POLITECNICO DI TORINO

Repository ISTITUZIONALE

The Wiener-Hopf method in electromagnetics

Original
The Wiener-Hopf method in electromagnetics / Daniele, Vito; Zich, Rodolfo. - STAMPA. - (2014).

Availability:

This version is available at: $11583 / 2608557$ since
Publisher:
Scitech Publishing

Published
DOI:

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright
(Article begins on next page)

The Wiener-Hopf Method in Electromagnetics

Vito G. Daniele and Rodolfo S. Zich

The Wiener-Hopf Method in Electromagnetics

Mario Boella Series on Electromagnetism in Information and Communication

Piergiorgio L. E. Uslenghi, PhD - Series Editor

The Mario Boella series offers textbooks and monographs in all areas of radio science, with a special emphasis on the applications of electromagnetism to information and communication technologies. The series is scientifically and financially sponsored by the Istituto Superiore Mario Boella affiliated with the Politecnico di Torino, Italy, and is scientifically cosponsored by the International Union of Radio Science (URSI). It is named to honor the memory of Professor Mario Boella of the Politecnico di Torino, who was a pioneer in the development of electronics and telecommunications in Italy for half a century, and a vice president of URSI from 1966 to 1969.

Published Titles in the Series

Introduction to Wave Phenomena
by Akira Hirose and Karl Lonngren
Scattering of Waves by Wedges and Cones with Impedance Boundary Conditions by Mikhail Lyalinov and Ning Yan Zhu

Complex Space Source Theory of Spatially Localized Electromagnetic Waves by S. R. Seshadri

The Wiener-Hopf Method in Electromagnetics
by Vito Daniele and Rodolfo Zich

Forthcoming Titles

Higher Order Numerical Solution Techniques in Electromagnetics by Roberto Graglia and Andrew Peterson (2015)

Slotted Waveguide Array Antennas
by Sembiam Rengarajan and Lars Josefsson (2015)

The Wiener-Hopf Method in Electromagnetics

ISMB Series

Rodolfo Zich
Instituto Superiore de Mario Boella

Vito Daniele
Polytechnic of Torino

theiet.org

Published by SciTech Publishing, an imprint of the IET.
www.scitechpub.com
www.theiet.org

Copyright © 2014 by SciTech Publishing, Edison, NJ. All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at copyright.com. Requests to the Publisher for permission should be addressed to The Institution of Engineering and Technology, Michael Faraday House, Six Hills Way, Stevenage, Herts, SG1 2AY, United Kingdom.

While the author and publisher believe that the information and guidance given in this work are correct, all parties must rely upon their own skill and judgement when making use of them. Neither the author nor publisher assumes any liability to anyone for any loss or damage caused by any error or omission in the work, whether such an error or omission is the result of negligence or any other cause. Any and all such liability is disclaimed.

10987654321

ISBN 978-1-61353-001-6 (hardback)
ISBN 978-1-61353-031-3 (PDF)

Typeset in India by MPS Limited
Printed in the US by Integrated Books International
Printed in the UK by CPI Group (UK) Ltd, Croydon

Contents

Preface xiii
Foreword xvii
PART 1 Mathematical Aspects 1
1 Forms of Wiener-Hopf equations 3
1.1 The basic Wiener-Hopf equation 3
1.1.1 An electromagnetic example: The half-plane problem 5
1.2 Modified W-H equations (MWHE) 7
1.2.1 Longitudinally modified W -H equations 7
1.2.2 Transversely modified W-H equations 9
1.2.3 The incomplete Wiener-Hopf equations 10
1.3 Generalized W-H equations 12
1.3.1 An electromagnetic example: The PEC wedge problem 12
1.3.2 An electromagnetic example: The dielectric wedge problem 13
1.4 The Hilbert-Riemann problem 14
1.5 Reduction of W-H equations to the classical form 14
1.5.1 Reduction of the transversely modified W-H equations to CWHE 14
1.5.2 Reduction of the longitudinally modified W-H equations to CWHE 15
1.5.3 The Hilbert-Riemann equations 16
1.5.4 Generalized Wiener-Hopf equations 16
1.6 From Wiener-Hopf equations to Fredholm integral equations in the spectral domain 17
1.7 Fundamental literature 19
2 The exact solution of Wiener-Hopf equations 21
2.1 Introduction 21
2.2 Additive decomposition 22
2.3 Multiplicative decomposition or factorization 23
2.4 Solution of the W-H equation 24
2.4.1 Solution of the nonhomogeneous equation 24
2.4.2 Remote source 27
2.5 Unbounded plus and minus unknowns 29
2.6 Factorized matrices as solutions of the homogeneous Wiener-Hopf problem 29
2.7 Nonstandard factorizations 31
2.8 Extension of the W-H technique to the GWHE 34
2.9 Important mappings for dealing with W-H equations 35
2.9.1 The $\chi=\sqrt{\tau_{o}^{2}-\alpha^{2}}$ mapping 35
2.9.2 The $\alpha=-\tau_{o} \cos w$ mapping 36
3 Functions decomposition and factorization 45
3.1 Decomposition 45
3.1.1 Example 1 47
3.1.2 Decomposition of an even function 51
3.1.3 Numerical decomposition 51
3.1.4 Example 1 revisited 53
3.1.5 The case of meromorphic functions 54
3.1.6 Decomposition using rational approximants of the function 55
3.2 Factorization 57
3.2.1 General formula for the scalar case 57
3.2.2 Example 2 57
3.2.3 Example 3 58
3.2.4 Factorization of meromorphic functions 58
3.2.5 Example 4 60
3.2.6 Factorization of kernels involving continuous and discrete spectrum 63
3.3 Decomposition equations in the w - plane 66
3.3.1 Evaluation of the plus functions 66
3.3.2 Evaluation of the minus functions 69
3.3.4 Use of difference equation for function decomposition 73
3.3.5 The W-H equation as difference equation 73
4 Exact matrix factorization 75
4.1 Introduction 75
4.2 Some possibilities to reduce the order of the kernel matrices 76
4.3 Factorization of triangular matrices 78
4.4 Factorization of rational matrices 80
4.4.1 Introduction 80
4.4.2 Matching of the singularities 81
4.4.3 The factorization in the framework of the Fredholm equations 85
4.5 Techniques for solving the factorization problem 86
4.5.1 The logarithmic decomposition 86
4.6 The factorization problem and the functional analysis 92
4.6.1 The iterative method 92
4.6.2 The Fredholm determinant method 93
4.6.3 Factorization of meromorphic matrix kernels with an infinite number of poles 94
4.7 A class of matrices amenable to explicit factorization: matrices having rational eigenvectors 95
4.8 Factorization of a 2×2 matrix 96
4.8.1 The Hurd method 96
4.8.2 The off-diagonal form 98
4.8.3 Reduction of matrices commuting with polynomial matrices to the Daniele matrices 99
4.8.4 Explicit factorization of Daniele matrices 101
4.8.5 The elimination of the offensive behavior for matrices having the Daniele form 104
4.8.6 A relatively simple case 106
4.8.7 The $\sqrt{a(\alpha) / b(\alpha)}$ rational function of α case 108
4.9 The factorization of matrices commuting with rational matrices 110
4.9.1 Introduction 110
4.9.2 Matrix of order two commuting with polynomial matrices 111
4.9.3 Explicit expression of $\psi_{i}(\alpha)$ in the general case 113
4.9.4 Asymptotic behavior of the logarithmic representation of $-l(\alpha) P^{-1}(\alpha)+1$ 117
4.9.5 Asymptotic behavior of the decomposed $\psi_{i \pm}(\alpha)$ 118
4.9.6 A procedure to eliminate the exponential behavior 120
4.9.7 On the reduction of the order of the system 124
4.9.8 The nonlinear equations as a Jacobi inversion problem 125
4.9.9 Weakly factorization of a matrix commuting with a polynomial matrix 127
5 Approximate solution: The Fredholm factorization 129
5.1 The integral equations in the α-plane 129
5.1.1 Introduction 129
5.1.2 Source pole α_{o} with positive imaginary part 130
5.1.3 Analytical validation of a particular W-H equation 131
5.1.4 A property of the integral in the Fredholm equation 132
5.1.5 Numerical solution of the Fredholm equations 134
5.1.6 Analytic continuation outside the integration line 141
5.2 The integral equations in the w-plane 143
5.3 Additional considerations on the Fredholm equations 146
5.3.1 Presence of poles of the kernel in the warped region 146
5.3.2 The Fredholm factorization for particular matrices 147
5.3.3 The Fredholm equation relevant to a modified kernel 147
6 Approximate solutions: Some particular techniques 149
6.1 The Jones method for solving modified W -H equations 149
6.1.1 Introduction 149
6.1.2 Longitudinal modified W -H equation 149
6.1.3 Transversal modified W -H equation 152
6.2 The Fredholm factorization for particular matrices 153
6.3 Rational approximation of the kernel 161
6.3.1 Pade approximants 161
6.3.2 An interpolation approximant method 163
6.4 Moment method 167
6.4.1 Introduction 167
6.4.2 Stationary properties of the solutions with the moment method 169
6.4.3 An electromagnetic example: the impedance of a wire antenna in free space 173
6.5 Comments on the approximate methods for solving W-H equations 175
PART 2 Applications 177
7 The half-plane problem 179
7.1 Wiener-Hopf solution of discontinuity problems in plane-stratified regions 179
7.2 Spectral transmission line in homogeneous isotropic regions 180
7.2.1 Circuital considerations 181
7.2.2 Jump of voltage or current in a section where it is present a discontinuity 182
7.2.3 Jump of voltage or current in a section where a concentrated source is present 182
7.3 Wiener-Hopf equations in the Laplace domain 183
7.4 The PEC half-plane problem 185
7.4.1 E-polarization case 185
7.4.2 Far-field contribution 188
7.5 Skew incidence 191
7.6 Diffraction by an impedance half plane 197
7.6.1 Deduction of W-H equations in diffraction problems by impenetrable half-planes 197
7.6.2 Presence of isotropic impedances Z_{a} and Z_{b} 200
7.7 The general problem of factorization 203
7.7.1 The case of symmetric half-plane 205
7.7.2 The case of opposite diagonal impedances $\mathbf{Z}_{b}=-\mathbf{Z}_{a}$ 206
7.8 The jump or penetrable half-plane problem 206
7.9 Full-plane junction at skew incidence 207
7.10 Diffraction by an half plane immersed in arbitrary linear medium 208
7.10.1 Transverse equation in an indefinite medium 208
7.10.2 Field equations in the Fourier domain 210
7.10.3 The W-H equation for a PEC or a PMC half-plane immersed in a homogeneous linear arbitrary medium 216
7.11 The half-plane immersed in an arbitrary planar stratified medium 220
8 Planar discontinuities in stratified media 223
8.1 The planar waveguide problem 223
8.1.1 The E-polarization case 223
8.1.2 Source constituted by plane wave 225
8.1.3 Source constituted by an incident mode 227
8.1.4 The skew plane wave case 228
8.2 The reversed half-planes problem 230
8.2.1 The E-polarization case 230
8.2.2 Qualitative characteristics of the solution 231
8.2.3 Numerical evaluation of the electromagnetic field 232
8.2.4 Numerical solution of the W-H equations 233
8.2.5 Source constituted by a skew plane wave 237
8.3 The three half-planes problem 244
8.3.1 The E-polarization case (normal incidence case) 244
8.3.2 The skew incidence case 247
8.4 Arrays of parallel wire antennas in stratified media 248
8.4.1 The single antenna case 248
8.4.2 The W-H equations of an array of wire antennas 250
8.4.3 Spectral theory of transmission lines constituted by bundles of wires 254
8.5 Spectral theory of microstrip and coplanar transmission lines 254
8.5.1 Coplanar line with two strips 254
8.5.2 The shielded microstrip transmission line 260
8.6 General W-H formulation of planar discontinuity problems in arbitrary stratified media 261
8.6.1 Formal solution with the factorization method 263
8.6.2 The method of stationary phase for multiple integrals 267
8.6.3 The circular aperture 268
8.6.4 The quarter plane problem 272
9 Wiener-Hopf analysis of waveguide discontinuities 279
9.1 Marcuvitz-Schwinger formalism 279
9.1.1 Example 1 280
9.1.2 Example 2 283
9.2 Bifurcation in a rectangular waveguide 285
9.3 The junction of two waveguides 287
9.4 A general discontinuity problem in a rectangular waveguide 289
9.5 Radiation from truncated circular waveguides 292
9.6 Discontinuities in circular waveguides 297
10 Further applications of the $\mathrm{W}-\mathrm{H}$ technique 301
10.1 The step problem 301
10.1.1 Deduction of the transverse modified W-H equations (E-polarization case) 301
10.1.2 Solution of the equations 303
10.2 The strip problem 303
10.2.1 Some longitudinally modified W-H geometries 304
10.3 The hole problem 304
10.4 The wall problem 305
10.5 The semi-infinite duct with a flange 307
10.6 Presence of dielectrics 308
10.7 A problem involving a dielectric slab 310
10.8 Some problems involving dielectric slabs 313
10.8.1 Semi-infinite dielectric guides 314
10.8.2 The junction of two semi-infinite dielectric slab guides 314
10.8.3 Some problems solved in the literature 314
10.9 Some problems involving periodic structures 315
10.9.1 Diffraction by an infinite array of equally spaced half-planes immersed in free space 315
10.9.2 Other problems solved in the literature 317
10.10 Diffraction by infinite strips 318
10.10.1 Solution of the key problem 319
10.10.2 Boundary conditions 321
10.10.3 Solution of the W-H equation 321
10.11 Presence of an inductive iris in rectangular waveguides 323
10.12 Presence of a capacitive iris in rectangular waveguides 324
10.13 Problems involving semi-infinite periodic structures 324
10.14 Problems involving impedance surfaces 325
10.15 Some problems involving cones 326
10.16 Diffraction by a PEC wedge by an incident plane wave at skew incidence 330
10.17 Diffraction by a right PEC wedge immersed in a stratified medium 334
10.18 Diffraction by a right isorefractive wedge 337
10.18.1 Solution of the W-H equations 342
10.18.2 Matrix factorization of $g_{e}(\alpha)$ 345
10.18.3 Near field behavior 347
10.19 Diffraction by an arbitrary dielectric wedge 349
References 351
Index 361

Preface

In 1931, Wiener and Hopf (1931) invented a powerful technique for solving an integral equation of a special type. By introducing the Laplace transform of the unknown, the integral equation was rephrased in terms of a functional equation in a suitably defined complex space. The solution method of the latter is very ingenious indeed. It is based on a sophisticated procedure exploiting some properties of the analytic functions and it stands as one of the most important mathematical inventions for obtaining analytical solutions of very difficult problems.

In electromagnetic geometries, a fundamental approach due to Jones (1952a) applies the Laplace transforms directly to the partial differential equations, and the complex variable functional equations are obtained directly without having to formulate an integral equation. Jones's approach has been adopted systematically by Noble (1988) in his book on the Wiener-Hopf technique. Noble's work presents many applications of the Wiener-Hopf technique in a systematic way and is fundamental for readers interested in this powerful method. Unfortunately, this book was written many years ago (the first edition was in 1958); in the meantime, many scientists have devoted efforts to studying the Wiener-Hopf technique and have achieved important developments.

The main purpose of this book is to provide students and scientists of diffraction phenomena with a comprehensive treatment of the Wiener-Hopf technique, including its latest developments. In particular, these developments illustrate the wide range of possible applications of this method. In practice, it is now possible to solve all canonical diffraction problems involving geometrical discontinuities using the Wiener-Hopf technique, which has definitively established it as the most general and powerful analytical method for this purpose.

A great number of problems can be effectively approached using the W-H technique (Fig. 1). Shown in the figure are geometrical structures that can be considered equivalent to a (uniform or nonuniform) waveguide in which semi-infinite geometrical discontinuities have been introduced. These discontinuities may be also modified in the transversal or longitudinal direction of the waveguide, thus augmenting considerably the number of possible problems that can be effectively studied by this technique. It must be observed that most of these problems are very important and that often there are no alternative approaches available for solving them efficiently, even numerically. Some general remarks about the W-H techniques are necessary before delving into specific problems in detail.

First of all, no W-H problem is simple to study. For instance, for a given electromagnetic problem that perhaps may be formulated in terms of W-H equations, it could be
Half-plane

Grating

Truncated
waveguide

Quarter of plane Dielectric wedge

Fig. 1: A few examples of $\mathrm{W}-\mathrm{H}$ geometries
quite difficult to obtain these equations. In the literature, many problems are formulated in terms of functional equations that, even though equivalent to Wiener-Hopf equations, do not present the so-called standard forms considered in this book. We emphasize that it is important to formulate the problems in terms of standard W-H equations because it provides a uniform methodology to obtain exact or approximate solutions in a systematic way. The key function containing all the information in the standard Wiener-Hopf equations is the W-H kernel. It is generally a matrix \mathbf{G} function of a complex variable α. It follows that the first step of the W-H technique is to find $\mathbf{G}(\alpha)$ for a specific geometry. Sometimes this is a difficult task requiring a profound knowledge both of the formulation of electromagnetic problems and of the underlying physical concepts.

The central problem in solving the standard W-H equations is conceptually very simple: the factorization of the matrix $\mathbf{G}(\alpha)$. This problem constitutes a very beautiful mathematical problem that in the past has become a cult activity for many students. However, even though this problem has been extensively studied in the past, up to now a method to factorize a general $n \times n$ matrix (chapter 4) was not known. Fortunately, several approximate factorization techniques have recently been developed. In particular, the reduction of the factorization problem to the solution of Fredholm integral equations of the second kind constitutes a powerful tool that provides efficiently the approximate factorized matrices of $\mathbf{G}(\alpha)$.

Once the factorization of $\mathbf{G}(\alpha)$ is achieved, new efforts are necessary to extract solutions. In fact, even if formal solutions may be obtained, a long and difficult elaboration is always required to make them effective from the physics and engineering points of view.

The W-H technique involves complex and cumbersome algebraic manipulations. Nowadays these manipulations do not constitute a serious impediment because powerful algebraic manipulator codes are readily available. In particular, all the results in this book were obtained by intensive use of the computing software MATHEMATICA.

Concerning the overall philosophy of the subject presentation, this book has been written for readers primarily interested in the fundamental concepts and possible applications of the presented method. For this reason, the considered arguments are often only delineated and not discussed in great mathematical depth. The W-H technique requires the knowledge and use of many advanced topics of complex analysis, whose exposition might discourage readers who are interested primarily in application aspects. Of course, the best way to render the mathematical tools appealing is to present them only in as much detail as is required for the specific applications. We tried to follow this principle, but it was sometimes impossible. Therefore, we divided the book into two parts. The first part (chapters 1-6) is devoted to the mathematical aspects of the W-H technique, whereas the second part (chapters 7-10) presents applications that we hope illustrate the beauty, aims, and power of the theory. In particular, in the applications we often emphasized only the first and more difficult step of the W-H technique: the deduction of the matrix kernel $\mathbf{G}(\alpha)$ of the problem. In fact, this is the step that in some sense lacks of a general methodology. It is the intensive presentation of the deduction of $\mathbf{G}(\alpha)$ in different problems that provides the useful tools and the practice needed for solving new problems.

The Wiener-Hopf equations studied in this book are substantially one dimensional. It is possible to introduce multidimensional W-H equations (Meister \& Speck, 1979) and generalize the concept of factorization that constitutes the fundamental tool that distinguishes the W-H equations from other integral equations. In particular, two works by Radlow $(1961,1964)$ attempted to solve two fundamental diffraction problems ${ }^{1}$ by factorizing kernels defined in two-dimensional space. In these cases, the factorization method needs function-theoretic tools employing analytical functions with two complex variables. The involved analytical difficulties may easily lead to errors, and as a consequence unfortunately Radlow's solutions are incorrect. To date, the only way to solve multidimensional W-H equations appears to be the use of the moment method. Even though approximate, this kind of solution is very powerful; some examples will be considered in chapter 8.

In this book we consider only time harmonic fields with a time dependence specified by the factor $e^{j \omega t}$ (electrical engineering notations), which is omitted throughout, and where the imaginary unit is indicated with j. Conversely, in applied mathematics the factor $e^{j \omega t}$ is usually replaced by $e^{-i \omega t}$. This means that in the natural domain the change $j \Rightarrow-i$ transforms the engineering notation into applied mathematics notation (and vice versa). However, in the spectral domain, usually the same notations are used in both engineering and applied mathematics. In fact, regarding for example the Fourier transforms, the following definitions are the most frequently used in the literature:

$$
F_{e}(\alpha)=\int_{-\infty}^{\infty} f_{e}(x) e^{j \alpha x} d x, \quad F_{a}(\alpha)=\int_{-\infty}^{\infty} f_{a}(x) e^{i \alpha x} d x
$$

where the subscript e means engineering and the subscript a means applied mathematics. Consequently, in the spectral domain on the real axis we have

$$
F_{a}(\alpha)=F_{e}(-\alpha)
$$

and j is replaced by $-i$ (and vice versa).

[^0]For example, let us consider in the natural domain the propagation factor that is defined in electrical engineering notation by

$$
f_{e}(x)=e^{-j k x}
$$

with the propagation constant k defined by

$$
k=\beta-j a, \quad a \geq 0
$$

The same propagation factor in applied mathematics notation is written

$$
f_{a}(x)=e^{i k_{a} x}
$$

with $k_{a}=\beta+i a$.
In the Laplace domain, on the real axis, we have

$$
F_{e}(\alpha)=\int_{0}^{\infty} f_{e}(x) e^{-j k x} e^{j \alpha x} d x=\frac{j}{\alpha-k}
$$

which in applied mathematics notations is written

$$
F_{e}(\alpha)=\frac{j}{\alpha-k} \Rightarrow F_{a}(\alpha)=\frac{-i}{-\alpha-k_{a}}=\frac{i}{\alpha+k_{a}}
$$

Analytic continuations define the previous functions in the whole complex plane α. This means that the Laplace Transforms are defined for every value of α by

$$
F_{e}(\alpha)=\frac{j}{\alpha-k}, \quad F_{a}(\alpha)=\frac{i}{\alpha+k_{a}}
$$

In the following we will define plus $F_{+}(\alpha)$ and minus $F_{-}(\alpha)$ (section 1.1). Notice that a plus (or minus) function in the electrical engineering notation is also a plus (or minus) function in the applied mathematics notation. The only difference between the two is given by the location of the singularities. For example, $F_{e}(\alpha)$ and $F_{a}(\alpha)$ are plus functions both with engineering and applied mathematics notation. However, $F_{e}(\alpha)=\frac{j}{\alpha-k}$ has a singularity at $\alpha=k=\beta-j a$, whereas $F_{a}(\alpha)=\frac{i}{\alpha+k_{a}}$ has it at $\alpha=-k_{a}=-\beta-i a$. The notation and definitions presented in this preface will be used throughout the book.

In the 80 years since the seminal 1931 paper by Wiener and Hopf, an enormous amount of work has been performed using their powerful function-theoretic method and its further extensions. It would not be possible to reproduce all that work in detail within a single volume. Therefore, we simply report many results without proof, referring the interested reader to the bibliographical sources for additional details. Similarly, we list many applications of the method to electromagnetic boundary-value problems, often just providing the results without the detailed derivations that readers may find in the original publications.

Foreword

The Mario Boella series offers textbooks and monographs in all areas of radio science, with a special emphasis on the applications of electromagnetism to information and communication technologies. The series is scientifically and financially sponsored by the Istituto Superiore Mario Boella affiliated with the Politecnico di Torino, Italy, and is scientifically cosponsored by the International Union of Radio Science (URSI). It is named to honor the memory of Professor Mario Boella of the Politecnico di Torino, who was a pioneer in the development of electronics and telecommunications in Italy for half a century and was vice president of URSI from 1966 to 1969.

This advanced research monograph is devoted to the Wiener-Hopf technique, a function-theoretic method that has found applications in a variety of fields, most notably in analytical studies of diffraction and scattering of waves. It contains a compendium of the research work of Professor Vito G. Daniele of the Politecnico di Torino, who is a foremost international authority on the Wiener-Hopf method. Professor Daniele has teamed with his colleague and coauthor, Professor Rodolfo S. Zich, past rector of the Politecnico di Torino and current president of the Istituto Superiore Mario Boella, in writing this monograph.

It is hoped that this work will be well received by scientists, engineers, and applied mathematicians and will serve as a benchmark reference in the field of theoretical electromagnetism for the foreseeable future.

Piergiorgio L. E. Uslenghi
Series Editor
Chicago, January 2014

[^0]: ${ }^{1}$ The diffraction problems studied by Radlow are the diffraction by a quarter-plane and the diffraction by a rightangle dielectric wedge.

