performance Indicator
(GPI), of type Energy Indicator. Each GPI describes a service in terms of energy
efficiency.

93

5.4.2 Self-Adaptation

The Self-Adaptation scenario for energy efficiency starts from the Energy Monitor
that reports an alert of excessive energy consumption while the system is not fully
loaded. In response, the Cloud Hypervisor (i.e. the Virtual Machine Monitor
[99]) migrates some of the VMs to less-loaded servers so that it can shut down
the resulting idle servers.

Tactics in this category implement mechanisms that modify runtime soft-
ware configurations for the specific purpose of lowering energy consumption. In
cloud-based environments Self-Adaptation mostly concerns the configuration, de-
ployment, and workload of Virtual Machines (VMs).

Scaling Down

Motivation. One of the key features of cloud computing is the ability to provide
resources on demand. When more resources are needed to satisfy incoming re-
quests, the cloud infrastructure allocates more physical resources to VMs (scaling
up or vertical scaling). However, the opposite mechanism should also be in place:
when a decrease in demand occurs VMs must be appropriately scaled down in
order to avoid energy waste. The Scaling Down tactic describes how to design
this mechanism.

Description. An important component of this tactic is the Scale Unit, i.e., a
pre-defined “block of IT resources” [106] explicitly modeled as a software compo-
nent. Modeling Scale Units is useful for planning the scaling operations because
it defines a finite number of configurations for the VMs. Thus, it is possible to as-
sociate each configuration with a particular level of demand or system load. The
Adaptation Engine is the component that performs the Scaling operation; this
role is typically played by the Hypervisor. Another key component is the SLA
Violation Checker. During the Scaling operation the fulfillment of established
service-level objectives must be ensured at all times. This component performs
the needed checks and accordingly allows or disallows the Adaptation Engine to
perform the Scaling.

Constraints. Scaling is a complex operation that requires careful planning and
continuous monitoring. The main challenge is determining the right amount of
resources that define a Scale Unit. This implies the prediction of expected levels
of demand, which is not an easy task especially in large-scale cloud service pro-
visioning.

Example. A possible implementation of the Scaling Down tactic is provided by
Xu et al. [141]. As illustrated in Figure 5.2b, each Virtual Resource is configured
by the Adaptation Engine, realized by the Effector and the Scheme Planner. The
Effector actively executes the scaling of the Virtual Resources, by a number of
Scale Units determined by the Scheme Planner that evaluates the current VM

94

configuration considering the requirements of the system. In this example, Scale
Units are modeled in terms of assigned virtual processors (vCPUs) and memory
size (memoryGB). The Virtual Resources are used by the Cloud Application that
exposes its service-level metrics via a REST API (SL Metrics). The CApp SLA
Manager, of type SLA Violation Checker, monitors those metrics to ensure that
service-level objectives are met. If necessary, the CApp SLA Manager issues a
notification to the Scheme Planner to scale up the Virtual Resources again.
Dependencies. The Scaling Down tactic requires some sort of Energy Monitoring
tactic for the Adaptation Engine to decide whether or not to perform scaling
operations. In the previous example a Metering tactic is implemented by Sensors
(Energy Collectors) that collect energy-related metrics; a Monitoring Center (En-
ergy Monitor) that records, filters and audits the data provided by the sensors;
and a Knowledge Base (Energy Database) where energy consumption information
is stored.

Consolidation

Motivation. As mentioned earlier, on-demand resource provisioning is an impor-
tant feature of cloud-based environments. Adding resources to a single VM may
not always be the best option. For example in cloud application server provi-
sioning® creating new VM instances may provide additional flexibility and help
to perform load balancing among servers. This is called horizontal scaling (or
scaling out). This operation, however, may easily lead to inefficient usage of phys-
ical resources if the density of VMs across the physical servers is not accurately
managed in low-request phases. Indeed, the Consolidation tactic concentrates
the VM instances on the minimum number of servers needed. Powering down
the unused servers will evidently increase the energy efficiency of the cloud-based
software.
Description. The main component of the Consolidation tactic is the VM Alloca-
tor, the software component responsible for live VM migration. This component
can be (a part of) the Hypervisor, as in the Adaptation Engine in the Scaling
tactic. The SLA Violation Checker is needed as well to check the fulfillment of
service-level objectives after VM migrations.
Constraints. Consolidation must take place at runtime. This means that VMs
must be represented in a format that allows them to be seamlessly migrated from
one location to another, along with their context, workload, and metadata. This
may introduce high network traffic and security risks.

Ezample. Dupont et al. [31] provide a sample implementation of the Consol-
idation tactic, depicted in Figure 5.3a. The Power Calculator, of type Energy

Shttp://www.enterprisenetworkingplanet.com/netos/article.php/3753836/
Practical-VM-Architecture-How-Do-You-Scale.htm, last visited on Oct. 2013

95

http://www.enterprisenetworkingplanet.com/netos/article.php/3753836/Practical-VM-Architecture-How-Do-You-Scale.htm
http://www.enterprisenetworkingplanet.com/netos/article.php/3753836/Practical-VM-Architecture-How-Do-You-Scale.htm

Virtual Resource 5/ Virtual %]
Resource
allocates nfrastructure _Akﬂorkliad o
QUL T Gl Request | «Workload Scheduler» =)
Optimizer .
Miser
«Queue» %]
A CP Problem Solution Del «Queue» =]
Queauye Best
Effort
«SLA Violation Checker» = Queue
CP Engine «SLA Violation Checker» =
i RTT >
SLAConstraintsXML Request Request
Lontrol __ _ _ _ A — — — _—
Workload
A power Consumption Estimation
Service
«Energy Model» =] Client
Power Calculator

Figure 5.3: A. Example of the Consolidation tactic. B. Example of the Workload
Scheduling tactic.

Model, provides a power consumption estimation to the CP Engine, of type
SLA Violation Checker. The CP Engine formulates a constraint programming
problem using the constraints extracted from the SLAs in XML format (SLA-
ConstraintsXML). The CP engine then solves the problem and the Optimizer (of
type VM Allocator) produces a VM allocation scheme by applying the solution
to the Virtual Resources.

Dependencies. The presence of the Power Calculator indicates a dependency on
the Modeling tactic: as shown in Figure 5.3a, the Power Calculator is an instance
of an Energy Model.

Workload Scheduling

Motivation. The property of adapting to workload changes by provisioning and
de-provisioning resources is called elasticity [51] and it is commonly regarded as
a defining property of cloud environments. Elasticity has, of course, a direct con-
nection with energy efficiency: the more closely resource provisioning matches
demand, the more energy efficient the infrastructure is. The Scaling Down tactic
allows to adapt resource provisioning, while the Workload Scheduling tactic is

96

meant to prioritize and assign the load to the different virtual resources in order
to match the demand.

Description. In this tactic, a Workload Scheduler is a software component that
is able to dispatch workloads to VMs. The Scheduler normally uses one or more
Queues to arrange the workloads. Queues can be differentiated in terms of pri-
ority levels, QoS requirements or deadlines. The SLA Violation Checker ensures
that all service-level objectives are met.

Constraints. Workload scheduling is a well-known practice in software systems
that is widely studied in operating systems theory. However, workload schedul-
ing has specific challenges in cloud-based environments. First, when modeling
workloads it is necessary to select the appropriate workload granularity. For ex-
ample, a workload can divided per application, VM, or pool of VMs. In addition,
efficient workload prediction in cloud environments is difficult to achieve because
of the high variability of demand.

Ezample. Lu et al. [80] provide an example of Workload Scheduling for cloud stor-
age services. In their solution, shown in Figure 5.3, when a Client node submits
a Workload to the service, the RT'T algorithm, of type SLA Violation Checker,
decomposes the Workload into Requests, to be assigned to different Queues, ac-
cording the deadline of each Request. In the example, two Queues are present: a
Delay Queue that has a guaranteed response time and a Best Effort Queue that
has no time constraints. The Miser algorithm, of type Workload Scheduler, is
used to recombine Workloads and dispatch them to Virtual Resources.

5.4.3 Cloud Federation

The Cloud Federation scenario for energy efficiency is the following: the Energy
Monitor notifies about excessive energy consumption arising from a service, which
is a composition of multiple cloud services. The Service Orchestrator then tries
to swap some services in the service composition by searching in a Green Service
Directory for iso-functional services that consume less energy than those currently
being used.

A cloud federation is a multi-cloud environment that can be defined as “[a
platform that] comprises services from different providers aggregated in a sin-
gle pool” [68]. Cloud Federation tactics allow cloud-based software systems to
“lease” or “negotiate” cloud services from multiple providers based on energy
consumption information.

Energy Brokering

Motivation. Service discoverability is one of the key principles of service orienta-
tion [32]. To enable cloud service composition in multi-cloud environments, the
same principle applies. The Energy Brokering tactic makes energy information

97

about services an additional parameter for service discovery and selection.
Description. This tactic is realized by means of two components: an Energy Bro-
ker and a Green Service Directory (GSD). The Energy Broker is a service that
enables access to energy-efficient services. It receives requests for cloud services
that perform a specific task and returns a pointer to the most energy-efficient
service available in the multi-cloud that can perform the requested task. To do
so, Energy Brokers make use of a GSD, which is a repository where all the cloud
providers in the multi-cloud store the energy information of the services they
provide.

Constraints. This tactic does not specify where the Energy Broker and the GSD
should be hosted. However, for trust reasons, they should not be hosted by any
cloud service provider participating in the federation.

Ezample. Garg et al. [39] propose a framework called Green Cloud Architec-
ture that serves as an example for the Energy Brokering tactic. We model this
example by means of a communication diagram (see Figure 5.4a) as a specific
behavioral interaction is suggested. In the Figure, a Green Broker, instance of
an Energy Broker, accepts requests for cloud services. The Broker queries the
Green Offer Directory (GOD) that lists all green cloud services available. The
GOD returns a list of services able to fulfill the request. The Broker then queries
the Carbon Emission Directory (CED) to discover the specific energy efficiency
information for each service. The combination of the CED and the GOD real-
ize the GSD of the tactic. Finally, the Broker fulfills the request with the most
energy-efficient service available.

Dependencies. The Green Service Directory has to characterize each service with
its energy information. This requires Energy Indicators for each service, either
static or dynamic, which suggests a dependency with either the Static Classifica-
tion or the Modeling tactic, respectively.

Service-Adaptation

Motivation. The main benefit of the Cloud Federation paradigm is the possi-
bility to select services among different providers. The Energy Brokering tactic
provides the energy information for services. This enables cloud-based software
systems to discover services that are more energy-efficient than those currently in
use. The Service-Adaptation tactic describes how Cloud platforms should switch
to these more energy-efficient services.

Description. Two components realize the Service-Adaptation tactic. The first
component is the Energy Orchestrator that communicates with the Energy Bro-
ker to discover energy-efficient services that fulfill a certain task and eventually
performs the registration of those services with the system. This operation has
to be authorized by the second component, the SLA Violation Checker, which
ensures that the new services meet the service-level objectives required by the

98

: Requestor

A
1: service request l I 6: fulfill request with most

| EEservice «Energy Orchestrator» (=l negotiate | Green Service =)
Saa$ Broker
«Energy Broker» | .
: Green Broker | provides
«use» \l/

describes
«SLA Violation Checker» [
Reputation

Cloud Provider

: Green Offer Directory : Carbon Emission Directory |

A B

Figure 5.4: A. Example of the Energy Brokering tactic. B. Example of the
Service-Adaptation tactic.

system. This component is similar to its analog in the Self-Adaptation tactics,
but instead of checking the SLOs that internal services have to fulfill, it checks
if external services meet the SLOs required by the system.

Constraints. The Service-Adaptation tactic assumes centralized cloud service or-
chestration. This creates some disadvantages in terms of flexibility because it
concentrates all service orchestration logic in a single point.

Ezample. Villegas et al. [132] illustrate an example of the Service-Adaptation
tactic in a federated cloud architecture. In their view, the Service-Adaptation is
performed at the Software-as-a-Service (SaaS) layer: whenever a service request
to the federated cloud cannot be fulfilled with the required service level or is too
costly in terms of energy, it is forwarded to another federated cloud provider. As
shown in Figure 5.4b, the SaaS Broker, of type Energy Orchestrator, negotiates
the usage of a Green Service with other cloud providers. The Reputation of the
cloud provider (of type SLA Violation Checker) determines if the provider meets
the required service-level objectives. The Reputation is based on the SLA viola-
tion rate of the provider.

Dependencies. As implied by the tactic description, Service-Adaptation depends
on the Energy Brokering tactic in order to retrieve the energy information of

99

services.

5.5 Discussion

The Green Architectural Tactics presented in this work were explicitly formulated
with reusability in mind. For this reason, we kept to a minimum the constraints
that a tactic may impose on the general software architecture. When necessary,
we made them explicit. For example, the Service-Adaptation tactic assumes the
presence of a service orchestration mechanism; most of the Energy Monitoring
tactics introduce a centralized Energy Database; Self-Adaptation tactics assume
a high degree of decoupling between the virtual and the physical infrastructure. If
these tactics are meant to be applied to an existing cloud-based system, software
architects should consider whether these assumptions are compatible with the
current architecture.

An alternate top-down design approach could be to describe our Tactics using
a higher-level pattern language. An example might be the MAPE-K pattern
[61]: Energy Monitoring Tactics can be adopted to implement the Monitoring
and Analysis function, and Self-Adaptation can be adopted for Planning and
Execution.

However, it is important to note that Green Architectural Tactics cannot gen-
erally be adopted in isolation: when introducing them in a software architecture,
they might require other tactics to be adopted as well. In the previous section,
we made such dependencies explicit. In short, we found that Energy Monitoring
tactics are required whenever Scaling Down, Consolidation and Energy Broker-
ing are adopted. In addition, Service Adaptation requires Energy Brokering to
function properly. It is relevant to point out that the occurrence of a combination
of tactics does not always imply a dependency. For example, the dependencies
that emerged from our SLR have identified, in a total of 26 primary studies, the
following combinations (see Chapter 4):

e Energy Monitoring and Self-Adaptation tactics, in 8 cases.
e Self Adaptation and Cloud Federation tactics, in one case.

e Energy Monitoring, Self-Adaptation and Cloud Federation tactics, in 2
cases.

This evidence suggest a deeper relationship between the tactics that we will fur-
ther explore in our future research. Furthermore, our tactics introduce tradeoffs
between energy efficiency and other quality attributes, summarized in Table 5.3.
Along with the scenarios provided in Section 5.4, this initial trade-off analysis con-
tributes to the identification of energy efficiency as a quality attribute. It is still

100

under discussion to what extent energy efficiency and other sub-characteristics of
environmental sustainability might influence traditional quality requirements.

Table 5.3: Energy efficiency tradeoffs introduced by Green Architectural Tactics

Tactic Quality At- Rationale
tribute
Scaling Down Performance Scaling down VMs may result in lower performance
in case of unanticipated demand spikes.
Consolidation Availability Dutjing VM migration some services may not be
available.
Security Live VM migration over the network requires to

transfer application code, metadata and work-
loads, making them vulnerable to attacks.

Modeling Modifiability Energy Connectors are component-specific and
therefore must be reimplemented if the architec-
ture changes.

Service-Adaptation Flexibility The orchestrator concentrates all service composi-
tion logic in a single node.

Workload Scheduling Performance If workload prediction fails deadlines might be
missed.

5.6 Next Steps: Tactics Evaluation

Because tactics are elicited from specific implementations, they do not come with
generalizable measures of the potential energy savings that they provide. As
reported in Chapter 4, most of the primary studies included a validation phase,
performed in either an industrial or academic setting. As part of our future work,
we plan to conduct research activities to provide an estimation of the impact of
the adoption of the Tactics on energy consumption.

A first step will be an industrial survey among experts of the field (i.e. software
architects) to have a first evaluation and prioritization of the tactics in terms of
their potential impact. We already contacted a number of interested participants
through our network in the Green IT Amsterdam® and in the EFRO MRA Cluster
Green Software project” consortia.

Secondly, after this exploratory study, we plan to set up empirical experiments
aimed at quantitatively assessing the impact of the Tactics. The experiments will
be carried out on instrumented environments where we will monitor the execution
of Cloud-based software applications implementing our Tactics. Meanwhile, we
will gather fine-grained energy consumption data that will allow us to evaluate the
energy savings gained through the Tactics implementation. For this research, we

Shttp://www.greenitamsterdam.nl/
Thttp://www.clustergreensoftware.nl/

101

http://www.greenitamsterdam.nl/
http://www.clustergreensoftware.nl/

will collaborate with Cloud service providers based in Amsterdam for providing
case studies and with the Hogeschool van Amsterdam (HvA) for their expertise
in hardware instrumentation and measurement. We will also make use of our
cluster computing resources at the VU University Amsterdam as a testbed for
the experimentation.

5.7 Conclusions

In this chapter, we describe energy efficiency as a software quality attribute and
analyze its architectural impact in terms of assumptions and trade-offs. This
chapter answers RQ 3b, namely “How can architectural solutions for energy effi-
ciency be made reusable?”: we provided a set of reusable design solutions, codified
as tactics, to support the design and development of cloud-based energy efficient
software. In order to help their understanding and adoption, each of our Green
Architectural Tactics is presented with an example of its application extracted
from the literature.

Together with Chapter 4, in this part of the thesis we answer RQ 3, namely
“How can software architectural solutions realize energy efficiency?” By eliciting
existing solutions and generalizing them into a catalog of reusable tactics, we
show how energy efficiency can be realized through software architecture. In the
final part of this thesis, we will provide a conceptual framework to encapsulate
the experience gathered so far into strategies for energy-efficient software.

102

A Conceptual Framework for
Energy-Efficient Software Engineering

The pivotal role of software in energy consumption is now supported by sound
empirical data collected through a series of experiments on different hardware
platforms. Although the actual figures may vary depending on the specific plat-
form, the impact of software over energy consumption is definitely relevant. Ad-
dressing this impact requires a change of mindset from the software engineering
community. In this chapter, we present a conceptual framework that provides
a unifying view on the strategies, models and tools presented so far to engineer
energy-efficient software. This contribution answers RQ 4.

6.1 Introduction

The theoretical software power models presented in Chapter 2 give developers
a way to elaborate a strategy by analyzing the causes of energy consumption.
Moreover, power models and measurement techniques are needed to validate the
efficacy of the formulated strategies by measuring their impact. The empirical
evidence presented in this thesis represents a starting point for such strategies:
for example, in Chapter 3 we validated two practices for energy-efficient software
development. These guidelines can be embedded in a strategy to refactor exist-
ing software applications and increase their energy efficiency. In Chapter 5 we
presented three strategies to address energy efficiency aspects in Cloud software
applications. Some of these strategies can be applied in a more general software
engineering process to design energy-efficient software applications from scratch.
In this chapter, we provide a conceptual framework to support energy-efficient
software engineering. Our framework is based on the results obtained to far in
this thesis. It makes use of already existing tools and techniques, and we also
provide examples of useful measurements and metrics to ease its adoption.

103

This chapter is structured as follows: in Section 6.2 we provide reflection upon
the results of the empirical experimentation we performed in software energy
efficiency. In Section 6.3 we introduce our conceptual framework. In Section
6.4 we present a more general overview of the stakeholders for software energy
efficiency. In Section 6.5 we describe the strategies included in our framework in
detail. Finally, Section 6.6 concludes the chapter.

6.2 Reflection on Empirical Evidence

In Chapter 2, we already discussed the modeling approaches for software energy
consumption: they can be ”white-boz” e.g. based on code-level or instruction-
level metrics, or* " black-bozx” e.g. based on runtime measurements, such as usage
ratios of system resources (CPU, RAM, etc.).

From our experience, the effectiveness of the chosen predictors varies greatly
with respect to the considered hardware configuration. In embedded systems,
for example, we have observed that code-level constructs may have an observable
impact over power consumption only in some cases [131]. However, as the system
architecture becomes more complex, these models appear to be too fine-grained
to describe the effect of software over power consumption. In these cases, a
resource-usage based model might be more meaningful: our empirical studies
in Chapter 2 and 3 have successfully proven the correlation between indicators
of hardware resources and the power consumption of computer systems. As a
matter of fact, most of the software power profiling tools commercially available
are based upon these types of models.

Choosing the appropriate resources (or, more precisely, resource usage met-
rics) as predictors is the key to build an accurate resource-based power consump-
tion model. Typically, CPU is the most important component to monitor: this
is why, especially on more advanced mobile systems such as smartphones, most
tools focus on the CPU usage as a predictor for software power consumption.
However, our experiments have proven that other metrics, such as memory usage
and, more importantly, I/O operations, have a significant correlation with power
consumption. Moreover, in some usage scenarios, software applications may re-
quire the activation of high power-consuming peripherals (e.g. GPS modules,
3G and WiFi antennas) that significantly modify the consumption profile of the
device. In Figure 6.1 we can see an example showing typical power consumption
of a mobile device in different usage scenarios [2] .

This suggests two considerations: first, these resources cannot be ignored by
models and must be explicitly measured. Secondly, software developers need to
be aware that decreasing the computational complexity of software applications
is not enough to develop an energy-efficient application.

104

(.2
-0- Displa:
,9‘ play

")) MP3 Audio

CPU
Intensive

-
sGd=
we

Bluetooth
Scan

4 GPS
—>
=

WiFi

3G 3G ¥ Download

mCall

ZG W Standby

2G

0 200 400 600 800 1000
Power Consumption (mW)

Figure 6.1: Power Consumption of a Mobile Device in Different Usage Scenarios
(data from [2])

6.3 Conceptual Framework

Our framework to engineer energy-efficient software is presented in Figure 6.2.
The framework includes three main strategies: Energy Monitoring, Refactor-
ing and Self-adaptation. The Refactoring strategy is described in detail in Section
6.5.2. It is focused on minimizing software instructions and code patterns that
may cause higher energy usage. Energy Monitoring and Self-Adaptation were ear-
lier introduced specifically for Cloud-based software in Chapter 4 and 5'. Here we
present them in a more general formulation: the Self-Adaptation strategy aims
at creating an energy-aware application that is able to choose among various
configurations, here called “energy profiles” (see Section 6.5.3), depending on the

IThe third strategy we introduced, Cloud Federation, is Cloud-specific as it is based on
multiple Cloud services, from different providers, interacting with each other. Hence, it is not
suitable to be included in our framework.

105

LEGEND
g R : REFACTORING : SELF ADAPTATION
: : Strategy : "
""""""" | Follow code-level : :
: L : : Create energy
\: Activity : guidelines Stakeholders i | profile configuration
Implementation; Energy profiles
Software : .
Artifact : Identify Energy : : Detect the best
: Smells : current energy
: profile
Physical Code Patterns Best profile
\:’ component : 5
Refactor code : Modify application
behavior
Information -
— . B ticiiicnicnicesiesiesiasiiseississisese b o0 1 Sesiesressessessiesiesiesssaniassaneens
Flow Software
Application
Composition ENERGY MONITORING
Input/ Embed energy
== Output : information into the
application
Estimation
Use software power
models to estimate
power consumption
Usage data
usage data

Figure 6.2: Framework for Energy-Efficient Software Strategies

scenario and the execution context. The Energy Monitoring strategy (see Sec-
tion 6.5.1) aims at providing feedback on software energy consumption through
modeling and profiling.

As shown from Figure 6.2, the input/output flow of the strategies can be
both bottom-up and top-down. From the bottom, hardware information is in-
jected into software applications to create energy awareness. From the top, the
stakeholders who are interested in or affected by energy efficiency issues (see Sec-
tion 6.4) trigger the need for energy-efficient software. This serves as a top-level
input, to determine which operational decisions for software energy efficiency are
to be taken.

The strategies are not meant to be mutually exclusive: as seen in Chapter
4, they can be applied together in various combinations. In addition, other
technological, human or process strategies can be plugged in, provided that their
impact in terms of energy consumption is verifiable through measurements or

106

estimations.

6.4 Stakeholders

In Chapter 4 we presented a first overview of the stakeholders that we identified
during our SLR on Cloud software architectures. For the purpose of that study,
we focused on the energy efficiency of Cloud services during its usage and provi-
sioning. In this section we provide an extended overview, from a wider perspective
on software systems. We refer to the standard definition of a stakeholder [55],
namely: “individual, team, organization, or classes thereof, having an interest in
a system”. Hence, we define stakeholders for software energy efficiency as indi-
viduals, teams, organizations, or classes thereof, having an interest in improving
the energy efficiency of a software system”.

A more generic list of stakeholders for software sustainability is also provided
by Penzenstadler et al. [95]. The stakeholders identified in their work take
into account multiple dimensions of sustainability (individual, social, economic,
environmental, technical).

End Users are mainly interested in software energy efficiency for usability
reasons: the proliferation of mobile, battery-powered devices made users aware
that a long-lasting battery also depends on software activities. In turn, software
energy efficiency is becoming an important parameter for choosing the right ap-
plication to perform a task. Ultimately, this will push the market to produce
more energy-efficient software and end-users are the main drivers of this process.

Software Developers play a very important role. Their interest is to con-
stantly monitor and optimize the energy efficiency of their applications, through
the support of appropriate automated tools. Their feedback is crucial in order to
establish practical guidelines to write energy efficient software.

Software Engineers are responsible of enabling and investigating this in-
novation. The software engineering community has already shown its interest in
the energy footprint of software: the International Workshops on Green and Sus-
tainable Software (GREENS) [71, 73] are a prominent example. The involvement
of software engineers is crucial in order to embed sustainability in development
processes.

System Architects are the main responsible of the system design and they
must have a “broad, global, whole-system view” [85]. The energy efficiency of
the system as a whole is nowadays a primary requirement in many contexts (e.g.
High-Performance Computing, mobile devices, embedded systems). Addressing
such a requirement implies to take significant design decisions involving multiple
components and different abstraction layers of the system. Hence, architects are
to be considered stakeholders as well.

107

Infrastructure Managers are responsible for the optimal use of system
resources. In IT infrastructures, energy is one of the most expensive assets.
Increasing the energy efficiency of software means being able to perform more
tasks using the same amount of energy, thus infrastructure managers definitely
have an interest in it.

Service Providers are interested in energy efficiency for multiple reasons.
There’s an economic reason, as energy is one of the main voices in the Total Cost
of Ownership of large-scale service provisioning infrastructures. Sector leaders,
such as Google? and Microsoft?, already undertook initiatives to reduce the en-
ergy footprint of their software services. Moreover, as the general awareness
towards the energy impact of software increases, service consumers will ask for
explicit levels of energy efficiency in their service agreements. It is expected that
sooner or later, all providers will include energy efficiency as one of the parameters
to evaluate the quality of their service.

6.5 Strategies for Energy-Efficient Software

6.5.1 Energy Monitoring: use software energy models to
drive improvements

The first strategy we present is Energy Monitoring: its aim is to provide feedback
on the energy consumption of software applications, to identify opportunities for
energy optimization and/or to assess the energy savings gained by applying other
strategies. The bottom part of Figure 6.2 shows the information flow coming from
the hardware level: resource usage data, e.g. memory accesses, I/O usage, CPU
usage, is collected from the hardware. This information is used as input for
software energy models, that analyze applications during execution and provide
on-line energy consumption estimations with different granularity. Example of
already available profiling tools that make use of energy models are: Joulemeter
[83], ARO [4], Power TOP [54] and PowerTutor [41].

The Energy Monitoring strategy is a crucial component of our framework,
because it enables the formulation and validation of other strategies. By verify-
ing the energy efficiency improvements, through profiling tools, strategies can be
applied iteratively and consequently adapted. Energy Monitoring also allows to
take into account other parameters, e.g. the software mission and its main func-
tionalities, the required quality of service, and the interests of the stakeholders.
For example, reducing the network usage might improve energy efficiency, but it
might also violate service level agreements on response time or availability.

2http://www.google.com/green/bigpicture/, last visited on November 12th, 2014
3http://www.microsoft.com/environment/IT_Energy/IT_Energy.aspx, last visited on
November 12th, 2014

108

http://www.google.com/green/bigpicture/
http://www.microsoft.com/environment/IT_Energy/IT_Energy.aspx

6.5.2 Refactoring: identify and remove energy inefficien-
cies

Predictive models embed the knowledge about both the resources (e.g., CPU)
that consume power and the activities (e.g., disk transfers) that drive their con-
sumption. The aim of the Refactoring strategy is to identify those code patterns
responsible for high energy usage. Taking inspiration from the well-known book
of Fowler and Beck [37] we call these code patterns Energy Code Smells [131],
i.e. implementation choices (at code, design or architectural level) that make the
software execution less energy efficient.

The Refactoring strategy is backed up by empirical evidence. In Chapter 3
we already presented two best practices for developing energy-efficient software,
extracted from our wiki*, and we proved their impact in terms of energy effi-
ciency improvements. Moreover, in a previous study on an embedded system
[131], we found occurrences of five distinct Energy Code Smells, selected among
those detected by a well-known automatic static analysis tool (CppCheck ®). The
refactoring of such smells successfully improved the energy efficiency of the tested
code. However, as software execution depends not only on its internal structure
and host environment but also on the input it receives, the Refactoring strategy
may show its results only in specific situations. For this reason, before applying
the Refactoring strategy, the most frequent usage scenarios have to be identi-
fied. These scenarios will provide the most promising candidates for refactoring
activities.

In the remainder of this section we provide some examples of guidelines for
the Refactoring strategy. These guidelines were obtained by combining our ex-
perience together with the evidence provided by similar works ([42], [94], [122]
and [26]).

Clean up useless code and data.
As software evolves, many parts may become obsolete. Writing to never-read vari-
ables and other useless routines (e.g., repeated conditionals) may consume power
purposelessly. Cleaning up these instructions might improve energy efficiency, as
well as maintainability. Many static analysis tools are able to detect useless code.

Look for Immortals.
The lifecycle of software processes and threads must be carefully managed. The
Immortality Energy Smell describes situations where a software service restarts
after explicitly being killed by the user, continuing to drain energy. Sometimes,
software immortals are created on purpose: in this cases, death and rebirth phases

4https://wiki.cs.vu.nl/green_software/index.php/Main_Page
Shttp://cppcheck.sourceforge.net/

109

https://wiki.cs.vu.nl/green_software/index.php/Main_Page
http://cppcheck.sourceforge.net/

of the processes/threads should be as graceful as possible, in order to reduce the
resource usage overhead and the consequent energy waste.

Focus on higher-level structures and complex routines
Like in performance optimization problems, improvements obtained at lower level
might be hidden from higher level inefficiencies. This is especially true when
there are many software layers or when software runs in a complex environment
(e.g., virtualization, distributed systems). Start refactoring from higher level
constructs: their impact on CPU and memory (and consequently, energy) is sig-
nificantly higher compared to basic data types.

Do not trust loops.
Loop constructs are powerful, but their contents must be carefully monitored.
Loop smells happen when an application repeats the same activity on a loop,
without achieving the intended results and uselessly consuming energy (e.g.,
polling an unreachable server). Detecting and refactoring such loops can save
a significant amount of energy, especially on battery powered devices.

Reduce amount of data transferred.

In distributed and high-performance systems, or in battery powered devices using
power-consuming radio transmission, data transfer might be a significant source
of power drain. Data exchanged between software applications and/or databases
(local or remote) can be optimized using data compression or data aggregation
techniques. The energy impact of this optimization might be crucial, in data-
intensive and Big Data applications. An example of an useful metric to monitor
is Communication Energy Cost [114], that estimates the energy consumption in-
duced by data transfers for each software component.

6.5.3 Self-adaptation: energy efficiency by design

While the Refactoring strategy is useful to developers who aim at increasing the
energy efficiency of their existing applications, the Self-Adaptation strategy is
more suitable when building software from scratch. The key idea is to provide
different configurations of the same application, to be selected according to the
best trade-off between provided features and consumed energy.

Actions needed to implement self-adaptation depend on the usage context
of the application. Hence, we need to profile the application energy usage in
different usage scenarios, i.e. identifying “Energy Profiles” which will provide
either the full set or a subset of functionalities. This approach is compatible
with the Refactoring strategy, as seen in Section 6.5.2, and also requires the

110

‘ Profile 1 ‘ H ‘ Profile 2 ‘

Software Sensor ‘ State (ON/OFF) ‘ Refresh After (s) H Software Sensor ‘ State (ON/OFF) ‘ Refresh After (s)
PhoneSensor ON 3600 PhoneSensor ON 600
LocationSensor OFF - LocationSensor ON + GPS ON 600
WiFiSensor OFF - WiFiSensor ON 600
BluetoothSensor OFF - BluetoothSensor ON 600
DevicelnfoSensor ON 3600 DevicelnfoSensor ON 3600
DeviceStatusSensor ON 3600 DeviceStatusSensor ON 600
DeviceSettings ON 3600 DeviceSettings ON 600
TerminalActivity OFF - Terminal Activity ON 600
DataSensor ON 3600 DataSensor ON 3600

Table 6.1: Example of Configuration file for Self-Adapting Applications

Energy Monitoring strategy to properly classify the energy usage of the different
scenarios (see Section 6.5.1). In [3] is provided an example of a self-adapting
mobile application. The application reconfigures itself based on the remaining
battery level. Authors implemented self-adaptation working on the application
functionalities, enabling or disabling modules and tuning parameters such as
the time granularity of the data collected from the device and transferred to the
server. Table 6.1 shows an example of different profiles for the mobile application.

Results show improvements up to 30% compared to an equivalent, non-adaptive
application. Improvements depend on the scenario and on the level of trade-offs
that developers are willing to reach.

Compared to the Refactoring strategy, the Self-Adaptation strategy intro-
duces a relevant set of changes to the software system. While Refactoring mostly
operates at code level, Self-Adaptation has also a relevant architectural impact.
Raibulet et al. [101] proposed a set of architectural metrics to evaluate the adap-
tivity of a software system. Although those metrics are not specific for energy-
driven Self-Adaptation, they can be adopted as a reference for developers that
want to introduce self-adaptive mechanisms in their application. For example,
the MaAC (Minimum architectural Adaptive Cost) expresses the fixed cost of
adaptivity at architecture level.

6.6 Conclusions

Energy efficient software is a challenging topic that involves complex trade-offs
among stakeholders. From a technical perspective, several tools and best prac-
tices are available, although they are not yet well integrated in an organic frame-
work able to provide the software developers and designers a unifying view.

In this chapter, we addressed this problem by providing a conceptual frame-
work that provides an high-level view over the possible operational strategies for
energy-efficient software. We described three strategies, i.e. Energy Monitor-

111

ing, Refactoring and Self Adaptation, although other strategies, at technological
or process level, can be plugged in the framework, provided that they have a
measurable impact on energy consumption.

This contribution answers RQ 4, namely “Can we provide strategies to im-
prove software energy efficiency?” We proved that the current State-of-the-Art,
backed up by empirical evidence, is mature enough to provide such strategies.
In the next chapter, we will give an example of a possible improvement of the
Refactoring strategy: specifically, we will provide an approach to identify more
general issues in software energy efficiency (energy hotspots), not just at code
level, but at multiple levels of abstraction.

112

The GREENSWEEP Approach for
Software Energy Efficiency Research

Software enerqgy efficiency is a pioneering research topic where empirical exper-
imentation is widely adopted. Nevertheless, current studies and research ap-
proaches struggle to find generalizable findings that can be used to build a con-
solidated body of knowledge for “green” software. In this chapter, we identify
the issues that characterize the research in software energy efficiency. Then, we
propose an approach to systematically identify software energy efficiency issues
(hotspots) in software applications. We called this approach GREENSWEEP
(Guided REcognition and EvaluatioN of Soft Ware EnErgy hotsPots). The GRE-
ENSWEEP approach combines traditional hypothesis-driven/top-down research
with a bottom-up discovery process using data mining techniques. We also discuss
the implications of GREENSWEEP on the traditional characteristics of empir-
ical experimentation. In the long run, we foresee that the experimental findings
discovered through our approach will be more generalizable and reusable to design
and develop energy-efficient software. This chapter is related to RQ 4.

7.1 Introduction

Current research in software energy efficiency lacks of well-defined, validated
methods: although there is a significant amount of scientific works in the field
(see Section 3.2 in Chapter 3), to date they show limitations and lack of gener-
alizable principles and results [71]. The research community in software energy
efficiency already highlighted that the field is characterized by peculiar issues.
Among them:

1. High complexity. In order to improve energy efficiency, the relationship
between software operations and the energy consumption of the underly-

113

ing hardware has to be clearly defined. Hence, the research is inherently
multi-disciplinary [18], characterized by a very large amount of variables
to control, especially due to the high heterogeneity of IT devices and plat-
forms (e.g. mobile devices, cloud-based architectures, embedded systems).
For this reason, it is very difficult to trace software behavior directly to the
used hardware [110].

2. Anecdotal evidence. Many empirical studies have been conducted to as-
sess the factors that determine software energy efficiency. However, current
evidence is mostly anecdotal and insufficient to provide generalized princi-
ples. This becomes clear from the contradictions in the conclusions drawn
by researchers in different empirical studies (e.g. Cameron [17] concludes
that energy efficiency and performance positively correlate, while Capra
[19] concludes the exact opposite).

3. Lack of a unified approach. Different research communities have tried to
tackle the problem of energy efficiency within their own expertise, at the
cost of precision in other domains. Hence, the studies lack representativity,
and are characterized by heterogeneous techniques and analysis methods
[71]. We argue that this prevented from building sound evidence. An
historical parallel is with object-oriented software design in the late 80’s,
when a plethora of different notations were proposed, making it impossible
to compare designs expressed in different languages, test them or validate
their consistency. This problem was addressed when finally the OMG stan-
dardized UML.

Above peculiarities of energy efficient software research delineate requirements
for an ad hoc approach for the topic. In this chapter, we propose a mixed ap-
proach for experimentation in energy-efficient software research with the aim
to address those threats and ultimately speed up the identification of software-
related properties that impact energy consumption.

This chapter is organized as follows: in Section 7.2, we describe our proposal
for experimentation in software energy efficiency research. In Section 7.3, we
discuss its implications for empirical experimentation. Section 7.4 concludes the
chapter.

7.2 The GREENSWEEP Approach

From experience, we developed a mixed approach to conduct experimentation
for energy-efficient software. The approach is called GREENSWEEP (Guided
REcognition and EvaluatioN of SoftWare EnErgy hotsPots). Currently, we are
applying GREENSWEEP in the context of national research projects and we
plan to develop it further on a larger scale. In Fig. 7.1, we give a graphical

114

Q O / APPLICATION LAYER Software Metrics
/
T
é b / VIRTUALIZATION LAYER || Resource usage
metrics
1

1
|
é<—O HARDWARE LAYER Raw Energy Data

14—

Stakeholders

Ist
Stage

G0

<+—— Data Analysis
X —

o

Shared dashboards

{
Zo [)— e000e-—00000

Experience base Validated hotspots in Candidate hotspots
Energy Lab

Figure 7.1: Overview of the GREENSWEEP approach.

overview.

7.2.1 Background: Energy Hotspots

The main operational goal of GREENSWEEP is to identify energy hotspots (as
circles in Fig. 7.1). The concept of hotspot has already been introduced from
a software architecture perspective in a crosscutting sense, both in performance
[135] and evolution [100], as actionable points of interest, crucial for a certain
property. Recently, researchers in software energy efficiency have introduced the
term Energy Bug, defined as “an error in the system, either application, OS,
hardware, firmware or external, that causes an unexpected amount of high en-
ergy consumption by the system as a whole” [94]. However, this very broad
definition has a questionable ‘negative’ connotation: high energy consumption
is not necessarily due to an error, rather to trade-offs with other qualities (e.g.
higher performance). The alternative concept of Energy Smell, defined in the pre-
vious chapter as “an implementation choice that makes the software execution
less energy efficient” [131], has, instead, a ‘positive’ connotation. In this case, the
focus is on software: higher energy consumption is the result of an (explicit or
implicit) implementation choice, hence not necessarily an error. This definition,

115

however, focuses only on the implementation level, while anomalies in energy
consumption can be identified at any level of abstraction, as from the previous
definition. Building up from this, we define energy hotspots as elements or prop-
erties, at any level of abstraction of the architecture, that have a measurable and
significant impact on energy consumption. In particular, our research focuses on
software energy hotspots, i.e. software-intrinsic properties. For this purpose, we
consider hardware as part of the context that we precisely model to better define
the scope of our findings (see Section 7.3).

7.2.2 1st stage: Hotspot Identification

To identify software energy hotspots, we apply different development practices,
design techniques, architectural tactics/patterns, etc. on software applications.
Considering a software application as a set of independent variables, a particular
software configuration can be defined as a treatment [137], i.e. a set of values
assigned to the corresponding independent variables. We plan to instantiate
several versions of the same software application on multiple virtual machines
(VMs) running on several servers. Each version of the application will differ in
terms of software configuration. Running the applications in VMs enables us to
enhance the scale of the experimentation. In this stage, we monitor the following
three layers (see Fig. 7.1, top):

1. In the application layer, we monitor software events and use instrumented
code to retrieve software measures that can be relevant for energy consump-
tion (e.g. response time, served requests, data transfer rate).

2. In the virtualization layer, we monitor VM allocation and migration events,
plus other relevant measures from the OSs running in the VMs (resource
usage data, e.g. CPU, RAM, or system load measures like running processes
and threads).

3. In the hardware layer, we monitor power consumption data from the phys-
ical servers, depending on the available measurement infrastructure: values
could be per-rack, aggregated per machine, or even broken down to every
single component.

Monitoring software behavior in the first two layers and associating the re-
sults with the energy measures from the hardware layer allows to identify, lo-
cate, and characterize the software energy hotspots. Energy hotspots may be
located on software architecture (e.g. architectural elements, structures, pat-
terns), source-code (e.g. libraries, classes, methods), OSs (RPC, system-calls,
services) or resource usage (RAM, CPU, I/0 devices, data management/storage,
network). This results in a large number and type of measurements and, thus,
understanding which data to collect first is not an easy task. For this reason, we
started collecting data sources connected to identified green practices (but not

116

fully evaluated yet) in the EFRO MRA Project Cluster Green Software! and our
library of Green ICT practices? in the different layers.

While these layers are a conceptual representation that helps us in modeling
the environment under observation, indeed many abstraction and infrastructure
layers exist in modern software systems. With such a complexity, we believe
that discovering energy hotspots with the traditional experimentation approach
(i.e. setting up real controlled environments and assign treatments to different
configurations) is unfeasible, due to the high number of factors, scattered among
the layers.

There is a parallel in social sciences where real-world phenomena are difficult
to be evaluated statistically: there are so many variables that no regularities
can be found by simply looking at the variables. In that case, one alternative
to statistical research is case study research, where social scientists study phe-
nomena in one case (e.g. energy usage of one piece of software) and trace the
mechanisms [133] by which these phenomena were produced. However, even the
replication of a new case will have a slightly different structure and may contain
other mechanisms: in that case, it is possible to generalize about the mechanisms,
not the cases. It can be analyzed, explained, and predicted what the effect of a
single mechanism is, but how all mechanisms interact in a particular case is not
predictable in general. However, in software energy efficiency research, although
the interaction of the many involved variables is likewise complex and not yet
fully understood (see Section 7.1), those interactions are produced by mecha-
nisms which are based on physical properties of the hardware components and
so they should be deterministic.

For this reason we propose the use of data mining and analysis techniques,
on the data gathered from each layer, to discover patterns for candidate software
energy hotspots. For example, suitable data mining techniques for this task
include decision trees for exploration, neural networks for outliers prediction,
and subsequently k-neighbors and clustering algorithms in n dimensions to find
recurring patterns. Data analysis results are continuously validated with the
stakeholders who own the domain knowledge (e.g., data centres administrators,
developers). To speed up the feedback cycle, we propose to use shared dashboards
that contain interactive graphs, checkboxes and fields to input further comments:
this information can be analyzed by researchers and (partly) automatically fed
back to the data mining tools for better tuning (e.g. in neural networks, increasing
the weight of certain branches). In practice, such mechanism enables an iterative
and supervised knowledge acquisition process, which is faster than the traditional
experimentation, where usually feedback is downstream after experimentation
result.

Lhttp://www.clustergreensoftware.nl
2http://greenpractice.few.vu.nl

117

7.2.3 2nd stage: Hotspot Verification

After the identification, location and characterization of the candidate hotspots
and the mechanisms that possibly produce them, we reproduce these mechanisms
and their effects in isolation in the lab. This is done in a dedicated Energy Lab,
where the second part of the research takes place (see Fig. 7.1, bottom part).
The Energy Lab is a shared laboratory among our partners where to perform
experiments to correctly assess the significance and impact of the hotspots. A
prototype of Energy Lab is the Software Energy Footprint Lab (SEFLab [34])
where we are currently conducting our experiments in software energy efficiency
as part of a national research project. The second stage is necessary to recover
the experimentation rigor relaxed in the first stage (see Section 7.3 for further
discussion). It also permits to study in a more controlled environment the identi-
fied hotspots (in Fig. 7.1 the different color scales represent the levels of impact
on power consumption) and the causal relationships involved.

The validated hotspots in Fig. 7.1 are those candidate hotspots confirmed
as valid (i.e. whose effect is proven in a predictable way for well-defined context
variables) at the end of this in-depth validation. They contribute to the expansion
of the current Experience Base.

7.3 Research Implications

The peculiarities of software energy efficiency research as well as our approach
to conduct such research have a number of implications on the evidence-based
principles. Based on the current state of the art, we elicited a list of ten prop-
erties that, to a large extent, an experiment in SE should aim at. Table 7.1
illustrates which of these properties can be either relaxed or stressed according
to the discussed research methodology for software energy efficiency research.

Table 7.1: Experimental Software Engineering Properties

Properties to relax Properties to stress
Hypothesis-driven Contextualization
Statistical significance Cause-and-effect analysis
Controlled Randomized assignments
Blocked subjects assignment Replicability

Balanced subject groups Competing alternatives

The approach we presented is based on exploratory data analyses as a prepa-
ration for (more traditional) in-depth experimentations (see also Section 7.2).
Accordingly, we relax rigor in favor of pragmatism during the first stage of our
evidence-based research endeavor. This translates in a bottom-up attitude, which

118

requires avoiding to build formal hypotheses to test, postponing accuracy further
in the process when rigor is recovered in the Energy Lab. As a consequence, in
the first stage, most requirements for rigorous experimentation have to be relaxed
as well. We assign, for example, treatments to a specific context and observe the
environments through their measurable properties, despite we still do not have
full control over all the input variables due to complexity. In a similar way, al-
though we are able to perform randomization of subjects through virtualization,
we still need to relax the requirement to perform blocked assignments or bal-
ancing subject groups. That is, the data collection and analysis procedure is, or
should be, opportunistic to focus on an inherently complex universe of variables.
This produces large observations derived from real situations rather than cleaner
but smaller data from a rigid framework of experimentation, which is often not
a choice but a real constraint when dealing with cloud infrastructures. We have
similar constraints even in mobile devices where the nested virtualization makes
it impossible to separate the software layers for exact experimentation. This
variability requires modeling the operational environment under observation, an
operation that we call contextualization. Defining the right context variables and
their dependencies is one of the most challenging but important task we are facing
(as also stressed by a recent roadmap for Empirical Software Engineering [10]).
A detailed enough model for the context (which requires modeling both hardware
and software at different levels of abstraction) permits to accurately establish the
degree of similarity between two contexts (e.g. two mobile devices, two system
architectures or implementation choices) in the comparison of power consump-
tion measurements. Also, replicability of analysis is improved in terms of context
reproduction.

Of course, high contextualization not only increases the awareness of the
confounding factors, but it is also a prerequisite to control the internal validity of
the experiments and, thus, the accuracy of the measurements. The fact that the
measurements cannot be only hypothesis-driven, however, hampers the possibility
to control the construct- and the external validity, and this eventually lowers the
conclusion validity. We therefore need to relax those types of validity in trade
for a more pragmatic approach in the short run: this allows to populate a larger
results set, that serves to trigger further investigations following the traditional
experimental SE research approach in the Energy Lab. In the long run, however,
the rigorous contextualization will define clear boundaries and impacts of the
hotspots. In turn, we expect that the construct and the external validity will
increase while the internal validity will be better controlled in the short run.

In summary, in relation to the peculiarities listed in Section 7.1:

1. We reduce the complexity of the software/hardware interaction via abstrac-

tion, i.e. by capturing the most important concepts and relationships via a
precise contextualization of the environment. This allows to identify can-

119

didate hotspots, which will be verified later in the Energy Lab through
traditional experimentation.

2. We mitigate the problem of anecdotal evidence with in-depth verification
steps in the Energy Lab on a reduced list of candidate energy hotspots.

3. In relation to the lack of the unified approach, thanks to randomization
in multiple subjects, contexts and hardware configurations at the same
time, our approach allows in its first stage to gather candidate measures for
varieties of scenarios; at the same time, by configurable contextualization
we can potentially cover different approaches typically limited to a single
level of abstraction or execution environment.

7.4 Conclusions

Empirical experimentation for software energy efficiency is still an emerging topic.
In this chapter, we have identified three main related issues: high complexity of
the topic which involves multi-disciplinary competences, lack of strong evidence
to contribute generalized principles to the body of knowledge, and the lack of a
unified research approach. These three issues point to a more general problem
where the traditional way of conducting experimental software engineering is not
suitable anymore for software energy efficiency research.

To tackle this problem, we presented in this chapter a mixed approach: first we
discover hypotheses and patterns by using data mining and analysis techniques,
continuously tuned with fast feedback cycles with stakeholders; in a second stage,
we can follow again the traditional experimental approach intended to test the
hypotheses. We have discussed some implications of our approach on a set of
properties for empirical experimentation.

This chapter is related to RQ 4, namely: “Can we provide strategies to im-
prove software energy efficiency?” The GREENSWEEP approach we presented
can be seen as a possible improvement of the Refactoring strategy presented in
Chapter 6. However, GREENSWEEP has not yet received proper validation,
hence we cannot claim that it answers our RQ. For this purpose, we are applying
it in ongoing research efforts and future work will be devoted to further develop
GREENSWEEP as an open contribution to the research community.

120

Conclusions

Software has a relevant impact on the energy consumption of ICT devices. Energy-
efficient software is crucial for extending the lifetime of battery-powered devices
and for reducing the ICT environmental impact. However, software engineering
does not provide a consolidated body of knowledge neither on how to improve the
energy efficiency of existing software systems, nor on how to design and develop
energy-efficient software. This thesis tries to fill this gap through empirical ex-
perimentation. Throughout its chapters, we traversed the abstraction levels that
divide software from hardware and we provided tools, guidelines and approaches
for analyzing and improving the energy efficiency of software applications. In
this chapter, we summarize our main contributions, with respect to the research
questions presented in Chapter 1. We conclude this dissertation with our future
research agenda.

8.1 Main Contributions

The goal of this thesis is to provide a body of knowledge that supports the
engineering of energy-efficient software systems and applications. Hence, the
main Research Question for this thesis is “How can we engineer energy-efficient
software?” In Chapter 1, we identified four sub-Research Questions that further
characterize our research problem. This section summarizes the answers to these
questions, according to our findings.

8.1.1 RQ 1. What is the correlation between software and
hardware energy consumption?
In order to define the relationship between software and hardware energy con-

sumption, we first need to determine if hardware resource usage is relevant for
energy usage. This is the subject of RQ la, namely “RQ Ia. Is hardware re-

121

source usage correlated with energy consumption during software execution?”. In
line with our empirical approach, in Chapter 2 we present an experiment con-
ducted on Desktop computer systems. The results show that CPU and memory
usage have the highest correlation values with energy consumption, but those
vary significantly depending on the usage scenario. We also compared the im-
pact of software usage on two machines of different generations. Our results show
that modern hardware resources are more energy-efficient in idle states, but more
consuming in intensive operation modes. This makes the role of software even
more important, in order to use resources efficiently and reduce energy waste.
Hence, our initial claim in Chapter 1 is verified by means of empirical evidence.

To make the relationship between hardware and software more transparent,
we need to make this knowledge actionable. That is, we have to verify whether
resource usage information can be used to provide estimations and prediction on
energy consumption and relate it to software behavior to steer its development
and engineering. That is the focus of RQ 1b, namely “How can software proper-
ties be used as a predictor for hardware energy consumption?” We surveyed the
academic literature and came up with a classification of approaches to measure
and model software energy consumption. Indeed, using resource usage as a pre-
dictor is a viable option: many tools and techniques are already available and
ready for use on different platforms (e.g. mobile, embedded systems, laptops).
Through these tools, developers and users are able to gain insights on the energy
impact of the software they use or produce, with a reasonable level of accuracy.
However, what is still missing is the integration of these models into software
applications, to realize proper energy-aware behaviors.

8.1.2 RQ 2. What is the impact of using best practices for
software energy efficiency?

The first level of abstraction we consider for our research on software energy effi-
ciency is the source code. The aim of RQ 2 is to assess to what extent coding with
energy efficiency in mind can make a difference on the actual energy consumption
of an IT device. For this purpose, we performed an empirical experiment where
we applied two best practices for energy-efficient software development, extracted
from various sources in academic literature and industrial practice, on two widely
used open source software applications. Our results show that applying the prac-
tices allows to save up to 25% energy consumption, and it increases the energy
proportionality of software behavior as well.

This stresses the importance of supporting developers in implementing energy-
efficient software. By formally describing these software practices in the form of
code patterns, it would be possible to automatically detect and refactor energy
inefficiencies during development, similarly to what is already done for other

122

quality aspects (e.g. performance, security, reliability).

8.1.3 RQ 3. How can software architectural solutions real-
ize energy efficiency?

After assessing the potential impact of energy efficient software development,
our next step was to increase the level of abstraction and address energy effi-
ciency at the architectural level, as with other more traditional software qual-
ity aspects. We first systematically surveyed the state-of-the-Art to answer RQ
3a, namely: “Are there software architectural solutions that address energy effi-
ciency aspects?” We designed and conducted an SLR on architectural solutions
for energy efficiency in Cloud-based software applications. From our results we
were able to identify a number of solutions, that we generalized in architectural
strategies, techniques and components for energy efficiency. Then, we addressed
RQ 3b, namely “How can architectural solutions for energy efficiency be made
reusable?” extracting from our results architectural tactics for energy efficiency.
Those tactics not only support software architects into creating energy efficient
software architectures, but also show that energy efficiency can be indeed realized
at architectural level and can thus be considered a software quality aspect.

8.1.4 RQ 4. Can we provide strategies to improve software
energy efficiency?

The previous RQs analyzed the problem of software energy efficiency at different
levels. This effort needs to be complemented with a suitable conceptual frame-
work that models the different outcomes and connects them towards our goal.
That is the aim of RQ 4. In Chapter 6, we reflect upon our empirical evidence
and present such a framework, together with examples of high-level strategies for
engineering energy efficient software. In Chapter 7, we present a preliminary ex-
ample of an empirical approach (GREENSWEEP), based on a strategy extracted
from our framework, to identify energy efficiency issues in existing software ap-
plications.

8.1.5 Answering the Main Research Question: lessons
learned

The main Research Question that drives this thesis is “How can we engineer
energy-efficient software?”

Indeed, we selected an ambitious and challenging problem, in an emerging but
pioneering research field. Nevertheless, by using divide et impera and reasoning
by increasing abstractions, we learned valuable lessons that can help in solving

123

our main research question (see Chapter 1). Keeping in mind the following lessons
is necessary to engineer energy-efficient software.

1. Energy consumption is software-defined. Although hardware technologies
continuously improve in energy efficiency, ICT energy consumption is still
rising: idle consumption has decreased, but in high-performance modes
new-generation devices consume more than previous ones, as proven by our
empirical evidence. Moreover, we are moving more and more towards a
model where hardware is a commodity that can be provisioned on demand
through software. Examples are software-defined networks and datacen-
ters. This important transition has a fundamental consequence: the role
of software will be more and more relevant in driving energy consumption.
Hence, models based on resource usage to predict energy consumption will
be extremely valuable in determining waste of resources such as CPU and
memory, the primary reason for energy inefficiency.

2. There is no one-size-fits-all. When analyzing software energy efficiency, the
importance of usage scenarios is crucial. It is very likely that the energy
efficiency of a software application varies according to the specific task at
hand. Also, it is imperative to carefully model the context: due to the
complexity of software and hardware interaction, there are many factors
playing a role in energy consumption. For this reason, for example, some
solutions that improve energy efficiency in mobile devices might not be
effective in other systems.

3. No improvement is possible without measurement. Energy consumption
caused by software can be odd and counter-intuitive. For this reason, em-
pirical validation is extremely important in this field. In this thesis, we
showed examples of second-order effects of coding practices that can ne-
glect improvements in energy efficiency. To avoid these second-order effects,
guidelines and best practices need to be carefully validated.

8.2 Future work

This section concludes this thesis, but our research is far from completed. Soft-
ware energy efficiency has just started gaining momentum in the scientific com-
munity and many challenges lie ahead in the form of new research questions.
As a stable part of our research agenda, we will keep on performing empirical
experimentation to validate the best practices for energy-efficient software. This
activity will contribute to establish a solid knowledge base for developers and ar-
chitects. In the meantime, we are already working on representing this knowledge
as an ontology of concepts and entities, using semantic technologies. This has

124

potential for multiple applications: firstly, this abstract modeling will allow us to
automate the process of applying practices to existing applications. Moreover, we
can explore the impact of energy efficiency on other software quality attributes
[72]. This trade-off analysis is needed for the inclusion of energy efficiency in a
comprehensive software quality model.

Finally, our main commitment in the next years will be devoted to provide
education in software energy efficiency. During the last three years, we were
able to bring awareness on the subject and we participated in successful projects
(such as the MRA Cluster Green Software) that created a network of stakeholders,
both companies and public institutions, interested in software energy efficiency.
Together with these stakeholders, we assessed the need of professionals in the
European market with competences and skills in Green IT and Green Software
Engineering. This need was the main motivation for the new master track in
“Software Engineering and Green IT” of the VU University Amsterdam, which
aims to educate professionals in Software Engineering with specific skills and
knowledge in IT sustainability issues [70]. In the context of this master track,
we will provide a course focused on experimentation in software energy efficiency,
called Green Lab. In this course, students will follow the path traced by this
thesis, performing experiments to validate practices and case studies provided by
the industrial stakeholders.

Driving the ICT industry towards a more sustainable path requires a solid,
long-term effort in both research and education, involving national and interna-
tional institutions. This thesis is a step further in such a direction.

125

English Summary

The energy consumption of ICT is growing at an unprecedented pace. The main
drivers for this growth are the widespread diffusion of mobile devices and the
proliferation of datacenters, the most power-hungry IT facilities. In addition, it
is predicted that the demand for ICT technologies and services will increase in
the coming years. Finding solutions to decrease ICT energy footprint is and will
be a top priority for researchers and professionals in the field.

As a matter of fact, hardware technology has substantially improved through-
out the years: modern ICT devices are definitely more energy efficient than their
predecessors, in terms of performance per watt. However, as recent studies show,
these improvements are not effectively reducing the growth rate of ICT energy
consumption. This suggests that these devices are not used in an energy-efficient
way. Hence, we have to look at software.

Modern software applications are not designed and implemented with energy
efficiency in mind. As hardware became more and more powerful (and cheaper),
software developers were not concerned anymore with optimizing resource usage.
Rather, they focused on providing additional features, adding layers of abstrac-
tion and complexity to their products. This ultimately resulted in bloated, slow
software applications that waste hardware resources — and consequently, energy.

In this dissertation, the relationship between software behavior and hardware
energy consumption is explored in detail. For this purpose, the abstraction levels
of software are traversed upwards, from source code to architectural components.
Empirical research methods and evidence-based software engineering approaches
serve as a basis. First of all, this dissertation shows the relevance of software over
energy consumption. Secondly, it gives examples of best practices and tactics that
can be adopted to improve software energy efficiency, or design energy-efficient
software from scratch. Finally, this knowledge is synthesized in a conceptual
framework that gives the reader an overview of possible strategies for software
energy efficiency, along with examples and suggestions for future research.

127

Nederlandse samenvatting

Het energieverbruik van ICT groeit met een ongekende snelheid. De belangri-
jkste redenen voor deze groei zijn het wijdverspreide gebruik van mobiele appa-
ratuur en de toename van het aantal datacenters, de meest energie behoeftige
IT-faciliteiten. Daarnaast wordt voorspeld dat de behoefte aan ICT technologien
en services in de aankomende jaren zal toenemen. Het vinden van methoden om
de ICT energie footprint te verkleinen is en zal topprioriteit zijn voor onderzoek-
ers en professionals.

Hardware technologie is de afgelopen jaren substantieel verbeterd, gemeten
in prestatie per watt is de huidige ICT apparatuur meer energie efficint dan zijn
voorgangers. Echter, recent onderzoek toont aan dat deze verbeteringen de groei
van het ICT energieverbruik niet effectief verminderen. Dit wijst erop dat de
apparaten niet op een energie-efficinte manier worden gebruikt. Daarom moeten
we naar de software kijken.

Moderne software applicaties worden niet ontworpen en gemplementeerd va-
nuit een energie efficint perspectief. Terwijl hardware steeds krachtiger (en goed-
koper) werd, waren de software ontwerpers niet bezig met het optimaliseren van
het bron verbruik. In plaats daarvan focusten zij op het toevoegen van extra
eigenschappen, wat leidde tot extra lagen van abstractie en complexiteit in hun
producten. Uiteindelijk leidde dit tot opgeblazen, langzame software applicaties
welke hardware capaciteiten, en dus energie, verspilden.

Uiteindelijk leidde dit tot opgeblazen, langzame software applicaties welke
hardware capaciteiten, en dus energie, verspilden. Hiervoor werden de abstrac-
tielevels van software overspannen van broncode naar structurele componenten.
Empirische onderzoeksmethoden en evidence based software engineering zullen
hiervoor als basis dienen. Allereerst toont dit proefschrift de relevantie van soft-
ware voor het energieverbruik van hardware. Daarnaast geeft het voorbeelden
voor best practices en tactieken die te gebruiken zijn om software energie efficintie
te verbeteren of te ontwerpen. Tot slot wordt deze kennis toegepast in een con-
ceptueel kader welke de lezer een overzicht geeft van de mogelijk strategien voor
energie efficinte software, met daarbij voorbeelden en suggesties voor toekomstig
onderzoek.

129

Acknowledgements

As I glance at my doctoral endeavour, I cannot help but notice a common theme:
duality. I always thought of myself as having two different “souls”: a methodical,
engineering one, and a more creative, abstraction—oriented one. This somehow
reflects also in the choices I made and in the path that led me here.

Obviously, this duality is primarily represented by my two almae matres:
Politecnico di Torino and VU University Amsterdam. Consequently, I want to
begin by thanking my two supervisors: Maurizio and Patricia. They were both
great supervisors, but in different ways: Maurizio inspired me with his approach
to software engineering as “the equivalent of an experimental physicist”, teaching
me experimentation and the rigour of quantitative evidence. Patricia taught me
how to challenge my beliefs, or rather that “we don’t believe”, showing me how a
true scientist must behave: be bold when stating facts but be ready to disprove
them. I consider both of them not only amazing researchers, but great people. I
am glad to have had the opportunity of working with them during my PhD.

I would also like to thank my thesis committee, for their precious feedback
and support.

I would definitely not be able to write these words without the help and
support I received from my colleagues, in Italy, the Netherlands, and everywhere
else. For this reason, I want to thank the team of the Lab “Italo Gorini” of
the Politecnico di Torino, Luca Ardito, Federico Tomassetti, Andrea Martina,
Syed Ali, Najeeb Ullah, Oscar Rodriguez, Christian Figueroa, and all my PhD
colleagues of the XXVII cycle. A special mention goes to Antonio Vetro, my
master thesis supervisor, long-term collaborator and German beer provider. If it
wasn’t for him, I would never have thought about software energy efficiency. I
still don’t know whether I should thank him for that.

A good thing about working in two universities is that you work with twice
as much people, and just as amazing. My colleagues at the VU University Ams-
terdam, for example: my former colleagues Maryam Razavian, Damian Andrew
Tamburri, Christina Manteli, Hector Fernandez, as well as Han van der Aa,
Fahimeh Alizadeh, Nelly Condori-Fernandez, Karl Lundfall, Klaas Andries de
Graaf and everyone else I forgot to mention.

The administrative staff of both universities deserve a special mention for
their help and support. In particular, I want to thank Mojca, Caroline and Elly
from the VU for helping me solve the many problems a foreign student has to
face.

My duality comes back again in the choice of my paranymphs. Marco Nicotra,
computer engineer, and Matteo Raimondi, phylosopher and writer, are two of my
best friends, and also represent for me two completely different ways of living life.
I was so lucky to learn from both of them in my life, several times. Thanks guys.
With them, I want to thank my friends from Palermo, who always supported me —

131

especially by contradicting me. Pietro, Dario, Manfredi, Roberto, Sergio, Sergio,
Francesco: grazie. You taught me what friendship really means, and I will never
forget that. I also want to mention my friends, flatmates and fellow students at
the Politecnico: Vincenzo and Gaetano. Thanks guys, for sharing our great time
in Turin (and for bearing with me in Largo Orbassano). Here in Amsterdam, I
was again very lucky: I made friends who never made me feel homesick. Paolo,
Giacomo, Jennifer, Justine, all of Bozzellions, and my band ViciousK: thanks
guys, I'm looking forward to continue the adventure of living in Amsterdam with
you. For brevity reasons, I obviously cannot mention everyone: all the friends I
made in my journey, in Palermo, Torino, Cordoba, Amsterdam, would deserve to
be mentioned for sure.

However, a special mention for a special person: Joana, thanks for your love
and caring support. We make a great team!

Con queste ultime parole in Italiano, voglio ringraziare la mia famiglia, a
Palermo, Napoli, Milano, e in giro per I'Italia. In particolare voglio menzionare le
due persone che sono state sempre presenti nella mia vita, anche quando lontane,
e che mi hanno sempre dato il loro affetto e sostegno incondizionato. Anche con
loro, il tema della dualita ritorna: mio padre, Placido, mi ha trasmesso nelle vene
la curiosita e la passione per I'ingegneria sin da bambino. Vederlo orgoglioso di
me mi rende felice. Mia sorella, Elsa, ha sempre cercato di farmi pensare fuori
dagli schemi. Lei é un esempio per me ed in fondo, ha sempre avuto ragione.
Come quando mi ha convinto a fare il dottorato. Sono sicuro che con mio nipote,
Antonio, fara un lavoro ancora migliore di quanto non abbia fatto con me.

Infine, voglio ringraziare un’ultima persona. Anche lei ¢’é sempre stata, anche
se non ¢’é piu.

A mia madre
Giuseppe Procaccianti
March 6th, 2015

132

1]

Bibliography

Acpi 5.1 specifications, July 2014. Available from: http://www.uefi.
org/sites/default/files/resources/ACPI_5_1release.pdf. (Cited on
pages 17, 18, and 19.)

Luca Ardito, Giuseppe Procaccianti, Marco Torchiano, and Giuseppe
Migliore. Profiling power consumption on mobile devices. In ENERGY
2013, The Third International Conference on Smart Grids, Green Commu-
nications and IT Energy-aware Technologies, pages 101-106, 2013. (Cited
on pages 104 and 105.)

Luca Ardito, Marco Torchiano, Marco Marengo, and Paolo Falcarin. gL.CB:
an energy aware context broker. Sustainable Computing: Informatics and
Systems, 3(1):18-26, 2013. doi:10.1016/j.suscom.2012.10.005. (Cited
on page 111.)

AT&T. Application resource optimizer (ARO), 2011. Last vis-
ited: May 5th, 2014. Available from: https://developer.att.com/
application-resource-optimizer. (Cited on page 108.)

Woongki Baek and Trishul M Chilimbi. Green: A framework for sup-
porting energy-conscious programming using controlled approximation. In
Proceedings of the 2010 ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, PLDI '10, pages 198-209, New York,
NY, USA, 2010. ACM. (Cited on page 44.)

Rami Bahsoon. A framework for dynamic self-optimization of power and
dependability requirements in green cloud architectures. In Proceedings
of the 4" Buropean conference on Software architecture, ECSA’10, pages
510-514, Berlin, Heidelberg, 2010. Springer-Verlag. (Cited on page 86.)

Nisa Bakkalbasi, Kathleen Bauer, Janis Glover, and Lei Wang. Three op-
tions for citation tracking: Google Scholar, Scopus and Web of Science.
Biomedical digital libraries, 3(1):7, 2006. (Cited on page 83.)

Victor R. Basili. Software modeling and measurement: the Goal/Ques-
tion/Metric paradigm. Technical report, University of Maryland, 1992.
(Cited on page 14.)

Victor R. Basili. The experimental paradigm in software engineering. In
Experimental Software Engineering Issues: Critical Assessment and Future
Directions, Lecture Notes in Computer Science, pages 1-12. Springer Berlin
Heidelberg, 1 January 1993. (Cited on page 6.)

133

http://www.uefi.org/sites/default/files/resources/ACPI_5_1release.pdf
http://www.uefi.org/sites/default/files/resources/ACPI_5_1release.pdf
http://dx.doi.org/10.1016/j.suscom.2012.10.005
https://developer.att.com/application-resource-optimizer
https://developer.att.com/application-resource-optimizer

[10]

[12]

[13]

[17]

[18]

Victor R. Basili. A personal perspective on the evolution of empirical soft-
ware engineering. In Jiirgen Miinch and Klaus Schmid, editors, Perspectives
on the Future of Software Engineering, pages 255—273. Springer Berlin Hei-
delberg, 2013. doi:10.1007/978-3-642-37395-4_17. (Cited on page 119.)

Victor R. Basili, Richard W. Selby, and David H. Hutchens. Experimenta-
tion in software engineering. IEEFE Trans. Software Eng., SE-12(7):733-743,
July 1986. (Cited on page 38.)

Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice. SEI Series in Software Engineering. Addison-Wesley, third edition,
2012. (Cited on pages 5, 69, 70, 87, and 89.)

Andreas Berl, Erol Gelenbe, Marco Di Girolamo, Giovanni Giuliani, Her-
mann De Meer, Minh Quan Dang, and Kostas Pentikousis. Energy-efficient
cloud computing. The Computer Journal, 53(7):1045-1051, 2010. (Cited
on page 65.)

Mathias Binswanger. Technological progress and sustainable development:
what about the rebound effect? FEcol. Econ., 36(1):119-132, January 2001.
(Cited on page 3.)

Paolo Bozzelli, Qing Gu, and Patricia Lago. A systematic literature review
on green software metrics. Technical report, VU University Amsterdam,
2013. (Cited on page 66.)

Antonio Brogi, Ahmad Ibrahim, Jacopo Soldani, José Carrasco, Javier
Cubo, Ernesto Pimentel, and Francesco D’Andria. SeaClouds: A Euro-
pean project on seamless management of multi-cloud applications. SIG-
SOFT Softw. Eng. Notes, 39(1):1-4, February 2014. (Cited on page 76.)

Kirk W. Cameron. Energy oddities, part 2: Why green computing is
odd. Computer, 46(3):90-93, 2013. doi:10.1109/MC.2013.94. (Cited
on page 114.)

Eugenio Capra, Chiara Francalanci, and Sandra A. Slaughter. Is soft-
ware “green”? Application development environments and energy effi-
ciency in open source applications. Information and Software Technology,
54(1):60-71, January 2012. doi:10.1016/j.infsof.2011.07.005. (Cited
on pages 39, 40, and 114.)

Eugenio Capra, Chiara Francalanci, and Sandra A. Slaughter. Measur-
ing application software energy efficiency. IT Professional, 14(2):54—61,
March/April 2012. doi:10.1109/MITP.2012.39. (Cited on page 114.)

134

http://dx.doi.org/10.1007/978-3-642-37395-4_17
http://dx.doi.org/10.1109/MC.2013.94
http://dx.doi.org/10.1016/j.infsof.2011.07.005
http://dx.doi.org/10.1109/MITP.2012.39

[20]

[28]

[29]

Eugenio Capra and Francesco Merlo. Green it: Everything starts from the
software. In Susan Newell, Edgar A. Whitley, Nancy Pouloudi, Jonathan
Wareham, and Lars Mathiassen, editors, 17th Furopean Conference on In-
formation Systems, pages 62-73, Verona, Italy, 2009. (Cited on page 86.)

Julien Carpentier, Jean-Patrick Gelas, Laurent Lefevre, Maxime Morel,
Olivier Mornard, and Jean-Pierre Laisne. Compatibleone: Designing an
energy efficient open source cloud broker. In Cloud and Green Computing
(CGC), 2012 Second International Conference on, pages 199-205. IEEE,
2012. (Cited on pages 73, 78, 81, 82, and 90.)

Pablo Jesus Chacin Martinez et al. A Middleware framework for self-
adaptive large scale distributed services. PhD thesis, Universitat Politec-
nica de Catalunya, Departament d’Arquitectura dels Computadors, 2011.
(Cited on pages 72, 78, 81, and 82.)

FeiFei Chen, J Schneider, Yun Yang, John Grundy, and Qiang He. An
energy consumption model and analysis tool for cloud computing environ-
ments. In First International Workshop on Green and Sustainable Software
(GREENS), pages 45-50. IEEE, 2012. (Cited on page 35.)

Thomas D. Cook and Donald T. Campbell. Quasi-experimentation: Design
& analysis issues for field settings. Houghton Mifflin Company, Boston,
1979. (Cited on page 52.)

Intel Corp. Intel Energy Checker SDK, 2010. Available from: https:
//software.intel.com/en-us/articles/intel-energy-checker-sdk.
(Cited on page 48.)

Lewis Curtis. Environmentally sustainable infrastructure design. The Ar-
chitecture Journal, 18:2-8, 2008. (Cited on pages 72, 78, 81, 82, and 109.)

Remco C. De Boer, Rik Farenhorst, Patricia Lago, Hans Van Vliet, Viktor
Clerc, and Anton Jansen. Architectural knowledge: Getting to the core.
In Software Architectures, Components, and Applications, pages 197-214.
Springer, 2007. (Cited on page 69.)

Frederico G. Alvares De Oliveira Jr, Thomas Ledoux, et al. Self-
optimisation of the energy footprint in service-oriented architectures. In
Proceedings of the 15 Workshop on Green Computing, pages 4-9, 2010.
(Cited on pages 72, 78, 81, 82, and 93.)

Yadolah Dodge. The Oxford dictionary of statistical terms. Oxford Univer-
sity Press, 2006. (Cited on page 32.)

135

https://software.intel.com/en-us/articles/intel-energy-checker-sdk
https://software.intel.com/en-us/articles/intel-energy-checker-sdk

[30]

[31]

[32]

[33]

[34]

Brian Patrick Dougherty. Configuration and Deployment Derivation Strate-
gies for Distributed Real-time and Embedded Systems. PhD thesis, Vander-
bilt University, 2011. (Cited on pages 72, 78, 79, 81, and 82.)

Corentin Dupont, Giovanni Giuliani, Fabieu Hermenier, Thomas Schulze,
and Andrev Somov. An energy aware framework for virtual machine place-
ment in cloud federated data centres. In Future Energy Systems: Where
Energy, Computing and Communication Meet (e-Energy), 2012 Third In-
ternational Conference on, pages 1-10. IEEE, 2012. (Cited on pages 73,
78, 81, 82, and 95.)

Thomas Erl. SOA: principles of service design, volume 1. Prentice Hall,
2008. (Cited on page 97.)

Niroshinie Fernando, Seng W Loke, and Wenny Rahayu. Mobile cloud
computing: A survey. Future Generation Computer Systems, 29(1):84-106,
2013. (Cited on pages 36 and 86.)

Miguel Ferreira, Eric Hoekstra, Bo Merkus, and Joost Visser. Seflab: A
lab for measuring software energy footprints. In Proceedings of the Second
International Workshop on Green and Sustainable Software (GREENS),
2013. (Cited on pages 32, 38, 47, and 118.)

N Ferry, A Rossini, F Chauvel, B Morin, and others. Towards model-
driven provisioning, deployment, monitoring, and adaptation of multi-cloud
systems. CLOUD 2013: IEEE, 2013. (Cited on page 76.)

Tim Forell, Dejan Milojicic, and Vanish Talwar. Cloud management: Chal-
lenges and opportunities. In Parallel and Distributed Processing Workshops
and Phd Forum (IPDPSW), 2011 IEEFE International Symposium on, pages
881-889. IEEE, 2011. (Cited on pages 72, 78, 81, and 82.)

Marting Fowler and Kent Beck. Refactoring: improving the design of ex-
isting code. Addison-Wesley Professional, 1999. (Cited on page 109.)

E Gamma, R Helm, R Johnson, and J Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Pearson Education, 1994. (Cited on
page 41.)

Saurabh Kumar Garg, Chee Shin Yeo, and Rajkumar Buyya. Green cloud
framework for improving carbon efficiency of clouds. In FEuro-Par 2011
Parallel Processing, Lecture Notes in Computer Science, pages 491-502.
Springer Berlin Heidelberg, 1 January 2011. (Cited on pages 72, 78, 81, 82,
and 98.)

136

[40]

[49]

David Garlan and Mary Shaw. An introduction to software architecture.
Advances in software engineering and knowledge engineering, 1:1-40, 1993.
(Cited on page 70.)

Mark Gordon, Lide Zhang, and Birjodh Tiwana. Powertutor, 2009. Last
visited: May 5th, 2014. Available from: http://ziyang.eecs.umich.edu/
projects/powertutor/. (Cited on page 108.)

Marion Gottschalk, Mirco Josefiok, Jan Jelschen, and Andreas Winter. Re-
moving energy code smells with reengineering services. In GI-Jahrestagung,
pages 441-455, 2012. (Cited on page 109.)

Sebastian Gotz, Claas Wilke, Sebastian Cech, and Uwe Assmann. Runtime
variability management for energy-efficient software by contract negotia-

tion. In Proceedings of the 6™ International Workshop Models@run.time
(MRT 2011), 2011. (Cited on pages 72, 78, 81, and 82.)

Greenpeace. Make it green: Cloud computing and its contribution to cli-
mate change. Technical report, Greenpeace International, 30 March 2010.
(Cited on page 1.)

Qing Gu, Patricia Lago, and Simone Potenza. Delegating data management
to the cloud: a case study in a telecommunication company. In Interna-
tional Symposium on the Maintenance and Evolution of Service-Oriented
and Cloud-Based Systems (MESOCA), volume 7, pages 56-63. IEEE Com-
puter Society, sep 2013. (Cited on pages 85 and 86.)

Sven Gude. Energy efficient software. Master’s thesis, VU University Am-
sterdam, Sep 2010. (Cited on pages 44, 45, and 61.)

PK Gupta and G Singh. Minimizing power consumption by personal com-
puters: A technical survey. International Journal of Information Technol-
ogy and Computer Science, 4(10):57, 2012. (Cited on page 32.)

Shuai Hao, Ding Li, William GJ Halfond, and Ramesh Govindan. Esti-
mating mobile application energy consumption using program analysis. In
Proceedings of the 2013 International Conference on Software Engineering,
pages 92-101. IEEE Press, 2013. (Cited on page 34.)

Mark Harman, Kiran Lakhotiaa, Jeremy Singerb, David R Whiteb, and
Shin Yooa. Cloud engineering is search based optimization too. Journal of
Systems and Software, 86(9):2225-2241, 2013. (Cited on pages 73, 78, 81,
and 82.)

137

http://ziyang.eecs.umich.edu/projects/powertutor/
http://ziyang.eecs.umich.edu/projects/powertutor/

[50]

[51]

[52]

[53]

Markus Hedwig. Taming energy costs of large enterprise systems through
adaptive provisioning. PhD thesis, Albert-Ludwigs-Universitit Freiburg,
2009. (Cited on pages 72, 78, 81, and 82.)

Nikolas Roman Herbst, Samuel Kounev, and Ralf Reussner. Elasticity in
cloud computing: What it is, and what it is not. In Proceedings of the 10th
International Conference on Autonomic Computing (ICAC 13), pages 23—
27, San Jose, CA, 2013. USENIX. Available from: https://www.usenix.
org/conference/icacl3/technical-sessions/presentation/herbst.
(Cited on page 96.)

Abram Hindle. Green mining: a methodology of relating software change
and configuration to power consumption. Empir. Softw. Eng., pages 1-36,
2013. (Cited on pages 40 and 41.)

Nikolaus Huber, Fabian Brosig, and Samuel Kounev. Model-based self-
adaptive resource allocation in virtualized environments. In Proceedings of
the 6" International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, pages 90-99. ACM, 2011. (Cited on pages 72, 78,
81, and 82.)

Intel Open Source Technology Center. Powertop, 2012. Last visited:
May 5th, 2014. Available from: https://01.org/powertop. (Cited on
page 108.)

ISO/IEC/IEEE. Systems and software engineering - architecture descrip-
tion, mar 2011. Available from: http://www.iso-architecture.org/
ieee-1471/. (Cited on pages 69 and 107.)

Nick Jones. Eight software approaches can enable Energy-Efficient com-
puting. Technical Report G00151775, Gartner, 16 October 2007. (Cited on
page 44.)

Vigdis By Kampenes, Tore Dyba, Jo E Hannay, and Dag I K. Sjgberg.
A systematic review of quasi-experiments in software engineering. Infor-
mation and Software Technology, 51(1):71-82, January 2009. (Cited on

page 7.)

Aman Kansal and Feng Zhao. Fine-grained energy profiling for power-
aware application design. SIGMETRICS Perform. Eval. Rev., 36(2):26-31,
August 2008. doi:10.1145/1453175.1453180. (Cited on page 37.)

Gregory Katsaros, Josep Subirats, J Oriol Fit6, Jordi Guitart, Pierre Gilet,
and Daniel Espling. A service framework for energy-aware monitoring

138

https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://01.org/powertop
http://www.iso-architecture.org/ieee-1471/
http://www.iso-architecture.org/ieee-1471/
http://dx.doi.org/10.1145/1453175.1453180

[60]

[61]

and vm management in clouds. Future Generation Computer Systems,
InPress:InPress, 2012. (Cited on pages 73, 78, 81, and 82.)

R Kazman, J Asundi, and M Klein. Quantifying the costs and benefits
of architectural decisions. In Software Engineering, 2001. ICSE 2001. Pro-
ceedings of the 237 International Conference on, pages 297-306, May 2001.
(Cited on page 70.)

J Kephart, JO Kephart, DM Chess, Craig Boutilier, Rajarshi Das, Jeffrey O
Kephart, and William E Walsh. An architectural blueprint for autonomic
computing. Technical report, IBM Corporation, 2005. 3rd Ed. (Cited on
page 100.)

Nakku Kim, Jungwook Cho, and Euiseong Seo. Energy-credit scheduler:
an energy-aware virtual machine scheduler for cloud systems. Future Gen-
eration Computer Systems, 2012. (Cited on page 34.)

Barbara Kitchenham, O Pearl Brereton, David Budgen, Mark Turner, John
Bailey, and Stephen Linkman. Systematic literature reviews in software
engineering—a systematic literature review. Information and software tech-
nology, 51(1):7-15, 2009. (Cited on page 66.)

Barbara A Kitchenham and Stuart Charters. Guidelines for performing sys-
tematic literature reviews in software engineering (version 2.3). Technical
Report EBSE-2007-01, EBSE, 2007. (Cited on pages 6 and 69.)

J G Koomey, S Berard, M Sanchez, and H Wong. Implications of historical
trends in the electrical efficiency of computing. IEEE Ann. Hist. Comput.,
33(3):46-54, March 2011. (Cited on page 3.)

Jonathan Koomey. Growth in data center electricity use 2005 to 2010.
Oakland, CA: Analytics Press. August, 1:2010, 2011. (Cited on page 1.)

Samuel Kounev. Self-aware software and systems engineering: A vision and
research roadmap. GI Softwaretechnik-Trends, 31 (4):21-25, 2011. (Cited
on pages 72, 78, 81, and 82.)

Tobias Kurze, Markus Klems, David Bermbach, Alexander Lenk, Stefan
Tai, and Marcel Kunze. Cloud federation. In The Second International Con-
ference on Cloud Computing, GRIDs, and Virtualization (CLOUD COM-
PUTING), pages 32-38, 2011. (Cited on page 97.)

Young-Woo Kwon and Eli Tilevich. The impact of distributed programming
abstractions on application energy consumption. Information and Software
Technology, 55(9):1602-1613, September 2013. (Cited on pages 40 and 41.)

139

[70]

[71]

[72]

Patricia Lago. A master program on engineering energy-aware software.
In Proceedings of ICT for Energy Efficiency (Envirolnfo), 2014. (Cited on
page 125.)

Patricia Lago, Rick Kazman, Niklaus Meyer, Maurizio Morisio, Hausi A.
Miiller, Frances Paulisch, Giuseppe Scanniello, Birgit Penzenstadler, and
Olaf Zimmermann. Exploring initial challenges for green software engineer-
ing: summary of the first GREENS workshop, at ICSE 2012. SIGSOFT
Softw. Eng. Notes, 38(1):31-33, January 2013. doi:10.1145/2413038.
2413062. (Cited on pages 107, 113, and 114.)

Patricia Lago, Sedef Akinli Kocak, Ivica Crnkovic, Henning Femmer,
Hausi A. Miiller, and Birgit Penzenstadler. Framing sustainability as qual-
ity property of green software. Submitted to Communications of the ACM,
2014. Under review. (Cited on page 125.)

Patricia Lago, Niklaus Meyer, Maurizio Morisio, Hausi Muller, and
Giuseppe Scaniello. 2nd international workshop on green and sustainable
software (greens 2013). In Proceedings of the 2013 International Confer-
ence on Software Engineering: Companion Volume, pages 1545-1546. IEEE
Computer Society, may 2013. (Cited on pages 84 and 107.)

Patricia Lago, Niklaus Meyer, Maurizio Morisio, Hausi A. Miiller, and
Giuseppe Scanniello. Leveraging ”Energy Efficiency to Software Users”
: summary of the Second GREENS workshop, at ICSE 2013. SIGSOFT
Softw. Eng. Notes, January 2013. doi:10.1145/2413038.2413062. (Cited
on page 2.)

John A. Laitner and Mike Berners-Lee. Gesi smarter 2020: The role of ICT
in driving a sustainable future. Technical report, Global e-Sustainability
Initiative, 2012. (Cited on page 1.)

Bart Lannoo. Overview of ICT energy consumption. Technical Report
D8.1, iMinds, 2 May 2013. Deliverable of the EU FP7 Project ” Network of
Excellence in Internet Science” (EINS). (Cited on page 2.)

P Larsson. Energy-efficient software guidelines. Intel Software Solutions
Group, Tech. Rep, 2011. (Cited on pages 37 and 44.)

D Li and Wgj Halfond. An investigation into energy-saving programming
practices for android smartphone app development. Proceedings of the 3rd
International Workshop on Green and Sustainable Software (GREENS),
2014. (Cited on pages 40 and 42.)

140

http://dx.doi.org/10.1145/2413038.2413062
http://dx.doi.org/10.1145/2413038.2413062
http://dx.doi.org/10.1145/2413038.2413062

[79]

[81]

[82]

M Linares-Véasquez, G Bavota, C Bernal-Cardenas, and others. Mining
Energy-Greedy API usage patterns in android apps: An empirical study.
In 11th Working Conference on Mining Software Repositories. ACM New
York, NY, USA, 2014. (Cited on pages 40 and 43.)

Lanyue Lu, Peter J Varman, and Kshitij Doshi. Decomposing workload
bursts for efficient storage resource management. Parallel and Distributed
Systems, IEEE Transactions on, 22(5):860-873, 2011. (Cited on pages 72,
78, 81, 82, and 97.)

M. Marcu, M. Vladutiu, H. Moldovan, and M. Popa. Thermal benchmark
and power benchmark software. ArXiv e-prints, September 2007. arXiv:
0709.1834. (Cited on page 13.)

Erix Masanet, Arman Shehabi, Lavanya Ramakrishnan, Jiaqi Liang, Xiao-
hui Ma, Benjamin Walker, Valerie Hendrix, and Pradeep Maantha. The
energy efficiency potential of cloud-based software: A u.s. case study. Tech-
nical report, Laurence Berkeley National Lab, Berkeley, California, June
2013. (Cited on pages 85 and 86.)

Microsoft Research. Joulemeter, 2008. Last visited: May 5th, 2014.
Available from: http://research.microsoft.com/en-us/projects/
joulemeter/. (Cited on page 108.)

Matthew B Miles and A Michael Huberman. Qualitative data analysis: An
expanded sourcebook. Sage, 1994. (Cited on page 69.)

John A Mills. A pragmatic view of the system architect. Commun. ACM,
28(7):708-717, July 1985. (Cited on pages 82 and 107.)

D C Montgomery. Design and Analysis of Experiments. Student solutions
manual. John Wiley & Sons, 2008. (Cited on page 51.)

G E Moore. Cramming more components onto integrated circuits. Flec-
tronics,, 38(8), April 1965. (Cited on page 2.)

Davide Morelli, Antonio Cisternino, and Andrew V Jones. A compositional
model to characterize software and hardware from their resource usage. In
Proceedings of Imperial College Computing Student Workshop (ICCSW),
pages 95-101, 2012. (Cited on page 34.)

Adel Noureddine, Aurelien Bourdon, Romain Rouvoy, and Lionel Sein-
turier. A preliminary study of the impact of software engineering on greenit.
In 2012 First International Workshop on Green and Sustainable Software
(GREENS), pages 21-27. IEEE, 2012. (Cited on pages 40 and 41.)

141

http://arxiv.org/abs/0709.1834
http://arxiv.org/abs/0709.1834
http://research.microsoft.com/en-us/projects/joulemeter/
http://research.microsoft.com/en-us/projects/joulemeter/

[90]

[92]

[94]

Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. Supporting
energy-driven adaptations in distributed environments. In Proceedings of
the 15t Workshop on Middleware and Architectures for Autonomic and Sus-
tainable Computing, pages 13-18. ACM, 2011. (Cited on pages 72, 78, 81,
and 82.)

Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. A review of mid-
dleware approaches for energy management in distributed environments.
Software: Practice and Experience, 00:1-30, 2012. (Cited on pages 73, 78,
81, and 82.)

Adam Oliner, Anand Padmanabha Iyer, Ion Stoica, Eemil Lagerspetz, and
Sasu Tarkoma. Carat: Collaborative energy diagnosis for mobile devices.
Technical report, University of California at Berkeley, 2013. (Cited on
page 35.)

Rajesh Palit, Ajit Singh, and Kshirasagar Naik. Energy cost of software
applications on portable wireless devices. In Green Mobile Devices and
Networks: Energy Optimization and Scavenging Techniques, page 53. CRC
Press, 2012. (Cited on pages 34, 35, and 36.)

Abhinav Pathak, Y Charlie Hu, and Ming Zhang. Bootstrapping energy
debugging on smartphones: A first look at energy bugs in mobile devices.
In 10th ACM Workshop on Hot Topics in Networks, HotNets-X, pages 5:1—
5:6, New York, NY, USA, 2011. ACM. (Cited on pages 109 and 115.)

Birgit Penzenstadler, Henning Femmer, and Debra Richardson. Who is the
Advocate? Stakeholders for Sustainability. In 2nd International Workshop
on Green and Sustainable Software (GREENS) at ICSE, 2013. (Cited on
page 107.)

Dewayne E Perry and Alexander L Wolf. Foundations for the study of soft-
ware architecture. ACM SIGSOFT Software Engineering Notes, 17(4):40—
52, 1992. (Cited on page 69.)

G Pinto, F Castor, and Y D Liu. Understanding energy behaviors of thread
management constructs. In 28th ACM Conference on Object-Oriented pro-
gramming systems, languages, and applications (OOPSLA), 2014. (Cited
on pages 40 and 42.)

Gustavo Pinto, Fernando Castor, and Yu David Liu. Mining questions
about software energy consumption. In The 11" Working Conference on
Mining Software Repositories (MSR), 2014. (Cited on pages 40 and 43.)

142

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

Gerald J Popek and Robert P Goldberg. Formal requirements for vir-
tualizable third generation architectures. Communications of the ACM,
17(7):412-421, 1974. (Cited on page 94.)

W Pree. Meta patterns —a means for capturing the essentials of reusable
object-oriented design. Object-oriented programming, 1994. (Cited on
page 115.)

Claudia Raibulet and Laura Masciadri. Evaluation of dynamic adaptivity
through metrics: an achievable target? In Software Architecture, 2009 &
European Conference on Software Architecture. WICSA/ECSA 2009. Joint
Working IEEE/IFIP Conference on, pages 341-344. IEEE, 2009. (Cited
on page 111.)

Parthasarathy Ranganathan, Suzanne Rivoire, and Justin Moore.
Chapter 3 models and metrics for energy-efficient computing.
In Marvin V. Zelkowitz, editor, Computer Performance Issues,
volume 75 of Advances in Computers, pages 159-233. Elsevier,
2009. Available from: http://www.sciencedirect.com/science/
article/B7RNF-4W1SCVX-6/2/e125a98e7a8d0f85f3bc2da984764d20,
doi:D0I:10.1016/S0065-2458(08)00803-6. (Cited on page 33.)

Govindaraj Rangaraj and Rami Bahsoon. Green software architectures:
A market-based approach. In The Second International Workshop on
Software Research and Climate Change (WSRCC), in affiliation with
the ACM/IEEE 32" International Conference on Software Engineering
(ICSE), ICSE’10, 2010. (Cited on page 86.)

Sherief Reda and Abdullah N. Nowroz. Power modeling and characteri-
zation of computing devices: A survey. Found. Trends FElectron. Des. Au-
tom., 6(2):121-216, February 2012. doi:10.1561/1000000022. (Cited on
pages 32, 33, and 92.)

Suzanne Rivoire, Mehul A. Shah, Parthasarathy Ranganathan, Christos
Kozyrakis, and Justin Meza. Models and metrics to enable energy-efficiency
optimizations. Computer, 40(12):39-48, 2007. doi:10.1109/MC.2007 .436.
(Cited on page 33.)

Dan Rogers and Ulrich Homann. Application patterns for green it. The Ar-
chitecture Journal, 18:16-21, 2008. (Cited on pages 72, 78, 81, 82, and 94.)

C Sahin, F Cayci, I L M Gutierrez, J Clause, F' Kiamilev, L Pollock, and
K Winbladh. Initial explorations on design pattern energy usage. In Green
and Sustainable Software (GREENS), 2012 First International Workshop
on, pages 55-61, June 2012. (Cited on page 40.)

143

http://www.sciencedirect.com/science/article/B7RNF-4W1SCVX-6/2/e125a98e7a8d0f85f3bc2da984764d20
http://www.sciencedirect.com/science/article/B7RNF-4W1SCVX-6/2/e125a98e7a8d0f85f3bc2da984764d20
http://dx.doi.org/DOI: 10.1016/S0065-2458(08)00803-6
http://dx.doi.org/10.1561/1000000022
http://dx.doi.org/10.1109/MC.2007.436

[108]

109

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

J Saldana. The Coding Manual for Qualitative Researchers. English short
title catalogue Eighteenth Century collection. SAGE Publications, 2012.
(Cited on page 69.)

M. Satyanarayanan. Pervasive computing: vision and challenges. Per-
sonal Communications, IEEE, 8(4):10-17, 2001. doi:10.1109/98.943998.
(Cited on page 86.)

E Saxe. Power-Efficient software. Commun. ACM, 2010. (Cited on pages 44
and 114.)

Simon Schubert, Dejan Kostic, Willy Zwaenepoel, and Kang G Shin. Pro-
filing software for energy consumption. In IEEE International Conference
on Green Computing and Communications, pages 515-522. IEEE, 2012.
(Cited on pages 34 and 36.)

Jyothi Sekhar, Getzi Jeba, and S Durga. A survey on energy efficient server
consolidation through v live migration. International Journal of Advances
in Engineering & Technology, 5 (1):515-525, 2012. (Cited on pages 73, 78,
81, and 82.)

Chiyoung Seo, George Edwards, Daniel Popescu, Sam Malek, and Nenad
Medvidovic. A framework for estimating the energy consumption induced
by a distributed system’s architectural style. In Proceedings of the 8™
international workshop on Specification and verification of component-based
systems, SAVCBS ’09, pages 27-34, New York, NY, USA, 2009. ACM.
doi:10.1145/1596486.1596493. (Cited on page 86.)

Chiyoung Seo, Sam Malek, and Nenad Medvidovic. Component-level en-
ergy consumption estimation for distributed java-based software systems.
In Component-Based Software Engineering, pages 97-113. Springer, 2008.
(Cited on page 110.)

M Sevalnev, S Aalto, J Kommeri, and T Niemi. Using queuing theory for
controlling the number of computing servers. In Proceedings of the 3™ Inter-
national Conference on Green IT Solutions (ICGREEN 2012). SciTePress,
July 2012. (Cited on pages 73, 78, 81, and 82.)

S S Shapiro and M B Wilk. An analysis of variance test for normality
(complete samples). Biometrika, 52(3/4):591-611, 1 December 1965. (Cited
on page 51.)

Junaid Shuja, SajjadA. Madani, Kashif Bilal, Khizar Hayat, SameeU.
Khan, and Shahzad Sarwar. FEnergy-efficient data centers. Comput-
mg, 94(12):9737994, 2012. doi:10.1007/s00607-012-0211-2. (Cited on
page 35.)

144

http://dx.doi.org/10.1109/98.943998
http://dx.doi.org/10.1145/1596486.1596493
http://dx.doi.org/10.1007/s00607-012-0211-2

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

T Simunic, L Benini, and G De Micheli. Energy-efficient design of battery-
powered embedded systems. [EEFE Trans. Very Large Scale Integr. VLSI
Syst., 9(1):15-28, February 2001. (Cited on page 44.)

Amit Sinha and Anantha P Chandrakasan. Energy aware software. In
Thirteenth International Conference on VLSI Design, pages 50-55. IEEE,
2000. (Cited on pages 32, 34, and 37.)

David Mitchell Smith. Hype cycle for cloud computing 2011. Gartner Inc.,
Stamford, 2011. (Cited on pages 71 and 74.)

William J Song, Sudhakar Yalamanchili, Arun F Rodrigues, and Saibal
Mukhopadhyay. Instruction-based energy estimation methodology for
asymmetric manycore processor simulations. In Proceedings of the 5 In-
ternational ICST Conference on Simulation Tools and Techniques, pages
166-171, 2012. (Cited on page 34.)

B Steigerwald, R Chabukswar, K Krishnan, and JD Vega. Creating Energy-
Efficient software. Technical report, Intel Corp., 2007. (Cited on pages 44
and 109.)

T H Szymanski. Impact of future trends on exascale grid and cloud comput-
ing. In Supercomputing, pages 215-231. Springer International Publishing,
Jan 2014. (Cited on page 61.)

Steven te Brinke, Somayeh Malakuti, Christoph Bockisch, Lodewijk
Bergmans, and Mehmet Aksit. A design method for modular energy-aware
software. In Proceedings of the 28" Annual ACM Symposium on Applied
Computing, SAC 13, pages 1180-1182, New York, NY, USA, 2013. ACM.
doi:10.1145/2480362.2480584. (Cited on page 86.)

TERNA. Dati Statistici sull’energia elettrica in Italia. Technical report,
SISTAN, 2013. (Cited on page 38.)

Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Power analysis of em-
bedded software: a first step towards software power minimization. IEEFE
Transactions on Very Large Scale Integration Systems, 2(4):437-445, 1994.
(Cited on pages 32 and 34.)

N Tolia, Z Wang, M Marwah, C Bash, P Ranganathan, and others.
Delivering energy proportionality with non Energy-Proportional Systems-
Optimizing the ensemble. HotPower, 2008. (Cited on page 3.)

145

http://dx.doi.org/10.1145/2480362.2480584

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

Shiao-Li Tsao and Jian Jhen Chen. Seprof: A high-level software energy
profiling tool for an embedded processor enabling power management func-
tions. Journal of Systems and Software, 85(8):1757-1769, 2012. (Cited on
page 34.)

A Tzanakaki, M Anastasopoulos, K Georgakilas, J Buysse, M De Leen-
heer, C Develder, Shuping Peng, R Nejabati, E Escalona, D Simeonidou,
N Ciulli, G Landi, M Brogle, A Manfredi, E Lopez, J F Riera, J A Garcia-
Espin, P Donadio, G Parladori, and J Jimenez. Energy efficiency in inte-
grated IT and optical network infrastructures: The GEYSERS approach.
In Computer Communications Workshops (INFOCOM WKSHPS), 2011
IEEFE Conference on, pages 343-348. ieceexplore.ieee.org, April 2011. (Cited
on pages 72, 78, 81, 82, and 92.)

Andras Vargha and Harold D Delaney. A critique and improvement of the
”CL” common language effect size statistics of McGraw and wong. J. Educ.
Behav. Stat., 25(2):101-132, 1 July 2000. (Cited on page 51.)

A Vetro, L Ardito, G Procaccianti, and M Morisio. Definition, implementa-
tion and validation of energy code smells: an exploratory study on an em-
bedded system. In ENERGY 2013 : The Third International Conference on
Smart Grids, Green Communications and IT Energy-aware Technologies,
pages 34-39, 2013. (Cited on pages 104, 109, and 115.)

David Villegas, Norman Bobroff, Ivan Rodero, Javier Delgado, Yanbin Liu,
Aditya Devarakonda, Liana Fong, S Masoud Sadjadi, and Manish Parashar.
Cloud federation in a layered service model. Journal of Computer and
System Sciences, 78(5):1330-1344, 2012. (Cited on pages 73, 78, 81, 82,
and 99.)

Roel J. Wieringa. Design Science Methodology for Information Systems
and Software Engineering. Springer, September 2014. (Cited on pages 45
and 117.)

Claas Wilke, Sebastian Gotz, and Sebastian Richly. Jouleunit: a generic
framework for software energy profiling and testing. In Proceedings of the
2013 workshop on Green in/by software engineering, pages 9-14. ACM,
2013. (Cited on page 32.)

LG Williams and CU Smith. Five steps to solving software performance
problems. Software Engineering Research and Performance Engineering
Services, 2002. (Cited on page 115.)

Niklaus Wirth. A plea for lean software. Computer, 28(2):64-68, February
1995. (Cited on page 2.)

146

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

C. Wohlin. Experimentation in Software Engineering: An Introduc-
tion. The Kluwer International Series in Software Engineering. Kluwer
Academic, 2000. Available from: http://books.google.es/books?id=
nG2UShVOwAEC. (Cited on pages 83 and 116.)

Claes Wohlin, Per Runeson, Martin Hst, Magnus C Ohlsson, Bjrn Regnell,
and Anders Wessln. FExperimentation in software engineering. Springer
Publishing Company, Incorporated, 2012. (Cited on pages 7, 38, 39,
and 44.)

Zhengkai Wu, Michael E Cotterell, Sun Qin, Aaron Beach, and Grijalva
Santiago. Towards a cloud infrastructure for energy informatics. In En-
ergy Informatics. Sprouts: Working Papers on Information Systems, 2012.
(Cited on pages 73, 78, 81, and 82.)

N Xiong, W Han, and A Vandenberg. Green cloud computing schemes
based on networks: a survey. Communications, IET, 6(18):3294-3300,
2012. (Cited on pages 73, 78, 81, and 82.)

Li Xu, Guozhen Tan, Xia Zhang, and Jingang Zhou. Energy aware cloud
application management in private cloud data center. In Cloud and Ser-
vice Computing (CSC), 2011 International Conference on, pages 274-279.
IEEE, 2011. (Cited on pages 72, 78, 81, 82, and 94.)

Li Xu, Guozhen Tan, Xia Zhang, and Jingang Zhou. A bdi agent-based
approach for cloud application autonomic management. In Cloud Com-
puting Technology and Science (CloudCom), 2012 IEEE 4™ International
Conference on, pages 574-577. IEEE, 2012. (Cited on pages 73, 78, 81,
and 82.)

Paula Younger. Using google scholar to conduct a literature search. Nursing
Standard, 24(45):40-46, 2010. (Cited on page 83.)

Hang Yuan, C.-C. Jay Kuo, and Ishfaqg Ahmad. Energy efficiency in data
centers and cloud-based multimedia services: An overview and future di-
rections. International Conference on Green Computing, 0:375-382, 2010.
doi:10.1109/GREENCOMP.2010.5598292. (Cited on page 35.)

Z. Zhang and J. Chang. A cool scheduler for multi-core systems exploiting
program phases. IEEE Transactions on Computers, PP(99):1-1, 2012. doi:
10.1109/TC.2012.283. (Cited on page 34.)

Albert Y Zomaya and Young Choon Lee. Energy efficient distributed com-
puting systems, volume 88. Wiley, 2012. (Cited on pages 32 and 33.)

147

http://books.google.es/books?id=nG2UShV0wAEC
http://books.google.es/books?id=nG2UShV0wAEC
http://dx.doi.org/10.1109/GREENCOMP.2010.5598292
http://dx.doi.org/10.1109/TC.2012.283
http://dx.doi.org/10.1109/TC.2012.283

SIKS Dissertation Series

1998

1998-1 Johan van den Akker (CWI)
DEGAS - An Active, Temporal Database of Autonomous Objects

1998-2 Floris Wiesman (UM)
Information Retrieval by Graphically Browsing Meta-Information

1998-3 Ans Steuten (TUD)
A Contribution to the Linguistic Analysis of Business Conversations
within the Language/Action Perspective

1998-4 Dennis Breuker (UM)
Memory versus Search in Games

1998-5 E.W.Oskamp (RUL)
Computerondersteuning bij Straftoemeting

1999

1999-1 Mark Sloof (VU)
Physiology of Quality Change Modelling;
Automated modelling of Quality Change of Agricultural Products

1999-2 Rob Potharst (EUR)
Classification using decision trees and neural nets

1999-3 Don Beal (UM)
The Nature of Minimax Search

1999-4 Jacques Penders (UM)
The practical Art of Moving Physical Objects

1999-5 Aldo de Moor (KUB)
Empowering Communities: A Method for the Legitimate User-Driven
Specification of Network Information Systems

1999-6 Niek J.E. Wijngaards (VU)
Re-design of compositional systems

1999-7 David Spelt (UT)
Verification support for object database design

1999-8 Jacques H.J. Lenting (UM)
Informed Gambling: Conception and Analysis of a Multi-Agent
Mechanism for Discrete Reallocation.

2000

2000-1 Frank Niessink (VU)
Perspectives on Improving Software Maintenance

2000-2 Koen Holtman (TUE)
Prototyping of CMS Storage Management

2000-3 Carolien M.T. Metselaar (UVA)
Sociaal-organisatorische gevolgen van kennistechnologie;
een procesbenadering en actorperspectief.

2000-4 Geert de Haan (VU)
ETAG, A Formal Model of Competence Knowledge for User Interface Design

2000-5 Ruud van der Pol (UM)
Knowledge-based Query Formulation in Information Retrieval.

2000-6 Rogier van Eijk (UU)
Programming Languages for Agent Communication

2000-7 Niels Peek (UU)
Decision-theoretic Planning of Clinical Patient Management

2000-8 Veerle Coup (EUR)
Sensitivity Analyis of Decision-Theoretic Networks

2000-9 Florian Waas (CWTI)
Principles of Probabilistic Query Optimization

2000-10 Niels Nes (CWI)
Image Database Management System Design Considerations,
Algorithms and Architecture

2000-11 Jonas Karlsson (CWTI)
Scalable Distributed Data Structures for Database Management

2001

2001-1 Silja Renooij (UU)
Qualitative Approaches to Quantifying Probabilistic Networks

2001-2 Koen Hindriks (UU)
Agent Programming Languages: Programming with Mental Models

2001-3 Maarten van Someren (UvA)
Learning as problem solving

2001-4 Evgueni Smirnov (UM)
Conjunctive and Disjunctive Version Spaces with
Instance-Based Boundary Sets

2001-5 Jacco van Ossenbruggen (VU)
Processing Structured Hypermedia: A Matter of Style

2001-6 Martijn van Welie (VU)
Task-based User Interface Design

2001-7 Bastiaan Schonhage (VU)
Diva: Architectural Perspectives on Information Visualization

2001-8 Pascal van Eck (VU)
A Compositional Semantic Structure for Multi-Agent Systems Dynamics.

2001-9 Pieter Jan 't Hoen (RUL)
Towards Distributed Development of Large Object-Oriented Models,
Views of Packages as Classes

2001-10 Maarten Sierhuis (UvA)
Modeling and Simulating Work Practice
BRAHMS: a multiagent modeling and simulation language
for work practice analysis and design

2001-11 Tom M. van Engers (VUA)
Knowledge Management:
The Role of Mental Models in Business Systems Design

2002

2002-01 Nico Lassing (VU)
Architecture-Level Modifiability Analysis

2002-02 Roelof van Zwol (UT)
Modelling and searching web-based document collections

2002-03 Henk Ernst Blok (UT)
Database Optimization Aspects for Information Retrieval

2002-04 Juan Roberto Castelo Valdueza (UU)
The Discrete Acyclic Digraph Markov Model in Data Mining

2002-05 Radu Serban (VU)
The Private Cyberspace Modeling Electronic Environments
inhabited by Privacy-concerned Agents

2002-06 Laurens Mommers (UL)
Applied legal epistemology;
Building a knowledge-based ontology of the legal domain

2002-07 Peter Boncz (CWI)
Monet: A Next-Generation DBMS Kernel For Query-Intensive
Applications

2002-08 Jaap Gordijn (VU)
Value Based Requirements Engineering: Exploring Innovative
E-Commerce Ideas

2002-09 Willem-Jan van den Heuvel(KUB)
Integrating Modern Business Applications with Objectified
Legacy Systems

2002-10 Brian Sheppard (UM)
Towards Perfect Play of Scrabble

2002-11 Wouter C.A. Wijngaards (VU)
Agent Based Modelling of Dynamics: Biological and Organisational
Applications

2002-12 Albrecht Schmidt (Uva)
Processing XML in Database Systems

2002-13 Hongjing Wu (TUE)
A Reference Architecture for Adaptive Hypermedia Applications

2002-14 Wieke de Vries (UU)
Agent Interaction: Abstract Approaches to Modelling,
Programming and
Verifying Multi-Agent Systems

2002-15 Rik Eshuis (UT)
Semantics and Verification of UML Activity Diagrams for
Workflow Modelling

2002-16 Pieter van Langen (VU)

The Anatomy of Design: Foundations, Models and Applications

2002-17 Stefan Manegold (UVA)
Understanding, Modeling, and Improving Main-Memory Database Performance

2003

2003-01 Heiner Stuckenschmidt (VU)
Ontology-Based Information Sharing in Weakly Structured Environments

2003-02 Jan Broersen (VU)
Modal Action Logics for Reasoning About Reactive Systems

2003-03 Martijn Schuemie (TUD)
Human-Computer Interaction and Presence in Virtual Reality Exposure Therapy

2003-04 Milan Petkovic (UT)
Content-Based Video Retrieval Supported by Database Technology

2003-05 Jos Lehmann (UVA)
Causation in Artificial Intelligence and Law - A modelling approach

2003-06 Boris van Schooten (UT)
Development and specification of virtual environments

2003-07 Machiel Jansen (UvA)
Formal Explorations of Knowledge Intensive Tasks

2003-08 Yongping Ran (UM)
Repair Based Scheduling

2003-09 Rens Kortmann (UM)
The resolution of visually guided behaviour

2003-10 Andreas Lincke (UvT)
Electronic Business Negotiation: Some experimental studies on the interaction
between medium, innovation context and culture

2003-11 Simon Keizer (UT)
Reasoning under Uncertainty in Natural Language Dialogue using Bayesian Networks

2003-12 Roeland Ordelman (UT)
Dutch speech recognition in multimedia information retrieval

2003-13 Jeroen Donkers (UM)
Nosce Hostem - Searching with Opponent Models

2003-14 Stijn Hoppenbrouwers (KUN)
Freezing Language: Conceptualisation Processes across ICT-Supported Organisations

2003-15 Mathijs de Weerdt (TUD)
Plan Merging in Multi-Agent Systems

2003-16 Menzo Windhouwer (CWI)

Feature Grammar Systems - Incremental Maintenance of Indexes to
Digital Media Warehouses

2003-17 David Jansen (UT)
Extensions of Statecharts with Probability, Time, and Stochastic Timing

2003-18 Levente Kocsis (UM)

Learning Search Decisions
2004

2004-01 Virginia Dignum (UU)
A Model for Organizational Interaction: Based on Agents, Founded in Logic

2004-02 Lai Xu (UvT)
Monitoring Multi-party Contracts for E-business

2004-03 Perry Groot (VU)
A Theoretical and Empirical Analysis of Approximation in Symbolic Problem Solving

2004-04 Chris van Aart (UVA)
Organizational Principles for Multi-Agent Architectures

2004-05 Viara Popova (EUR)
Knowledge discovery and monotonicity

2004-06 Bart-Jan Hommes (TUD)
The Evaluation of Business Process Modeling Techniques

2004-07 Elise Boltjes (UM)
Voorbeeldig onderwijs; voorbeeldgestuurd onderwijs, een opstap naar
abstract denken, vooral voor meisjes

2004-08 Joop Verbeek(UM)
Politie en de Nieuwe Internationale Informatiemarkt, Grensregionale
politi€éle gegevensuitwisseling en digitale expertise

2004-09 Martin Caminada (VU)
For the Sake of the Argument; explorations into argument-based reasoning

2004-10 Suzanne Kabel (UVA)
Knowledge-rich indexing of learning-objects

2004-11 Michel Klein (VU)
Change Management for Distributed Ontologies

2004-12 The Duy Bui (UT)
Creating emotions and facial expressions for embodied agents

2004-13 Wojciech Jamroga (UT)
Using Multiple Models of Reality: On Agents who Know how to Play

2004-14 Paul Harrenstein (UU)
Logic in Conflict. Logical Explorations in Strategic Equilibrium

2004-15 Arno Knobbe (UU)
Multi-Relational Data Mining

2004-16 Federico Divina (VU)
Hybrid Genetic Relational Search for Inductive Learning

2004-17 Mark Winands (UM)
Informed Search in Complex Games

2004-18 Vania Bessa Machado (UvA)
Supporting the Construction of Qualitative Knowledge Models

2004-19 Thijs Westerveld (UT)

Using generative probabilistic models for multimedia retrieval

2004-20 Madelon Evers (Nyenrode)
Learning from Design: facilitating multidisciplinary design teams

2005

2005-01 Floor Verdenius (UVA)
Methodological Aspects of Designing Induction-Based Applications

2005-02 Erik van der Werf (UM))
Al techniques for the game of Go

2005-03 Franc Grootjen (RUN)
A Pragmatic Approach to the Conceptualisation of Language

2005-04 Nirvana Meratnia (UT)
Towards Database Support for Moving Object data

2005-05 Gabriel Infante-Lopez (UVA)
Two-Level Probabilistic Grammars for Natural Language Parsing

2005-06 Pieter Spronck (UM)
Adaptive Game AI

2005-07 Flavius Frasincar (TUE)
Hypermedia Presentation Generation for Semantic Web Information Systems

2005-08 Richard Vdovjak (TUE)
A Model-driven Approach for Building Distributed Ontology-based Web Applications

2005-09 Jeen Broekstra (VU)
Storage, Querying and Inferencing for Semantic Web Languages

2005-10 Anders Bouwer (UVA)
Explaining Behaviour: Using Qualitative Simulation in Interactive Learning Environments

2005-11 Elth Ogston (VU)
Agent Based Matchmaking and Clustering - A Decentralized Approach to Search

2005-12 Csaba Boer (EUR)
Distributed Simulation in Industry

2005-13 Fred Hamburg (UL)
Een Computermodel voor het Ondersteunen van Euthanasiebeslissingen

2005-14 Borys Omelayenko (VU)
‘Web-Service configuration on the Semantic Web; Exploring how semantics meets pragmatics

2005-15 Tibor Bosse (VU)
Analysis of the Dynamics of Cognitive Processes

2005-16 Joris Graaumans (UU)
Usability of XML Query Languages

2005-17 Boris Shishkov (TUD)
Software Specification Based on Re-usable Business Components

2005-18 Danielle Sent (UU)
Test-selection strategies for probabilistic networks

2005-19 Michel van Dartel (UM)
Situated Representation

2005-20 Cristina Coteanu (UL)
Cyber Consumer Law, State of the Art and Perspectives

2005-21 Wijnand Derks (UT)
Improving Concurrency and Recovery in Database Systems by
Exploiting Application Semantics

2006

2006-01 Samuil Angelov (TUE)
Foundations of B2B Electronic Contracting

2006-02 Cristina Chisalita (VU)
Contextual issues in the design and use of information technology in organizations

2006-03 Noor Christoph (UVA)
The role of metacognitive skills in learning to solve problems

2006-04 Marta Sabou (VU)
Building Web Service Ontologies

2006-05 Cees Pierik (UU)
Validation Techniques for Object-Oriented Proof Outlines

2006-06 Ziv Baida (VU)
Software-aided Service Bundling - Intelligent Methods & Tools
for Graphical Service Modeling

2006-07 Marko Smiljanic (UT)
XML schema matching — balancing efficiency and effectiveness by means of clustering

2006-08 Eelco Herder (UT)
Forward, Back and Home Again - Analyzing User Behavior on the Web

2006-09 Mohamed Wahdan (UM)
Automatic Formulation of the Auditor’s Opinion

2006-10 Ronny Siebes (VU)
Semantic Routing in Peer-to-Peer Systems

2006-11 Joeri van Ruth (UT)
Flattening Queries over Nested Data Types

2006-12 Bert Bongers (VU)
Interactivation - Towards an e-cology of people, our technological environment, and the arts

2006-13 Henk-Jan Lebbink (UU)
Dialogue and Decision Games for Information Exchanging Agents

2006-14 Johan Hoorn (VU)
Software Requirements: Update, Upgrade, Redesign -
towards a Theory of Requirements Change

2006-15 Rainer Malik (UU)
CONAN: Text Mining in the Biomedical Domain

2006-16 Carsten Riggelsen (UU)

Approximation Methods for Efficient Learning of Bayesian Networks

2006-17 Stacey Nagata (UU)
User Assistance for Multitasking with Interruptions on a Mobile Device

2006-18 Valentin Zhizhkun (UVA)
Graph transformation for Natural Language Processing

2006-19 Birna van Riemsdijk (UU)
Cognitive Agent Programming: A Semantic Approach

2006-20 Marina Velikova (UvT)
Monotone models for prediction in data mining

2006-21 Bas van Gils (RUN)
Aptness on the Web

2006-22 Paul de Vrieze (RUN)
Fundaments of Adaptive Personalisation

2006-23 Ion Juvina (UU)
Development of Cognitive Model for Navigating on the Web

2006-24 Laura Hollink (VU)
Semantic Annotation for Retrieval of Visual Resources

2006-25 Madalina Drugan (UU)
Conditional log-likelihood MDL and Evolutionary MCMC

2006-26 Vojkan Mihajlovic (UT)
Score Region Algebra: A Flexible Framework for Structured Information Retrieval

2006-27 Stefano Bocconi (CWI)
Vox Populi: generating video documentaries from semantically annotated media repositories

2006-28 Borkur Sigurbjornsson (UVA)
Focused Information Access using XML Element Retrieval

2007
2007-01 Kees Leune (UvT)
Access Control and Service-Oriented Architectures

2007-02 Wouter Teepe (RUG)
Reconciling Information Exchange and Confidentiality: A Formal Approach

2007-03 Peter Mika (VU)
Social Networks and the Semantic Web

2007-04 Jurriaan van Diggelen (UU)
Achieving Semantic Interoperability in Multi-agent Systems: a dialogue-based approach

2007-05 Bart Schermer (UL)
Software Agents, Surveillance, and the Right to Privacy:
a Legislative Framework for Agent-enabled Surveillance

2007-06 Gilad Mishne (UVA)
Applied Text Analytics for Blogs

2007-07 Natasa Jovanovic’ (UT)
To Whom It May Concern - Addressee Identification in Face-to-Face Meetings

2007-08 Mark Hoogendoorn (VU)
Modeling of Change in Multi-Agent Organizations

2007-09 David Mobach (VU)
Agent-Based Mediated Service Negotiation

2007-10 Huib Aldewereld (UU)
Autonomy vs. Conformity: an Institutional Perspective on Norms and Protocols

2007-11 Natalia Stash (TUE)
Incorporating Cognitive/Learning Styles in a General-Purpose Adaptive Hypermedia System

2007-12 Marcel van Gerven (RUN)
Bayesian Networks for Clinical Decision Support:
A Rational Approach to Dynamic Decision-Making under Uncertainty

2007-13 Rutger Rienks (UT)
Meetings in Smart Environments; Implications of Progressing Technology

2007-14 Niek Bergboer (UM)
Context-Based Image Analysis

2007-15 Joyca Lacroix (UM)
NIM: a Situated Computational Memory Model

2007-16 Davide Grossi (UU)
Designing Invisible Handcuffs.
Formal investigations in Institutions and Organizations for Multi-agent Systems

2007-17 Theodore Charitos (UU)
Reasoning with Dynamic Networks in Practice

2007-18 Bart Orriens (UvT)
On the development an management of adaptive business collaborations

2007-19 David Levy (UM)
Intimate relationships with artificial partners

2007-20 Slinger Jansen (UU)
Customer Configuration Updating in a Software Supply Network

2007-21 Karianne Vermaas (UU)
Fast diffusion and broadening use:
A research on residential adoption and usage of broadband internet in the Netherlands
between 2001 and 2005

2007-22 Zlatko Zlatev (UT)
Goal-oriented design of value and process models from patterns

2007-23 Peter Barna (TUE)
Specification of Application Logic in Web Information Systems

2007-24 Georgina Ramrez Camps (CWI)
Structural Features in XML Retrieval

2007-25 Joost Schalken (VU)
Empirical Investigations in Software Process Improvement

2008

2008-01 Katalin Boer-Sorbn (EUR)

Agent-Based Simulation of Financial Markets: A modular,continuous-time approach

2008-02 Alexei Sharpanskykh (VU)
On Computer-Aided Methods for Modeling and Analysis of Organizations

2008-03 Vera Hollink (UVA)
Optimizing hierarchical menus: a usage-based approach

2008-04 Ander de Keijzer (UT)
Management of Uncertain Data - towards unattended integration

2008-05 Bela Mutschler (UT)
Modeling and simulating causal dependencies on
process-aware information systems from a cost perspective

2008-06 Arjen Hommersom (RUN)
On the Application of Formal Methods to Clinical Guidelines,
an Artificial Intelligence Perspective

2008-07 Peter van Rosmalen (OU)
Supporting the tutor in the design and support of adaptive e-learning

2008-08 Janneke Bolt (UU)
Bayesian Networks: Aspects of Approximate Inference

2008-09 Christof van Nimwegen (UU)
The paradox of the guided user: assistance can be counter-effective

2008-10 Wauter Bosma (UT)
Discourse oriented summarization

2008-11 Vera Kartseva (VU)
Designing Controls for Network Organizations: A Value-Based Approach

2008-12 Jozsef Farkas (RUN)
A Semiotically Oriented Cognitive Model of Knowledge Representation

2008-13 Caterina Carraciolo (UVA)
Topic Driven Access to Scientific Handbooks

2008-14 Arthur van Bunningen (UT)
Context-Aware Querying; Better Answers with Less Effort

2008-15 Martijn van Otterlo (UT)
The Logic of Adaptive Behavior: Knowledge Representation and Algorithms
for the Markov Decision Process Framework in First-Order Domains.

2008-16 Henriette van Vugt (VU)
Embodied agents from a user’s perspective

2008-17 Martin Op 't Land (TUD)
Applying Architecture and Ontology to the Splitting and Allying of Enterprises

2008-18 Guido de Croon (UM)
Adaptive Active Vision

2008-19 Henning Rode (UT)
From Document to Entity Retrieval: Improving Precision and Performance

of Focused Text Search

2008-20 Rex Arendsen (UVA)

Geen bericht, goed bericht.
Een onderzoek naar de effecten van de introductie van elektronisch berichtenverkeer
met de overheid op de administratieve lasten van bedrijven

2008-21 Krisztian Balog (UVA)
People Search in the Enterprise

2008-22 Henk Koning (UU)
Communication of IT-Architecture

2008-23 Stefan Visscher (UU)
Bayesian network models for the management of ventilator-associated pneumonia

2008-24 Zharko Aleksovski (VU)
Using background knowledge in ontology matching

2008-25 Geert Jonker (UU)
Efficient and Equitable Exchange in Air Traffic Management Plan Repair
using Spender-signed Currency

2008-26 Marijn Huijbregts (UT)
Segmentation, Diarization and Speech Transcription: Surprise Data Unraveled

2008-27 Hubert Vogten (OU)
Design and Implementation Strategies for IMS Learning Design

2008-28 Ildiko Flesch (RUN)
On the Use of Independence Relations in Bayesian Networks

2008-29 Dennis Reidsma (UT)
Annotations and Subjective Machines - Of Annotators, Embodied Agents, Users,
and Other Humans

2008-30 Wouter van Atteveldt (VU)
Semantic Network Analysis: Techniques for Extracting,
Representing and Querying Media Content

2008-31 Loes Braun (UM)
Pro-Active Medical Information Retrieval

2008-32 Trung H. Bui (UT)
Toward Affective Dialogue Management
using Partially Observable Markov Decision Processes

2008-33 Frank Terpstra (UVA)
Scientific Workflow Design; theoretical and practical issues

2008-34 Jeroen de Knijf (UU)
Studies in Frequent Tree Mining

2008-35 Ben Torben Nielsen (UvT)
Dendritic morphologies: function shapes structure

2009

2009-01 Rasa Jurgelenaite (RUN)
Symmetric Causal Independence Models

2009-02 Willem Robert van Hage (VU)
Evaluating Ontology-Alignment Techniques

2009-03 Hans Stol (UvT)
A Framework for Evidence-based Policy Making Using IT

2009-04 Josephine Nabukenya (RUN)
Improving the Quality of Organisational Policy Making using Collaboration Engineering

2009-05 Sietse Overbeek (RUN)
Bridging Supply and Demand for Knowledge Intensive Tasks -
Based on Knowledge, Cognition, and Quality

2009-06 Muhammad Subianto (UU)
Understanding Classification

2009-07 Ronald Poppe (UT)
Discriminative Vision-Based Recovery and Recognition of Human Motion

2009-08 Volker Nannen (VU)
Evolutionary Agent-Based Policy Analysis in Dynamic Environments

2009-09 Benjamin Kanagwa (RUN)
Design, Discovery and Construction of Service-oriented Systems

2009-10 Jan Wielemaker (UVA)
Logic programming for knowledge-intensive interactive applications

2009-11 Alexander Boer (UVA)
Legal Theory, Sources of Law & the Semantic Web

2009-12 Peter Massuthe (TUE, Humboldt-Universitaet zu Berlin)
perating Guidelines for Services

2009-13 Steven de Jong (UM)
Fairness in Multi-Agent Systems

2009-14 Maksym Korotkiy (VU)
From ontology-enabled services to service-enabled ontologies
(making ontologies work in e-science with ONTO-SOA)

2009-15 Rinke Hoekstra (UVA)
Ontology Representation - Design Patterns and Ontologies that Make Sense

2009-16 Fritz Reul (UVT)
New Architectures in Computer Chess

2009-17 Laurens van der Maaten (UvT)
Feature Extraction from Visual Data

2009-18 Fabian Groffen (CWI)
Armada, An Evolving Database System

2009-19 Valentin Robu (CWI)
Modeling Preferences, Strategic Reasoning and Collaboration
in Agent-Mediated Electronic Markets

2009-20 Bob van der Vecht (UU)
Adjustable Autonomy: Controling Influences on Decision Making

2009-21 Stijn Vanderlooy (UM)
Ranking and Reliable Classification

2009-22 Pavel Serdyukov (UT)
Search For Expertise: Going beyond direct evidence

2009-23 Peter Hofgesang (VU)
Modelling Web Usage in a Changing Environment

2009-24 Annerieke Heuvelink (VUA)
Cognitive Models for Training Simulations

2009-25 Alex van Ballegooij (CWI)
?RAM: Array Database Management through Relational Mapping”

2009-26 Fernando Koch (UU)
An Agent-Based Model for the Development of Intelligent Mobile Services

2009-27 Christian Glahn (OU)
Contextual Support of social Engagement and Reflection on the Web

2009-28 Sander Evers (UT)
Sensor Data Management with Probabilistic Models

2009-29 Stanislav Pokraev (UT)
Model-Driven Semantic Integration of Service-Oriented Applications

2009-30 Marcin Zukowski (CWTI)
Balancing vectorized query execution with bandwidth-optimized storage

2009-31 Sofiya Katrenko (UVA)
A Closer Look at Learning Relations from Text

2009-32 Rik Farenhorst (VU) and Remco de Boer (VU)
Architectural Knowledge Management: Supporting Architects and Auditors

2009-33 Khiet Truong (UT)
How Does Real Affect Affect Affect Recognition In Speech?

2009-34 Inge van de Weerd (UU)
Advancing in Software Product Management:
An Incremental Method Engineering Approach

2009-35 Wouter Koelewijn (UL)
Privacy en Politiegegevens; Over geautomatiseerde normatieve informatie-uitwisseling

2009-36 Marco Kalz (OUN)
Placement Support for Learners in Learning Networks

2009-37 Hendrik Drachsler (OUN)
Navigation Support for Learners in Informal Learning Networks

2009-38 Riina Vuorikari (OU)
Tags and self-organisation:

a metadata ecology for learning resources in a multilingual context

2009-39 Christian Stahl (TUE, Humboldt-Universitaet zu Berlin)
Service Substitution — A Behavioral Approach Based on Petri Nets

2009-40 Stephan Raaijmakers (UvT)
Multinomial Language Learning: Investigations into the Geometry of Language

2009-41 Igor Berezhnyy (UvT)

Digital Analysis of Paintings

2009-42 Toine Bogers
Recommender Systems for Social Bookmarking

2009-43 Virginia Nunes Leal Franqueira (UT)
Finding Multi-step Attacks in Computer Networks
using Heuristic Search and Mobile Ambients

2009-44 Roberto Santana Tapia (UT)
Assessing Business-IT Alignment in Networked Organizations

2009-45 Jilles Vreeken (UU)
Making Pattern Mining Useful

2009-46 Loredana Afanasiev (UvA)
Querying XML: Benchmarks and Recursion

2010

2010-01 Matthijs van Leeuwen (UU)
Patterns that Matter

2010-02 Ingo Wassink (UT)
‘Work flows in Life Science

2010-03 Joost Geurts (CWI)
A Document Engineering Model and Processing Framework for Multimedia documents

2010-04 Olga Kulyk (UT)
Do You Know What I Know?
Situational Awareness of Co-located Teams in Multidisplay Environments

2010-05 Claudia Hauff (UT)
Predicting the Effectiveness of Queries and Retrieval Systems

2010-06 Sander Bakkes (UvT)
Rapid Adaptation of Video Game Al

2010-07 Wim Fikkert (UT)
Gesture interaction at a Distance

2010-08 Krzysztof Siewicz (UL)
Towards an Improved Regulatory Framework of Free Software.
Protecting user freedoms in a world of software communities and eGovernments

2010-09 Hugo Kielman (UL)
A Politiele gegevensverwerking en Privacy, Naar een effectieve waarborging

2010-10 Rebecca Ong (UL)
Mobile Communication and Protection of Children

2010-11 Adriaan Ter Mors (TUD)
The world according to MARP: Multi-Agent Route Planning

2010-12 Susan van den Braak (UU)
Sensemaking software for crime analysis

2010-13 Gianluigi Folino (RUN)
High Performance Data Mining using Bio-inspired techniques

2010-14 Sander van Splunter (VU)
Automated Web Service Reconfiguration

2010-15 Lianne Bodenstaff (UT)
Managing Dependency Relations in Inter-Organizational Models

2010-16 Sicco Verwer (TUD)
Efficient Identification of Timed Automata, theory and practice

2010-17 Spyros Kotoulas (VU)
Scalable Discovery of Networked Resources: Algorithms, Infrastructure, Applications

2010-18 Charlotte Gerritsen (VU)
Caught in the Act: Investigating Crime by Agent-Based Simulation

2010-19 Henriette Cramer (UvA)
People’s Responses to Autonomous and Adaptive Systems

2010-20 Ivo Swartjes (UT)
Whose Story Is It Anyway?
How Improv Informs Agency and Authorship of Emergent Narrative

2010-21 Harold van Heerde (UT)
Privacy-aware data management by means of data degradation

2010-22 Michiel Hildebrand (CWI)
End-user Support for Access to Heterogeneous Linked Data

2010-23 Bas Steunebrink (UU)
The Logical Structure of Emotions

2010-24 Dmytro Tykhonov
Designing Generic and Efficient Negotiation Strategies

2010-25 Zulfigar Ali Memon (VU)
Modelling Human-Awareness for Ambient Agents: A Human Mindreading Perspective

2010-26 Ying Zhang (CWTI)
XRPC: Efficient Distributed Query Processing on Heterogeneous XQuery Engines

2010-27 Marten Voulon (UL)
Automatisch contracteren

2010-28 Arne Koopman (UU)
Characteristic Relational Patterns

2010-29 Stratos Idreos(CWTI)
Database Cracking: Towards Auto-tuning Database Kernels

2010-30 Marieke van Erp (UvT)
Accessing Natural History - Discoveries in data cleaning, structuring, and retrieval

2010-31 Victor de Boer (UVA)
Ontology Enrichment from Heterogeneous Sources on the Web

2010-32 Marcel Hiel (UvT)
An Adaptive Service Oriented Architecture:
Automatically solving Interoperability Problems

2010-33 Robin Aly (UT)
Modeling Representation Uncertainty in Concept-Based Multimedia Retrieval

2010-34 Teduh Dirgahayu (UT)
Interaction Design in Service Compositions

2010-35 Dolf Trieschnigg (UT)
Proof of Concept: Concept-based Biomedical Information Retrieval

2010-36 Jose Janssen (OU)
Paving the Way for Lifelong Learning;
Facilitating competence development through a learning path specification

2010-37 Niels Lohmann (TUE)
Correctness of services and their composition

2010-38 Dirk Fahland (TUE)
From Scenarios to components

2010-39 Ghazanfar Farooq Siddiqui (VU)
Integrative modeling of emotions in virtual agents

2010-40 Mark van Assem (VU)
Converting and Integrating Vocabularies for the Semantic Web

2010-41 Guillaume Chaslot (UM)
Monte-Carlo Tree Search

2010-42 Sybren de Kinderen (VU)
Needs-driven service bundling in a multi-supplier setting -
the computational e3-service approach

2010-43 Peter van Kranenburg (UU)
A Computational Approach to Content-Based Retrieval of Folk Song Melodies

2010-44 Pieter Bellekens (TUE)
An Approach towards Context-sensitive and User-adapted Access
to Heterogeneous Data Sources, Illustrated in the Television Domain

2010-45 Vasilios Andrikopoulos (UvT)
A theory and model for the evolution of software services

2010-46 Vincent Pijpers (VU)
e3alignment: Exploring Inter-Organizational Business-ICT Alignment

2010-47 Chen Li (UT)
Mining Process Model Variants: Challenges, Techniques, Examples

2010-48 Milan Lovric (EUR)
Behavioral Finance and Agent-Based Artificial Markets

2010-49 Jahn-Takeshi Saito (UM)
Solving difficult game positions

2010-50 Bouke Huurnink (UVA)
Search in Audiovisual Broadcast Archives

2010-51 Alia Khairia Amin (CWI)
Understanding and supporting information seeking tasks in multiple sources

2010-52 Peter-Paul van Maanen (VU)

Adaptive Support for Human-Computer Teams:
Exploring the Use of Cognitive Models of Trust and Attention

2010-53 Edgar Meij (UVA)
Combining Concepts and Language Models for Information Access

2011

2011-01 Botond Cseke (RUN)
Variational Algorithms for Bayesian Inference in Latent Gaussian Models

2011-02 Nick Tinnemeier(UU)
Organizing Agent Organizations.
Syntax and Operational Semantics of an Organization-Oriented Programming Language

2011-03
Jan Martijn van der Werf (TUE)
Compositional Design and Verification of Component-Based Information Systems

2011-04 Hado van Hasselt (UU)
Insights in Reinforcement Learning;
Formal analysis and empirical evaluation of temporal-difference learning algorithms

2011-05 Base van der Raadt (VU)
Enterprise Architecture Coming of Age -
Increasing the Performance of an Emerging Discipline.

2011-06 Yiwen Wang (TUE)
Semantically-Enhanced Recommendations in Cultural Heritage

2011-07 Yujia Cao (UT)
Multimodal Information Presentation for High Load Human Computer Interaction

2011-08 Nieske Vergunst (UU)
BDI-based Generation of Robust Task-Oriented Dialogues 2011-09 Tim de Jong (OU)
Contextualised Mobile Media for Learning

2011-10 Bart Bogaert (UvT)
Cloud Content Contention

2011-11 Dhaval Vyas (UT)
Designing for Awareness: An Experience-focused HCI Perspective

2011-12 Carmen Bratosin (TUE)
Grid Architecture for Distributed Process Mining

2011-13 Xiaoyu Mao (UvT)
Airport under Control. Multiagent Scheduling for Airport Ground Handling

2011-14 Milan Lovric (EUR)
Behavioral Finance and Agent-Based Artificial Markets

2011-15 Marijn Koolen (UvA)
The Meaning of Structure: the Value of Link Evidence for Information Retrieval

2011-16 Maarten Schadd (UM)
Selective Search in Games of Different Complexity

2011-17 Jiyin He (UVA)
Exploring Topic Structure: Coherence, Diversity and Relatedness

2011-18 Mark Ponsen (UM)
Strategic Decision-Making in complex games

2011-19 Ellen Rusman (OU)
The Mind ’ s Eye on Personal Profiles

2011-20 Qing Gu (VU)
Guiding service-oriented software engineering - A view-based approach

2011-21 Linda Terlouw (TUD)
Modularization and Specification of Service-Oriented Systems

2011-22 Junte Zhang (UVA)
System Evaluation of Archival Description and Access

2011-23 Wouter Weerkamp (UVA)
Finding People and their Utterances in Social Media

2011-24 Herwin van Welbergen (UT)
Behavior Generation for Interpersonal Coordination
with Virtual Humans On Specifying, Scheduling
and Realizing Multimodal Virtual Human Behavior

2011-25 Syed Wagar ul Qounain Jaffry (VU)
Analysis and Validation of Models for Trust Dynamics

2011-26 Matthijs Aart Pontier (VU)
Virtual Agents for Human Communication -
Emotion Regulation and Involvement-Distance Trade-Offs
in Embodied Conversational Agents and Robots

2011-27 Aniel Bhulai (VU)
Dynamic website optimization through autonomous management of design patterns

2011-28 Rianne Kaptein(UVA)
Effective Focused Retrieval by Exploiting Query Context and Document Structure

2011-29 Faisal Kamiran (TUE)
Discrimination-aware Classification

2011-30 Egon van den Broek (UT)
Affective Signal Processing (ASP): Unraveling the mystery of emotions

2011-31 Ludo Waltman (EUR)
Computational and Game-Theoretic Approaches for Modeling Bounded Rationality

2011-32 Nees-Jan van Eck (EUR)
Methodological Advances in Bibliometric Mapping of Science

2011-33 Tom van der Weide (UU)
Arguing to Motivate Decisions

2011-34 Paolo Turrini (UU)
Strategic Reasoning in Interdependence: Logical and Game-theoretical Investigations

2011-35 Maaike Harbers (UU)
Explaining Agent Behavior in Virtual Training

2011-36 Erik van der Spek (UU)
Experiments in serious game design: a cognitive approach

2011-37 Adriana Burlutiu (RUN)
Machine Learning for Pairwise Data,
Applications for Preference Learning and Supervised Network Inference

2011-38 Nyree Lemmens (UM)
Bee-inspired Distributed Optimization

2011-39 Joost Westra (UU)
Organizing Adaptation using Agents in Serious Games

2011-40 Viktor Clerc (VU)
Architectural Knowledge Management in Global Software Development

2011-41 Luan Ibraimi (UT)
Cryptographically Enforced Distributed Data Access Control

2011-42 Michal Sindlar (UU)
Explaining Behavior through Mental State Attribution

2011-43 Henk van der Schuur (UU)
Process Improvement through Software Operation Knowledge

2011-44 Boris Reuderink (UT)
Robust Brain-Computer Interfaces

2011-45 Herman Stehouwer (UvT)
Statistical Language Models for Alternative Sequence Selection

2011-46 Beibei Hu (TUD)
Towards Contextualized Information Delivery:
A Rule-based Architecture for the Domain of Mobile Police Work

2011-47 Azizi Bin Ab Aziz(VU)
Exploring Computational Models for Intelligent Support of Persons with Depression

2011-48 Mark Ter Maat (UT)
Response Selection and Turn-taking for a Sensitive Artificial Listening Agent

2011-49 Andreea Niculescu (UT)
Conversational interfaces for task-oriented spoken dialogues:
design aspects influencing interaction quality

2012

2012-01 Terry Kakeeto (UvT)
Relationship Marketing for SMEs in Uganda

2012-02 Muhammad Umair(VU)
Adaptivity, emotion, and Rationality in Human and Ambient Agent Models

2012-03 Adam Vanya (VU)
Supporting Architecture Evolution by Mining Software Repositories

2012-04 Jurriaan Souer (UU)
Development of Content Management System-based Web Applications

2012-05 Marijn Plomp (UU)
Maturing Interorganisational Information Systems

2012-06 Wolfgang Reinhardt (OU)

Awareness Support for Knowledge Workers in Research Networks

2012-07 Rianne van Lambalgen (VU)
When the Going Gets Tough:
Exploring Agent-based Models of Human Performance under Demanding Conditions

2012-08 Gerben de Vries (UVA)
Kernel Methods for Vessel Trajectories

2012-09 Ricardo Neisse (UT)
Trust and Privacy Management Support for Context-Aware Service Platforms

2012-10 David Smits (TUE)
Towards a Generic Distributed Adaptive Hypermedia Environment

2012-11 J.C.B. Rantham Prabhakara (TUE)
Process Mining in the Large: Preprocessing, Discovery, and Diagnostics

2012-12 Kees van der Sluijs (TUE)
Model Driven Design and Data Integration in Semantic Web Information Systems

2012-13 Suleman Shahid (UvT)
Fun and Face: Exploring non-verbal expressions of emotion during playful interactions

2012-14 Evgeny Knutov(TUE)
Generic Adaptation Framework for Unifying Adaptive Web-based Systems

2012-15 Natalie van der Wal (VU)
Social Agents. Agent-Based Modelling of
Integrated Internal and Social Dynamics of Cognitive and Affective Processes

2012-16 Fiemke Both (VU)
Helping people by understanding them -
Ambient Agents supporting task execution and depression treatment

2012-17 Amal Elgammal (UvT)
Towards a Comprehensive Framework for Business Process Compliance

2012-18 Eltjo Poort (VU)
Improving Solution Architecting Practices

2012-19 Helen Schonenberg (TUE)
‘What’s Next? Operational Support for Business Process Execution

2012-20 Ali Bahramisharif (RUN)
Covert Visual Spatial Attention, a Robust Paradigm for Brain-Computer Interfacing

2012-21 Roberto Cornacchia (TUD)
Querying Sparse Matrices for Information Retrieval

2012-22 Thijs Vis (UvT)
Intelligence, politie en veiligheidsdienst: verenigbare grootheden?

2012-23 Christian Muehl (UT)
Toward Affective Brain-Computer Interfaces:
Exploring the Neurophysiology of Affect during Human Media Interaction

2012-24 Laurens van der Werff (UT)
Evaluation of Noisy Transcripts for Spoken Document Retrieval

2012-25 Silja Eckartz (UT)

Managing the Business Case Development in Inter-Organizational IT Projects:
A Methodology and its Application

2012-26 Emile de Maat (UVA)
Making Sense of Legal Text

2012-27 Hayrettin Gurkok (UT)
Mind the Sheep! User Experience Evaluation & Brain-Computer Interface Games

2012-28 Nancy Pascall (UvT)
Engendering Technology Empowering Women

2012-29 Almer Tigelaar (UT)
Peer-to-Peer Information Retrieval

2012-30 Alina Pommeranz (TUD)
Designing Human-Centered Systems for Reflective Decision Making

2012-31 Emily Bagarukayo (RUN)
A Learning by Construction Approach for Higher Order Cognitive Skills Improvement,
Building Capacity and Infrastructure

2012-32 Wietske Visser (TUD)
Qualitative multi-criteria preference representation and reasoning

2012-33 Rory Sie (OUN)
Coalitions in Cooperation Networks (COCOON)

2012-34 Pavol Jancura (RUN)
Evolutionary analysis in PPI networks and applications

2012-35 Evert Haasdijk (VU)
Never Too Old To Learn —
On-line Evolution of Controllers in Swarm- and Modular Robotics

2012-36 Denis Ssebugwawo (RUN)
Analysis and Evaluation of Collaborative Modeling Processes

2012-37 Agnes Nakakawa (RUN)
A Collaboration Process for Enterprise Architecture Creation

2012-38 Selmar Smit (VU)
Parameter Tuning and Scientific Testing in Evolutionary Algorithms

2012-39 Hassan Fatemi (UT)
Risk-aware design of value and coordination networks

2012-40 Agus Gunawan (UvT)
Information Access for SMEs in Indonesia

2012-41 Sebastian Kelle (OU)
Game Design Patterns for Learning

2012-42 Dominique Verpoorten (OU)
Reflection Amplifiers in self-regulated Learning

2012-43 Withdrawn

2012-44 Anna Tordai (VU)
On Combining Alignment Techniques

2012-45 Benedikt Kratz (UvT)
A Model and Language for Business-aware Transactions

2012-46 Simon Carter (UVA)
Exploration and Exploitation of Multilingual Data for Statistical Machine Translation

2012-47 Manos Tsagkias (UVA)
Mining Social Media: Tracking Content and Predicting Behavior

2012-48 Jorn Bakker (TUE)
Handling Abrupt Changes in Evolving Time-series Data

2012-49 Michael Kaisers (UM)
Learning against Learning -
Evolutionary dynamics of reinforcement learning algorithms in strategic interactions

2012-50 Steven van Kervel (TUD)
Ontologogy driven Enterprise Information Systems Engineering

2012-51 Jeroen de Jong (TUD)
Heuristics in Dynamic Scheduling;
a practical framework with a case study in elevator dispatching

2013

2013-01 Viorel Milea (EUR)
News Analytics for Financial Decision Support

2013-02 Erietta Liarou (CWI)
MonetDB/DataCell:
Leveraging the Column-store Database Technology
for Efficient and Scalable Stream Processing

2013-03 Szymon Klarman (VU)
Reasoning with Contexts in Description Logics

2013-04 Chetan Yadati(TUD)
Coordinating autonomous planning and scheduling

2013-05 Dulce Pumareja (UT)
Groupware Requirements Evolutions Patterns

2013-06 Romulo Goncalves(CWI)
The Data Cyclotron: Juggling Data and Queries for a Data Warehouse Audience

2013-07 Giel van Lankveld (UvT)
Quantifying Individual Player Differences

2013-08 Robbert-Jan Merk(VU)
Making enemies: cognitive modeling for opponent agents in fighter pilot simulators

2013-09 Fabio Gori (RUN)
Metagenomic Data Analysis: Computational Methods and Applications

2013-10 Jeewanie Jayasinghe Arachchige(UvT)
A Unified Modeling Framework for Service Design.

2013-11 Evangelos Pournaras(TUD)
Multi-level Reconfigurable Self-organization in Overlay Services

2013-12 Marian Razavian(VU)

Knowledge-driven Migration to Services

2013-13 Mohammad Safiri(UT)
Service Tailoring: User-centric creation of integrated IT-based homecare services
to support independent living of elderly

2013-14 Jafar Tanha (UVA)
Ensemble Approaches to Semi-Supervised Learning Learning

2013-15 Daniel Hennes (UM)
Multiagent Learning - Dynamic Games and Applications

2013-16 Eric Kok (UU)
Exploring the practical benefits of argumentation in multi-agent deliberation

2013-17 Koen Kok (VU)
The PowerMatcher: Smart Coordination for the Smart Electricity Grid

2013-18 Jeroen Janssens (UvT)
Outlier Selection and One-Class Classification

2013-19 Renze Steenhuizen (TUD)
Coordinated Multi-Agent Planning and Scheduling

2013-20 Katja Hofmann (UvA)
Fast and Reliable Online Learning to Rank for Information Retrieval

2013-21 Sander Wubben (UvT)
Text-to-text generation by monolingual machine translation

2013-22 Tom Claassen (RUN)
Causal Discovery and Logic

2013-23 Patricio de Alencar Silva(UvT)
Value Activity Monitoring

2013-24 Haitham Bou Ammar (UM)
Automated Transfer in Reinforcement Learning

2013-25 Agnieszka Anna Latoszek-Berendsen (UM)
Intention-based Decision Support.
A new way of representing and implementing clinical guidelines
in a Decision Support System

2013-26 Alireza Zarghami (UT)
Architectural Support for Dynamic Homecare Service Provisioning

2013-27 Mohammad Huq (UT)
Inference-based Framework Managing Data Provenance

2013-28 Frans van der Sluis (UT)
When Complexity becomes Interesting: An Inquiry into the Information eXperience

2013-29 Iwan de Kok (UT)
Listening Heads

2013-30 Joyce Nakatumba (TUE)
Resource-Aware Business Process Management: Analysis and Support

2013-31 Dinh Khoa Nguyen (UvT)
Blueprint Model and Language for Engineering Cloud Applications

2013-32 Kamakshi Rajagopal (OUN)
Networking For Learning;
The role of Networking in a Lifelong Learner’s Professional Development

2013-33 Qi Gao (TUD)
User Modeling and Personalization in the Microblogging Sphere

2013-34 Kien Tjin-Kam-Jet (UT)
Distributed Deep Web Search

2013-35 Abdallah El Ali (UvA)
Minimal Mobile Human Computer Interaction

2013-36 Than Lam Hoang (TUe)
Pattern Mining in Data Streams

2013-37 Dirk Borner (OUN)
Ambient Learning Displays

2013-38 Eelco den Heijer (VU)
Autonomous Evolutionary Art

2013-39 Joop de Jong (TUD)
A Method for Enterprise Ontology based Design of Enterprise Information Systems

2013-40 Pim Nijssen (UM)
Monte-Carlo Tree Search for Multi-Player Games

2013-41 Jochem Liem (UVA)
Supporting the Conceptual Modelling of Dynamic Systems:
A Knowledge Engineering Perspective on Qualitative Reasoning

2013-42 Leon Planken (TUD)
Algorithms for Simple Temporal Reasoning

2013-43 Marc Bron (UVA)
Exploration and Contextualization through Interaction and Concepts

2014

2014-01 Nicola Barile (UU)
Studies in Learning Monotone Models from Data

2014-02 Fiona Tuliyano (RUN)
Combining System Dynamics with a Domain Modeling Method

2014-03 Sergio Raul Duarte Torres (UT)
Information Retrieval for Children: Search Behavior and Solutions

2014-04 Hanna Jochmann-Mannak (UT)
Websites for children: search strategies and interface design -
Three studies on children’s search performance and evaluation

2014-05 Jurriaan van Reijsen (UU)
Knowledge Perspectives on Advancing Dynamic Capability

2014-06 Damian Tamburri (VU)
Supporting Networked Software Development

2014-07 Arya Adriansyah (TUE)
Aligning Observed and Modeled Behavior

2014-08 Samur Araujo (TUD)
Data Integration over Distributed and Heterogeneous Data Endpoints

2014-09 Philip Jackson (UvT)
Toward Human-Level Artificial Intelligence:
Representation and Computation of Meaning in Natural Language

2014-10 Ivan Salvador Razo Zapata (VU)
Service Value Networks

2014-11 Janneke van der Zwaan (TUD)
An Empathic Virtual Buddy for Social Support

2014-12 Willem van Willigen (VU)
Look Ma, No Hands: Aspects of Autonomous Vehicle Control

2014-13 Arlette van Wissen (VU)
Agent-Based Support for Behavior Change:
Models and Applications in Health and Safety Domains

2014-14 Yangyang Shi (TUD)
Language Models With Meta-information

2014-15 Natalya Mogles (VU)
Agent-Based Analysis and Support of Human Functioning
in Complex Socio-Technical Systems: Applications in Safety and Healthcare

2014-16 Krystyna Milian (VU)
Supporting trial recruitment and design by automatically interpreting eligibility criteria

2014-17 Kathrin Dentler (VU)
Computing healthcare quality indicators automatically:
Secondary Use of Patient Data and Semantic Interoperability

2014-18 Mattijs Ghijsen (VU)
Methods and Models for the Design and Study of Dynamic Agent Organizations

2014-19 Vinicius Ramos (TUE)
Adaptive Hypermedia Courses: Qualitative and Quantitative Evaluation and Tool Support

2014-20 Mena Habib (UT)
Named Entity Extraction and Disambiguation for Informal Text: The Missing Link

2014-21 Kassidy Clark (TUD)
Negotiation and Monitoring in Open Environments

2014-22 Marieke Peeters (UU)
Personalized Educational Games - Developing agent-supported scenario-based training

2014-23 Eleftherios Sidirourgos (UvA/CWI)
Space Efficient Indexes for the Big Data Era

2014-24 Davide Ceolin (VU)
Trusting Semi-structured Web Data

2014-25 Martijn Lappenschaar (RUN)
New network models for the analysis of disease interaction

2014-26 Tim Baarslag (TUD)
‘What to Bid and When to Stop

2014-27 Rui Jorge Almeida (EUR)
Conditional Density Models Integrating Fuzzy and
Probabilistic Representations of Uncertainty

2014-28 Anna Chmielowiec (VU)
Decentralized k-Clique Matching

2014-29 Jaap Kabbedijk (UU)
Variability in Multi-Tenant Enterprise Software

2014-30 Peter de Cock (UvT)
Anticipating Criminal Behaviour

2014-31 Leo van Moergestel (UU)
Agent Technology in Agile Multiparallel Manufacturing and Product Support

2014-32 Naser Ayat (UvA)
On Entity Resolution in Probabilistic Data

2014-33 Tesfa Tegegne (RUN)
Service Discovery in eHealth

2014-34 Christina Manteli(VU)
The Effect of Governance in Global Software Development:
Analyzing Transactive Memory Systems.

2014-35 Joost van Ooijen (UU)
Cognitive Agents in Virtual Worlds: A Middleware Design Approach

2014-36 Joos Buijs (TUE)
Flexible Evolutionary Algorithms for Mining Structured Process Models

2014-37 Maral Dadvar (UT)
Experts and Machines United Against Cyberbullying

2014-38 Danny Plass-Oude Bos (UT)
Making brain-computer interfaces better: improving usability through post-processing.

2014-39 Jasmina Maric (UvT)
‘Web Communities, Immigration, and Social Capital

2014-40 Walter Omona (RUN)
A Framework for Knowledge Management Using ICT in Higher Education

2014-41 Frederic Hogenboom (EUR)
Automated Detection of Financial Events in News Text

2014-42 Carsten Eijckhof (CWI/TUD)
Contextual Multidimensional Relevance Models

2014-43 Kevin Vlaanderen (UU)
Supporting Process Improvement using Method Increments

2014-44 Paulien Meesters (UvT)
Intelligent Blauw. Intelligence-gestuurde politiezorg in gebiedsgebonden eenheden.

2014-45 Birgit Schmitz (OUN)
Mobile Games for Learning: A Pattern-Based Approach

2014-46 Ke Tao (TUD)
Social Web Data Analytics: Relevance, Redundancy, Diversity

2014-47 Shangsong Liang (UVA)
Fusion and Diversification in Information Retrieval

2015

2015-01 Niels Netten (UvA)
Machine Learning for Relevance of Information in Crisis Response

2015-02 Faiza Bukhsh (UvT)
Smart auditing: Innovative Compliance Checking in Customs Controls

2015-03 Twan van Laarhoven (RUN)
Machine learning for network data

2015-04 Howard Spoelstra (OUN)
Collaborations in Open Learning Environments

2015-05 Christoph Bsch(UT)
Cryptographically Enforced Search Pattern Hiding

2015-06 Farideh Heidari (TUD)
Business Process Quality Computation -
Computing Non-Functional Requirements to Improve Business Processes

2015-07 Maria-Hendrike Peetz(UvA)
Time-Aware Online Reputation Analysis

2015-08 Jie Jiang (TUD)
Organizational Compliance: An agent-based model
for designing and evaluating organizational interactions

2015-09 Randy Klaassen(UT)
HCI Perspectives on Behavior Change Support Systems

2015-10 Henry Hermans (OUN)
OpenU: design of an integrated system to support lifelong learning

2015-11 Yongming Luo(TUE)
Designing algorithms for big graph datasets: A study of computing bisimulation and joins

2015-12 Julie Birkholz (VU)
Modi Operandi of Social Network Dynamics:
The Effect of Context on Scientific Collaboration Networks

	Introduction
	The Unsustainable ICT
	The Quest for Energy-Efficient Software
	Research Questions
	Research Methods
	Thesis at-a-Glance
	Outline of Thesis and Publications

	Background: Software and Energy
	Profiling Software Power Consumption
	Study Design
	Results
	Discussion

	Software Energy Measurement and Modeling: State-of-the-art
	Software Energy Measurement
	Energy Modeling

	Conclusion

	Empirical Evaluation of Best Practices for Energy-Efficient Software Development
	Introduction
	Related Work
	Experiment Planning
	Variable Selection
	Hypotheses Formulation
	Instrumentation and Testbed

	Execution
	Preparation
	Data Collection and Analysis

	Threats to Validity
	Conclusion Validity
	Internal Validity
	Construct Validity
	External Validity

	Results
	Practice 1: Use Efficient Queries
	Practice 2: Put Application to Sleep

	Reflection
	Conclusions

	Energy Efficiency in Cloud Software Architectures - A Systematic Literature Review
	Introduction
	Review Protocol
	Search Strategy
	Study Selection
	Data Extraction
	Data Analysis
	Traceability

	Demographic Analysis
	Energy Efficiency in Software Architectures
	Strategies
	Techniques
	Components

	Stakeholder Overview
	Threats to Validity
	Conclusions

	A Catalog of Green Architectural Tactics for the Cloud
	Introduction
	Related Work
	Energy Efficiency as a Quality Attribute
	Green Architectural Tactics
	Energy Monitoring
	Self-Adaptation
	Cloud Federation

	Discussion
	Next Steps: Tactics Evaluation
	Conclusions

	A Conceptual Framework for Energy-Efficient Software Engineering
	Introduction
	Reflection on Empirical Evidence
	Conceptual Framework
	Stakeholders
	Strategies for Energy-Efficient Software
	Energy Monitoring: use software energy models to drive improvements
	Refactoring: identify and remove energy inefficiencies
	Self-adaptation: energy efficiency by design

	Conclusions

	The GREENSWEEP Approach for Software Energy Efficiency Research
	Introduction
	The GREENSWEEP Approach
	Background: Energy Hotspots
	1st stage: Hotspot Identification
	2nd stage: Hotspot Verification

	Research Implications
	Conclusions

	Conclusions
	Main Contributions
	RQ 1. What is the correlation between software and hardware energy consumption?
	RQ 2. What is the impact of using best practices for software energy efficiency?
	RQ 3. How can software architectural solutions realize energy efficiency?
	RQ 4. Can we provide strategies to improve software energy efficiency?
	Answering the Main Research Question: lessons learned

	Future work

	Summary
	Samenvatting

