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Introduction

The theory of homogenization has a quite recent history, which dates back
between the end of 1960s and the beginning of 1970s. The term homoge-
nization appeared for the �rst time in 1976 in works by Babu²ka [8], [7],
[9] concerning nuclear engineering, but many important mathematical tools
used in homogenization had been already considered since the end of 1960s.

The aim of this theory can be brie�y explained with a quotation that I
took from [6], which was one of my �rst encounters with this theory: �ho-
mogenization theory aims to �nd an e�ective description of materials whose
heterogeneities scale is much smaller than the size of the body�. This means
that it allows to treat heterogeneous materials, with complicated structure,
also from the numerical point of view, approximating them by a homogenized
one. The original point of this theory, as Tartar underlined many times [52],
is that it can �ts to problems with a certain degree of randomness (the
structure of a heterogeneous material) avoiding the use of probabilities.

In this thesis we focus our attention on two homogenization problems,
both involving the geometry of the domain: an elliptic spectral problem in
a perforated domain and problems with oscillating constraints.

The structure of perforated domains will be described thoroughly in sec-
tion 2.1; in order to �x the ideas, we can consider the simplest case, de�ned
as

Ωε = Ω \
⋃
i∈Iε

Bi
ε,

where Ω is an open bounded set of Rd with Lipschitz boundary and Bi
ε,

for i ∈ Iε ⊂ Zd are the holes, obtained from a given closed and C2 set
B ⊂ Q = (0, 1)d by means of translations and homothety, as follows

Bi
ε = ε(B + i), Iε =

{
i ∈ Zd : ε(B + i) ⊂ Ω

}
.

Hence, by construction, the boundary of perforated domain will be

∂Ωε = ∂Ω ∪

(⋃
i∈Iε

∂Bi
ε

)
= ∂Ω ∪ Σε.
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In such a domain we consider elliptic PDEs and related spectral problems:
in our case

−div(aε(x)∇u(x)) = λεuε,

where aε(x) = a(x/ε) and a ∈ Md×d is a Q-periodic and symmetric matrix
satisfying a standard ellipticity condition, so that the problem is actually
equivalent to

−4uε(x) = λεuε. (1)

This type of problems has been treated since the 1970s: the reader can
�nd many examples in books as [4], [28], [31], [49]. In particular for our
analysis, the crucial work on spectral problems by Vanninathan [54] collects
several results about the asymptotics of eigenpairs with Dirichlet, Neumann
and Steklov boundary conditions. There, the author points out that the
behavior of the eigenpairs (λε, uε) of problems in a perforated domain Ωε,
as ε→ 0, strongly depends on the boundary conditions on ∂Ωε.

Starting from this paper, many authors have worked on similar problems,
changing boundary conditions or hypotheses on the geometry of the perfo-
rated domain, adding weight functions or analyzing localization e�ects. The
boundary-value problem or spectral problem with Fourier boundary condi-
tion was treated by several authors ([55], [29], [32], [30], [12], [24] ).

In our work we consider Fourier type boundary conditions with variable
coe�cients:

∇uε(x) · nε = −q(x)uε(x), x ∈ Σε, uε(x) = 0, x ∈ ∂Ω. (2)

whose behavior depends on the assumptions on the weight function q(x). The
problem was suggested by a work by Chiadò Piat, Pankratova, Piatniski [27],
where the authors consider problem (1), (2) with q ∈ C2(Ω) strictly positive
and realizing its global minimum at a unique point x0 ∈ Ω. Moreover,
they assume the Hessian matrix in x0 to be positive de�nite. Here, on the
contrary, we suppose that

q(x) =

{
0 x ∈ K,
1 x ∈ Ω \K,

where K b Ω is a compact set with non empty interior part A and Lipschitz
boundary.

A physical interpretation of the weight q in our work is as the insulating
power of the holes located inside K. Namely, the homogeneous Neumann
boundary condition at the boundary of the holes Σε means that they repre-
sent completely insulating inclusions; the presence of the weight q, which is
zero in K and positive outside it, allows these inclusions to conduct only in
region Ω \ K and to be insulating in K. Homogenization can describe the
behavior of such a material when the number of these holes tends to in�nity
and their size tends to zero.
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We consider the functional Fε : L2(Ω)→ [0,+∞] de�ned as

Fε(u) =


∫

Ωε

|∇u|2 +

∫
Σε\K

|u|2 u ∈ H1
0 (Ωε; ∂Ω),

+∞ otherwise,

where Hε = H1
0 (Ωε; ∂Ω) =

{
u ∈ H1(Ωε) : u = 0 in ∂Ω

}
is a Hilbert space,

equipped with the scalar product

(u, v)Hε =

∫
Ωε

∇u∇vdx.

It is convenient to represent the �rst eigenvalue through its variational
characterization

λ1
ε = min

{
Fε(u) : u ∈ Hε,

∫
Ωε

u2dx = 1

}
.

More generally, we can describe any eigenvalue λjε in a variational way. by
introducing a basis of eigenfunctions uiε of our problem (1), (2), and by taking
the minimum over the spaces

Hj
ε =

{
u ∈ Hε : (u, uiε)Hε = 0, i = 1, . . . , j − 1

}
.

We �rst prove equiboundedness of the �rst eigenvalue λ1
ε. Then we compute

the Γ-limit of Fε:

Γ- lim
ε→0

Fε(u) = F (u) =


∫

Ω
fhom(∇u)dx, u ∈ H1

0 (A)

+∞ otherwise.

Here fhom : Rd → [0,+∞] is de�ned by

fhom(ξ) = inf

{∫
Y
|ξ +∇u|2dx : u ∈ H1

per(Rd)
}
.

and gives the homogenized spectral problem, with Dirichlet conditions,{
−div(ahom∇u) = |Y |λu u ∈ A
u = 0 u ∈ ∂A,

(3)

where ahomξξ = fhom(ξ), A is the interior part of K and Y = Q \ B is the
perforated periodicity cell.

This Γ-convergence result, together with the equicoerciveness of Fε and
the variational formulation of eigenvalues, implies the convergence

λjε −−−→
ε→0

λj ,
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with λj eigenvalues of the homogenized problem (3). We also study the
asymptotics of the eigenfunctions ujε with respect to the homogenized ones
uj , proving the convergence of eigenspaces, in the sense of Mosco; moreover,
we investigate the rate of convergence of eigenfunctions in the L2-norm, and
we show that is of the order

√
ε. This last result is obtained following a

classical procedure similar to the one in [26], that exploits Vi²ík lemma [41].

The second and third parts of this thesis are devoted to the homog-
enization of problems with oscillating constraint, that can be included in
the general theory of periodic or almost-periodic homogenization of integral
functions. There is a wide literature concerning homogenization problems
for singular structures and for functions de�ned on networks and periodic
manifolds ([3, 15, 23, 35, 42, 46, 47, 56, 45, 44]). In most of those problems
the geometric complexity is in the domain of de�nition, and the functions are
considered as de�ned on the whole space or as limits of functions de�ned on
full-dimensional sets as those sets tend to a lower dimensional (possibly mul-
tidimensional) structure. In our case we consider similar geometries, but the
geometrical complexity is in the codomain, as we consider instead functions
with values in a periodic manifold, and we analyze the behavior of the cor-
responding energies as the geometry of the target manifold gets increasingly
oscillating. Homogenization problems with a �xed target manifold have been
considered in [6, 5].

Our results concern the behavior of energies de�ned on functions con-
strained to take their values on manifolds Vε with a �nely oscillating geom-
etry as these manifolds converge to a smoother manifold V as ε→ 0.

Since we are interested in highlighting the e�ects of the constraint, we will
focus on the simplest energy functional, i.e, the Dirichlet integral. Namely,
for u : Ω ⊂ Rn → Vε we will consider

Fε(u) =


∫

Ω
|∇u|2dx u ∈ H1(Ω;Vε),

+∞ otherwise.

We suppose that the limit V is a smooth m-dimensional manifold and the
oscillating Vε are manifolds of the same dimension lying in a tubular neigh-
borhood of V with vanishing radius as ε → 0. A localization and blow-up
argument leads to a problem where V is an m-dimensional linear subspace
of an Euclidean space Rm+m′ . We will treat the cartesian case; i.e., when
the manifolds Vε can be seen as graphs of a function de�ned on V (identi�ed
with Rm); i.e., there exist functions ϕε : Rm → Rm′ :

Vε = {(x, ϕε(x)) : x ∈ Rm} ⊆ Rm+m′ .

Hence the assumption that Vε converges to V as ε→ 0 is translated into

lim
ε→0

ϕε = 0, Vε = {(x, ϕε(x)) : x ∈ Rm} → {(x, 0) : x ∈ Rm} = V.
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The general case, where V is not necessarily a hyperplane, can be ex-
plained in the same way, imposing that Vε converges to the tangent space to
V at X, so that the model case is a �local� description of the general one.

Our modeling assumption is that the description of the oscillations of ϕε
is obtained through a single periodic function ϕ : Rm → Rm′ satisfying

1. ϕ : Rm → Rm′ is (0, 1)m-periodic;

2. ϕε(x) = δε ϕ
(x
ε

)
, with δε → 0 as ε→ 0.

In such a setting a function u ∈ H1(Ω;Vε) can be rewritten as

u(x) = (u1(x), u2(x)),

with u1 : Ω→ Rm and
u2(x) = ϕε(u1(x)).

Hence we can write Fε in an unconstrained form:

Fε(u) =

∫
Ω
|∇u|2dx =

∫
Ω
|∇u1|2dx+

∫
Ω
|∇ϕε(u1)|2dx =

=

∫
Ω
|∇u1|2dx+

(
δ

ε

)2 ∫
Ω
|∇ϕ

(u1

ε

)
∇u1|2dx.

The coe�cient in front of the second term of Fε, suggests three di�erent
behaviors depending on the scale of the coe�cient δ:

1. δ/ε → 0. In this case the homogenization becomes trivial, the second
term can be neglected and the Γ-limit is just the Dirichlet integral of
the function u1, which in particular is independent of the constraint ϕ;

2. δ/ε→ c ∈ (0,+∞). In this case we can consider the energy density

f(v, ξ) = |ξ|2dx+ c2|∇ϕ(v)ξ|2

so that

Fε(u1) =

∫
Ω
f
(u1

ε
,∇u1

)
dx.

Since f is periodic and satis�es a standard growth condition the ho-
mogenization of these energies can be then performed by using general
almost periodic homogenization theorems [19];

3. δ/ε → +∞. In this case the energy density fε of Fε does not satisfy
standard growth conditions and we cannot use known results. The
fact that the coe�cient of the second term blows up as ε→ 0, suggests
that the behavior of the homogenized functional is related to conditions
that make the second integral negligible as ε → 0. Upon scaling the
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variable, this leads to the condition that u1 makes Dyϕ(u1) almost
zero; i.e. u1 is very close lo lying on a level set of ϕ. Therefore, the
Γ-limit will strongly depend on the geometry of the constraint ϕ; in
particular on its level sets.

The result in the thesis deals with the description of asymptotic metric
properties of Vε, for which we deal with curves in Rm (i.e., n = 1) and
hypersurfaces (i.e., m′ = 1). The general vectorial case seems to include
additional e�ect than in the case of curves, which require the use of notions
as quasiconvexity, polyconvexity or rank-1-convexity, and is beyond the scope
of this thesis. Generalization to surfaces of higher codimension m′ > 1 on
the contrary seems to be analytically more standard.

In order to describe the Γ-limit in the case δ >> ε we have to introduce
several types of homogenization. With a slight abuse of notation from now
on we will directly use the variable u in place of u1.

First, with �xed z we consider the strict constraint

ϕ
(u
ε

)
= z,

which is meaningful only if z in the image of ϕ. For functions satisfying this
constraint the functional Fε(u) reduces to the Dirichlet integral. Moreover,
the limit of functions satisfying this constraint is not constant only if the set
{x ∈ Rm : ϕ(x) = z} contains an in�nite connected curve with locally �nite
length. We will make the stronger assumption:
• (uniform connectedness) there is a single in�nite connected compo-

nent of this set and all pairs of points x, x′ in this component are connected
with a curve of length proportional to the distance between x and x′.

This property is easily veri�ed if {x ∈ Rm : ϕ(x) = z} is composed of
unions of periodic C1 hypersurfaces.

Under this assumption the homogenization of the Dirichlet integral with
the strict constraint is an integral functional∫

Ω
ψzhom(u′) dt,

with ψzhom : Rm → [0,+∞) a two-homogeneous convex function. Moreover,
ψzhom satis�es the asymptotic homogenization formula

ψzhom(w) = lim
T→+∞

ψzT (w),

where

ψzT (w) =
1

T
min

{∫ T

0
|u′|2dt : |u(0)| 6

√
m, |u(T )− Tw| 6

√
m,ϕ(u) = z

}
.

(4)
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This is a variation on corresponding formulas for the homogenization of
functionals with energy densities f(u/ε, u′). In this case such energy densities
are in�nite outside the constraint, so that some extra care must be taken.
Note in particular that we cannot easily impose strict boundary conditions
(that in the usual case would read u(0) = 0 and u(T ) = Tw). We prefer to
substitute those conditions with an inequality, which in particular is satis�ed
when the u(0) lies in the periodicity cube (0, 1)m.

In order to derive the homogenization theorem for our energies from those
strictly constrained energies we make the following assumptions:
• for all z in the image of ϕ either {x ∈ Rm : ϕ(x) = z} is uniformly

connected (in the sense de�ned above) or it has no in�nite connected com-
ponent;
• curves satisfying the weaker constraint u(t) ∈ {x ∈ Rm : |ϕ(x)−z| ≤ c}

are close to curves satisfying a strict constraint for some z′ for c small enough.
Before stating more precisely the latter condition, we consider the model

example of n = 2 and

ϕ(x, y) = sin(2πx) sin(2πy).

In this case, the only connected level set is with z = 0. A set {(x, y) :
|ϕ(x, y) − z| ≤ c} is either composed of disconnected components (when
c < |z|), or contains a tubular neighborhood of {(x, y) : ϕ(x, y) = 0}. In
any case, given a curve u taking values in that set, we can �nd a curve u0

satisfying the strict condition ϕ(u0(t)) = 0 close to the original curve and
with energy not greater than the energy of u times 1 + o(1) as c→ 0.

With this example in mind we can state the condition above as follows.
For w ∈ Rm, z ∈ Im(ϕ) ⊂ R, c, T > 0, we consider the minimum problems

ψz,cT (w) =
1

T
min

{∫ T

0
|u′|2 : |u(0)| 6

√
m, |u(T )−Tw| 6

√
m, |ϕ(u)−z| 6 c

}
.

(5)
Then we require that there exists z′ such that |z− z′| ≤ c and for all w there
exists w′ = w + oT (1) such that

ψz,cT (w) ≥ (1 + oc(1))ψz
′
T (w′)) + oT (1),

where oc(1)→ 0 as c→ 0 and oT (1)→ 0 as T → +∞.
This is the (rather complex) variational formulation of a geometric sta-

bility property of level sets, which is easily proved for ordinary constraints.
By using this property it is possible to prove the homogenization result by re-
ducing to strict constraints. Summarizing the main arguments in the proof,
from energy bounds we deduce that functions uε with Fε(uε) equibounded
locally must lie in some set {x : |ϕ(uε/ε) − z| ≤ c} with c small. By a
scaling argument then the energy is estimated using ψz,cT (w), where w is the
local averaged slope of uε, and eventually with ψzT (w′). A particular care
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has to be taken in these computations in order to reduce to �local� estimate
which nevertheless, after scaling, can be estimated by problems with T large
enough.

Finally, we get our homogenized energy density by optimizing over z and
on mesoscopic oscillations between level sets, producing a convex envelope
of the minima between homogenization formulas on strict constraint:

ψhom =

(
min

z∈Im(ϕ)
ψzhom

)∗∗
.

Note that under our assumptions on level sets, in dimension two there is
only one in�nite connected level set for some z = z0, so that this formula
simpli�es to ψz0hom. In dimension three or higher it is instead possible to give
examples where there are more than one in�nite connected level set, and the
formula above must indeed be applied. Eventually, the Γ-limit is then given
by

Γ- lim
ε→0

Fε(uε) =

∫ 1

0
ψhom(u′)dt.

Working on oscillating constraint problems, we found out that the func-
tionals Fε in the scalar case, actually their Γ-limit, can be geometrically
interpreted as a norm over Rm: the existence of at least one level set of
ϕ containing an unbounded connected component, which is necessary for
the boundedness of the homogenized function, creates a sort of periodic un-
bounded and connected ε-network over Rm, that represents the �allowed�
zones for curves uε in Fε. Indeed, if uε lies on this lattice, the gradient of
ϕ(uε/ε) will be zero and the Γ-limit can be �nite on their limit u. In this
metric standpoint, we can interpret ψhom as measuring the distance between
the origin and the point w, not with the euclidean norm, but with the length
of a curve that microscopically lies in the lattice de�ned by the constraint.

Our last result regards the characterization of all metrics on Rm that can
be obtained as a Γ-limit following the procedure above for some ϕ. This
problems takes inspiration by a work by Braides, Buttazzo and Fragalà [17],
where the authors consider the density of Finsler metrics in the Riemannian
ones, with respect to Γ-convergence. By a Finsler metrics in Rm we mean
any convex and 2-homogeneous function ψ on Rm, controlled from below by
the Euclidean norm: ψ(w) > c|w|2.

Note as a preliminary trivial observation that all limit metrics ψhom will
satisfy ψ(z) ≥ |w|2, and that the equality is achieved with ϕ = 0. Moreover
we already proved that ψhom is 2-homogeneous and convex, so that it is a
Finsler metric. Following this observations, we conjectured that we could
approximate, via Γ-convergence, any symmetric Finsler metric larger than
the Euclidean metric by a ψhom de�ned as the homogenized of an oscillating
constraint problem. We prove that the answer is positive if m = 2. The case
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m > 2, is more complicated because of the geometry of the level sets, but
can be, together with the vectorial case n > 1, a starting point for future
works.

We consider more in detail the approximation of two dimensional non-
degenerate Finsler metrics; the degenerate case, i.e., if there exists ν ∈ S1,
s ∈ R and C > 1 such that

F (u) =

C
∫

Ω
|u′|2 dt if 〈u(t), ν〉 = s for all t

+∞ otherwise,

being dealt with by hand. As remarked above, in this case the desired ϕ
will only have one non-empty connected level set. The construction of ϕ is
equivalued to the construction of this level set, which we may suppose to be
{x : ϕ(x) = 0}.

By approximation we �rst reduce to a crystalline case; i.e., when the set
{w : ψ(w) ≤ 1} is a polygon. If ν1, . . . , νN ∈ S1 denote the directions of
the extremal points of this polygon, again by approximation we can suppose
that νj also are rational ; i.e., there exist tj > 0 such that tjνj ∈ Z2: look to
Figure 1 for example.

-2 0 2

B1(0)

+V2

+ν3

-ν1 +ν2

-ν3

+V1

-V1

+ν2

+V3

-V3

-V2

+ν1

Figure 1: The polygon {w : ψ(w) ≤ 1}, with extremal points Vj in the
directions νj .

This allows to construct a periodic network composed of lines in the
directions νj , as Figure 2 shows.

By perturbing this network we obtain a periodic network of curves L, as
in Figure 3, such that the homogenization of the Dirichlet integral on the
curves satisfying the constraint uε ∈ εL gives ψ. The desired ϕ is then given
for example by ϕ(x) = dist2(x,L).
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ν2

ν1 ν3

Figure 2: The network with lines in the directions νj .

ν3
ν2

ν3

Figure 3: The network L with perturbed lines in the directions νj .

The thesis is divided in four parts according to di�erent problems treated.
The �rst part is dedicated to preliminary statements: in chapter 1 we in-
troduce some results of the general theory of homogenization of integral
functions, of Γ-convergence and of convex analysis; in chapter 2 we describe
the structure of perforated domains with three examples of problems, that
are Dirichlet, Neumann homogeneous, section 2.2, and Fourier boundary
conditions, section 2.3.

The second part concerns the asymptotics of eigenpairs for a Fourier
boundary condition problem, with the weight function q described above: we
de�ne this problem in section 3.1, then we consider an upper bound of �rst
eigenvalue λ1

ε in section 3.2; hence, by meanings of Γ-convergence theory, we
consider the Rayleigh quotient and its Γ-limit in section 3.3; �nally we state
two important results about convergence of eigenvalues and eigenfunctions in

10



section 3.4, the �rst one exploits the properties of Γ-convergence and Mosco
convergence, while the second uses a general result of spectral theory, known
as Vi²ík lemma, that allows to study the rate of this convergence.

Homogenization of oscillating constraint problems is treated in chapter
4: we start with the general cartesian case, in the hypothesis δ/ε → 0 and
δ/ε → c, respectively in section 4.2 and 4.3; then, in chapter 5 we consider
the case δ/ε → +∞, for the scalar case, n = 1 = m′, treating the existence
of the limit in the homogenization formula and the Γ-limit's proof.

Chapter 6 is dedicated to the density of R2 oscillating constraint prob-
lems for curves in Finsler metrics: we prove the density result in the most
interesting case sup‖w‖=1 ψ(w) < +∞, and we consider some examples.

11



Chapter 1

Homogenization of integral

functionals

We present some preliminary tools and �x the notation that we will use in
the next chapters. In section 1.1 we recall the de�nition of Γ-convergence
with its main properties, and we point out some property of convex functions
and sets; in section 1.2 we will state some classic results about periodic and
almost periodic homogenization of integral functions.

1.1 Preliminary tools

The notion of Γ-convergence, due to De Giorgi and Franzoni, [34], dates in
1975; it is a suitable type of convergence in the variational way, because it
satis�es the important property of preserving minima and minimizers, as we
will see in theorem 1.1.1. We will consider for its de�nition a metric space
(X, d). We refer to books as [19] or [33] for details.

De�nition 1.1.1. Let fj : X → R, j ∈ N, be a sequence of functions. We
say that fj Γ-converges to f : X → R, in the topology generated by the metric
d, writing

Γ(d)- lim
j→+∞

fj = f,

if, for any x ∈ X, we have

i) (Γ- lim inf) for every sequence xj converging to x with respect the d-
topology

f(x) 6 lim inf
j→∞

fj(xj); (1.1)

ii) (Γ- lim sup) there exists a sequence {xj}j, often called recovery se-
quence, converging to x, always in the d-topology, such that

f(x) > lim sup
j→∞

fj(xj), (1.2)
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or, equivalently
lim
j→∞

fj(xj) = f(x).

By the de�nition of Γ-convergence we can obtain the following properties:

Proposition 1.1.1. Let fj : X → R Γ-converge to f , then we have

i) f is d-lower semicontinuous (l.s.c. for short). This is a consequence
of (1.1).

ii) For every increasing sequence of indices jk, f = Γ(d)- limk fjk .

iii) If g is a continuous function then

Γ(d)- lim
j→∞

fj + g = f + g.

iv) If fj = F for any j ∈ N, then fj Γ-converges to F , that is the lower
semicontinuous envelope of F , i.e.

F (x) = sup {g(x) : g l.s.c., g 6 f} .

We can state two further properties of the Γ-limit: the �rst about com-
pactness in separable metric spaces

Property 1.1.1. Let (X, d) be a separable metric space and fj : X → R,
j ∈ N a sequence of function. Then there is an increasing sequence of indices
{jk}, such that Γ(d)- limk fjk exists.

The second is about the convergence for subsequence

Property 1.1.2. One has Γ(d)- limj fj = f if and only if for every subse-
quence {fjk} Γ(d)- limk fjk = f

This last property allow us to treat the convergence of a sequence de-
pending on a continuous parameter: let {fε}ε>0 be a sequence of functions
depending on ε ∈ R+; then we say that

Γ(d)- lim
ε→0

fε = f

if, for any decreasing sequence {εj}j∈N such that limj→∞ εj = 0, we have

Γ(d)- lim
j→∞

fεj = f.

Finally we show the main property of the Γ-limit: the convergence of
minima and minimizers.
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Theorem 1.1.1. Let (X, d) be a metric space and fj, f functionals from X
to R, and let xj be a minimizer for fj, i.e.

fj(xj) = min
x∈X

fj(x).

If fj Γ(d)-converges to f and xj
d−→ x0 ∈ X, then

f(x0) = lim
j→∞

fj(xj) = min
x∈X

f(x).

In this last part of the section we want to recall some results about
convexity. Let us �rst consider the de�nition of a convex scalar function.

De�nition 1.1.2. Consider the function f : Rn → R; we say that f is
convex if

f(tu+ (1− t)v) 6 tf(u) + (1− t)f(v),

for all u, v ∈ Rn and t ∈ (0, 1) for which the right-hand side is de�ned.

Remark 1.1.1. De�nition 1.1.2 can be extended to a convex linear combi-
nation: let λi ∈ R, for i = 1, . . . ,m be such that

∑m
i=1 λi = 1 and let xi ∈ Rn

be such that f(xi) is de�ned for i = 1, . . . ,m; we say that f : Rn → R is
convex if

f

(
m∑
i=1

λixi

)
6

m∑
i=1

λif(xi).

There are equivalent de�nitions of convexity: let us recall the epigraph
of a function f : Rn → R, that is the set

epi(f) = {(x, t) ∈ Rn × R : t > f(x)} .

Then the following theorem holds true, see [53], theorem 5.10 for the
proof:

Theorem 1.1.2. Consider the function f : Rn → R. The following condi-
tions are equivalent

i) f is convex;

ii) epi(f) is convex.

Now we recall two import properties of convex function:

Proposition 1.1.2. Let f : Rn → (−∞,+∞] be a convex function, then
Jensen's inequality holds:

f

(
1

µ(Ω)

∫
Ω
udµ

)
6

1

µ(Ω)

∫
Ω
f(u)dµ,

for any �nite positive measure µ on Ω ⊆ Rn and u ∈ L1
µ(Ω).
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Proposition 1.1.3. Let consider p > 1 and f : Rn → R a convex function
such that, for all u ∈ Rn

|f(u)| 6 (1 + |u|p).

Then f is locally Lipschitz continuous, i.e. there exists a constant c > 0 such
that for any x1, x2 ∈ Rn

|f(x1)− f(x2)| < c(1 + |x1|p−1 + |x2|p−1)|x1 − x2|.

We will also use the convex hull of a function, also known as convex
envelope, that is the largest convex minorant:

(f)∗∗(x) = sup {g(x) : g convex and l.s.c., g 6 f} ,

and the convex envelope of a set A ∈ Rx, that is the smallest convex set con-
taining A; it can be proved that it is the set of all �nite convex combination
of elements in A:

co(A) =

{
n∑
i=1

λixi, λi > 0,
n∑
i=1

λi = 1, xi ∈ A, i = 1, . . . , n, n ∈ N

}

Finally we recall the Caratheodory theorem for convex sets:

Theorem 1.1.3. Let consider the set A ⊆ Rn. Then for any x ∈ co(A) there
exist n + 1 vectors in A, x1, . . . , xn+1, such that x is a convex combination
of these vectors, i.e.

x =
n+1∑
i=1

λixi,
n+1∑
i=1

λi = 1, xi ∈ A.

1.2 Periodic and almost periodic homogenization

We want to consider homogenization of integral functions, i.e. functions of
the type

Fε(u) =

∫
Ω
f
(x
ε
,∇u(x)

)
dx,

with f satisfying a periodicity (almost periodicity) and a standard growth
condition.

Let f : Ω ⊆ Rn ×Mm×n → [0,+∞) be a Borel function; we say that f
satis�es a standard p-growth condition if there exist 1 6 p < +∞, α, β ∈ R
such that

α|ξ|p 6 f(x, ξ) 6 β(1 + |ξ|p). (1.3)

Hence we can consider the class of integral functions F(α, β, p) de�ned
as
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De�nition 1.2.1. Let consider α, β > 0 and 1 6 p < +∞. We say that
F : W 1,p(Ω;Rm) × A(Ω) → [0,+∞) belongs to F(α, β, p) if there exists a
Borel function f : Rn ×Mm×n → [0,+∞) satisfying the p-growth condition
(1.3), such that

F (u,A) =

∫
A
f(x,∇u(x))dx,

for u ∈W 1,p(Ω;Rm) and A ∈ A(Ω) that is the family of open subsets of Ω.

We will also consider the periodicity condition: f(·, ξ) is 1-periodic for
all ξ ∈Mm×n:

f(x+ ei, ξ) = f(x, ξ), (1.4)

for all x ∈ Rn, ξ ∈Mm×n and i = 1, . . . , n.
In order to consider Γ-convergence of Fε, there are two important issues

to be treated:

i) is the Γ-limit an integral type function? More precisely, we ask if can
we �nd a function ϕ : Ω×Mm×n → [0,+∞) such that

Γ- lim
ε→0

Fε(uε) = F (u) =

∫
Ω
ϕ(x,∇u(x))dx;

ii) if such a ϕ exists, is it possible to have an explicit formula independent
of ε to compute it?

Our assumptions on f ensure a positive answer to both the questions:

Theorem 1.2.1. Let f : Rn ×Mm×n → [0,+∞) be a Borel function sat-
isfying the periodicity condition (1.4) and the p-growth condition (1.3), for
1 6 p < +∞. If Ω ⊂ Rn is a bounded open set and we consider the integral
function

Fε(u) =

∫
Ω
f
(x
ε
,∇u(x)

)
dx,

for u ∈W 1,p(Ω;Rm), then

Γ(Lp)- lim
ε→0

Fε(u) =

∫
Ω
fhom(∇u(x))dx,

for all u ∈W 1,p(Ω;Rm), where fhom : Mm×n → [0,+∞) satis�es the asymp-
totic homogenization formula:

fhom(ξ) = lim
T→+∞

1

Tn
inf

{∫
(0,T )n

f(x, ξ +∇u(x))dx : u ∈W 1,p
0 ((0, T )n;Rm)

}
,

(1.5)
for any ξ ∈Mm×n.
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The proof of this important result, that can be found in [19] chapter 14,
for example, goes through four fundamental steps:

Step 1. using the p-growth condition, one shows that the Γ-limit of a integral
function Fε admits an integral representation;

Step 2. one proves that the density of the Γ-limit, i.e. the function ϕ of question
i) does not depend on the variable x ∈ Rn;

Step 3. using the periodicity of problem's structure, the existence of the limit
in (1.5) is considered;

Step 4. �nally the two inequalities (1.1) and (1.2) are proved.

Theorem 1.2.1 can be generalized to function f non periodic. Let us
consider the following

De�nition 1.2.2. Let (X, ‖ ‖) be a complex Banach space. We say that a
measurable function u : Rn → X is uniformly almost periodic (u.a.p. for
short), if it is the uniform limit of a sequence of trigonometric polynomials
on X:

lim
k
‖Pk(·)− u(·)‖∞ = 0,

for suitable

Pk(y) =

rk∑
j=1

xkj e
i(λkj ,y),

with xkj ∈ X, λkj ∈ Rn and rk ∈ N.

For these type of density functions the following homogenization theorem
holds true, see [19], for example, for the proof:

Theorem 1.2.2. Let p > 1 and f : Rn × Rm × Mm×n → R satisfy the
following conditions

i)
α|ξ|p 6 f(x, s, ξ) 6 β(1 + |ξ|p), (1.6)

for any (x, s, ξ) ∈ Rn × Rm ×Mm×n and for suitable α, β > 0;

ii) f is uniformly almost periodic in the �rst two variables (x, s) ∈ Rn ×
Rm.

Then there exists a function fhom : Mm×n → R such that for every
bounded open subset Ω of Rn and every u ∈W 1,p(Ω;Rm) the following limit
exists

Γ(Lp)- lim
ε→0

∫
Ω
f

(
x

ε
,
u(x)

ε
,∇u(x)

)
dx =

∫
Ω
fhom(∇u(x))dx,
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and the function fhom is de�ned by the asymptotic homogenization formula

fhom(ξ) = lim
T→+∞

inf

{
1

Tn

∫
(0,T )N

f(x, u(x) + ξx,∇u(x) + ξ)dx :

u ∈W 1,p((0, T )n;Rm)
}
,

(1.7)

for any ξ ∈Mm×n.
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Chapter 2

Homogenization in periodically

perforated domains

In this preliminary chapter we will give the reader a brief overview on the
theory of homogenization in perforated domains, presenting the standard
methods in section 2.1, two classical examples in section 2.2 and a particular
problem in section 2.3, that will be our starting point for the one treated in
chapter 3.

The literature on this topic is very large and for this presentation we
refer to works as [4], [28], [31], [49].

2.1 Introduction and problem setup

Homogenization theory is a very important mathematical method that allows
to treat a lot of problems, where the structures considered are too compli-
cated from the numerical point of view, but they can be well approximated
by a homogenized one. It was born in the late 70s, thanks to the contribu-
tion of works by Tartar, Murat, Spagnolo, Sanchez Palencia and others. The
reader can refer to [52] for a good and interesting introduction, also from the
historical point of view, on Homogenization theory.

In this work and in particular in this chapter we want to consider ho-
mogenization of perforated domains, that is strictly related to the study of
P.D.Es. de�ned on particular domains with a large number of small holes:
this means that boundary conditions on such a domain, i.e. on the bound-
ary of these holes, make the problem completely unable to be treated with
numerical methods.

From the physical point of view homogenization theory plays a funda-
mental role. To understand better we can consider as an example a composite
material, which occupies an open bounded set Ω ⊆ R3, made of two di�erent

19



materials A and B with two conductivity coe�cients λA, and λB:

λ =

{
λA x ∈ A
λB x ∈ B.

We can consider the temperature as a function u(x) at a point x ∈ Ω.
Suppose that the portion of type B is a union of small insulating inclusions,
compared to the dimension of the sample, periodically distributed inside Ω
and its conductivity is zero. This means that u will satisfy an equation such
as 

−div(λ∇u) = G x ∈ A
u = f x ∈ ∂Ω

u · n = 0 x ∈ ∂B

where f is the �xed temperature in the boundary of the material, n is the
unite external norm in the boundary of the inclusions B, so that the third
condition means that the holes are completely isolated.

Here it is clear that, the more the number of holes growths, the more it
will be di�cult to treat the equation numerically.

The aim of homogenization is to replace such a microscopically compli-
cated structure with a macroscopic homogeneous one, which approximate
the behavior of the original material. This means, from the mathematical
point of view, that one has to introduce a small parameter ε, which is, for
example, the size of holes, and formulate the problem in a perforated domain
Ωε, then, with homogenization theory, one has to studied the problem as ε
tends to zero.

Let us start with the de�nition of a periodically perforated set. We
consider the sets Q = [0, 1)d and E ⊂ Rd, which is Q-periodic, open and
connected, with Lipschitz boundary Σ = ∂E. We de�ne the complement of
E, B = Rd\E, that represents the holes. At this point we have to distinguish
two di�erent cases: the �rst one is obtained assuming Q ∩ E connected,
Q ∩ B b Q, so that B consists of disjoint components; the second, that is
more general, avoids this hypothesis.

The �rst case is classical and it has been treated since 1977, by Tartar,
Murat, Sanchez Palencia and other authors. The hypothesis on the con-
nectedness of the perforated cell, allows us to use classic extension results
for Sobolev spaces on regular open sets, see theorem 2.1.1, but it avoids to
treat many interesting situations, as the one in �gure 2.1, or in R3 the one
in �gure 2.2.

The second and more general case can be considered in a di�erent way:
in the work by Acerbi et al. [1] (1992), the authors show the existence of
an extension operator, without the assumption on the connectedness of the
perforated cell, so that this hypothesis can be avoided.

20



B

E

E

Q

Figure 2.1: Non connected periodicity cell.

Figure 2.2: Non connected periodicity cell in R3.

To simplify our presentation, in the sequel we will assume that Q ∩E is
connected and Q∩B b Q, remembering that this hypothesis is not necessary.
So we denote by Y = Q∩E the periodicity perforated cell and Σ0 = Q∩∂B =
Q ∩ Σ, the boundary of the hole.

Y B

E

Figure 2.3: Admissible perforated cell.

For every i ∈ Zd and for �xed ε > 0, we denote Y i
ε = ε(i + Y ), Σi

ε =
εΣ ∩ Y i

ε , and B
i
ε = εB ∩ Y i

ε , that are respectively the periodicity cells, the
boundary of the holes, and the holes themselves. Given a bounded open set
Ω ⊂ Rd, with Lipschitz boundary ∂Ω, our perforated domain is

Ωε = Ω \
⋃
i∈Iε

Bi
ε, Iε =

{
i ∈ Zd : Y i

ε ⊂ Ω
}
. (2.1)
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By the hypothesis on the connectedness of Q ∩ E, we can assume that
Ωε is still connected; by de�nition of Iε we get that the holes don't intersect
∂Ω; we have

∂Ωε = ∂Ω ∪ Σε, Σε =
⋃
i∈Iε

Σi
ε.

This last assumption can be avoided, using a di�erent extension operator,
as we will see in the sequel.

In this setting we want to consider elliptic P.D.Es, with Dirichlet bound-
ary condition on the external boundary of Ω, so that it is natural to de�ned
the following space

Hε = H1
0 (Ωε; ∂Ω) =

{
uε ∈ H1(Ωε) : uε = 0 ∈ ∂Ω

}
, (2.2)

that is a Hilbert space equipped with the norm

‖uε‖2Hε =

∫
Ωε

|∇uε(x)|2dx.

The main di�culty about solving problems on perforated domains is due
to the fact that this particular norm strongly depends on ε, in particular there
is no any inclusion relation between Hε and Hε′ , so that a priori estimates
independent of ε, that we need to apply Lax-Milgram theorem, for example,
can't be obtained. A natural and classical way to solve this issue is to de�ned
a suitable continuos extension operator, that allows to consider uε de�ned
in H1(Ω) and to get, by continuity, a priori estimate in the whole Ω, in
order to pass to the limit as ε → 0. In other words, as we will see in our
problem in section 3.3, we will de�ne the problem in a variational way, i.e.
as a minimum of a functional, and we will study its gamma limit.

Let us consider the �rst method and de�ne the extension operator. The
idea, due to Tartar (1977, 1978), is to de�ne an extension on the periodicity
cell Y and repeat it in the whole Ω.

Theorem 2.1.1. Let Ωε ⊆ Rd be an admissible periodically perforated do-
main as in our setting, i.e.

i) the set of the holes B is a smooth open set with C2 boundary;

ii) the perforated cell Y is locally on one side of the hole of B, so that sets
like the one in �gure 2.1 are not admissible;

iii) the holes does not intersect the boundary of Y ;

iv) the holes does not intersect the boundary of Ω;

Then for every ε > 0, there exists a linear and continuous extension operator
Tε : H1(Ωε)→ H1(Ω) such that, for any u ∈ H1(Ωε)
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i) Tεuε = uε in Ωε,

ii) ‖Tεuε‖H1(Ω) 6 c‖uε‖H1(Ωε),

where the constant c > 0 depends on Y , but is independent of ε.

Proof. Consider u ∈ H1(Y ), in the perforated cell: by hypothesis i) and iii),
Y has a regular boundary, then, there exists an extension operator

P : H1(Y )→ H1(Y ∪B),

such that
‖Pu‖L2(Y ∪B) 6 C‖u‖L2(Y ),

‖Pu‖H1(Y ∪B) 6 C‖u‖H1(Y ).

This is a classical result on extension in Sobolev spaces, see for example
[21], theorem IX.7. Consider now a function u ∈ H1(Y ); we have

u =MY (u) + ψ,

with

MY (u) =
1

|Y |

∫
Y
u(x)dx.

Being ψ with zero mean value, we can apply Poincaré-Wirtinger inequal-
ity:

‖ψ‖H1(Y ) 6 C ′‖∇ψ‖L2(Y ),

and, being ∇u = ∇ψ, one has

‖Pψ‖H1(Y ∪B) 6 C‖ψ‖H1(Y ) 6 C ′‖∇ψ‖L2(Y ) = C ′‖∇u‖L2(Y ).

Now de�ne Tu =MY (u) + Pψ, hence

‖Tu‖H1(Y ∪B) 6 ‖Pψ‖H1(Y ∪B) 6 C ′‖∇u‖L2(Y ) 6 C‖u‖H1(Y )

Consider now a function uε ∈ H1(Ωε), by the periodicity of the domain
we have ∫

Ωε

|uε(x)|2dx ≈
∑
i∈Iε

∫
Y iε

|uε(x)|2dx

and the same holds true for ∇uε. Note that the number of the cells in Ω is

Nε =
|Ω|
|Yε|
≈ ε−d |Ω|

|Y |
.

Therefore we can take uε ∈ H1(Ωε); for any x ∈ Ωε there exists i ∈ Iε
such that x = ε(i+y), with y ∈ Yε. Hence de�ne uε,k(x) = uε(ε(k+y)) that
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belongs to H1(Y ), for any x ∈ Ωε such that x = ε(k+ y). For any i ∈ Iiε we
can extend uε,i as in the previous part, and, de�ning

Tεuε = Tuε,i

(
x− εi
ε

)
, x = ε(i+ Y ) ∈ Ω, i ∈ Zd,

we get

‖Tεuε‖H1(Ω) =
∑
i∈Iε

∫
Y iε

|∇Tuε,i|2 6 C ′ε−d
|Ω|
|Y |

∫
Y
|ε−1∇yuε,k(y)|2εddy =

= C ′ε−d
|Ω|
|Y |

∫
εY
|∇uε(x)|2dx = C

∫
Ωε

|∇uε(y)|2dy 6 ‖uε‖H1(Ωε)

Remark 2.1.1. It is possible to relax hypothesis iv) and get the existence of
an extension operator not in the whole Ω, but in a retracted domain. Let us
de�ne the set

Ω(k) = {x ∈ Ω : dist(x, ∂Ω) > k} .

The following result holds true

Theorem 2.1.2. Let Ωε ⊆ Rd be a periodic perforated domain satisfying
hypothesis i), ii) and iii) of theorem 2.1.1. There exists an extension operator
Tε : H1(Ωε)→ H1

loc(Ω) and two constants k, C, such that∫
Ω(kε)

|∇Tεuε|2 6 C‖uε‖H1(Ωε),

for every uε ∈ H1(Ωε), with constants k and C independent of ε.

Hence, if holes intersect the boundary of Ω, we can't construct an exten-
sion operator in the whole Ω, but, being k independent of ε, in many situation
it is enough to get similar result than the case of Ω satisfying iv). A proof
of theorem 2.1.2 can be found in [1].

2.2 Dirichlet and Neumann spectral problems in

perforated domains

In this section we will show some example of homogenization in perforated
domains. Proves of next results and more details can be found in [54].

By elliptic spectral problem in a perforated domain we mean to �nd
eigenpairs (λε, uε) satisfying the following equation

− div(aε(x)∇uε) = λεuε x ∈ Ωε. (2.3)
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Here we assume classical hypothesis on the matrix aε(x) = a(x/ε): a(y)
is a d × d positive and symmetric matrix satisfying the uniform ellipticity
condition

d∑
i,j=1

ai,j(y)ξiξj > α|ξ|2, ξ ∈ Rd, (2.4)

for some α > 0. Moreover coe�cients ai,j(y) are in L∞(Rd) and Q-periodic.
In order to get a well posed problem, we need to de�ned boundary con-

ditions; in this section we will consider two examples of spectral problems:
the Dirichlet problem{

−div(aε(x)∇uε(x)) = λDε uε(x), x ∈ Ωε,

uε(x) = 0, x ∈ ∂Ωε,
(2.5)

and the homogeneous Neumann one
−div(aε(x)∇uε(x)) = λNε uε(x), x ∈ Ωε,

aε(x)∇uε(x) · nε = 0, x ∈ Σε,

uε(x) = 0, x ∈ ∂Ω.

(2.6)

Remark 2.2.1. Observe that, by ellipticity condition (2.4), we can study
simpler problems where the matrix aij(x) = δij: estimates obtained in this
particular case, can be generalized to problems (2.5) and (2.6), using (2.4).

Hence in the sequel we will consider for simplicity the following problems:{
−4uε(x) = λDε uε(x), x ∈ Ωε,

uε(x) = 0, x ∈ ∂Ωε,
(2.7)


−4uε(x) = λNε uε(x), x ∈ Ωε,

aε(x)∇uε(x) · nε = 0, x ∈ Σε,

uε(x) = 0, x ∈ ∂Ω.

(2.8)

Remark 2.2.2. We have to choose two di�erent perforated domains, because
of the boundary conditions that we assume: in the Dirichlet problem (2.7)
we set Ωε = Ω \

⋃
i∈Zd B

i
ε, while in the Neumann problem (2.8) we take

Ωε = Ω\
⋃
i∈Iε B

i
ε, as in equation (2.1). The di�erence is that in the Dirichlet

case we allow the holes to intersect the boundary of Ω; in the Neumann one
we ��ll� the holes that intersect ∂Ω, so that we have ∂Ω ∩ Σε = ∅.

We can state the respective weak formulation, that is to �nd λDε ∈ C and
uε ∈ H1

0 (Ωε) such that∫
Ωε

∇uε∇ϕdx = λDε

∫
Ωε

uεϕdx, ϕ ∈ H1
0 (Ωε) (2.9)
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for the Dirichlet problem, and λNε ∈ C, uε ∈ Hε such that∫
Ωε

∇uε∇ϕdx = λNε

∫
Ωε

uεϕdx, ϕ ∈ Hε (2.10)

for the homogeneous Neumann one. Here the space Hε is the one de�ned in
(2.2) and H1

0 (Ωε) =
{
u ∈ H1(Ωε), u(x) = 0, x ∈ ∂Ωε

}
. By classical spectral

theory, we have that, for a �xed ε > 0, the spectrum of these two problem
is a sequence of real eigenvalues tending to in�nity:

0 < λ1,D
ε 6 λ2,D

ε 6 . . . λD,jε · · · → +∞,

0 < λ1,N
ε 6 λ2,N

ε 6 . . . λN,jε · · · → +∞,

moreover, for such eigenvalues, there exist associated eigenfuntions uDε and
uNε respectively.

The aim of homogenization is to study the behavior of these solutions
(λDε , uε) and (λNε , uε) as ε→ 0. Let us �rst consider the Dirichlet boundary
conditions and de�ned the following cell problem:

−4χ = λχ x ∈ Y
χ = 0 ∂B

χ ∈ H1
per(Y )

(2.11)

and its weak formulation∫
Y
∇χ∇ϕ = λ

∫
Y
χϕ, ϕ ∈ H1

per(Y ).

It is known by spectral theory that the �rst eigenvalue of problem (2.11)
is simple and the corresponding eigenfunction has a constant sign in Y . Then
we can choose the one with positive sign, for example, and extend it by zero
in the interior of the hole B, naming again χ. If we consider χε de�ned from
χ periodically, we have{

−4χε = ε−2λχε x ∈ Ωε

χε = 0 x ∈ ∂Ωε.
(2.12)

Before stating the homogenization result we have to de�ne another aux-
iliary problem: let us consider the weighted Sobolev space

Hχ
ε =

{
u ∈ D′(Ωε) : uχε ∈ L2(Ωε),∇uχε ∈ L2(Ωε), u = 0 on ∂Ω

}
;

with χε de�ned by problem (2.12). Hence the following problem is well de�ne∫
Ωε

(χε)
2∇uε∇ϕ = µε

∫
Ωε

(χε)
2uεϕ, uε, ϕ ∈ Hχ

ε , (2.13)

and it admits a sequence of positive eingevalues µjε tending to in�nity. Hence
the following homogenization result holds true
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Theorem 2.2.1. Let λ1,D
ε be the �rst eigenvalue of problem (2.7) and λ1,D

the �rst eigenvalue of the cell problem (2.11); then one has

λ1,D
ε =

1

ε2
λ1,D + µε + o(ε),

where µε is the �rst eigenvalue of problem (2.13).

Remark 2.2.3. Theorem 2.2.1 is formulated only on the �rst eigenvalue of
Dirichlet problem, but it can be generalized to any λjε of problem (2.7), and
the result is still true:

λj,Dε =
1

ε2
λ1,D + µjε + o(ε).

Here it is clear that, for Dirichlet boundary conditions, eigenvalues are not
bounded as ε→ 0.

For the Neumann problem the result is much di�erent and it involves
eigenfunctions too. We consider the homogenized problem{

−4u = |Y |λu x ∈ Ω

u 6= 0,
(2.14)

wich comes form the cell problem{
−4χ = |Y |λχ x ∈ Y
χ ∈ H1

per(Y ),
(2.15)

.
Then we have

Theorem 2.2.2. Let (λN,jε , uN,jε ) be the sequence of eigenpairs of problem
(2.8). Hence

i)
λN,jε −−−→

ε→0
λN,j ,

with λN,j eigenvalues of the homogenized problem (2.14);

ii) Up to subsequence we have

Tεu
N,j
ε −−−→

ε→0
uN,j

weakly in H1(Ω), where uN,j are eigenfunctions associated to λN,j.

iii) if λN,j is simple, for any uN,j eigenfunction associated to λN,j, there
exists a sequence of eigenfuntions uN,jε corresponding to λN,jε of problem
(2.14), such that

Tεu
N,j
ε ⇀ uN,j

weakly in H1(Ω).

Here Tε is the extension operator described in theorem 2.1.1.
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2.3 A Fourier boundary condition problem

In this section we present a result due to Chiadò-Piat, Pankratova and Pi-
atniski [27] on a particular Fourier problem. The setting of the perforated
domain Ωε is the one described in section 2.1, and we consider the following
problem 

−div(aε(x)∇uε(x)) = λεuε(x), x ∈ Ωε,

aε(x)∇uε(x) · nε = −q(x)uε(x), x ∈ Σε,

uε(x) = 0, x ∈ ∂Ω,

(2.16)

with aε(x) = a(x/ε), where a(y) is a d × d matrix; nε is the outward unit
normal at the boundary Σε, and · denotes the usual scalar product in Rd.

We will assume the following hypothesis:

(H1) a(y) is a real symmetric matrix satisfying the uniform ellipticity con-
dition

d∑
i,j=1

ai,j(y)ξiξj > α|ξ|2, ξ ∈ Rd,

for some α > 0.

(H2) The coe�cients ai,j(y) are in L∞(Rd) and Q-periodic.

(H3) The function q ∈ C2(Ω) is strictly positive and it realizes its only global
minimum in x0 ∈ Ω:

q(x) > q(x0) > 0.

(H4) The Hessian matrix ∂2q/∂x2 evaluated in the minimum point is posi-
tive de�nite.

Under assumption (H3) it occurs a localization phenomenon of the eigen-
functions: for any j ∈ N, the j-th eigenfunction of problem (2.16) is asymp-
totically localized, as ε → 0, in a neighborhood of x0; in other words the
properly normalized principal eigenfunction converges to a δ-function sup-
ported at x0, as ε tends to 0.

In order to study homogenization, let us �rst consider the weak formu-
lation of problem (2.16), that is �nd λε ∈ C and uε ∈ Hε, uε 6= 0, such
that ∫

Ωε

aε∇uε∇vdx+

∫
Σε

quεvdσ = λε

∫
Ωε

uεvdx, v ∈ Hε (2.17)

Hence we can de�ne any eigenvalues of problem (2.16) by Rayleigh quo-
tient:

λjε = min

{∫
Ωε

aε|∇uε|2dx+

∫
Σε

qu2
εdσ, uε ∈ Hj

ε , ‖uε‖Hε = 1

}
, (2.18)
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with Hj
ε =

{
vε ∈ Hε : (uiε, vε) = 0, i = 1, . . . , j − 1

}
, for uiε eigenfunctions

associated to λiε.

Remark 2.3.1. Using variational formulation of eigenvalues, we can com-
pare them with eigenvalues of other problems, such as Dirichlet or Neumann.
Consider the min-max principle for problem (2.5) and (2.6):

λj,Dε = max
dimH1,j

0 =j

{
min

{∫
Ωε

aε|∇uε|2dx, uε ∈ H1,j
0 (Ωε), ‖uε‖H1

0 (Ωε) = 1

}}
,

where H1,j
0 (Ωε) is a subspace of H1

0 (Ωε);

λj,Nε = max
dimHj,N

ε =j

{
min

{∫
Ωε

aε|∇uε|2dx, uε ∈ Hj,N
ε , ‖uε‖Hε = 1

}}
,

with Hj,N
ε subspace of Hε.

Now, being H1
0 (Ωε) ⊆ Hε, we simply get

λjε 6 λj,Dε ,

and, on the other hand, being q > 0, one has

λjε > λj,Nε .

Therefore, using theorems 2.2.1 and 2.2.2 we have

λjε > λj,Nε → λj,N

and

λjε 6
1

ε2
λj,D + µj + o(ε),

so that we get a lower bound, but we don't have a suitable estimate from
above.

Consider now

ρ(x) =
|Σ0|
|Y |

q(x), Q(x) =
|Σ0|
|Y |

H(q),

with H(q) the Hessian matrix of q in x = x0. We can assume, being the
problem invariant under translation, that x0 = 0. We de�ne the rescaled
problem in the domain

Ω̃ε = ε−1/4Ωε, Σ̃ε = ε−1/4Σε,

that is
−div(aε(z)∇vε(z))−

ρ(0)√
ε
vε(z) = µεvε(z) z ∈ Ω̃ε,

aε(z)∇vε(z) · nε = −ε1/4q(ε1/4z)vε(z) z ∈ Σ̃ε,

vε(z) = 0 z ∈ ε−1/4∂Ω,

(2.19)
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with

vε(z) = uε(ε
1/4z), aε(z) = aε

( z

ε3/4

)
, µε =

√
ε

(
λε −

ρ(0)

ε

)
.

For the rescaled problem we have the following homogenized form:

− div(aNhom∇v) + (zTQz)v = µv, v ∈ L2(Rd), (2.20)

where aNhom is the homogenized matrix of the Neumann problem:

aNhomξξ =
1

|Y |

∫
Y
a(y)|ξ +∇N |2dy,

and N is the vector of solutions of the cell problem, as in (2.11).
Hence we can state the following homogenization result, see [27],

Theorem 2.3.1. Consider problem (2.16) and let conditions (H1) −H(4)
be satis�ed. Naming (λjε, u

j
ε) the j-th eigenpair of problem 2.16, we have

λjε =
1

ε

|Σ0|
|Y |

q(0) +
µεj√
ε
, ujε(x) = vjε

( x

ε1/4

)
.

Moreover, for (µjε, v
j
ε), the eigenpairs of the rescaled problem (2.19), one

has

i)
µjε −−−→

ε→0
µj ,

with µj j-th eigenvalue of the homogenized problem (2.20).

ii) if µj is simple, then, there exists ε0 such that, for ε < ε0, µ
j
ε is sim-

ple too, and we get the convergence of the corresponding normalized
eigenfunction, extended in the whole Ω:

Tεv
j
ε −−−→
ε→0

vj ,

strongly in L2(Ω).

Finally we present the localization e�ect for the �rst eigenfunction: let
us consider the following de�nition

De�nition 2.3.1. The family {wε(x)}ε>0, with c1 6 ‖wε‖L2(Ωε) 6 c2, is
concentrated at x0, as ε→ 0, if for any δ > 0, there exists ε0 > 0 such that∫

Ωε\Bδ(x0)
|wε|2 < δ, ∀ε < ε0.

Therefore

Lemma 2.3.1. The �rst eigenfunction u1
ε of problem (2.16) is concentrated

in x0, the minimum point of q(x).

In next chapter, starting from this problem, we will modify the function
q, allowing it to be zero and expanding the minimum zone, from a point x0

to a compact set K ⊂ Ω.
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Chapter 3

Asymptotics of eigenpairs for

an elliptic spectral problem in

a perforated domain

In this chapter we will consider an elliptic spectral problem in a perforated
domain, with Fourier boundary conditions imposed on the boundary of per-
foration. The presence of a di�erent function q in the boundary operator,
will change result obtained in [27], see section 2.3: namely the localization
e�ect will be still satis�ed, in the sense that our solutions of the homoge-
nized problem will be concentrated in the compact set K, where q is zero.
Moreover we will not need to use the rescaled problem: we will directly get
the convergence of eigenpairs.

Here we use a slightly di�erent method from the one explained in chapter
2: we will de�ne eigenvalues as minima of Rayleigh quotient and, in section
3.3, we will study the Γ-convergence of the respective de�ned functional.
Finally, in section 3.4, we present the convergence of eigenspaces in the sense
of Mosco and the rate of convergence of eigenpairs, using Vi²ík lemma.

3.1 Problem statement

Let Ωε be a perforated domain as de�ned in section 2.1; we consider the
following spectral problem

−div(aε(x)∇uε(x)) = λεuε(x), x ∈ Ωε,

aε(x)∇uε(x) · nε = −q(x)uε(x), x ∈ Σε,

uε(x) = 0, x ∈ ∂Ω.

(3.1)

Here aε(x) = a(x/ε), where a(y) is a d×d matrix; nε is the outward unit
normal at the boundary Σε, and · denotes the usual scalar product in Rd.

We will state the following hypothesis:
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(H1) a(y) is a real symmetric matrix satisfying the uniform ellipticity con-
dition

d∑
i,j=1

aij(y)ξiξj > α|ξ|2, ξ ∈ Rd,

for some α > 0.

(H2) The coe�cients aij(y) are in L∞(Rd) and Q-periodic.

(H3) The function q(x) is de�ned as

q(x) =

{
0, x ∈ K,
1, x ∈ Ω \K,

where K b Ω is a compact subset of Ω, with non empty interior A = K̇
and Lipschitz boundary.

We can consider the weak formulation of problem (3.1), that is to �nd
λε ∈ C (eigenvalues) and uε ∈ Hε, uε 6= 0 (eigenfunctions), such that

∫
Ωε

aε(x)∇uε · ∇v dx+

∫
Σε

q(x)uεv dσ = λε

∫
Ωε

uεv dx, v ∈ H1
0 (Ω) (3.2)

where
Hε = H1

0 (Ωε, ∂Ω) =
{
u ∈ H1(Ωε) : u = 0 on ∂Ω

}
is a Hilbert space, equipped with the scalar product

(u, v)Hε =

∫
Ωε

∇u∇vdx.

For this spectral problem we have the following classical result:

Theorem 3.1.1. For any ε > 0, the spectrum of problem (3.2) is real and
consists of a countable set of values

0 < λε1 6 λε2 6 · · · 6 λεj 6 · · ·+∞.

Every eigenvalue has a �nite multiplicity. The corresponding eigenfunctions
normalized by ∫

Ωε

uiεu
j
ε dx = δij ,

form a orthonormal basis in L2(Ωε). Furthermore λ1
ε is simple.

The proof of this proposition will be given in Section 3.4
Under hypothesis (H1), (H2), (H3), we want to study the asymptotic

behavior of eigenpairs (λε, uε), as ε→ 0.
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3.2 The upper bound

In this section we prove that the �rst eingenvalue λε1 of problem (3.1) is
uniformly bounded with respect to ε > 0.

Let us start with a simpler case, where we consider the matrix ai,j(y) =
δij , so that we deal with the spectrum of the the Laplacian operator. We
may easily generalize the results to our problem (3.1), using the ellipticity
condition and boundedness of a(y). So we can consider the �rst eigenpair
(λ1
ε, u

1
ε) of problem

−4uε(x) = λεuε(x), x ∈ Ωε,

∇uε(x) · nε = −q(x)uε(x), x ∈ Σε,

uε(x) = 0, x ∈ ∂Ω,

(3.3)

that is, in the weak formulation, �nd λε ∈ C (eigenvalues) and uε ∈ Hε,
uε 6= 0, such that

∫
Ωε

∇uε · ∇v dx+

∫
Σε

q(x)uεv dσ = λε

∫
Ωε

uεv dx, v ∈ Hε. (3.4)

Lemma 3.2.1. For the �rst eigenvalue of the problem (3.2), as ε → 0, we
have the following inequality

lim sup
ε→0

λ1
ε 6 λ1, (3.5)

where λ1 is the �rst eigenvalue of the Laplace operator on the set A = K̇,
with homogenous Dirichlet condition on ∂A:

λ1 = inf
u∈H1

0 (A)

∫
A |∇u|

2∫
A |u|2

, (3.6)

Proof. By the Rayleigh equation we have

λ1
ε = inf

u∈Hε

∫
Ωε
|∇u(x)|2dx+

∫
Σε
q(x)|u(x)|2dσ∫

Ωε
|u(x)|2

. (3.7)

Let u be a normalized solution of the minimum problem (3.6) on the set
A: ∫

A |∇u|
2∫

A |u|2
= λ1,

∫
A
|u|2 = 1, u ∈ H1

0 (A), u = 0 on ∂A.

We can extend u in H1
0 (Ω) by{

u(x) x ∈ A
0 x ∈ Ω \A.
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Now de�ne the function

uε =
u

‖u‖L2(Ωε)
, uε ∈ Hε.

Since, as ε→ 0, one has χΩε ⇀
∗ |Y |χΩ, in L∞- weak*, where |Y | is the

d-dimensional measure of the perforated cell Y , we have that

‖u‖2L2(Ωε)
=

∫
Ωε

|u|2 =

∫
Ω
|u|2χΩε −−−→

ε→0
|Y |
∫

Ω
|u|2 = |Y |

∫
A
|u|2 = |Y |.

We can use uε as a test function in the functional (3.7), remembering
that uε is equal 0 out of the set A, getting

λ1
ε 6

∫
Ωε
|∇uε(x)|2dx+

∫
Σε
q(x)|uε(x)|2dx∫

Ωε
|uε(x)|2

=

∫
Ωε
|∇uε(x)|2dx+

∫
Σε\K |uε(x)|2dx∫

Ωε
|uε(x)|2

=

1
‖u‖2

L2(Ωε)

∫
Ωε
|∇u(x)|2dx

1
‖u‖2

L2(Ωε)

‖u‖2L2(Ωε)

.

Since ∫
Ω |∇u(x)|2χΩεdx

‖u‖2L2(Ωε)

−−−→
ε→0

|Y |
∫

Ω |∇u(x)|2dx
|Y |

= λ1,

then we get the thesis.

It is easy to show a di�erent upper bound, that is greater that λ1 and
it depends on ε, which requires to introduce the spectral problem for the
Laplace operator in the perforated set Aε = A ∩ Ωε. Let us set

µ1
ε(A) = inf

{∫
Aε

|∇u|2 : u ∈ H1
0 (Aε),

∫
Aε

|u|2 = 1

}
. (3.8)

Lemma 3.2.2. For any ε > 0, the following inequality holds

λ1
ε 6 µ1

ε(A).

Proof. By the de�nition (3.8) of µ1
ε(A), for any η > 0 and ε > 0, there exists

a function uε,η ∈ H1
0 (Aε), with

∫
Aε
|uε,η|2 = 1, such that∫

Aε

|∇uε,η|2 < µ1
ε(A) + η.

Let us set

vε,η =

{
uε,η(x) x ∈ A
0 x ∈ Ω \A.
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Hence vε,η ∈ Hε, and then, by equation (3.7),

λ1
ε 6

∫
Ωε

|∇vε,η|2 =

∫
A∩Ωε

|∇uε,η|2 < µ1
ε(A) + η.

By arbitrariness of η it follows that

λ1
ε 6 µ1

ε.

Finally note that, by de�nition, the following inclusion holds true{
u ∈ H1

0 (Aε),

∫
A∩Ωε

|u|2 = 1

}
⊆
{
u ∈ H1

0 (A),

∫
A
|u|2 = 1

}
therefore

µ1
ε(A) > λ1

3.3 An approach by Γ-convergence

In this section we will consider the �rst eigenvalue of problem (3.4) as the
minimum of a functional, depending on the small parameter ε, and we will
discuss the Γ-convergence of this functional as ε→ 0. Let us de�ne
Fε : L2(Ω)→ [0,+∞], with

Fε(u) =


∫

Ωε

|∇u|2 +

∫
Σε\K

|u|2 u ∈ H1
0 (Ωε; ∂Ω),

+∞ otherwise.
(3.9)

We have that

λ1
ε = inf

u∈Hε

∫
Ωε
|∇u(x)|2dx+

∫
Σε
q(x)|u(x)|2dx∫

Ωε
|u(x)|2

=

inf
u∈Hε,∫

Ωε
|u|2=1

∫
Ωε

|∇u(x)|2dx+

∫
Σε

q(x)|u(x)|2dx = inf
u∈L2(Ω),∫
Ωε
|u|2=1

Fε(u).

Now consider the set Xε = {u ∈ L2(Ω) :
∫

Ωε
|u|2 = ‖u‖2L2(Ωε)

= 1}, and
the function

IXε(u) =

{
0 u ∈ Xε ∩ L2(Ω),

+∞ u ∈ L2(Ω) \Xε.

Hence

λ1
ε = inf

u∈L2(Ω),∫
Ωε
|u|2=1

Fε(u) = inf
u∈L2(Ω)

[Fε(u) + IXε(u)] .
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Remark 3.3.1. Observe that a natural limit of the constraint Xε, as ε→ 0,
is the set X = {u ∈ L2(Ω) :

∫
Ω |u|

2 = 1/|Y |}. Infact, if Xε 3 uε → u in
L2(Ω), then

1 =

∫
Ωε

|uε|2 =

∫
Ω
|uε|2χΩε −−−→

ε→0
|Y |
∫

Ω
|u|2

so that we get the condition
∫

Ω |u|
2 = 1/|Y |.

Now we can prove the following preliminary result:

Lemma 3.3.1. If the functional Fε, de�ned in (3.9), Γ-converges in the
strong L2(Ω) topology to a functional F , then we have

Γ- lim
ε→0

(Fε + IXε) = F + IX ,

in the same topology, with IX de�ned as IXε:

IX(u) =

{
0 u ∈ X,
+∞ u ∈ L2(Ω) \X.

Proof. Let us de�ne the functionals Fε = Fε + IXε and F = F + IX . We
will consider the two conditions (1.1) and (1.2) of Γ-convergence separately.

i) We have to show that for every sequence uε converging to u, in the
strong topology of L2(Ω), one has

F(u) 6 lim inf
ε→0

Fε(uε). (3.10)

First of all we can suppose, possibly passing to a subsequence, that ex-
ists the limFε(uε) < +∞, otherwise our inequality (3.10) is trivial. By
the de�nition and �niteness of Fε, we get uε ∈ Xε, that is

∫
Ωε
|uε|2 = 1

and Fε(uε) = Fε(uε). By hypothesis we know that Fε Γ-converges to
F , then F (u) 6 limFε(uε) < +∞.
We have∫

Ω
|uε|2 =

∫
Ωε

|uε|2 +

∫
Ω\Ωε

|uε|2 = 1 +

∫
Ω
|uε|2χΩ\Ωε .

Now, by the weak* convergence χΩ\Ωε ⇀
∗ 1−|Y | and the strong L2(Ω)

convergence uε → u, one has∫
Ω
|u|2 ←−−−

ε→0

∫
Ω
|uε|2 −−−→

ε→0
1 + (1− |Y |)

∫
Ω
|u|2,

therefore
1

|Y |
=

∫
Ω
|u|2 ⇒ u ∈ X,
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so that
F(u) = F (u) 6 lim

ε→0
Fε(uε) = lim

ε→0
Fε(uε).

ii) We will prove that, for every u ∈ Hε, there exists a sequence uε,
converging to u in L2(Ω), such that

F(u) > lim sup
ε→0

Fε(uε).

As before we can suppose that F(u) < +∞, i.e. u ∈ X, that is∫
Ω |u|

2 = 1/|Y |, and F(u) = F (u) < +∞. By hypothesis one has
Γ- limε→0 Fε = F , hence there exists a sequence vε, converging in
L2(Ω) to u, such that

F (u) = lim
ε→0

Fε(vε).

Now de�ne the sequence uε = vε/‖vε‖L2(Ωε).We have

uε =
vε∫

Ω |vε|2χΩε

L2(Ω)−−−→ u

|Y |
∫

Ω |u|2
= u.

Observe that, by construction, ‖uε‖2L2(Ωε)
= 1, that is uε ∈ Xε, and,

by Γ-convergence, one has

lim
ε→0

Fε(uε) = lim
ε→0

1

‖vε‖2
Fε(uε) =

1

|Y |
∫

Ω |u|2
F (u).

Therefore, being u ∈ X,

Fε(uε) = Fε(uε) −−−→
ε→0

F (u)

|Y |
∫

Ω |u|2
= F(u).

Thanks to Lemma 3.3.1 we can consider the Γ-convergence of Fε only,
ignoring the oscillating constraint IXε . In order to do this, we will follow
the procedure used in [1]. In our case it will be simpler, because, by our
hypothesis on the perforated domain, the holes don't intercect the boundary
of Ω: ∂Ω ∩ Σε = ∅.

Remark 3.3.2. It is well known, see section 2.1 theorem 2.1.1, that, under
the present assumptions on Ωε, for every ε > 0, there exists a linear and
continuous extension operator Tε : H1(Ωε) → H1(Ω) such that, for any
u ∈ H1(Ωε)

i) Tεuε = uε in Ωε,
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ii) ‖Tεuε‖H1(Ω) 6 c‖uε‖H1(Ωε),

where the constant c > 0 depends on Y , but is independent of ε.

We will use the following lemma.

Lemma 3.3.2. Let ΩK
ε = (Ω \K) \ {∪iBi

ε : Y i
ε ⊆ (Ω \K)}, where K = A

and A is, by our hypothesis, a non empty open set A b Ω with Lipschitz
boundary. Let ΣK

ε = {∪∂Bi
ε : Y i

ε ⊆ (Ω \K)}, so that ∂ΩK
ε = ∂Ω∪∂K ∪ΣK

ε .
Hence there exists two constants c = c(K), independent of ε, and ε0 > 0
such that for any ε < ε0 and w ∈ H1

0 (Ωε; ∂Ω)∣∣∣∣∣C∗ε
∫

ΩKε

|w|2dx−
∫

ΣKε

|w|2dσ

∣∣∣∣∣ 6 c(K)

∫
ΩKε

|∇w|2, (3.11)

where C∗ = |∂Y |
|Y | .

Proof. We proceed as in proof of lemma (4.1) in [27]. Let χ ∈ H1
per(Y ) the

solution of 
−divyχ(y) = C∗ y ∈ Y
χ(y) · n = −1 y ∈ Σ0

χ ∈ H1
per(Y ).

Then consider its periodic extension over the whole Ωε and the rescaled
function εχ(x/ε): one has

−ε divxχ(x/ε) = C∗.

Multiplying by w2, for any w ∈ Hε, and integrating over ΩK
ε , we get

−ε
∫

ΩKε

divχ(x/ε)w2(x)dx = C∗
∫

ΩKε

w2(x);

integrating by part we have

ε

∫
ΩKε

χ(x/ε)∇(w2)dx− ε
∫

ΣKε

χ(x/ε) · nw2dσ = C∗
∫

ΩKε

w2dx+

+ε

∫
∂K

χ(x/ε) · nw2dσ.

Now, being χ ∈ L∞(Ωε), and χ(x/ε) · n = −1 in Σε, one has∣∣∣∣∣C∗ε
∫

ΩKε

w2dx−
∫

ΣKε

w2dσ

∣∣∣∣∣ 6 ‖χ‖L∞
(∫

ΩKε

|∇(w2)|dx+

∫
∂K
|w2|dσ

)
Finally note that, by Cauchy-Schwarz and Poincaré inequalities,∫

ΩKε

|∇(w2)|dx 6 2

∫
ΩKε

|w∇w|dx 6 c′(K)

∫
ΩKε

|∇w|2,
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and, by trace inequality,∫
∂K

w2 6 c′′(K)

∫
ΩKε

|∇w|2.

Therefore ∣∣∣∣∣C∗ε
∫

ΩKε

w2dx−
∫

ΣKε

w2dσ

∣∣∣∣∣ 6 c(K)

∫
ΩKε

|∇w|2.

Before considering the Γ-limit of Fε(u), we can prove the following useful
compactness property:

Lemma 3.3.3. Let uε ∈ L2(Ωε) be a sequence such that Fε(uε) 6 c ∀ε > 0,
then, up to subsequence,

a) Tεuε → u ∈ H1
0 (Ω) strongly in L2(Ω) and weakly in H1(Ω);

b) u = 0 in Ω \K;

c) If
∫

Ωε
|uε − u0|2 → 0, as ε→ 0, with u0 ∈ L2(Ω), then u = u0 L

2(Ω)-
almost everywhere and the convergence a) holds for the whole sequence
Tεuε.

Proof. By the equiboundedness of the functional Fε(uε) 6 c, it follows that
uε ∈ Hε and

∫
Ωε
|∇uε|2 6 c. By the extension property of Ωε in remark

3.3.2, we have that Tεuε ∈ H1
0 (Ω) and∫

Ω
|∇Tεuε|2 6 c1

∫
Ωε

|∇uε|2 6 c2.

Hence, up to subsequence, there exists a function u ∈ H1
0 (Ω),such that a)

holds.
To prove b) remember that also

∫
ΣKε
|uε|2 6 c, then, by (3.11) in Lemma

3.3.2, it follows that, for any ε > 0,∫
ΩKε

|uε|2 6 εc.

Now note that

εc >
∫

ΩKε

|uε|2 =

∫
Ω\K
|Tεuε|2χΩKε

−−−→
ε→0

|Y |
∫

Ω\K
|u|2,

so that, taking the limit as ε→ 0, we get∫
Ω\K
|u|2 = 0.
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Finally, from hypothesis
∫

Ωε
|uε − u0|2 → 0 in c), it follows that

|Y |
∫

Ω
|u− u0|2 ←−−−

ε→0

∫
Ωε

|u− u0|2 6 2

∫
Ωε

|u− Tεuε|2 + 2

∫
Ωε

|Tεuε − u0|2.

Now, from a) we have that the �rst addend tends to 0 as ε → 0; the
second one, being Tεuε = uε in Ωε, tends to 0 too, by our assumption.
Therefore

lim
ε→0

∫
Ω
|u− u0|2 = 0,

and c) is proved.

Remark 3.3.3. From Lemma 3.3.3 and remark 3.3.1 we deduce that the
sequence {Fε + IXε}ε is equicoercive with respect to the strong topology of
L2(Ω). Moreover, again by Lemma 3.3.3, we can deduce that if Fε Γ-
converges to F in L2(Ω), then F (u) = +∞ whenever u 6= 0 in Ω \K.

We will use the following technical lemma, whose proof is classical:

Lemma 3.3.4. Let A ⊆ Rd be an open bounded set, with Lipschitz boundary,
and set
Aδ = {x ∈ A : dist(x, ∂A) > δ}, then there exists a constant c > 0 such that,
for every u ∈ H1

0 (A), we have∫
A\Aδ

|u|2dx 6 Cδ2

∫
A\Aδ

|∇u|2dx

Now we can �nally state the Γ-convergence result.

Theorem 3.3.1. Let Fε be de�ned by (3.9). Then, for any u ∈ L2(Ω), one
has

Γ- lim
ε→0

Fε(u) = F (u) =


∫

Ω
fhom(∇u)dx, u ∈ H1

0 (A)

+∞ otherwise.

in the strong topology of L2(Ω), with fhom : Rd → [0,+∞] de�ned by

fhom(ξ) = inf

{∫
Y
|ξ +∇u|2dx : u ∈ H1

per(Rd)
}
. (3.12)

Proof. We consider separately the Γ- lim inf (1.1) and Γ- lim sup (1.2) in-
equalities.

Step 1. Let uε be a sequence in L2(Ωε) strongly converging to a function u. We
have to prove that F (u) 6 lim inf Fε(uε); so, without loss of generality,
we can suppose that lim inf Fε(uε) < +∞. By lemma 3.3.3, we have
u ∈ H1(Ω), with u = 0 in Ω\K, and the convergence Tεuε ⇀ u weakly
in H1(Ω). Therefore we conclude that F (u) < +∞.
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Now, by proposition 3.6 in [1], we know that

F (u) 6 lim inf
ε→0

∫
Ωε

|∇uε|2dx.

Hence, we conclude that

lim inf
ε

Fε(uε) = lim inf
ε

∫
Ωε

|∇uε|2 +

∫
Σε\K

|uε|2 >

lim inf
ε

∫
Ωε

|∇uε|2 > F (u) =

∫
Ω
fhom(∇u)dx.

Step 2. We have to show that for any u ∈ H1
0 (A) (if u ∈ L2(Ω) \ H1

0 (A) the
result is trivial) there exists a sequence uε ∈ H1

0 (Ωε; ∂Ω), with uε → u
in L2(Ω), such that

F (u) > lim sup
ε→0

Fε(uε).

Let consider a function u ∈ H1
0 (A) and the zero extension ũ of u out

of A, de�ned as

ũ(x) =

{
u(x) x ∈ A
0 x ∈ Ω \A,

so that ũ ∈ H1
0 (Ω). Using the result in proposition 3.6 in [1], we can

�nd a sequence uε ∈ H1(A∩Ωε)∩L2(A), with uε → ũ in L2(Ω), such
that

lim sup
ε→0

∫
Ωε∩A

|∇uε|2dx 6
∫
A
fhom(∇u)dx =

∫
Ω
fhom(∇ũ)dx. (3.13)

To construct our recovery sequence we �x constant δ > 0 and a set
Aδ = {x ∈ A : dist(x, ∂A) > δ}. Then we consider a cut o� function
ϕ ∈ C∞0 (A), with 0 6 ϕ 6 1, spt(ϕ) ⊆ A, ϕ = 1 in Aδ, |∇ϕ| < c/δ,
and we take a new sequence de�ned as

vε(x) = ϕ(x)uε(x) =


uε(x) x ∈ Aδ

ϕ(x)uε(x) x ∈ A \Aδ

0 x ∈ Ω \A,

so that vε ∈ Hε. We will use the following algebraic inequality:

|a+ b|2 6 (1 + η)|a|2 +

(
1 +

1

η

)
|b|2, (3.14)
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for all a, b, η ∈ R, with η > 0.

For our sequence vε, since spt(vε) ⊆ A = K̇, we have

Fε(vε) =

∫
(Ωε∩A)

|∇vε|2 +

∫
(Σε\K)∩A

|vε|2 =

=

∫
Ωε∩Aδ

|∇uε|2 +

∫
Ωε∩(A\Aδ)

|∇ϕuε + ϕ∇uε|2.

Consider the second term and use equation (3.14) and the regularity
of ϕ, so that |∇ϕ| 6 1/δ:∫

Ωε∩(A\Aδ)
|∇ϕuε + ϕ∇uε|2 6 (1 + η)

∫
Ωε∩(A\Aδ)

|ϕ∇uε|2+

+

(
1 +

1

η

)∫
Ωε∩(A\Aδ)

|∇ϕuε|2 6 (1 + η)

∫
Ωε∩(A\Aδ)

|∇uε|2+

+

(
1 +

1

η

)
1

δ2

∫
Ωε∩(A\Aδ)

2
(
|uε − ũ|2 + |ũ|2

)
.

Note that, by (3.13),
∫

Ωε∩A |∇uε|
2 6 c, so that

(1 + η)

∫
Ωε∩(A\Aδ)

|ϕ∇uε|2 6
∫

Ωε∩(A\Aδ)
|∇uε|2 + ηc.

Now, by the convergence uε → ũ, we have 1/δ2
∫

Ωε∩(A\Aδ) |uε − ũ|
2 =

o(1), as ε → 0, with δ �xed, and, by lemma 3.3.4, being u ∈ H1
0 (A),

and u = ũ in Ωε ∩ (A \Aδ),

1

δ2

∫
Ωε∩(A\Aδ)

|u|2 6 c
1

δ2
δ2

∫
Ωε∩(A\Aδ)

|∇u|2 6 c

∫
A\Aδ

|∇u|2,

that tends to 0 as δ → 0. Hence we have, for any δ > 0, η > 0,

lim sup
ε→0

Fε(vε) 6 lim sup
ε→0

[∫
Ωε∩Aδ

|∇uε|2 +

∫
Ωε∩(A\Aδ)

|∇uε|2 + ηc

+

(
1 +

1

η

)∫
A\Aδ

|∇u|2
]
6 .

6

[
lim sup
ε→0

∫
Ωε∩A

|∇uε|2
]

+ ηc+

(
1 +

1

η

)∫
A\Aδ

|∇u|2.

Taking the limit �rst as δ → 0 and then as η → 0, we have
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lim sup
ε→0

Fε(vε) 6 lim sup
ε→0

∫
Ωε∩A

|∇uε|2,

so that, using (3.13), we �nally get

lim sup
ε→0

Fε(vε) 6
∫
A
fhom(∇u)2 = F (u)

Corollary 3.3.1. Consider λ1 = minu∈L2(Ω)(F (u) + IX(u)). Then we have

lim
ε→0

λ1
ε = λ1 (3.15)

Proof. In theorem 3.3.1 we have proved that Fε
Γ(L2(Ω))−−−−−→ F . From lemma

3.3.1, it follows that

Fε + IXε
Γ(L2(Ω))−−−−−→ F + IX .

From remark 3.3.3 we know that (Fε + IXε)ε is equicoercive. So, from
theorem 1.1.1, we obtain immediately (3.15).

As a consequence of the gamma convergence result, we can consider the
di�erential equation associated to the Euler equation de�ned by (3.12): this
means that our limit homogenized problem will be{

−div(ahom∇u) = |Y |λu u ∈ A
u = 0 u ∈ ∂A,

(3.16)

where ahomξξ = fhom(ξ).

Remark 3.3.4. It will be useful in the sequel to underline the relationship
between equation (3.12) and the associated problem on the periodicity perfo-
rated cell Y : the solution wξ of the minimum problem de�ned by fhom(ξ) is
in fact of type wξ = ξ · χ, where χ is the vector whose components solve the
equation 

4χi(x) = 0 x ∈ Y
∂χ
∂ν (x) · νi = 0 x ∈ Σ0

χ ∈ H1
per(Y )

(3.17)
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3.4 Convergence of eigenvalues and

eigenfunctions.

In this section we will show the proof of theorem 3.1.1, we will consider
the limit of λjε and u

j
ε, for any j ∈ N, as ε goes to 0, proving that for any

λ, eigenvalue of the limit problem (3.16), there exists λjε, eigenvalue of the
problem on the perforated domain (3.3), such that

|λ− λjε| −−−→
ε→0

0,

therefore, in theorem 3.4.2, we will state an estimate for this convergence.
First we want to associate to the problem (3.3) a linear operator Kε,

whose spectrum will be related to the eigenvalues of (3.3). So let consider
the embedding operator

Jε : Hε → L2(Ωε).

Being Ω bounded and with su�ciently regular boundary, we know that Jε is
compact.

Now take the operator

K̃ε : L2(Ωε) → Hε (3.18)

f 7→ K̃εf,

where K̃εf is the unique solution of the problem
−4uε(x) = f, x ∈ Ωε,

∇uε(x) · nε = −q(x)uε(x), x ∈ Σε,

uε(x) = 0, x ∈ ∂Ω,

(3.19)

that is, in weak formulation, the function uε ∈ Hε satisfying∫
Ωε

∇uε∇v +

∫
Σε\K

uεv =

∫
Ωε

fv, (3.20)

for any v ∈ Hε.
Note that, by Lax-Milgram theorem, at ε > 0 �xed, for any f ∈ L2(Ωε),

there exists a unique uε ∈ Hε solving problem (3.19) or, equivalently, (3.20),
so that K̃ε is well de�ned. We will consider the operator

Kε : Hε → Hε, Kε = K̃ε · Jε. (3.21)

Lemma 3.4.1. The operator Kε : Hε → Hε is positive, linear, compact and
self-adjoint.

Proof. The proof of the linearity and compactness of K̃ε is classical, so it is
the fact that K̃ε is self-adjoint and positive, see for example [37]. Being Jε the
compact embedding operator, we simply get the thesis by composition.
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By lemma 3.4.1 and the general spectral theory, we have that the spec-
trum of the operator Kε is made by a sequence of positive eigenvalues con-
verging to zero:

+∞ > µ1
ε > µ2

ε > · · · > µjε > · · · > 0.

Now observe that, if µjε is an eigenvalue for Kε, i.e. there exists u
j
ε ∈ Hε

such that Kεu
j
ε = µjεu

j
ε, then
−4ujε(x) =

1

µjε
ujε(x), x ∈ Ωε,

∇ujε(x) · nε = −q(x)ujε(x), x ∈ Σε,

uε(x)j = 0, x ∈ ∂Ω,

(3.22)

that is λjε = 1

µjε
is an eigenvalue of problem (3.3), hence we have that

0 < λε1 6 λε2 6 · · · 6 λεj 6 · · ·+∞.

This proves the �rst part of theorem 3.1.1.
Let us prove that λ1

ε is simple.

Proof. First we show that if u1
ε is an eigenfunction associated to λ1

ε, then u
1
ε

doesn't change sign. To do this assume the contrary. Then u+
ε = max

{
u1
ε, 0
}

and u−ε = min
{
u1
ε, 0
}
are non-trivial functions. Furthermore u+

ε and u−ε are
in Hε, so, by the variational characterization of the �rst eigenvalue,

λ1
ε 6

∫
Ωε
|∇u+

ε |2 +
∫

Σε
q|u+

ε |2∫
Ωε
|u+
ε |2

, λ1
ε 6

∫
Ωε
|∇u−ε |2 +

∫
Σε
q|u−ε |2∫

Ωε
|u−ε |2

. (3.23)

Summing up these inequalities one has

λ1
ε

(∫
Ωε

|u+
ε |2 +

∫
Ωε

|u−ε |2
)

6
∫

Ωε

|∇u+
ε |2 + |∇u−ε |2 +

∫
Σε

q
(
|u+
ε |2 + |u−ε |2

)
,

and, by the fact that u+
ε u
−
ε = 0, we get

λ1
ε

(∫
Ωε

|u1
ε|2
)

6
∫

Ωε

|∇u1
ε|2 +

∫
Σε

q|u1
ε|2.

But u1
ε is an eigenfunction associated to λ1

ε, hence this last inequality is
actually an equality, and so are equations (3.23). Then we have that u+

ε

is a non negative solution of the equation −4uε = λεuε , with Neumann
conditions on Σε and Dirichlet on ∂Ω, that is zero at ∂Ω and it vanishes
in the interior of Ω also: this contradicts the maximum principle, see [37],
proposition IX.30.

45



Now assume that there exist two di�erent and linearly independent eigen-

functions u1
ε and v

1
ε associated to λ1

ε; then, taking c =
(∫

Ωε
v1
ε

)−1 (∫
Ωε
u1
ε

)
,

we have that u1
ε − cv1

ε is an eigenfunction too, with∫
Ωε

u1
ε − cv1

ε = 0;

therefore u1
ε − cv1

ε changes sign, and this contradicts our previous argument.

This concludes the proof of theorem 3.1.1. Before studying the behavior
of eigenvalues, as ε→ 0, we present the following statement

Lemma 3.4.2. For any j ∈ N, there exist two positive constants cj and c,
independent from ε, and a constant and ε0 > 0, such that

c 6 λjε 6 cj ∀ε < ε0 (3.24)

Proof.
Lower bound.

By theorem 3.1.1, it su�ces to prove the inequality c 6 λjε, for λ1
ε, being

λ1
ε 6 λ2

ε 6 · · · 6 λjε. By corollary 3.3.1, we have that limε→0 λ
1
ε = λ1 > 0,

then by the theorem of permanence of sign, there exists ε0 such that, for any
ε < ε0, we have λ1

ε > 0, i.e. there exists c > 0 such that λ1
ε > c.

Upper bound.
Let us take ϕi ∈ C∞0 (A), for i = 1, . . . , j, a set of non-zero functions with

disjoint supports. We extend by zero out of A, obtaining ϕi ∈ C∞0 (Ω). Since
these functions are orthogonal inHε, there is a non-trivial linear combination
ψε = γ1

εϕ1 + · · ·+ γjεϕj such that

(ψε, u
1
ε)Hε = · · · = (ψε, u

j−1
ε )Hε = 0.

Then ψε is a competitor for the minimum problem de�ned by λjε, so that

λjε 6

∫
Ωε
|∇ψε|2 +

∫
Σε\K |ψε|

2∫
Ωε
|ψε|2

=

∑j−1
i=0 (γiε)

2
(∫

Ωε
|∇ϕi|2 +

∫
Σε\K |ϕi|

2
)

∑j−1
i=0 (γiε)

2
∫

Ωε
ϕ2
i

.

Now, being

c′j = sup
06i6j−1

∫
Ωε

|∇ϕi|2, c′′j = sup
06i6j−1

∫
Ωε

|ϕi|2,

one has

λjε 6
c′j
c′′j

= cj .
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Before stating the �rst result, concerning the convergence of eigenval-
ues and eigenspaces, we want to present, for the reader convenience, the
de�nition of a particular type of convergence, that we will use in theorem
3.4.1.

De�nition 3.4.1. Let {Sj}j be a sequence of convex subsets of a re�exive
Banach space X. We say that {Sj}j Mosco-converges to the set S, writing

Sj
M−→ S,

if the following relation is satis�ed:

w − lim sup
j→+∞

Sj = S = s− lim inf
j→+∞

Sj . (3.25)

By w − lim supj Sj we denote the set of x ∈ X for which there exists a
sequence xj ⇀ x weakly and such that xj ∈ Sj frequently, i.e. for in�nitely
many indices j ∈ N. By s− lim infj Sj we mean the set of x ∈ X for which
there exists a sequence xj → x strongly and such that xj ∈ Sj de�nitively.

Remark 3.4.1. To show (3.25) it su�ces to prove

w − lim sup
j→+∞

Sj ⊆ S ⊆ s− lim inf
j→+∞

Sj , (3.26)

in fact the following relation is always satis�ed:

s− lim inf
j→+∞

Sj ⊆ w − lim sup
j→+∞

Sj .

We will use the Urysohn property for convex sets, that we recall here
without proof, see for example [40]:

Property 3.4.1. Let {Sj}j, S be a sequence of convex subsets of a re�exive

Banach space X. Then Sj
M−→ S if and only if for every subsequence Sjk there

exists a further subsequence Sjkl that Mosco converges to S.

Before showing our �rst result on the convergence of eigenvalues and
eigenspaces, we state a classical property of Gamma convergence:

Lemma 3.4.3. Let {Fε}ε be a sequence of functional de�ned in L2(Ω) such
that

Γ- lim
ε→0

Fε = F

in the strong topology of L2(Ω). Let {vε}ε be a sequence of functions in L2(Ω)
such that vε → v strongly in L2(Ω) as ε tends to zero, and {λε}ε a sequence
of real numbers converging to λ, as ε→ 0. Hence

Fε(u) + λε

∫
Ωε

vεu −−−→
ε→0

F (u) + |Y |λ
∫

Ω
vu. (3.27)
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Proof. The proof follows immediately from the weak-strong convergence

λε

∫
Ωε

vεu = λε

∫
Ω
vεuχΩε → λ|Y |

∫
Ω
vu.

Corollary 3.4.1. Consider the functional Fε described in (3.9), and its Γ-
limit F ; de�ne the new functional

Gε(v) = Fε(v)− 2λε

∫
Ωε

uεv, (3.28)

where λε → λ and uε → u strongly in L2(Ω) as ε→ 0. Then

Gε(v)
Γ−→ G(v) = F (v)− 2λ|Y |

∫
Ω
uv. (3.29)

Proof.
Γ- lim inf.

Let v be in the domain of G, i.e. in H1
0 (A), the domain of F , and consider

its zero extension out of A in H1
0 (Ω); Let vε → v strongly in L2(Ω), with

Gε(vε) < C. This means that vε is bounded in Hε and, by lemma 3.3.3 we
have

Tεvε → v

weakly in H1(Ω), up to subsequence, and, by Rellich theorem, strongly in

L2(Ω). Since Fε
Γ−→ F , we have

lim inf
ε

Fε(vε) > F (v),

and, by equation (3.27),

lim inf
ε

Gε(vε) = lim inf
ε

Fε(vε)− 2λε

∫
Ωε

uεvε > F (v)− 2|Y |λ
∫

Ω
uv = G(v).

Γ- lim sup.
The Gamma limsup inequality follows directly from the Γ-convergence

of Fε to F and from equation (3.27).

We can now prove the following

Theorem 3.4.1. Let (λjε, u
j
ε) and (λj , uj) be the eigenpairs of problems (3.3)

and (3.16), respectively. Then

1) λjε → λj as ε→ 0, for every j ∈ N;
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2) if λj has multiplicity mj and λ
j = λj+1 = · · · = λj+mj−1, and we set

Sjε = span
[
Tεu

j
ε, . . . , Tεu

j+mj−1
ε

]
, Sj = span

[
uj , . . . , uj+mj−1

]
,

(3.30)
then

Sjε
M−−−→
ε→0

Sj

in L2(Ω), for every j ∈ N.

Remark 3.4.2. In de�nition 3.4.1 we used a discrete index j ∈ N with
j →∞, but in theorem 3.4.1 we have the real index ε→ 0. This means that
the Mosco convergence of Sjε is actually the convergence over any subsequence

εh → 0, as h ∈ N tends to in�nity. We simply write Sjε
M−−−→
ε→0

Sj to have a

more suitable notation for the reader.

Proof. Let us start with the convergence of eigenvalues. Fix j ∈ N; by lemma
3.4.2, λjε is equibounded with respect to ε, then there exists a subsequence
{εh}h∈N such that εh → 0 as h→∞ and

λjεh −−−→h→∞
λ
j
.

To simplify the notation, as we did in remark 3.4.2, we will simply say
that

λjε −−−→
ε→0

λ
j
,

knowing that the convergence is up to subsequence.
Being ujε eigenfunction for problem (3.3), we have also Fε(u

j
ε) < C, so

that there exists uj ∈ H1
0 (A) such that Tεu

j
ε → uj strongly in L2(Ω) and

weakly in H1(Ω), up to subsequence; moreover, by lemma 3.3.3, uj is zero

out of A. We want to show that (λ
j
, uj) is eigenpair of problem (3.16).

Since ujε is a solution of problem (3.3), with λε = λjε, it realizes the
minimum of the Euler equation, that is the minimum of functional Gε in
corollary 3.4.1:

min
u∈Hε

(∫
Ωε

∇ujε∇u+

∫
Σε\K

ujεu− 2λjε

∫
Ωε

ujεu

)
= min

u∈L2(Ω)
Gε(u) = Gε(u

j
ε).

Now, by corollary 3.4.1, we have Gε
Γ−→ G, hence, using theorem 1.1.1,

one has

G(uj) = min
u∈L2(Ω)

G(u) = lim
ε→0

min
u∈L2(Ω)

Gε(u) = lim
ε→0

Gε(u
j
ε),

and, considering G as the Euler equation associated to the homogenized
problem (3.16), we claim that (λ

j
, uj) is an eigenpair.

To complete the proof we proceed as follows:
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Step 1 We show that the set of the limit eigenvalues coincides with the set of
eigenvalues of the homogenized problem, i.e.{

λ
j
, j ∈ N

}
=
{
λj , j ∈ N

}
. (3.31)

Step 2 We show that, for any j ∈ N, one has λj = λj .

Step 3 We show the Mosco convergence using the Urysohn property 3.4.1.

Step 1.

In the �rst part of the proof we showed that
{
λ
j
, j ∈ N

}
⊆
{
λj , j ∈ N

}
;

now we want to prove the opposite inclusion. By theorem 3.1.1, we have

0 < λ1
ε 6 λ2

ε 6 · · · 6 λjε 6 · · ·+∞,

so that
0 < λ

1
6 λ

2
6 · · · 6 λ

j
6 . . . .

On the other side we have that

λjε = min
u∈Hε,

(u,uiε)=0
i=1,...,j−1

∫
Ωε
|∇u|2 +

∫
Σε\K u

2∫
Ωε
u2

> min
u∈Hε,

(u,uiε)=0
i=1,...,j−1

∫
Ωε
|∇u|2∫

Ωε
u2

= µjε,

where µjε is an eigenvalue of the homogeneous Neumann problem on the
perforated domain Ωε, i.e. the problem (2.8). In section 2.2, we showed the
convergence of µjε:

0 < µ1
ε 6 µ2

ε 6 · · · 6 µjε 6 · · · < +∞,

and
µjε −−−→

ε→0
µj ,

with µj eigenvalue of the corresponding homogenized problem (2.14). This
implies the inequality

λ
j
> µj −−−→

j→∞
+∞.

Hence we get
0 < λ

1
6 λ

2
6 · · · 6 λ

j
6 · · · → ∞. (3.32)

Now assume by contradiction that there exists λ ∈
{
λj , j ∈ N

}
, such

that λ /∈
{
λ
j
, j ∈ N

}
. From (3.32) we have that there exists m ∈ N such

that λ < λ
m+1

. Now we want to construct a sequence wε ∈ Hε such that
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i)
(wε, u

j
ε)Hε = 0, j = 1, . . . ,m

where uiε are eigenfunctions of problem (3.3);

ii) ∫
Ωε
|∇wε|2 +

∫
Σε\K w

2
ε∫

Ωε
w2
ε

−−−→
ε→0

λ.

Observe that i) and ii) implies the contradiction: we have, by i), that
wε is a competitor for the minimum problem de�ned by λm+1

ε , then

λ
m+1 ←−−−

ε→0
λm+1
ε 6

∫
Ωε
|∇wε|2 +

∫
Σε\K w

2
ε∫

Ωε
w2
ε

−−−→
ε→0

λ,

that contradicts the assumption λ < λ
m+1

.
To construct such a sequence let consider u as the solution of problem

(3.16), i.e.
−div(ahom∇u) = λ|Y |u,

with ∫
Ω
u2 = 1,

and let vε be the solution of
−4vε = λu, x ∈ Ωε,

∇vε · nε = −qvε, x ∈ Σε,

vε = 0. x ∈ ∂Ω,

By lemma 3.3.3 we have Tεvε → u strongly in L2(Ω) and weakly in
H1(Ω). Hence de�ne

wε = vε −
m∑
i=1

(vε, u
i
ε)Hεu

i
ε.

Then wε satis�es i), indeed

(wε, u
j
ε)Hε = (vε, u

j
ε)−

m∑
i=1

(vε, u
i
ε)(u

j
ε, u

i
ε) = 0.

To show ii) observe that vε → u and uiε → ui, as we showed in the �rst

part of the proof; so that, being λ /∈
{
λ
j
, j ∈ N

}
, we must have

(vε, u
i
ε)Hε =

∫
Ωε

∇vε∇uiε → |Y |
∫

Ω
∇u∇ui = 0, i = 1, . . . ,m, (3.33)
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because u and ui are associated to di�erent eigenvalues λ and λ
i
. Hence∫

Ωε
|∇wε|2 +

∫
Σε\K w

2
ε∫

Ωε
w2
ε

=

∫
Ωε
|∇vε|2 +

∫
Σε\K v

2
ε +

∑m
i=1(vε, u

i
ε)

2
Hε

(∫
Ωε
|∇uiε|2 +

∫
Σε\K |u

i
ε|2
)

+R1(ε)∫
Ωε
v2
ε +

∑m
i=1(vε, uiε)

2
Hε

∫
Ωε
|uiε|2 +R2(ε)

,

where R1(ε) and R2(ε) are the mixed products coming from the squares
|∇wε|2 and |wε|2, so that R1 → 0 and R2 → 0, as ε→ 0, by equation (3.33).
Therefore we get ii) applying equation (3.33) again:∫

Ωε
|∇wε|2 +

∫
Σε\K w

2
ε∫

Ωε
w2
ε

=

∫
Ωε
|∇vε|2 +

∫
Σε\K v

2
ε + oε(1)∫

Ωε
v2
ε + oε(1)

−−−→
ε→0

λ.

Step 2.
It su�ces to prove that m(λ) = m(λ), for any λ eigenvalue of the ho-

mogenized problem (3.16), where m(λ) and m(λ) are de�ned by

m(λ) = ]
{
j : λ = λ

j
}

m(λ) = ]
{
j : λj = λ

}
.

We want to prove the two inequalities

i) m(λ) 6 m(λ);

ii) m(λ) > m(λ).

Let Eλ be the eigenspace associated to λ and Eλ the eigenspace associ-
ated to any λ

j
, for all j such that λ

j
= λ; then we have

Eλ ⊆ Eλ.

Being uj and uj , j ∈ N orthonormal basis of L2(Ω), we get

m(λ) = dimEλ 6 dimEλ = m(λ).

To prove the other inequality assume by contradiction thatm(λ) < m(λ).
By equation (3.31) and (3.32), there exists M ∈ N such that

λ
M

= λ < λ
M+1

. (3.34)

Let k be the �rst index such that λ
k

= λ
M

= λ, so that uk, . . . , uM

are the corresponding eigenfunctions described in the �rst part of the proof.
By the assumption m(λ) < m(λ) there exists a solution u ∈ H1

0 (Ω) of the
homogenized equation

−div(ahom∇u) = λ|Y |u,
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such that (u, ui) = 0 for i = k, . . . ,M . Moreover, being u1, . . . , uk−1 associ-

ated to eigenvalues λ
i 6= λ, we also have (u, ui) = 0 for i = 1, . . . , k − 1. Let

vε be the solution of problem
−4vε = λεu, x ∈ Ωε,

∇vε · nε = −qvε, x ∈ Σε,

vε = 0. x ∈ ∂Ω,

de�ne, as in step 1, the sequence

wε = vε −
M∑
i=1

(vε, u
i
ε)Hεu

i
ε,

where uiε are eigenfunctions of problem (3.3). Hence equation (3.33) holds
and so the properties

i)
(wε, u

j
ε)Hε = 0, j = 1, . . . ,M

ii) ∫
Ωε
|∇wε|2 +

∫
Σε\K w

2
ε∫

Ωε
w2
ε

−−−→
ε→0

λ.

Then, using the variational characterization of λM+1
ε , one has

λM+1
ε 6

∫
Ωε
|∇wε|2 +

∫
Σε\K w

2
ε∫

Ωε
w2
ε

and, taking the limit as ε→ 0,

λ
M+1

6 λ,

which contradicts (3.34). Moreover, by the fact that λ
j

= λj for any j ∈ N,
we can say that the limit λjεh −−−→

h→∞
λ
j
does not depend on the particular

subsequence, therefore
λjε → λj .

Step 3.

Let us consider, for any j ∈ N, a subsequence ujεh of solutions of problem
(3.3) such that Tεhu

j
εh → uj as h → +∞. By the �rst part of the proof we

know that such a sequence exists and uj is a solution of the homogenized
problem (3.16). Set

S
j

= span[uj , . . . , uj+mj−1].
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To prove the Mosco convergence we consider

S′ = s− lim inf
h→+∞

Sjεh S′′ = w − lim sup
h→+∞

Sjεh .

By the Urysohn property 3.4.1, the Mosco convergence is independent
from the particular subsequence, then we will simply consider ε instead of
εh. By remark 3.4.1 we have to show

1) S′′ ⊆ Sj ,

2) S
j ⊆ S′,

3) S
j

= Sj .

Consider v ∈ S′′, i.e. there exists a sequence {vε}ε ⊆ H1
0 (Ω) with vε → v

strongly in L2(Ω) and weakly in H1
0 (Ω) , and vε ∈ Sjε frequently. This means

that there exist suitable constants ciε such that

vε =

mj−1∑
i=0

ciεTεu
j+i
ε .

Since {vε}ε is a bounded sequence il L2(Ω), one has

mj−1∑
i=0

(ciε)
2 < +∞,

hence, up to subsequence, for any i = 0, . . . ,mj −1, there exists ci such that

lim
ε→0

ciε → ci.

Therefore

v =

mj−1∑
i=0

ciuj+i ∈ Sj ,

so that 1) is proved.

Consider now v ∈ Sj ; this means that

v =

m−1∑
i=0

ciuj+i.

If we set

vε =

m−1∑
i=0

ciTε(u
j+1
ε )

then vε ∈ Sjε and vε → v, strongly in L2(Ω), i.e. v ∈ S′ and 2) is proved.
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To prove 3) observe that S
j
, by de�nition and by (3.31), is a subspace of

Sj , and, being uj , j ∈ N, an orthonormal basis of L2(Ω), one has

dimS
j

= j = dimSj ,

so that we get 3).

Theorem 3.4.1 shows that any eigenvalue of the homogenized problem
(3.16) is the limit, as ε→ 0, of the corresponding eigenvalue of the problem
(3.3), in the perforated domain, and the same is for any eigenspace, in the
sense of Mosco. Our last result gives the rate of this convergence. In order to
obtain it, we will use many technical tools, that we formulate in the sequel.

Lemma 3.4.4. Let H be a Hilbert separable space and A : H → H a linear
compact self-adjoint operator. Suppose that there exist two real numbers µ,
α and a vector u ∈ H, with ‖u‖H = 1 and

‖Au− µu‖H < α.

Then there is an eigenvalue µj of the operator A, such that

i) |µj − µ| < α;

ii) for any d > α there exists a vector ũ in the eigenspace associated to
eigenvalues µk ∈ [µj − d, µj + d], with ‖ũ‖H = 1, such that

‖u− ũ‖H <
2α

d
.

This lemma is often known in the literature as Vi²ík lemma; for the proof
see for example [41].

We will use the following trace type inequality, whose proof follows from
the classical Poincaré-Wirtinger and trace inequalities, see [21, 22]:

Lemma 3.4.5. For any u ∈ Hε one has∫
Σε

|u|2 6 c

(
ε−1

∫
Ωε

|u|2 + ε

∫
Ωε

|∇u|2
)
. (3.35)

Using this lemma 3.4.5 we can easily prove the following

Property 3.4.2. For any u, v ∈ Hε, de�ne the norm

‖u‖2ε =

∫
Ωε

|∇u|2 +

∫
Σε\K

|u|2, (3.36)

coming from the scalar product

aε(u, v) =

∫
Ωε

∇u∇v +

∫
Σε\K

uv. (3.37)
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Hence there exists a constant c ∈ R such that

‖u‖Hε 6 ‖u‖ε 6 cε
1
2 ‖u‖Hε . (3.38)

We �nally state the last preliminary tool; see for example [25] for the
proof.

Lemma 3.4.6. Let χ ∈ L∞per(Y ) be such that∫
Y
χ(y)dy = 0.

There exists a constant c > 0 such that, for any u, v ∈ H1
0 (Ω),∣∣∣∣∫

Ω
χ
(x
ε

)
uvdx

∣∣∣∣ 6 cε‖u‖H1
0 (Ω)‖v‖H1

0 (Ω). (3.39)

Now we can state the result on the rate of convergence of eigenvalues and
correspondent eigenfunctions (considered with their multiplicity).

Theorem 3.4.2. Let λj, j ∈ N, be an eigenvalue of problem (3.16) of mul-
tiplicity mj:

λj−1 < λj = λj+1 = · · · = λj+mj−1 < λj+mj .

Let (λjε, u
j
ε)j be the eigenpairs of problem (3.3) on the perforated domain.

Then there exist orthogonal matrix Mε ∈ Mmj×mj and constants εj, Cj
such that, for any ε < εj,

‖U j+l−1
ε −

mj∑
k=1

M lk
ε u

j+k−1
ε ‖Hε 6 Cj

√
ε, l = 1, . . . ,mj , (3.40)

‖uj+l−1 −
mj∑
k=1

M lk
ε Tεu

j+k−1
ε ‖L2(Ω) 6 Cj

√
ε, l = 1, . . . ,mj , (3.41)

with
U jε (x) = uj(x) + εχ

(x
ε

)
∇uj(x), (3.42)

here χ is a solution of the cell problem (3.17).

Remark 3.4.3. Observe that the function
∑mj

k=1M
lk
ε u

j+k−1
ε in (3.41) belongs

to the set Sjε , de�ned in (3.30); this means, being uj+l−1 ∈ Sj, that Sjε
converges to Sj in the sense of Mosco, moreover, the rate of this convergence
is
√
ε.
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Proof. The proof, that follows from lemma 3.4.4, will be obtained through
these three steps:

Step 1. We prove the following fundamental estimate, that involves the oper-
ator Kε, de�ned in (3.21)

‖KεU
j
ε −

1

λj
U jε ‖Hε 6 cj

√
ε, (3.43)

in the simpler hypothesis of uj ∈ C∞0 (A).

Step 2. Applying lemma 3.4.4, we prove (3.40) and (3.41), and discuss the case
of λj of multiplicity mj .

Step 3. We generalized the proof for uj ∈ H1
0 (Ω).

Step 1.

Here we assume that ∂A ∈ C2,α, for α > 0, so that uj ∈ C2(A) and,
by hypothesis uj ∈ C∞0 (A), we get U jε ∈ H1

0 (A). We have, using de�nition
(3.37),

‖KεU
j
ε −

1

λj
U jε ‖ε = sup

ϕ∈Hε
‖ϕ‖ε=1

aε

(
KεU

j
ε −

1

λj
U jε , ϕ

)
=

= sup
ϕ∈Hε
‖ϕ‖ε=1

[
aε
(
KεU

j
ε , ϕ

)
− aε

(
1

λj
U jε , ϕ

)]
.

Now, being KεU
j
ε the solution of problem (3.19), with f = U jε , we have

aε
(
KεU

j
ε , ϕ

)
=

∫
Ωε

U jεϕ,

and

aε

(
1

λj
U jε , ϕ

)
=

1

λj

(∫
Ωε

∇U jε∇ϕ+

∫
Σε\K

U jεϕ

)
=

1

λj

∫
Ωε

∇U jε∇ϕ,

because uj ∈ C∞0 (A).
Hence, for the �rst term we have∫

Ωε

U jεϕ =

∫
Ωε

(
uj + εχε∇uj

)
ϕ =

∫
Ωε∩A

ujϕ+ ε

∫
Ωε

χε∇ujϕ 6

6
∫

Ωε∩A
ujϕ+ εC‖ϕ‖L2(Ωε),

in fact, having ∇uj ∈ C∞0 (A) ⊆ L∞(Ωε), χε ∈ Hε and ϕ ∈ Hε, and using
Cauchy-Schwarz inequality,∫

Ωε

χε∇ujϕ 6 ‖∇uj‖L∞‖ϕε‖L2(Ωε)‖ϕ‖L2(Ωε) < C‖ϕ‖L2(Ωε).
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Therefore, by inequality (3.38), we get∫
Ωε

U jεϕ 6
∫

Ωε∩A
ujϕ+ ε1/2c1‖ϕ‖ε.

On the other hand, for the second term, using same estimate of the �rst
one, we have

− 1

λj

∫
Ωε

∇U jε∇ϕ = − 1

λj

∫
Ωε∩A

(
∇uj + ε∇χ

(x
ε

) 1

ε
∇uj

)
∇ϕ+

− 1

λj

∫
Ωε

εχεD
2uj∇ϕ 6 − 1

λj

∫
Ωε∩A

(
∇uj +∇yχ (y)∇uj

)
∇ϕ− C

λj
ε‖ϕ‖Hε 6

6 − 1

λj

∫
Ωε∩A

(
∇uj +∇yχ (y)∇uj

)
∇ϕ− c2

λj
ε1/2‖ϕ‖ε.

It remains to estimate these two terms:∫
Ωε∩A

ujϕ,

∫
Ωε∩A

(
∇uj +∇yχ (y)∇uj

)
∇ϕ.

Let us start with the �rst one:∫
Ωε∩A

ujϕ = |Y |
∫
A
ujTεϕ+

∫
A

(χΩε − |Y |)ujTεϕ.

Now consider the function h ∈ L∞per(Y ), hε = χΩε−|Y |: we have
∫
Y h(y)dy =

0, uj ∈ C∞0 (A) ⊆ H1
0 (A) and Tεϕ ∈ H1(Ω), by the de�nition of the extension

operator, so that we can use lemma 3.4.6, getting∫
A

(χΩε − |Y |)ujTεϕ 6 Cε‖uj‖H1
0 (A)‖Tεϕ‖H1

0 (Ω).

Hence, using the continuity of the extension operator and equation (3.38),
one has ∫

A
(χΩε − |Y |)ujTεϕ 6 c3ε

1/2‖ϕ‖ε.

For the second term:

− 1

λj

∫
Ωε∩A

(
∇uj +∇yχ (y)∇uj

)
∇ϕ = − 1

λj

∫
A
ahom∇uj∇Tεϕ+

− 1

λj

∫
A

[
χΩε

(
∇uj +∇yχε · ∇uj

)
− ahom∇uj

]
∇Tεϕ.

We can consider, as before, the periodic function

h
(x
ε

)
= χΩε

(
1 +∇yχε · ∇uj − ahom

)
,
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and, using lemma 3.4.6 and the continuity of the extension operator,∣∣∣∣∫
A

[
χΩε

(
∇uj +∇yχε · ∇uj

)
− ahom∇uj

]
∇Tεϕ

∣∣∣∣ =

∣∣∣∣∫
A
hε∇uj∇Tεϕ

∣∣∣∣ 6
6 Cε‖uj‖H1

0 (A)‖Tεϕ‖H1
0 (Ω) 6 c4ε

1/2‖ϕ‖ε.

Therefore, putting together all these estimates, we get

‖KεU
j
ε −

1

λj
U jε ‖ε =

∫
Ωε∩A

ujϕ− 1

λj

∫
Ωε∩A

(
∇uj +∇yχ (y)∇uj

)
∇ϕ+

+ε1/2c1‖ϕ‖ε − ε1/2 c2

λj
‖ϕ‖ε 6

6 |Y |
∫
A
ujTεϕ−

1

λj

∫
A
ahom∇uj∇Tεϕ+

+ε1/2c1‖ϕ‖ε − ε1/2 c2

λj
‖ϕ‖εε1/2c3‖ϕ‖ε − ε1/2 c4

λj
‖ϕ‖ε

Note that, being uj the solution of the homogenized problem (3.16), one
has

|Y |
∫
A
ujTεϕ−

1

λj

∫
A
ahom∇uj∇Tεϕ = 0,

and we �nally get

‖KεU
j
ε −

1

λj
U jε ‖Hε 6 ‖KεU

j
ε −

1

λj
U jε ‖ε 6 cj

√
ε

Step 2.

To apply lemma 3.4.4, we need to use a normalized function: ‖U jε ‖Hε = 1.
In our hypothesis we have uj , ∇uj ∈ C∞0 (A) and χε ∈ H1

0 (Ωε), so that

‖U jε − uj‖Hε 6 Cε (3.44)

and, being uj 6= 0, we must have ‖U jε ‖Hε > α > 0. So we can use the
normalized function, naming it again U jε :

U jε =
U jε

‖U jε ‖Hε
,

getting

‖KεU
j
ε −

1

λj
U jε ‖Hε 6 cj

√
ε

1

‖U jε ‖Hε
6
cj

α

√
ε.

Now we can apply lemma 3.4.4 to the linear continuous compact and
self-adjoint operator Kε, with µ = (λj)−1, α = cj/α

√
ε: then there exists

(λjε)−1, eigenvalue of Kε, such that∣∣∣∣ 1

λjε
− 1

λj

∣∣∣∣ 6 cj

α

√
ε,
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moreover, for any d > 0, there exists a normalized function ũε in the
eigenspace associated to eigenvalues in the interval [λjε − d, λjε + d], such
that

‖U jε − ũε‖Hε 6 2
cj
√
ε

αd
,

that is equation (3.40) in an implicit form. In order to understand better the
convergence of eigenfunctions in the case of multiple eigenvalues, suppose to
have λj of multiplicity mj , as in our hypothesis:

λj−1 < λj = λj+1 = · · · = λj+mj−1 < λj+mj ,

and set

dj = min

(
1

λj−1
− 1

λj
,

1

λj
− 1

λj+mj

)
Λj =

(
1

λj
− dj ,

1

λj
+ dj

)
,

then 1/λiε ∈ Λj if and only if j 6 i 6 j + mj − 1. For any of these λi we
construct the function U j+iε (x) = uj+i(x) + εχ

(
x
ε

)
∇uj+i(x) and, repeating

step 1, we get

‖KεU
j+i
ε − 1

λj+i
U j+iε ‖Hε 6

cj+i

αj+i
√
ε, j 6 i 6 j +mj − 1.

Hence, by lemma 3.4.4, there exists an eigenfunction in the eigenspace
associated to eigenvalues in the interval Λj , i.e. there exists a matrix Mε ∈
Mmj×mj and eigenfunction uj+iε associated to λj+iε , with 1/λj+iε ∈ Λj , such
that

‖U j+iε −
mj−1∑
l=0

M il
ε u

j+l
ε ‖Hε 6 2

cj+i

αj+idj

√
ε = Cj+i

√
ε, j 6 i 6 j +mj − 1,

that is equation (3.40); in order to derive equation (3.41) we simply note
that, for any j ∈ N, being χ ∈ Hε and uj ∈ C∞0 (A),

‖U jε − uj‖Hε = ε‖χε∇uj‖Hε 6 Cε.

Step 3.
We want to generalized to the case uj ∈ H1

0 (A); this means that ∇uj
could not be zero in ∂A, making U jε not in H1

0 (A) and inequality (3.44) holds
true just in the L2(Ω) norm. Consider ψε a family of smooth functions in
C∞0 (A) such that 0 6 ψε 6 1

ψε =

{
1 if x ∈ A, d(x, ∂A) > 2ε

0 x ∈ Ω \A,
(3.45)
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and ‖∇ψε‖∞ 6 2/ε. Then take, for any j ∈ N,

Ũ jε = uj + εψεχε∇uj ,

so that Ũ jε ∈ H1
0 (A).

The following estimates hold true

‖Ũ jε − U jε ‖L2(Ω) 6 Cε3/2,

‖Ũ jε − U jε ‖H1(Ω) 6 Cε1/2.

Hence, repeating the proof of Step 1, using Ũ jε instead of U jε , and these
last estimates, we get the thesis in the general case.
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Chapter 4

Homogenization of oscillating

constraint problems: the

general Cartesian case

In this chapter we de�ne an oscillating constraint problem in the cartesian
case, for vector functions; we will distinguish three di�erent situation: the
�rst and the second can be treated with the standard almost periodic ho-
mogenization theory, see section 1.2, the third, that is the most interesting
and original case, will be treat in next chapter, only in the scalar case.

4.1 Problem setup

We want to study the homogenization of the following functional

Fε(u) =


∫

Ω
|∇u|2dx u ∈ H1(Ω;Vε)

+∞ otherwise
(4.1)

Here we consider a su�ciently regular set Ω ⊂ Rn and a function u,
actually depending on the small parameter ε, taking values on an oscillating
constraint Vε. More precisely we take

uε : Ω ∈ Rn → Vε ⊂ Rm+m′

x 7→ uε(x) = (uε1(x), uε2(x)) (4.2)

where uε2(x) = ϕε(u
ε
1(x)); the function ϕε = δεϕ

(y
ε

)
is de�ned by ϕ, that

is Y = (0, 1)m-periodic, and takes values from Rm to Rm′ . In the sequel
we will specify the regularity and hypothesis on this function, that will be
di�erent in each cases. Moreover ϕε satis�es the condition ϕε → 0 as ε→ 0;
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hence our oscillating manifold Vε, in some sense, is converging to the space
V = Rm × {0} = Rm.

Remark 4.1.1. To simplify the notation, in the sequel we will name uε1 = uε
and uε2 = ϕε(uε), getting

uε(x) = (uε(x), ϕε(uε(x))).

For the functional Fε we have

Fε(uε) =

∫
Ω
|∇uε|2dx =

∫
Ω

(
|∇uε|2 +

(
δ

ε

)2

|Dyϕ(uε)∇uε|2
)
dx (4.3)

where y = u/ε.
Let us de�ne the matrix A(y) = Dyϕ(y), so that Fε becomes

Fε(uε) =

∫
Ω
|∇uε|2dx =

∫
Ω

(
|∇uε|2 +

(
δ

ε

)2 ∣∣∣A(uε
ε

)
∇uε

∣∣∣2) dx.
Observing the second component of this functional, seems to be reason-

able to study three di�erent cases.

I. δ/ε → 0, then the second term will disappear and we will study the
standard homogenization of the �rst one.

II. δ/ε→ c, we will use some standard homogenization formula for almost
periodic functionals.

III. δ/ε → +∞, this is the most interesting case, in wich we can't apply
the classical homogenization theory and, intuitively, the Γ-limit will be
�nite only in some particular directions: near the level curves of ϕ.

We consider the �rst two cases in the following sections of this chapter;
the last and most di�cult case will be pointed out in the next chapter.

Remark 4.1.2. In order to consider homogenization and Γ-convergence of
our functional, we have to �x a reasonable topology. Here, di�erently from
most classical examples, the small parameter ε is not in the domain of the
function u, but in its codomain; so we can't use the standard L2(Ω;Vε) strong
or weak topologies. We will use a topology τ de�ned as follow:

De�nition 4.1.1. Let uε be a sequence of functions de�ned as in (4.2),
uε = (uε1, u

ε
2 = ϕε(u

ε
1)). We say that uε → u = (u1, 0) as ε→ 0 if and only

if uε1 → u1 in the strong topology of L2(Ω,Rm).
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4.2 The case δ/ε → 0: direct computation of the

Γ-limit

Theorem 4.2.1. Let ϕ be a function in W 1,∞(Rm;Rm′). For the functional
Fε, de�ned in (4.1), the following property holds

Γ- lim
ε→0

Fε(uε) = F (u) =


∫

Ω
|∇u|2dx u ∈ H1(Ω, V )

+∞ otherwise

in the topology τ de�ned in 4.1.1; here we use the same notation as before,
so that u = (u1, 0).

Proof. Let us consider the two conditions of Γ-convergence separately.

i) We take a sequence uε ∈ H1(Ω, Vε) converging with respect the topol-
ogy τ to a function u = (u1, 0), i.e. uε1 → u1 in L2(Ω,Rm). We prove
that

F (u) 6 lim inf
ε→0

Fε(uε). (4.4)

To do this we impose, possibly passing to a subsequence, that exists
the limε→0 Fε(uε) < +∞; otherwise (4.4) is trivial. By the de�nition
of Fε one has

λ > Fε(uε) >
∫

Ω
|∇uε|2 = ‖∇uε‖H1(Ω)

Then, up to subsequence, we have the weak convergence uε1 ⇀ u1 in
H1(Ω, V ). Hence we get

lim inf
ε→0

Fε(uε) > lim inf
ε→0

∫
Ω
|∇uε1|2dx =

∫
Ω
|∇u1|2dx = F (u).

ii) Let u = (u1, 0) be a function in H1(Ω, V ). We have to �nd a sequence
uε ∈ H1(Ω, Vε), converging to u in the topology τ , such that

F (u) > lim sup
ε→0

Fε(uε) (4.5)

We can take the sequence uε = (u1, δϕ(u1/ε)) ∈ H1(Ω, Vε), therefore,
by the hypothesis on the regularity of ϕ, one has∫

Ω
|Dyϕ(y) · ∇u1|2 dx 6

∫
Ω
|Dyϕ(y)|2 |∇u1|2 dx
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6 C

∫
Ω
|∇u1|2 dx < +∞.

Now, using the hypothesis δ/ε→ 0, we claim (4.5):

lim
ε→0

Fε(uε) = lim
ε→0

∫
Ω
|∇u1|2dx+

(
δ

ε

)2 ∫
Ω
|Dyϕ(u1)∇u1|2 dx = F (u).

4.3 The case δ/ε→ c: almost periodic homogeniza-

tion theory

Di�erently from the previous case, it can be more di�cult to compute the
Γ-limit directly, as we did in section 4.2. In this second case we will use
theorem 1.2.2; to apply this general classic result, we will prove conditions
i) and ii) on the density of our functional Fε. Here we consider the same
hypothesis on the function ϕ, as in the previous section: we will take it in
W 1,∞(Rm;Rm′).

Let us start from a simpler case in which the ratio δ/ε is constant and
equal c, that is its limit as ε→ 0. Consider the function

fc : Rm × Mm×n → R
(s , ξ) 7→ |ξ|2 + c2 |Dϕ (s)|2.

We de�ne the functional Fε(u) =
∫

Ω fc
(
u
ε ,∇u

)
dx. We want to show

that fc satis�es properties i) and ii) of theorem 1.2.2. First we can make
the expression of fc more explicit, considering its second term, evaluated on(
u
ε ,∇u

)
:

∣∣∣Dδϕ(u
ε

)∣∣∣2 =
n∑
i=1

m′∑
j=1

∣∣∣Dxiδϕ
j
(u
ε

)∣∣∣2 =
δ2

ε2

n∑
i=1

m′∑
j=1

∣∣∣∣∣
m∑
k=1

Dykϕ
j
(u
ε

)
Dxiu

k

∣∣∣∣∣
2

.

Now use the same notation as before, calling Ajk = Dykϕ
j , de�ne the

matrix ξki := Dxiu
k, and substitute them in the previous formula, recalling

that δ/ε = c: ∣∣∣Dδϕ(u
ε

)∣∣∣2 = c2
n∑
i=1

m′∑
j=1

∣∣∣∣∣
m∑
k=1

ξki A
j
k

∣∣∣∣∣
2

.

We �nally get the following formula for f

f(s, ξ) = |ξ|2 + c2
n∑
i=1

m′∑
j=1

∣∣∣∣∣
m∑
k=1

ξki A
j
k(s)

∣∣∣∣∣
2

.
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Observing that, by the Cauchy-Schwarz inequality and the regularity of
u and ϕ, one has ∣∣∣∣∣

m∑
k=1

ξki A
j
k(s)

∣∣∣∣∣
2

6 |ξi|2|Aj |2 < +∞

we have the �rst condition

|ξ|2 6 f(s, ξ) 6 (1 +M)|ξ|2 6 β(1 + |ξ|)2

where β = 1 +M and M satis�es c2|Aj |2 6 c2 sup |Dϕ|2 = M .
For the second one we recall that a function f is u.a.p. if it is the

uniform limit of a sequence of trigonometric polynomials. Our function fc is
the following one

fc(s, ξ) = |ξ|2 + c2|A(s)ξ|2 = |ξ|2 + c2
n∑
i=1

m′∑
j=1

(
m∑
x=1

ξki A
j
k(s)

)2

=

|ξ|2 + c2
n∑
i=1

m′∑
j=1

(
m∑
k=1

ξki A
j
k(s)

)(
m∑
h=1

ξhi A
j
h(s)

)
=

|ξ|2 + c2
∑
i,j,k,h

ξki ξ
h
i A

j
k(s)A

j
h(s) = |ξ|2 + c2

∑
i,j,k,h

ahkij (s)ξhi ξ
k
j

with a(s), Y -periodic, by our assumptions on ϕ. Then fc is actually a
periodic function with respect the variable s ∈ Rm and, trivially, u.a.p..

Therefore fc satis�es both i) and ii) of theorem 1.2.2 and we can state
the homogenization result:

Theorem 4.3.1. There exists a quasi convex function fhomc : Mm×n → R
such that for every u ∈ H1(Ω;V ) the limit

Γ- lim
ε→0

Fε = Γ- lim
ε→0

∫
Ω
fc

(u
ε
,∇u

)
dx =

∫
Ω
fhomc (∇u)dx

exists, and the function fhomc satis�es the asymptotic homogenization formula

fhomc (ξ) = lim
T→+∞

inf

{
1

Tn

∫
(0,T )n

fc(u+ ξx,∇u+ ξ)dx

u ∈ H1
0 ((0, T )n;V )

}
for all ξ ∈Mm×n.
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Now consider the general case δ/ε→ c, that is, for su�ciently small
ε, |δ/ε− c| < η, for all η > 0, hence we have

(c− η)2 6

(
δ

ε

)2

6 (c+ η)2.

In this case we take the function fε(s, ξ) = |ξ|2 + (δ/ε)2 |Dϕ (s)|2, that
de�nes the integral Fε =

∫
Ω fε

(
u
ε ,∇u

)
dx. Note that

fε(s, ξ) = |ξ|2 +

(
δ

ε

)2

|Dϕ(s)|2 6

(
c+ η

c

)2 (
|ξ|2 + c2|Dϕ(s)|2

)
,

hence we have(
c− η
c

)2

fc(s, ξ) 6 fε(s, ξ) 6

(
c+ η

c

)2

fc(s, ξ), (4.6)

and the same for integrals:(
c− η
c

)2

F cε 6 Fε 6

(
c+ η

c

)2

F cε .

Now, for F cε and fc theorem 4.3.1 holds, therefore, taking the limit as
η → 0 in (4.6) we claim the same result for fε and Fε: there exists a quasi
convex function fhom : Mm×n → R such that, for every u ∈ H1(Ω;V ),

Γ(L2)- lim
ε→0

∫
Ω
fε

(u
ε
,∇u

)
dx =

∫
Ω
fhom(∇u)dx,

with

fhom(ξ) = lim
T→+∞

inf

{
1

Tn

∫
(0,T )n

fc(u+ ξx,∇u+ ξ)dx

u ∈ H1
0 ((0, T )n;V )

}
.
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Chapter 5

Homogenization of scalar

oscillating constraint problems:

the case δ/ε→ +∞

Being interested in the geometric properties of the oscillating constraint Vε,
we will prove the homogenization result only for curves taking values in the
oscillating constraint converging to Rm; the vectorial case is much di�er-
ent and it involves notions as quasi-convexity, poly-convexity and rank-1-
convexity.

So now we have Fε : L2([0, 1], Vε) → [0,+∞] as in equation (4.1); ϕ :
Rm → R is 1-periodic, with ϕε(y) = δϕ(y/ε); the oscillating constraint
is Vε =

{
(y, z) ∈ Rm+1 : z = ϕε(y)

}
, that converges to Rm and we assume

δ/ε→ +∞. We will consider Fε in the following unconstrained form:

Fε(uε) =

∫ 1

0

(
|u′ε|2 +

(
δ

ε

)2 ∣∣Dyϕ(uε)u
′
ε

∣∣2) dt. (5.1)

Here it is clear that the second term of Fε tends to +∞ when ε → 0;
this fact forces the minima of Fε to stay where the gradient of ϕ is zero, i.e.
in a level set of ϕ. In this chapter we will assume that the regularity for the
constraint is ϕ ∈ C1([0, 1]).

We de�ne ∀w ∈ Rm, z ∈ Im(ϕ) ⊂ R, c > 0, the minima problems

ψz,cT (w) =
1

T
min

{∫ T

0
|u′|2 : |u(0)| 6

√
m, |u(T )− Tw| 6

√
m,

|ϕ(u)− z| 6 c

}
.

(5.2)
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ψzT (w) =
1

T
min

{∫ T

0
|u′|2 : |u(0)| 6

√
m, |u(T )− Tw| 6

√
m,

ϕ(u) = z

}
.

(5.3)

Remark 5.0.1. Boundary conditions in de�nitions (5.2) and (5.3) cannot
be taken as u(0) = 0 and u(T ) = Tw, because the domain of ψz,cT or ψzT will
reduce to vectors w ∈ Rm satisfying the constraint ϕ(Tw) = z or |ϕ(Tw) −
z| 6 c, and the de�nition makes sense only if 0 ∈ {ϕ = z}, for some z ∈ R,
for ψzT , or if the distance of 0 and Tw from the set {ϕ = z} is less than
c, for ψz,cT . Such a condition will reduce too much the domain of ψz,cT and
ψzT , so that it has to be relaxed, as in de�nitions (5.2) and (5.3), asking the
boundary values of u to be near to the origin and the point Tw.

We �nally de�ne
ψzhom(w) = lim

T→∞
ψzT (w), (5.4)

and

ψhom(w) =

(
min

z∈Im(ϕ)
ψzhom

)∗∗
(w). (5.5)

Before showing our main result, we state some preliminary lemmata and
properties that we will use in the proof. Let us start with two geometric
hypotheses for the function ϕ or, equivalently, for the functional ψz,cT , and
for its level sets:

Hypothesis 5.0.1. For any constraint function ϕ ∈ C1, we will assume that
there exists a continuous function ω(c), with ω(c) → 0 as c → 0, such that,
for any T > 0, w ∈ Rm, z ∈ Im(ϕ), one of the two following conditions is
satis�ed:

1.
ψz,cT (w) = +∞; (5.6)

2.

ψz,cT (w) > (1− ω(c))ψz
′
T (w′)− k(c)

T
, (5.7)

for suitable z′ ∈ Im(ϕ), w′ ∈ Rm and k(c) ∈ R such that |z − z′| 6 c,
‖w − w′‖ 6

√
m/T and k(c) is independent of z.

Hypothesis 5.0.2. Let us �x z ∈ Im(ϕ) and w ∈ Rm such that ψzT (w) <
+∞, for any T > 0. Hence, for any x, y ∈ {ϕ = z}, there exist a constant
C ∈ R and a path γ : [0, 1]→ Rm, with γ(0) = x, γ(1) = y and ϕ(γ(t)) = z,
such that

l(γ) =

∫ 1

0

√
1 + |γ′(t)|2dt 6 C‖x− y‖.
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Remark 5.0.2. Note that we can prove hypothesis 5.0.2 assuming that if
{ϕ = z} has a connected unbounded component, then it is the union of C1

sets.

5.1 Proof of the Homogenization result

Using the geometric hypotheses stated above, we can prove the existence of
the homogenization formula:

Lemma 5.1.1. Let ϕ satisfy 5.0.1, 5.0.2 and the following hypothesis:

H) for any z ∈ Im(ϕ) one of the following two conditions holds true for
the set {ϕ = z}:

i) it is made by a unique connected component unbounded, so that it
�connects" Rm.

ii) it is made by in�nitely many bounded connected components.

Then, for any w ∈ Rm, for any z ∈ Im(ϕ), the limit

lim
T→+∞

min
1

T

{∫ T

0
|u′(t)|2dt : |u(0)| 6

√
m, |u(T )− Tw| 6

√
m,

ϕ(u) = z

}
exists.

Proof. Let us �x two constants S � T > 0, a vector w ∈ Rm and z ∈ Im(ϕ),
such that ψzT (w) < +∞. Then there exists a minimizer for ψzT (w), that is
vT : [0, T ]→ Rm, with |vT (0)| 6

√
m, |vT (T )−Tw| 6

√
m and ϕ(vT (t)) = z.

We want to construct a competitor for ψzS(w) by a patchwork procedure,
using vT . In what follows we consider [Tw] as the integer part component-
wise of Tw ∈ Rm, and [Tw] + 1 = ([Tw1] + 1, . . . , [Twm] + 1).

Hence let consider two curves

γ : [0, 1]→ Rm, γ(0) = vT (T ), γ(1) = vT (0) + [Tw] + 1,

ϕ(γ(t)) = z

and

γ1 : [0, 1]→ Rm, γ1(0) = vT (T ) +

[
S

[T + 1]
− 1

]
([Tw] + 1),

γ1(1) = vT (0) +

[
S

[T + 1]

]
([Tw] + 1), ϕ(γ1(t)) = z.
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Note that, by hypothesis 5.0.2, such curves exist and, moreover, we have

l(γ) 6 C̃|vT (0) + [Tw] + 1− vT (T )| 6 C,

l(γ1) 6 C̃1

∣∣∣∣vT (T ) +

[
S

[T + 1]
− 1

]
([Tw] + 1)− vT (0)+

−
[

S

[T + 1]

]
([Tw] + 1)

∣∣∣∣ 6 C1,

with C and C1 depending on the dimension m. We can also assume that γ
and γ1 have constant velocity. Now de�ne the function

ṽT (t) :

[
0,

[
S

[T + 1]

]
(T + 1) + 1

]
→ Rm

ṽT (t) =



vT (t− k(T + 1)) + k([Tw] + 1) k(T + 1) 6 t 6 k(T + 1) + T,

γ(t− k(T + 1)− T ) + k([Tw] + 1) k(T + 1) + T 6 t

6 (k + 1)(T + 1),

γ1(t−
[

S
[T+1]

]
(T + 1))

[
S

[T+1]

]
(T + 1) 6 t

6
[

S
[T+1]

]
(T + 1) + 1,

(5.8)

for k = 0, . . . ,
[

S
[T+1] − 1

]
. We rescale ṽT on the interval [0,S], getting vT,S :

[0, S]→ Rm, with

vT,S(t) = ṽT

(
1

S

([
S

[T + 1]

]
(T + 1) + 1

)
t

)
.

Observe that one has, for any T > 0 �xed,

K(S, T ) =
1

S

([
S

[T + 1]

]
(T + 1) + 1

)
−−−−→
S→∞

1.

By construction we have |vT,S(0)| = |vT (0)| 6
√
m, |vT,S(S) − Sw| =

|vT (0) +
[

S
[T+1]

]
([Tw] + 1)− Sw| 6

√
m, and ϕ(vT,S(t)) = z, by the period-

icity of ϕ, therefore, using change of variable s = tK(S, T ),

ψzS(w) 6
1

S

∫ S

0
|v′S,T (t)|2dt =

K(S, T )

S

∫ SK(S,T )

0
|ṽ′(s)|2ds =

=
K(S, T )

S

[
S

[T + 1]

](∫ T

0
|v′T (t)|2dt+

∫ 1

0
|γ′(t)|2dt

)
+

+
K(S, T )

S

∫ 1

0
|γ′1(t)|2dt 6 K(S, T )

S

S

T

(
TψzT (w) + (l(γ))2

)
+
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+
K(S, T )

S
(l(γ1))2 6 K(S, T )

(
ψzT (w) +

C2

T
+
C2

1

S

)
.

Now, taking lim sup as S →∞ and after lim inf as T →∞, we get

lim sup
S→∞

ψzS(w) 6 lim inf
T→∞

ψzT (w),

so that the limit exists.

For the function ψhom(w) the following property holds:

Property 5.1.1. ψhom is a 2-homogeneous function, i.e. for any λ ∈ R and
w ∈ R2 one has

ψhom(λw) = λ2ψhom(w)

Proof. In order to simplify the notation we only consider the case λ > 0:
the general case holds true, but it needs some di�erent notation for the
proof. Consider z ∈ Im(ϕ), w ∈ Rm, such that ψT/λ(w) < +∞; let u
be as a solution of the minimum problem de�ned by ψT/λ(λw); we have
|u(0)| 6

√
m, |u(T/λ)− Tw| 6

√
m and

ψzT/λ(λw) =
λ

T

∫ T/λ

0
|u′(t)|2dt =

λ

T

∫ T

0

∣∣∣u′ ( s
λ

)∣∣∣2 ds
λ

;

hence, taking v(s) = u(s/λ), one has |v(0)| = |u(0)| 6
√
m, |v(T ) − Tw| =

|u(T/λ)− Tw| 6
√
m, and

ψzT/λ(λw) = λ2 1

T

∫ T

0
|v′(s)|2ds = λ2ψzT (w).

Taking the minimum over z ∈ Im(ϕ) and then the convex envelope, and
considering the limit as T →∞, we get the thesis.

Remark 5.1.1. We will also use the fact that ψhom is local Lipschitz in tis
domain: in fact observe that, if ψhom(w) < +∞, i.e. w ∈ domψ, there exist
T0 > 0 and η > 0 such that, for any T > T0, we can �nd a curve u : [0, T ]→
Rm and a level z ∈ Im(ϕ), such that |u(0)| <

√
m, |u(T ) − Tw| <

√
m,

ϕ(u) = z, and ψhom(w) 6 1/T
∫ T

0 |u
′|2dt + η. Now u is a curve in the level

set {ϕ = z}, joining two points at distance |u(T ) − u(0)| 6 |Tw| + 2
√
m,

hence, by hypothesis 5.0.2, there exists a constant C such that

(l(u))2 6 C(|Tw|+ 2
√
m)2.

Therefore, taking u with constant velocity, one has

ψhom(w) 6 ψzhom(w) 6 η + ψzT (w) 6

6 η +
1

T

∫ T

0
|u′|2dt 6 η +

(
l(u)

T

)2

6 η + C2

(
|Tw|+ 2

√
m

T

)2

,
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so that, taking the limit as T → +∞ and η → 0, we get

ψhom(w) 6 C2|w|2.

Hence we can apply lemma 1.1.3, getting that there exists chom(σ) ∈ R
such that

|ψhom(ξ1)− ψhom(ξ2)| 6 chom(σ)(1 + |ξ1|+ |ξ2|)|ξ1 − ξ2|, (5.9)

for any ξ1, ξ2 ∈ Rm such that ψhom(ξi) < +∞ and dist(ξi, ∂ domψ) > σ.

The last preliminary result is related to the L2([0, 1]) and H1([0, 1]) ap-
proximation by piecewise a�ne functions:

Lemma 5.1.2. Let {uε}ε>0 ⊆ H1([0, 1]) be a sequence converging to u ∈
H1([0, 1]) in the strong topology of L2([0, 1]), as ε→ 0. Suppose that {uε}ε>0

is equibounded in H1([0, 1]), that is ‖uε‖H1 < λ, for any ε > 0. Consider
M,JM ∈ N and a partition {ti}i=0,...,JM of the interval [0,1], with |ti−ti−1| <
1/M .

Let vε,M be the piecewise a�ne function de�ned on index i = 1, . . . , JM ,
satisfying

vε,M (ti) = uε(ti), v′ε,M (t)
∣∣
[ti−1,ti]

=
uε(ti)− uε(ti−1)

ti − ti−1
, i = 1, . . . , JM .

Then we have

i) there exists a function vM ∈ H1([0, 1]), depending on the parameter
M , such that

vε,M −−−→
ε→0

vM (5.10)

strongly in L2([0, 1]) and weakly in H1([0, 1]);

ii)
vM −−−−→

M→∞
u (5.11)

strongly in L2([0, 1]) and weakly in H1([0, 1]).

Proof. Observe that, by construction, we have∫ 1

0
|vε,M − uε|2dt =

∑
i/∈Iε

∫ ti

ti−1

|vε,M − uε|2 +
∑
i∈Iε

∫ ti

ti−1

|vε,M − uε|2.

The function vε,M − uε vanishes in ti, for i = 1, . . . , JM , then we can use
Poincaré inequality, getting

JM∑
i=1

∫ ti

ti−1

|vε,M − uε|2dt 6
JM∑
i=1

c|∆ti|2
∫ ti

ti−1

|v′ε,M − u′ε|2dt 6
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6
JM∑
i=1

2c

M2

(∫ ti

ti−1

|v′ε,M |2 +

∫ ti

ti−1

|u′ε|2
)

=
2c

M2

(∫ 1

0
|v′ε,M |2 +

∫ 1

0
|u′ε|2

)
.

At the same time, being uε ∈ H1([0, 1]) absolutely continuos, we have

uε(ti)− uε(ti−1) =

∫ ti

ti−1

u′εdt⇒ |uε(ti)− uε(ti−1)|2 =

(∫ ti

ti−1

u′εdt

)2

,

then, using Cauchy-Schwarz inequality,

|uε(ti)− uε(ti−1)|2 6
∫ ti

ti−1

1dt

∫ ti

ti−1

|u′ε|2dt = ∆ti

∫ ti

ti−1

|u′ε|2dt.

Hence∫ 1

0
|v′ε,M |2dt =

JM∑
i=1

|uε(ti)− uε(ti−1)|2

∆ti
6
∫ 1

0
|u′ε|2dt. (5.12)

Therefore one has∫ 1

0
|vε,M − uε|2dt 6

2c

M2

(∫ 1

0
|v′ε,M |2 +

∫ 1

0
|u′ε|2

)
6

4c

M2
λ, (5.13)

being ‖uε‖H1 < λ. Then we have

‖vε,M‖L2 6 ‖vε,M − uε‖L2 + ‖uε‖L2 6
4c

M2
λ+ λ,

and, by equation (5.12), and by hypothesis of equiboundedness of {uε}ε,

‖vε,M‖H1 < λ, ∀ε > 0.

Hence there exists a function vM ∈ H1([0, 1]) such that vε,M ⇀ vM
weakly in H1([0, 1]), and, by Rellich theorem, strongly in L2([0, 1]), as ε
tends to zero. Part i) is then proved.

Consider now ii): we have, by hypothesis, part i) and equation (5.13)∫ 1

0
|vM − u|2 = lim

ε→0

∫ 1

0
|vε,M − uε|2 6

4c

M2
λ.

Hence, taking the limit as M → +∞,

lim
M→+∞

∫ 1

0
|vM − u|2 6 lim

M→+∞

4c

M2
λ = 0,

so that vM → u strongly in L2. For the weak convergence consider ϕ ∈
H1([0, 1]); one has, using part i), hypothesis and Cauchy-Schwarz inequality,
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∫ 1

0
|v′M − u′|ϕ′ = lim

ε→0

∫ 1

0
|v′ε,M − u′ε|ϕ′ 6

6 lim
ε→0
‖ϕ‖H1

∫ 1

0
|v′ε,M − u′ε|2 6 ‖ϕ‖H1

4c

M2
λ.

Therefore, taking the limit as M → +∞, we get ii).

Remark 5.1.2. Lemma 5.1.2 holds true inverting the role of ε and M , such
that the limit of piecewise a�ne functions vε,M does not depend on the order
of ε → 0 and M → ∞. We state the result in this way in order to use it
in the proof of Γ- lim inf in theorem 5.1.1, where the order of the limits is
exactly ε→ 0 before M →∞.

Now we can �nally state our main result:

Theorem 5.1.1. Let Fε be de�ned in (5.1), such that the constraint ϕ is
C1(Rm) and it satis�es hypothesis H) of lemma 5.1.1; let hypothesis 5.0.1
be satis�ed; then, for any u ∈ L2([0, 1];Rm) one has

Γ- lim
ε→0

Fε(u) = F (u) =


∫ 1

0
ψhom(u′)dt u ∈ H1([0, 1])

+∞ otherwise,

in the strong topology of L2([0, 1]).

Proof.

Γ- lim inf

We want to prove that, for any sequence uε converging in the strong
topology of L2([0, 1]) to a function u ∈ L2([0, 1]), as ε→ 0, one has

lim inf
ε→0

Fε(uε) > F (u). (5.14)

First of all observe that we can assume, without loss of generality, that

Fε(uε) 6 λ < +∞ ∀ε > 0, (5.15)

otherwise the Γ- lim inf inequality (5.14) is trivial. By the equibound-
edness of Fε, we also deduce that

∫ 1
0 |u

′
ε|2dt < λ, i.e. ‖uε‖H1 < λ, for any

ε > 0; hence, up to subsequence, uε ⇀ u weakly in H1([0, 1, ]) too.
Let us take four positive constants ε, N , M , K; by hypothesis on the

function ϕ, there exist two constant a, b ∈ R, such that Im(ϕ) ⊆ [a, b]: so
we can divide the image of ϕ in N + 1 values {a = z0, z1, . . . , zN = b}, with

|zj − zj−1| =
1

N
, ∀j = 1, . . . , N.
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Now we want to split the domain of uε too. Consider the following set

τNε = {t ∈ [0, 1] : ϕε(uε(t)) ∈ {z0, z1, . . . , zN}}

and set

t0 = 0,

ti = min
{
t ∈ τNε : t > ti−1, ϕε(uε(ti)) 6= ϕε(uε(ti−1))

}
. (5.16)

Remark 5.1.3. Observe that, by de�nition, ti actually depends on ε and N ;
we simply name them ti just to simplify the notation.

Note that the set τNε is compact, being an inverse image of a compact
set, by the continuous function ϕ, so that the existence of the �rst instant t1
is guaranteed; at every step we evaluate the minimum always of a compact
set that is τN,iε = {t ∈ [0, 1] : ϕε(uε(t)) ∈ {z0, z1, . . . , zi−1, zi+1, . . . , zN}}, for
some i ∈ N. Therefore the set of ti, i ∈ N, is well de�ned.

With this division of the domain of uε we want to highlight the instants
ti where ϕε(uε) reaches the levels z0, z1, . . . , zN , so that, for two consecutive
ti, there exists j = 0, . . . , N such that

|ϕε(uε(ti))− ϕε(uε(ti−1))| = |zj − zj±1| =
1

N
.

The procedure described to �nd every ti ends when we reach the point
ti = 1; we cannot tell a priori that the number of ti is �nite, for ε and N
�xed, so we present the following

Lemma 5.1.3. For any N > 0, there exists ε0 such that ∀ε < ε0, the number
of {ti}i de�ned in (5.16) is �nite, i.e.

JNε = ] {ti}i < +∞

Proof. By equation (5.15), for any i = 0, . . . , JNε , using Jensen's inequality,
one has that

λ > Fε(uε) > δ2

∫ ti

ti−1

|ϕε(uε)′|2dt >
δ2

ti − ti−1
(ϕε(uε(ti))− ϕε(uε(ti−1)))2 =

=
δ2

ti − ti−1

1

N2
.

De�ne ∆ti = ti − ti−1 and note that, by our hypothesis, one has δ → 0
and δ/ε → +∞ as ε → 0, so that there exists ε0 > 0 such that, for any
ε < ε0 one has δ > ε. Hence we get

λ >
ε2

∆ti

1

N2
.
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Then, for any i = 0, . . . JNε , the minimum distance between two consec-
utive instants ti is a �xed constant:

∆ti >
ε2

λN2
,

and, being ti ∈ [0, 1] bounded, we must have

JNε 6
λN2

ε2
< +∞.

Thanks to this lemma we now have that {ti}i6JNε is a partition of [0, 1].
We can show another property that we will use in the sequel:

Lemma 5.1.4. For any K > 0, there exists a constant ε1 > 0 such that, for
ε < ε1 we have

∆ti > Kε2, i = 1, . . . , JNε . (5.17)

Proof. Let us suppose the contrary: there exists a constant K > 0 such
that for any ε1 we can �nd ε < ε1 such that ∆ti < Kε2 for some i =
1, . . . , JNε . Then, let i be an index such that ∆ti < Kε2; by (5.15) and
Jensen's inequality,

λ >
δ2

∆ti

1

N2
>
δ2

ε2

1

KN2
.

This is absurd because, for ε→ 0, the last term tends to in�nity.

Lemma 5.1.4 gives a lower bound for the interval of the partition ti,
i = 0, . . . , JNε ; but, on the other side, this partition should not be thin
enough to our claim: if we consider uε such that ϕε(uε(t)) = zj for some
j = 0, . . . , N and for any t ∈ [0, 1], then JNε = 1 and we will have ∆t1 = 1. To

avoid such a situation we introduce a new partition ti, for i = 1, . . . , J
N,M
ε ,

actually depending on M too, such that

∆ti = ti − ti−1 <
1

M
.

This partition is obtained from ti, possibly adding other instants, to satisfy
the condition ∆ti < 1/M . For example, if we have ϕε(uε(ti−1)) = zj and
ϕε(uε(ti)) = zj±1, for some i,j, but ti−ti−1 > 1/M , then we will add enough
instants in [ti−1, ti] in order to get ∆ti < 1/M . Note that

{
ti
}
i
is still made

by a �nite number of instants, by lemma 5.1.3 indeed there exists ε0 such
that, for any ε < ε0, we have

J
N,M
ε 6

λN2

ε2
M.
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With this new partition we lost the information about ϕε(uε(ti)), but we
still know, by the continuity of ϕ and, more precisely, by the medium values
theorem, that

|ϕε(uε(ti−1))− ϕε(uε(ti))| <
2

N
; (5.18)

and, repeating the proof of lemma 5.1.4 to
{
ti
}
i
, we have also

Kε2 < ∆ti <
1

M
, ∀ε < ε1. (5.19)

Now we want to de�ne a type of intervals that we will not use in the
computation of Fε(uε): consider the set of indices

IKε =
{
i 6 JN,Mε : |ti − ti−1| < Kε

}
and the respective set of intervals BK

ε = ∪i∈IKε [ti−1, ti] ⊂ [0, 1]. Observe
that, by boundedness of Fε(uε), one has

λ >
∑
i∈IKε

∫ ti

ti−1

|ϕ′|2dt >
∑
i∈IKε

δ2

N2|ti − ti−1|
> |IKε |

δ2

N2Kε
,

so that

|IKε | 6
λN2Kε

δ2
⇒ |BK

ε | 6
(ε
δ

)2
λN2K2 −−−→

ε→0
0. (5.20)

Hence, for the set (0, 1) \BK
ε we have

Kε 6 ∆ti <
1

M
, ∀i /∈ IKε . (5.21)

Now we can evaluate Fε on uε using our partition:

Fε(uε) =

∫ 1

0
|u′ε|2dt+ δ2

∫ 1

0
|ϕε(uε)′|2dt >

∫ 1

0
|u′ε|2dt =

J
N,M
ε∑
i=1

∫ ti

ti−1

|u′ε|2dt =

∑
i/∈IKε

∫ ti

ti−1

|u′ε|2dt+
∑
i∈IKε

∫ ti

ti−1

|u′ε|2dt >
∑
i/∈IKε

∫ ti

ti−1

|u′ε|2dt.

Then we use the change of variable s = (t− ti−1)/ε, naming
vε(s) =

(
uε(εs+ ti−1)

)
/ε−[uε(ti−1)/ε], so that v′ε(s) = u′ε(εs+ti−1), getting

Fε(uε) >
∑
i/∈IKε

ε

∫ ∆ti
ε

0

∣∣v′ε(s)∣∣2 ds =
∑
i∈IKε

ε

∆ti
∆ti

∫ ∆ti
ε

0

∣∣v′ε(s)∣∣2 ds.
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Now let us call

T iε =
∆ti
ε
, wiε =

uε(ti)− uε(ti−1)

∆ti
.

Hence we have

|vε(0)| =
∣∣∣∣uε(ti−1)

ε
−
[
uε(ti−1)

ε

]∣∣∣∣ 6 √m,
∣∣vε(T iε)− T iεwiε∣∣ =

∣∣∣∣uε(ti−1)

ε
−
[
uε(ti−1)

ε

]∣∣∣∣ 6 √m,
and, by (5.18) and the periodicity of ϕ, for a suitable i = 0, . . . , N ,

|ϕ (vε(s))− zi| =
∣∣∣∣ϕ(uε(sε+ ti−1)

ε
−
[
uε(ti−1)

ε

])
− zi

∣∣∣∣ =

=
∣∣ϕε(uε(sε+ ti−1))− zi

∣∣ 6 2

N
, ∀s ∈ [0, T iε ].

Then, using de�nition (5.2), one has

Fε(uε) >
∑
i/∈IKε

∆tiψ
zi,

2
N

T iε
(wiε)

Now we want to use hypothesis 5.0.1, to replace ψ
zi,

2
N

T iε
, with ψ

z′i
T iε

where we

have the stronger constraint ϕ(vε) = z′i. We have that, assuming ψ
zi,

2
N

T iε
(wiε) <

∞, for any i /∈ IKε and a �xed N > 0, there exists z′i and w
i
ε such that

ψ
zi,

2
N

T iε
(wiε) >

(
1− ω

(
2

N

))
ψ
z′i
T iε

(wiε)−
k(N)

T iε

and

|wiε − wiε| 6
√
m

T iε
.

Hence we get

Fε(uε) >
∑
i/∈IKε

∆tiψ
zi,

2
N

T iε
(wiε) >

∑
i/∈IKε

∆ti

((
1− ω

(
2

N

))
ψ
z′i
T iε

(wiε)−
k(N)

T iε

)

>

(
1− ω

(
2

N

)) ∑
i/∈IKε

∆tiψ
z′i
T iε

(wiε)−
k(N)

T iε

and

|wiε − wiε| 6
√
m

T iε
, i /∈ IKε . (5.22)
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By lemma 5.1.1, we can state that, for any α > 0, there exists T0 > 0

and K > 0, such that, by equation (5.21), T iε = ∆ti
ε > K > T0, being i /∈ IKε ,

and
ψ
z′i
T iε

(wiε) > ψ
z′i
hom(wiε)− α.

Then, being ψhom the minimum over z of ψzhom, we have that

Fε(uε) >

(
1− ω

(
2

N

)) ∑
i/∈IKN

∆tiψ
z′i
hom(wiε)− α

(
1− ω

(
2

N

))
− k(N)

K
>

>

(
1− ω

(
2

N

)) ∑
i/∈IKN

∆tiψhom(wiε)− α
(

1− ω
(

2

N

))
− k(N)

K
.

By remark 5.1.1 we know that ψhom is a local lipschitz function: there
exists a constant chom > 0 such that

ψhom(wiε) =
[
ψhom(wiε)− ψhom(wiε)

]
+ ψhom(wiε) >

> −chom(1 + |wiε|+ |wiε|)|wiε − wiε|+ ψhom(wiε).

Applying this last inequality to Fε we get

Fε(uε) >

(
1− ω

(
2

N

)) ∑
i/∈IKN

∆tiψhom(wiε)− α
(

1− ω
(

2

N

))
− k(N)

K
+

−chom
(

1− ω
(

2

N

)) ∑
i/∈IKε

∆ti(1 + |wiε|+ |wiε|)|wiε − wiε|.

For the second term, using the discrete version of Cauchy-Schwarz in-
equality, we have

chom

(
1− ω

(
2

N

)) ∑
i/∈IKε

(∆ti)
1
2 (1 + |wiε|+ |wiε|)(∆ti)

1
2 |wiε − wiε| 6

6 chom

(
1− ω

(
2

N

))∑
i/∈IKε

∆ti(1 + |wiε|+ |wiε|)2

 1
2
∑
i/∈IKε

∆ti|wiε − wiε|2
 1

2

.

Now, the second factor is bounded because, using equation (5.22), we
have ∑

i/∈IKε

∆ti|wiε − wiε|2
 1

2

6
√
m

∑
i/∈IKε

∆ti
ε2

∆t
2
i

 1
2

6
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6
√
m

∑
i/∈IKε

∆ti
1

K2

 1
2

6

√
m

K
.

The �rst factor is bounded too, indeed∑
i/∈IKε

∆ti|wiε|2 6
∑
i/∈IKε

∆ti
1

∆t
2
i

(uε(ti)− uε(ti−1))2 6

6
∑
i/∈IKε

1

∆ti

(∫ ti

ti−1

u′εdt

)2

6
∑
i/∈IKε

1

∆ti

(∫ ti

ti−1

12dt

)(∫ ti

ti−1

|u′ε|2dt

)
6

∑
i/∈IKε

(∫ ti

ti−1

|u′ε|2dt

)
6
∫ 1

0
|u′ε|2dt < λ.

Hence, being ∆ti > Kε, for i /∈ IKε , and using inequality (5.22), one has

∑
i/∈IKε

∆ti(1 + |wiε|+ |wiε|)2 6
∑
i/∈IKε

∆ti

(
C1 + C2|wiε|2 + C3

m

(T iε)
2

)
6

6 C1 + C2λ+ C3m
∑
i/∈IKε

∆ti
ε2

K2ε2
6 C ′ +

C ′′

K2
.

Therefore we get

chom

(
1− ω

(
2

N

)) ∑
i/∈IKε

∆ti(1 + |wiε|+ |wiε|)|wiε − wiε| 6

6 chom

(
1− ω

(
2

N

))(
C ′ +

C ′′

K2

) 1
2
√
m

K
=

(
1− ω

(
2

N

))
c(K)

K
,

with c(K)→ 0 as K → +∞.
De�ne now, in the whole partition

{
ti
}
i6JN,Mε

, a sequence of piecewise
a�ne functions {lε,M,N}ε>0,M>0,N>0 approximating uε, with derivative equal

wiε, i.e. set, for any i = 1, . . . , J
N,M
ε

lε,M,N (ti) = uε(ti), l′ε,M,N (t)
∣∣
[ti−1,ti]

= wiε =
uε(ti)− uε(ti−1)

∆ti
.

Then, by lemma 5.1.2, we have

i) there exists lM,N ∈ H1([0, 1]) such that

lε,M,N → lM,N

strongly in L2([0, 1]) and weakly in H1([0, 1]), as ε→ 0.
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ii)
lM,N → u

strongly in L2([0, 1]) and weakly in H1([0, 1]), as M,N → +∞.

Using lε,M,N , we want to construct a piecewise a�ne function, without
using indices in IKε : let consider the function

vε,M,N,K =

{
uε(ti−1) + wiε(t− ti−1) t ∈ [ti−1, ti], i /∈ IKε
uε(ti−1) t ∈ [ti−1, ti], i ∈ IKε .

(5.23)

Hence vε,M,N,K has a countable quantity of discontinuities (jumps), in
the points t = ti, for i ∈ IKε . We can construct, by translation of vε,M,N,K

in these points, the continuos piecewise function lε,K,M,N ∈ H1([0, 1]), that
satis�es

lε,K,M,N (t)′ =

{
wiε t ∈ [ti−1, ti], i /∈ IKε ,
0 t ∈ [ti−1, ti], i ∈ IKε .

(5.24)

For such a function one has∫ 1

0
|lε,K,M,N (t)′|2 =

∑
i/∈IKε

∫ ti

ti−1

|wiε|2dt =
∑
i/∈IKε

∆ti|wiε|2 < λ.

Hence there exists lK,M,N ∈ H1([0, 1]) such that lε,K,M,N → lK,M,N as
ε → 0, weakly in H1 and strongly in L2. On the other side, by equation
(5.20) we have

‖lM,N − lK,M,N‖∞ 6 C‖lM,N − lK,M,N‖H1 = lim
ε→0

C‖lε,M,N − lε,K,M,N‖H1 =

= lim
ε→0

C

∫
BKε

|l′ε,M,N |2 6 lim
ε→0

C
√
‖lε,M,N‖

H1

√
|BK

ε | 6

6
√
λC lim

ε→0

√
λNK

(ε
δ

)
= 0,

so that lε,K,M,N → lM,N as ε→ 0, weakly in H1 and strongly in L2.
Now observe that, being l′ε,K,M,N = 0 for t ∈ [ti−1, ti] and i ∈ IKε , one

has ∑
i/∈IKε

∆tiψhom(wiε) =
∑
i/∈IKε

∫ ti

ti−1

ψhom(l′ε,K,M,N )dt =

=

∫
(0,1)\BKε

ψhom(l′ε,K,M,N )dt =

∫ 1

0
ψhom(l′ε,K,M,N )dt

Therefore, using lower semicontinuity of ψhom, one has
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lim inf
ε→0

Fε(uε) > lim inf
ε→0

[(
1− ω

(
2

N

))∫ 1

0
ψhom(l′ε,K,M,N )+

−
(
α+

c(K)

K

)(
1− ω

(
2

N

))
− k(N)

K

]
>

>

(
1− ω

(
2

N

))∫ 1

0
ψhom(l′M,N )+

−
(
α+

c(K)

K

)(
1− ω

(
2

N

))
− k(N)

K
.

Now we can take the limit as K tends to in�nity, getting

lim inf
ε→0

Fε(uε) >

(
1− ω

(
2

N

))∫ 1

0
ψhom(l′M,N )− α

(
1− ω

(
2

N

))
Finally we can consider the limit as M,N go to in�nity, using again

the lower semicontinuity of ψhom and knowing that ω(2/N) tends to zero as
N →∞, getting

lim inf
ε→0

Fε(uε) >
∫ 1

0
ψhom(u′)dt− α,

and, by the arbitrariness of constant α, taking the limit as α → 0, we get
the thesis:

lim inf
ε→0

Fε(uε) >
∫ 1

0
ψhom(u′)dt = F (u).

Γ- lim sup

Consider a function u ∈ H1([0, 1]), we want to �nd a sequence uε ∈ H1([0, 1])
such that

lim sup
ε→0

Fε(uε) 6 F (u). (5.25)

First of all note that, by construction, ψhom is a convex, lower semi con-
tinuos and coercive function, then we can apply the Caratheodory theorem,
see [53] for details: for any �xed w ∈ Rm there exists a convex combination
of vectors wi ∈ Rm, with coe�cient λi ∈ R, for i = 1, . . . ,m+ 1, such that

m+1∑
i=1

λi = 1,

m+1∑
i=1

λiwi = w, (5.26)
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and

ψhom(w) =

m+1∑
i=1

λiψ
zi
hom(wi). (5.27)

We can prove (5.25) for a linear function u and extend this result by
density to the whole H1([0, 1]). So take w ∈ Rm and consider the function
u(t) = tw, for t ∈ [0, 1]. By Caratheodory theorem we can �nd λi ∈ R and
wi ∈ Rm satisfying (5.26) and (5.27). Let us �x three positive constants ε,
T and K, such that T � K. For any vector λiwi there exists a function
ui : [0, λiT ]→ Rm that is a solution for the minimum problem

ψziλiT (wi) =
1

λiT
min

{∫ λiT

0
|v′|2dt |v(0)− 0| <

√
m,

|v(λiT )− λiTwi| <
√
m,ϕε(v) = zi

}
.

We want to construct a recovery sequence by a pacthwork procedure using
ui, i = 1, . . . ,m + 1. Let consider the function ũ : [0,

∑m+1
i=1 λiT + mK] =

[0, T +mK]→ Rm de�ned as

ũ(t) =



uj

(
t−

(
j−1∑
i=1

λiT + (j − 1)K

)) ∑j−1
i=1 λjT + (j − 1)K 6 t 6

6
∑j

i=1 λjT + (j − 1)K

j = 1, . . . ,m+ 1

γj

(
t−
(∑j

i=1 λiT + (j − 1)K
)) ∑j

i=1 λiT + (j − 1)K 6 t 6

6
∑j

i=1 λiT + jK

j = 1, . . . ,m

(5.28)
where γj : [0,K] → Rm are the line segments from γj(0) = uj(λjT ) to
γj(K) = uj+1(0)+

∑j
i=1([λiTwi]+1), for j = 1, . . . ,m and γj with constant

velocity. Note that, by boundary conditions on uj , one has

l(γj) 6 2
√
m⇒ |γ′j | 6

2
√
m

K
. (5.29)

Then we de�ne u : [0, T ]→ Rm as

u(t) = ũ

(
1

T

(
m+1∑
i=1

λiT +mK

)
t

)
. (5.30)

We have that, being T � K,

G(K,T ) =
1

T

(
m+1∑
i=1

λiT +mK

)
=

1

T
(T +mK) −−−−→

K→∞
1.
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Now we consider the function ũε : [0, εT ]→ Rm, ũε(t) = εu(t/ε), and we
de�ne uε : [0, εT

[εT ]+1 ]→ Rm as

uε(t) = ũε(t− jεT ), jεT 6 t 6 (j + 1)εT,

j = 0, . . . ,
1

[εT ] + 1
− 1.

(5.31)

Finally consider our recovery sequence uε : [0, 1] → Rm, with uε(t) =

uε

(
εT

[εT ]+1 t
)
. For such a sequence one has∫ 1

0
|u′ε(t)|2dt =

[εT ] + 1

εT

∫ εT
[εT ]+1

0

∣∣∣∣u′ε(s([εT ] + 1)

εT

)∣∣∣∣2 ds =

=
εT

[εT ] + 1

∫ εT
[εT ]+1

0

∣∣u′ε(s)∣∣2 ds =
εT

[εT ] + 1

(
1

[εT ] + 1

)∫ εT

0
|ũ′ε(s)|2ds =

=
εT

([εT ] + 1)2

∫ T

0
|ũ′ε(εy)|2εdy =

(
εT

[εT ] + 1

)2 1

T

∫ T

0
|u′(y)|2dy =

=

(
εT

[εT ] + 1

)2 1

T

∫ T+mK

0

∣∣∣∣u′( t

G(K,T )

)∣∣∣∣2 dt

G(K,T )
=

=

(
εT

[εT ] + 1

)2

G(K,T )

(
m+1∑
i=1

1

λiT
λi

∫ λiT

0
|u′i(t)|2dt+

m∑
i=1

1

T

∫ K

0
|γ′(t)|2

)
6

6

(
εT

[εT ] + 1

)2

G(K,T )

(
m+1∑
i=1

λiψ
zi
λiT

(wi) +
1

T

m∑
i=1

4m

K

)
.

At the same time we have, making the changes of variables used above,(
δ

ε

)2 ∫ 1

0

∣∣∣∣ϕ(uε(t)ε

)∣∣∣∣2 dt 6 ( εT

[εT ] + 1

)2

G(K,T )
1

T
|∇ϕ|

(
δ

ε

)2 m∑
i=1

4m

K
,

because the only non zero contribute of uε is made by the curves γj , being
ϕ(uj) = zj , so that ∇ϕ(uj) = 0. Therefore

Fε(uε) 6

(
εT

[εT ] + 1

)2

G(K,T )

(
m+1∑
i=1

λiψ
zi
λiT

(wi) +
4m2

TK
+

(
δ

ε

)2 4m2C

KT

)
.

Now, consider for example T = δ1/3/ε and K = δ2/3/ε, such that condi-
tion T � K is satis�ed, then we get(

δ

ε

)2 4m2C

KT
=

(
δ

ε

)2 4m2Cε2

δ
= δ 4m2C → 0,
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1

T

4m2

K
= 4m2 ε

2

δ
→ 0.

Hence we can consider the limit as K →∞ (and T � K →∞): being(
εT

[εT ] + 1

)2

→ 1, G(K,T )→ 1

one has

Fε(uε) 6
m+1∑
i=1

λiψ
zi
hom(wi) + 4m2 ε

2

δ
+ δ 4m2C.

Taking the lim sup as ε→ 0 we �nally get

lim sup
ε→0

Fε(uε) 6 ψhom(w) =

∫ 1

0
ψhom(u′)dt = F (u).
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5.2 Examples

Example 5.2.1. Let us consider the following constraint function: ϕ : R2 →
R

ϕ(x, y) = sin(2πx) sin(2πy).

We want to show that the homogenized function of the oscillating constrained
problem associated to ϕ is the squared l1 norm: ψ : R2 → [0,+∞),

ψhom(w) = (|w1|+ |w2|)2

First of all note that we have two types of level sets for the function
ϕ: the level {ϕ = 0} that has only one connected component unbounded,
the lattice with vertices in Z2, and the level {ϕ = c}, with c 6= 0, that is
made by in�nitely many connected component, all bounded. Moreover the
set {ϕ = 0} is made by union of C1 sets and it can be proved that it satis�es
hypothesis 5.0.1.

Hence the homogenization formula for this problem is the following

ψhom(w) =

(
min
z

(
lim
T→∞

ψzT (w)

))∗∗
,

where

ψzT (w) =
1

T
min

{∫ T

0
|u′|2dt : |u(0)| <

√
2, |u(T )− Tw| <

√
2, ϕ(u) = z

}
(5.32)

In this particular case, we will show that it is simpler:

Lemma 5.2.1. For any z ∈ Im(ϕ), z 6= 0, we have

ψzhom(w) = +∞, ∀w 6= 0

Proof. Let T > 0 and z 6= 0 be �xed and suppose that exists w ∈ R2 such
that ψzhom(w) < ∞. By de�nition ψzhom(w) is a minimum between curves
that satisfy these conditions:

|u(0)| <
√

2, |u(T )− Tw| <
√

2, ϕ(u) = z.

Being z 6= 0, we know that level {ϕ = z} is made by many bounded connected
components, and, by condition |u(0)| <

√
2, the initial point u(0) has to be

in one of these bounded components inside the ball B√2(0); moreover u has

always to stay in this component, so that |u(T )| <
√

2. Hence, by condition
|Tw − u(T )| <

√
2, we get

|Tw| < |u(T )|+
√

2 < 2
√

2.

This is true for any T > 0, then

lim
T→∞

|Tw| < 2
√

2.

This is absurd, unless w = 0
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Using this last lemma, we can say that

ψhom(w) = ψ0
hom(w).

Now we want to prove that

ψ0
hom(w) 6 (|w1|+ |w2|)2 = ‖w‖2l1 . (5.33)

First of all we name the vector Tw̃ = u(T )−u(0). By de�nition we have
Tw̃ = u(T )− Tw+ Tw− u(0) and Tw = Tw̃+ u(0) + (Tw− u(T )), so that

|Tw̃| 6 |u(T )− Tw|+ |Tw|+ |u(0)| < 2
√

2 + |Tw|. (5.34)

|Tw| 6 |Tw̃|+ |u(0)|+ |Tw − u(T )| <
√

2 + |Tw̃|,

so that
|Tw̃| > |Tw| − 2

√
2. (5.35)

Let u : [0, T ]→ R2 be a curve with constant velocity, such that |u(0)| <√
2, |u(T ) − Tw| <

√
2, ϕ(u) = 0. Moreover suppose that the velocity

of u is |u′| =
‖Tw̃‖l1
T ; this makes sense because u lies on the lattice ϕ = 0,

so that the length of u is bigger or equal that ‖Tw̃‖l1 . Being ψ0
hom(w) the

minimum on curves of this type, we have, using (5.34)

ψ0
hom(w) 6 lim

T→∞

1

T

∫ T

0
|u′|2dt 6 lim

T→∞

1

T
T‖w̃‖2l1 6

lim
T→∞

(
2
√

2

T
+ ‖w‖2l1

)
= (|w1|+ |w2|)2.

To prove the other inequality, take a general curve u : [0, T ]→ R2 satis-
fying same conditions |u(0)| <

√
2, |u(T )−Tw| <

√
2, ϕ(u) = 0. Hence,

using the change of variable s = t/T , the function v(s) = u(sT ) and Jensen
inequality, one has∫ T

0
|u′|2dt =

∫ 1

0
|u′(sT )|2Tds =

1

T

∫ 1

0
|v′(s)|2ds > 1

T

(∫ 1

0
|v′|ds

)2

.

Note that the last term is the length of the curve v, lying in the lattice
ϕ = 0, i.e. bigger or equal than ‖Tw̃‖2l1 . Therefore, using (5.35),∫ T

0
|u′|2dt > 1

T
‖Tw̃‖2l1 >

1

T
(‖Tw‖l1 − 2

√
2)2.

Now we take the in�mum on curves u of this type and then the limit for
T →∞, getting, by de�nition of ψ0

hom(w),

lim
T→∞

1

T
min
u

∫ T

0
|u′|2dt = ψ0

hom(w) > lim
T→∞

1

T 2
(‖Tw‖l1 − 2

√
2)2 = ‖w‖2l1 .
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Example 5.2.2. In this second example we consider the oscillating con-
straint problem de�ned by ϕ(x, y) = d

(
(x, y, ),Z2

)
, i.e. the distance from

the points with integer coordinates. We can show that the corresponding
homogenized function is the following norm, de�ned on the whole R2:

ψ(w) =
(
‖w‖∞

π

2

)2
=
(

max {w1, w2}
π

2

)2
.

For such a ϕ, as in the previous example, we have only one level set made
by a unique connected component and unbounded, that is the set{

(x, y) ∈ R2 : ϕ(x, y) = 1/2
}

;

for any other value c ∈ [0,
√

2/2], the corresponding level set is made by
in�nitely many bounded connected components.

So, �rst of all, we can prove, exactly in the same way used for lemma
5.2.1, the following result:

Lemma 5.2.2. For any z 6= 1/2, one has

ψzhom(w) = +∞, ∀w 6= 0.

As a consequence of this lemma we know that ψhom(w) = ψ
1/2
hom(w).

Before proceeding as before, by showing the two inequality for ψ1/2
hom, we have

to show what is the short way to reach a point w ∈ R2, passing through the
level set ϕ = 1/2. Let u be a curve de�ned on [0, T ] with values into R2

satisfying the following conditions:

|u(0)| <
√

2, |u(T )− Tw| <
√

2 ϕ(u) = 1/2.

We call ũ the same curve as u, but starting from a point ũ(0), that is the
nearest point from u(0) with one of the two components belonging to Z, and
ending in ũ(T ), de�ned in the same way. Note that, by construction, the
distance between u(0) and ũ(0) is smaller then the arc that holds them, that
is at most a quart of the circumference, so we have

|u(0)− ũ(0)| < 1

2

π

4
=
π

8
, |u(T )− ũ(T )| < π

8
. (5.36)

We introduce ũ in order to �nd the lenght of u in a easy way, knowing
that, when T →∞, |u− ũ| → 0.

Proposition 5.2.1. Let u and ũ be de�ned as before. Then we have∫ T

0
ũ′dt > |ũ(T )− ũ(0)|∞

π

2
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Consider now a curve u satisfying boundary conditions of ψ1/2
T (w), with

constant velocity. We identify ũ(0) and ũ(T ) as before. Let Tw̃ be the
vector holding ũ(0) with ũ(T ); by property 5.2.1, this minimum length will
be |Tw̃|∞π/2; hence, using conditions (5.36), we have

u′(t) =
|Tw̃|∞π/2± π/4

T
,

where π/4 is the maximum di�erence between u and ũ. See the following
�gure for example:

-1,6 -1,2 -0,8 -0,4 0 0,4 0,8 1,2 1,6 2 2,4 2,8 3,2 3,6

0,4

0,8

1,2

1,6

2

2,4

u(0)

u(T)

ù(0)

ù(T)

Tw

Tw ̃

< π/8

< π/8

Figure 5.1: An example of a constrained curve with minimum lenght.

Therefore

ψhom(w) 6 lim
T→∞

1

T

∫ T

0
|u′|2dt = lim

T→∞

1

T
T (|w̃|∞π/2± π/4T )2 .

Now note that, by our hypothesis, one has

Tw̃ = −ũ(0) + Tw + (ũ(T )− Tw),

|ũ(0)| 6 |ũ(0)− u(0)|+ |u(0)| 6 π

8
+
√

2,

|ũ(T )− Tw| 6 |ũ(T )− u(T )|+ |u(T )− Tw| 6 π

8
+
√

2,

so that
|Tw̃| 6 |Tw|+ π

4
+ 2
√

2,

hence

ψhom(w) 6 lim
T→∞

(
|w|∞

π

2
+

(π8 +
√

2)π/2

T
± π

4T

)2

=
(
|w|∞

π

2

)2
.
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For the other inequality let us take a general curve satisfying the condi-
tions de�ned by ψ1/2

T : then, using change of variable s = t/T and Jensen's
inequality, with the same notation as in the previous examples, we have∫ T

0
|u′|2dt =

1

T

∫ 1

0
|v′|2ds > 1

T

(∫ 1

0
|v′|ds

)2

.

Now by property 5.2.1, we know that the lenght of v is bigger than (as
T →∞) |Tw̃|∞π/2, so that∫ T

0
|u′|2dt > 1

T

(
|Tw̃|∞

π

2
± π

4T

)2
.

Furthermore we have

Tw = ũ(0) + Tw̃ + (Tw − ũ(T ))⇒ |Tw| 6
√

2 + |Tw̃|+
√

2 +
π

8
,

so that
|Tw̃| > |Tw| −

(
2
√

2 +
π

8

)
= |Tw| − c.

Hence ∫ T

0
|u′|2dt > 1

T

(
|Tw|∞

π

2
± π

4T
− c
)2
.

This inequality holds for any curve u satisfying ψ1/2
T conditions and for

any T > 0, so we can take the in�mum over u and the limit as T → ∞,
getting

ψhom(w) = min
u

lim
T→∞

1

T

∫ T

0
|u′|2 > lim

T→∞

1

T 2

(
|Tw|∞

π

2
± π

4T
− c
)2

=

=
(
|w|∞

π

2

)2
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Example 5.2.3. We consider an example for curves in R3. In order to get
the constraint function ϕ we can take the network

L = {(x, y, z) ∈ R3 : x = i, y = j, z = k, ∀i, j, k ∈ Z},

as Figure 5.2 shows, and de�ne ϕ(x, y, z) = d2((x, y, z),L).

Figure 5.2: The network L = {(x, y, z) ∈ R3 : x = i, y = j, z = k, ∀i, j, k ∈
Z}.

Hence there exists only one level set of ϕ unbounded and connected: the
network L = {ϕ = 0}, and it satis�es trivially the hypothesis 5.0.2, being a
union of C1 sets. Hypothesis 5.0.1 is more tricky to verify: if we take z 6= 0
and c < |z| then ψz,cT (w) = +∞; so one has to prove that for c su�ciently
small we have

ψ0,c
T (w) > (1 + oc(1))ψ0

T (w′)− k(c)

T
,

for any w,w′ ∈ R3, with w′ = w + oT (1).
Assuming that the geometric stability of {ϕ = 0} is satis�ed, we have

ψhom(w) = lim
T→∞

ψ0
T (w),

where ψ0
T (w) measures the minimal length of a curve from 0 to Tw, lying in

the level set {ϕ = 0}. In order to compute such a metric we can consider
the parallelepiped with edges x = [w1], y = [w2], z = [w3], so that its faces
belong to the network L. Hence the minimal curve will stay in the plane
y = 0 until a point (x,0,t), with 0 6 t 6 z, and in the plane x = [w1], until
the point [w] = (x, y, z). Therefore its length will be

min
06t6z

f(t), f(t) =
(√

x2 + t2 +
√
y2 + (z − t)2

)
.

The minimum of f(t) is reached for t = zx/(y + z) and it is

l(x, y, z) =
√

(|x|+ |y|)2 + z2.
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Now we have to �nd the minimum of l(x, y, z) on the permutations of
x, y, z: observe that

|y| 6 |z| ⇒ (|x|+ |y|)2 + z2 6 (|x|+ |z|)2 + y2

|x| 6 |y| ⇒ (|z|+ |y|)2 + x2 6 (|x|+ |y|)2 + z2,

so that we have

ψhom(w) = (min{|x|, |y|, |z|})2 + (|x|+ |y|+ |z| −min{|x|, |y|, |z|})2,

that is the euclidean norm for the minimal component of w added to the l1
norm of the other two components.

Example 5.2.4. As a second example of curves in R3 consider the following
constraint function

ϕ(x, y, z) = d2((x, y, z),Z3).

Observe that this is the natural generalization in R3 of example 5.2.2.
Hence the level set L = {ϕ = 1/4}, Figure 5.3, has a unique unbounded

connected component, that satis�es hypothesis 5.0.2 and 5.0.1.

Figure 5.3: The network L ⊆ R3.

In order to �nd an upper bound for ψhom(w), we can use a similar ar-
gument of example 5.2.3: consider the parallelepiped of edges x = [w1],
y = [w2] and z = [w3]: the length of a curve uε, connecting 0 and w, with
the strict constraint ϕ(uε) = 1/4, is less or equal to the one of a curve vε,
from 0 to a point ([w1], 0, t), with 0 6 t 6 [w3], lying in the plane y = 0,
and from ([w1], 0, t) to [w], in the plane x = [w1]. Hence we can exploit the
result of the example 5.2.2 in these two planes, so that we have

l(vε) = min
06t6z

π

2
(‖(x, t)‖∞ + ‖((z − t), y)‖∞) ,
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where ‖(ξ1, ξ2)‖∞ = max(|ξ1|, |ξ2|) is the l∞ norm of the vector ξ ∈ R2.
Note that if z < x+ y then ‖(x, t)‖∞ + ‖((z − t), y)‖∞ = |x|+ |y|, while

if z > x+ y then ‖(x, t)‖∞ + ‖((z − t), y)‖∞ = |z|. Therefore

l(vε) =
π

2
min (max (|x|+ |y|, |z|) ,max (|x|+ |z|, |y|) ,max (|z|+ |y|, |x|)) .

Now we have

|x| 6 |y| ⇔ max (|z|+ |y|, |x|) 6 max (|x|+ |z|, |y|) ,

|y| 6 |z| ⇔ max (|x|+ |z|, |y|) 6 max (|x|+ |y|, |z|) .

This means that

‖(x, y, z)‖∞ = |x| ∧ |z| > |y| ⇒ l(vε) =
π

2
‖y, x+ z‖∞,

‖(x, y, z)‖∞ = |x| ∧ |y| > |z| ⇒ l(vε) =
π

2
‖z, x+ y‖∞,

‖(x, y, z)‖∞ = |y| ∧ |z| > |x| ⇒ l(vε) =
π

2
‖x, y + z‖∞,

‖(x, y, z)‖∞ = |y| ∧ |x| > |z| ⇒ l(vε) =
π

2
‖z, x+ z‖∞,

‖(x, y, z)‖∞ = |z| ∧ |y| > |x| ⇒ l(vε) =
π

2
‖x, y + z‖∞,

‖(x, y, z)‖∞ = |z| ∧ |x| > |y| ⇒ l(vε) =
π

2
‖y, x+ z‖∞.

Hence we get

l(vε) =
π

2
‖ (min(|x|, |y|, |z|), ‖(x, y, z)‖1 −min(|x|, |y|, |z|)) ‖∞,

and the upper bound
ψhom(w) 6 ψ

1/4
hom(w) 6

6
(π

2
‖ (min(|x|, |y|, |z|), ‖(x, y, z)‖1 −min(|x|, |y|, |z|)) ‖∞

)2
.
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Chapter 6

Density of R2 oscillating

constraint problems in Finsler

metrics

In chapter 5, we stated that the existence of at least one level set of ϕ
containing an unbounded connected component is necessary for the bound-
edness of ψhom; hence, for at least one z ∈ Im(ϕ), the level set {ϕε = z}
is a periodic unbounded and connected ε-network over Rm, that represents
the �allowed� zones for curves uε in Fε. This means that ψhom measures the
distance between the origin and the point w, not with the euclidean norm,
but with the length of a curve that microscopically lies in the lattice de�ned
by the constraint. Hence the following inequality is satis�ed

ψhom(w) > |w|2,

with equality reached by the trivial case ϕ = 0. Moreover, being ψhom
two-homogeneous, it is also symmetric:

ψhom(−w) = ψhom(w).

Therefore ψhom is a convex, two-homogeneous and symmetric function, con-
trolled from below by the euclidean norm.

This shows that the Γ-limit of an oscillating constraint problem, for
curves with values in R2, is a metric. In this chapter we characterized met-
rics de�ned by an oscillating surface on R3, i.e. the function ϕ : R2 → R:
more precisely we show that they are dense in Finsler metrics, with respect
to Γ-convergence.

By a symmetric Finsler metric in R2, controlled from below by the Eu-
clidean metric, we mean a function ψ : R2 → [0,+∞] such that

i) ψ is 2-homogeneous: ψ(λw) = λ2ψ(w), ∀w ∈ R2, ∀λ ∈ R;
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ii) ψ is convex;

iii) ∀w ∈ R2, we have ψ(w) > |w|2;

Observe that from i) one has ψ(w) = ψ(−w), ∀w ∈ R2. Observe that,
di�erently from the case treated in [17], we don't ask the boundedness of ψ
from above: this allows us to treat cases of metrics whose domain is not the
whole R2.

By the hypothesis on ψ, we know that its domain, i.e. the set where ψ
is �nite, has to be a convex cone in R2 symmetric with respect to the origin
and centered at (0, 0), hence it is a subspace of R2. So, if dom(ψ) 6= {0}, we
might have two di�erent cases:

1. domψ is a line through the origin, i.e. a subspace of dimension one
(R), so that ψ is �nite only in one direction and we have

sup
|w|=1

ψ(w) = +∞;

2. domψ is the whole R2, so that we have

max
|w|=1

ψ(w) = M < +∞.

It is clear that this distinction can't be applied to the situation of metrics
de�ned on Rn, n > 2, that, in general, will contain more cases.

In both cases, we want to prove that for any η > 0 and ψ satisfying
conditions i), ii) and iii), there exists a periodic function ϕη : R2 → R,
de�ning the oscillating constraint and the functional Fε, in the way we will
see in the sequel, such that the homogenized function ψη of the Γ-limit

Γ- lim
ε→0

Fε(u) =

∫ 1

0
ψη(u

′)dt

satis�es the inequality

|ψη(w)− ψ(w)| 6 η|w|2. (6.1)

Let us �rst recall what an oscillating constraint problem is, in the case
of curves taking values in R2: as in equation (4.1), we will consider the
following functional

Fε(v) =


∫

Ω
|∇v|2dx v ∈ H1(Ω;Vε)

+∞ otherwise
(6.2)

where Ω is an open and bounded subset of R, for example (0, 1), and the
function v, actually depending on the small parameter ε, is a curve taking
values on an oscillating constraint Vε. More precisely we take
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vε : Ω ∈ R → Vε ⊂ R3

t 7→ vε(t) = (vε1(t), vε2(t)) (6.3)

where vε2(t) = ϕε(v
ε
1(t)), vε1(t) is a curve in R2, ϕε(y) = δεϕ

(y
ε

)
is de�ned

by the function ϕ(y), that is (0, 1)2-periodic, and takes values from R2 to
R. Moreover we assume that δε → 0 and δε/ε → ∞, as ε → 0; hence
our oscillating manifold Vε, in some sense, is converging to the space V =
R2 × {0} = R2.

Remark 6.0.1. To simplify the notation, as in equation (4.3), in the sequel
we will separate the two component of the curve v: the free component v1,
taking values in R2, that we will name simply u, and the constrained one,
de�ned by ϕε(u), so that we will have

v1(t) = u(t), v2(t) = ϕε(u(t)).

In this way, we can express the functional Fε in the following equivalent
unconstrained form: Fε : L2(Ω;R2)→ [0,+∞]

Fε(u) =

∫
Ω
|∇vε|2dx =

∫
Ω

(
|u′ε|2 +

(
δ

ε

)2 ∣∣Dyϕ(uε)u
′
ε

∣∣2) dx (6.4)

where y = uε/ε.
Before treating the two di�erent cases of the 2-homogeneous convex

function ψ, we show in the following lemma that Fε is invariant under
reparametrization:

Lemma 6.0.3. Let uε be a minimizer for Fε, then there exists a curve
vε ∈ H1([0, 1]), with constant velocity v′ε = c, such that

min
u∈H1([0,1])

Fε(u) = Fε(uε) = Fε(vε).

Proof. Consider the curve uε : [0, 1]→ R2 and set ϕε(z) = ϕ
(
z
ε

)
. Then our

functional reads

Fε(uε) =

∫ 1

0

(
|u′ε|2 + δ2

∣∣Dϕε(uε) · u′ε∣∣2) dt.
Now think on a monotone C1([0, 1]) function g : [0, 1] → [0, 1], with

g(0) = 0, g(1) = 1, and consider new curve vε = uε ◦ g(t) = uε(g(t)), that is
a reparametrization of uε. Then the functional becomes

Fε(vε) =

∫ 1

0
(|u′ε(g(t))g′(t)|2 + δ2|Dϕε(uε(g(t))) · u′ε(g(t))g′(t)|2dt =
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=

∫ 1

0
(|u′ε(g(t))|2 + δ2|Dϕε(uε(g(t))) · u′ε(g(t))|2)(g′(t))2dt.

Now use the change of variable s = g(t), ds = g′(t)dt:

Fε(vε) =

∫ g(1)

g(0)
(|u′ε(s)|2 + δ2|Dϕε(uε(s)) · u′ε(s)|2)g′(g−1(s))ds.

We can write g′(g−1(s)), using the formula for the derivative of the inverse
function, as

g′(g−1(s)) =
1

(g−1)′(g(t))
=

1

(g−1)′(s)
,

then we get

Fε(vε) =

∫ 1

0
(|vε|2 + δ2|Dϕε · v′ε|2)

1

(g−1)′(s)
ds.

Since we have to �nd the minimum of this functional, we are interested
in the optimal reparametrization g, with the constraint g(0) = 0, g(1) = 1,
that is

∫ 1
0 g
′(t)dt = 1, that minimizes Fε. In general the problem is to �nd a

function D that realizes

min

{∫ 1

0

N

D
:

∫ 1

0
D = 1

}
, (6.5)

where, for us, N = |vε|2 + δ2|∇ϕε · v′ε|2 and D = (g−1)′(s)) = (g′(t))−1.
We have, by Cauchy Schwarz inequality,

∫ 1

0

N

D
=

(∫ 1

0

N

D

)(∫ 1

0
D

)
>

(∫ 1

0

√
N

D

√
D

)2

=

(∫ 1

0

√
N

)2

.

Now observe that this lower bound can be reached when D = C
√
N ,

where the constant C is , by the constraint
∫
D = 1, C = (

∫ √
N)−1; so,

putting this optimal D in our original functional, we get

Fε(uε) >
∫ 1

0

N

C
√
N

=
1

C

∫ 1

0

√
N =

(∫ 1

0

√
N

)2

=

=

(∫ 1

0

√
|uε|2 + δ2|Dϕε · u′ε|2

)2

.

To conclude the proof note that:

Fε(uε) >

∫ 1

0

√
1 + δ2

∣∣∣∣Dϕε · u′ε
|u′ε|2

∣∣∣∣2|u′ε|dt
2

=
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=

(∫
Γ

√
1 + δ2 |Dϕε · tε|2dl

)2

,

where Γ is the image of the curve uε, dl is its arc length and tε its tangent
versor. Hence it is clear that the minimum of Fε doesn't depend on the
velocity of uε, but only on the image Γ.

6.1 Degenerate Finsler metrics

As we said before, the domain of ψ is a vector space of dimension 1. It is not
restrictive to assume that dom(ψ) =

{
(w1, w2) ∈ R2 : w2 = 0

}
: all the other

cases can be obtained from this simply by a change of basis of R2. Since the
only 2-homogeneous function in one variable is quadratic, then there exists
a constant k > 0 such that ψ(w) = k|w|2 for any w ∈ dom(ψ), and ψ is
uniquely determined by k, that is its value at any w ∈ R2, |w| = 1. Now we
want to construct a periodic function ϕ, de�ning the oscillating constraint,
such that the density function of the Γ-limit of this problem is the quadratic
function ψ.

Consider any 1-periodic smooth function g : R→ R and take ϕ : R2 → R,
with ϕ(x, y) = sin(2π(x− g(y))). The level sets {ϕ = z} are de�ned by the
equation x − g(y) = c, for a suitable c ∈ R. We can represent them as the
graph of the function x = g(y) + c, so that they are all the same line type
graphes, horizontally translated by c. Hence ψzT (w) is independent of z, for
any T , w. In fact if Z1 and Z2 are the sets of admissible functions in (5.3),
for z1, z2, T , w �xed, then, for any u = (u1, u2) ∈ Z1, there exists c ∈ R such
that (u1 + c, u2) ∈ Z2 and viceversa. We can then choose z = 0 in equation
(5.3), obtaining, from equation (5.5),

ψhom(w) = lim
T→+∞

ψ0
T (w)

To �nd the constant k, we consider the homogenized function in any
vector w of the domain of ψ, with |w| = 1:

ψ(1) = lim
T→∞

1

T
min

{∫ T

0
|u′|2 : |u(0)| <

√
2, |u(T )− Tw| <

√
2, ϕ(u) = 0

}
.

It can be proved dealing by hand that the limit exists and, as we showed
in chapter 5, it coincides with the length of the curve u that satis�es ϕ = 0.
Hence we have

ψ(1) = k =
1

T

(∫ T

0
|u′|dt

)2

=

(∫ 1

0

√
1 + g′(s)ds

)2

.

In this �rst case we can reach a ψ(w) = k|w|2 satisfying i), ii), iii), with
dom(ψ) = R, as the Γ-limit of the constraint problem de�ned by ϕ(x, y) =
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sin(x−g(y)), by taking the periodic function g such that
(∫ 1

0

√
1 + g′(s)ds

)2
=

k.

Example 6.1.1. An example of a degenerate Finsler metric is the following
norm

ψ(w) =

{
|w|2 if w = (0, w2)

+∞ otherwise.

We will show that this norm can be obtained as the homogenized function
of the problem de�ned by a constraint ϕ(x, y) = ϕ(x) periodic and not
constant; for example we can take ϕ(x, y) = sin(2πx).

The level set {ϕ = z}, with z ∈ [−1, 1], are made by pairs of vertical lines
x = arcsin z

2π + k and x = π−arcsin z
2π + k, with k ∈ Z.

First of all note that the domain of ψzhom is the same that the one of ψ:

Lemma 6.1.1. For any z ∈ [−1, 1],

dom(ψzhom) =
{
w = (w1, w2) ∈ R2 : w1 = 0

}
.

Proof. Let z ∈ [−1, 1] and T > 0 be �xed. By conditions |u(0)| <
√

2 and
ϕ(u) = z, in de�nition (5.32), we can deduce that u(0) has to stay in the
level set near the origin, i.e in the ball B√2(0):

u(0) =

(
arcsin z

2π
, u2(0)

)
∨ u(0) =

(
arcsin z

2π
± 1, u2(0)

)
.

This means that u(T ) will be in the same line of u(0), so that

u(T ) = u(0) =

(
arcsin z

2π
, u2(T )

)
∨ u(T ) =

(
arcsin z

2π
± 1, u2(T )

)
.

Terefore, if we consider the second condition of de�nition (5.32),

√
2 > |u(T )− Tw|2 >

∣∣∣∣Tw1 −
(

arcsin z

2π
± 1

)∣∣∣∣2 + |Tw2 − u2(T )|2 >

∣∣∣∣Tw1 −
(

arcsin z

2π
± 1

)∣∣∣∣2 > |Tw1|2 −
∣∣∣∣arcsin z

2π
± 1

∣∣∣∣2 > |Tw1|2 −
√

2.

Hence, for any T > 0, we have that

|Tw1|2 < 2
√

2.

Getting the limit for T →∞, we get w1 = 0.
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So now we can consider only vectors w in the line w1 = 0; �rst we show
that, for these vectors, ψzhom(w) 6 |w2|2. Fix z ∈ [−1, 1] and T > 0; consider
a curve u : [0, T ]→ R2 in the space

XT,z
w =

{
u : [0, T ]→ R2 : |u(0)| <

√
2, |u(T )− Tw| <

√
2, ϕ(u) = z

}
,

with constant velocity. Let us call Tw̃ = u(T ) − u(0), i.e. the length of u;
we have

|Tw̃| = |u(T )−Tw+Tw−u(0)| 6 |u(T )−Tw|+ |Tw|+ |u(0)| < 2
√

2+ |Tw|.

By de�nition (5.32) one has

ψzT (w) 6
1

T

∫ T

0
|u′|2dt =

1

T

∫ T

0

∣∣∣∣Tw̃T
∣∣∣∣2 dt =

1

T
T |w̃|2 6 |w|2 +

2
√

2

T
= |w2|2 +

2
√

2

T
.

Taking the limit T →∞ we get

ψzhom(w) 6 |w2|2.

For the other inequality consider a general function u ∈ XT,z
w ; hence,

following the same procedure of example 5.2.1∫ T

0
|u′|2dt =

∫ 1

0
|u′(sT )|Tds =

1

T

∫ 1

0
|v′(s)|ds > 1

T

(∫ 1

0
|v′|ds

)2

>

1

T
|Tw̃|2 > 1

T
(|Tw| − 2

√
2)2.

Multiplying by 1/T , taking the minimum on XT,z
w and then the limit for

T →∞, we get
ψzhom(w) > |w2|2.

By these two inequality we know that ψzhom(w) = |w2|2; this result is
independent by z, therefore

ψhom(w) =
(

min
z
ψzhom(w)

)∗∗
=
(

min
z
|w2|2

)∗∗
= |w2|2.

Remark 6.1.1. Note that in this example sup|w|=1 ψ(w) = +∞, so that the

domain of ψ is a line in R2. We can adapt to this particular case, the general
procedure described above: for us ϕ(x, y) = sin(2πx − g(y)) = sin(2πx), i.e.
g(y) = 0. Then, using the same notation, we have

k =

(∫ 1

0

√
1 + g′(s)ds

)2

= 1.

Therefore, in the domain
{
w ∈ R2 : w1 = 0

}
,

ψ(w) = k|w|2 = |w|2 = |w2|2

101



6.2 Non-degenerate Finsler metrics

We want to construct a function ϕ, more precisely its unique connected level
set, such that ψη = ψhom associated to ϕ, satis�es equation (6.1).

Now ψ is de�ned in all directions of R2, but, by the 2-homogeneity, we will
consider only the set

{
w ∈ R2 : ψ(w) = 1

}
, or, more precisely, the convex

set
Cψ =

{
w ∈ R2 : ψ(w) 6 1

}
.

Note that, by condition ψ(w) > |w|2, we have that Cψ ⊆ B1(0), and, by the
symmetry, Cψ is centered in the origin.

Being interested on a density result, we can approximate this convex set
by a polygon of 2N vertices, by symmetry, ±V1, . . . ,±VN , whose directions
are ±ν1, . . . ,±νN . Always by density, we can also assume that these vertices
are rational, i.e. for each i = 1, . . . , N there exists a point zi ∈ Z2 and ti ∈ R,
such that tiVi = zi; for example we can refer to the following �gure:

-2,5 -2 -1,5 -1 -0,5 0 0,5 1 1,5 2 2,5

-1

-0,5

0,5

1

B1(0)

Cψ

+ν1
+ν2

+ν3

-ν1 -ν2

-ν3

+V1

-V1

+V2

+V3

-V3

-V2

Figure 6.1: The set Cψ and its polygonal approximation with directions νi.

Remark 6.2.1. We want to use the homogenization formula of theorem 5.1.1
for the constraint ϕ; in order to do this all hypothesis of this theorem have
to be ful�lled. For now we assume that theorem 5.1.1 holds true, and we will
verify all hypothesis when the function ϕ will be constructed. Hence let us
assume that ψhom is the one de�ned in equation (5.5).

The fact that ψ is �nite in R2 means that there exists at least one level
set of ϕ with one connected component, unbounded and �connecting" R2:
indeed if max|w|=1 ψ(w) = M < +∞, there exists z ∈ Im(ϕ) such that
ψzhom(w) < +∞ for any w ∈ R2; this means that there exists T0 such that,
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for T > T0, Tw must be reached by the set {ϕ = z}. More precisely, if we
consider the de�nition of ψzhom, we have the condition |u(T ) − Tw| <

√
2;

assuming ϕ ∈ C1,

|ϕ(u(T ))− ϕ(Tw)| 6 Lϕ|u(T )− Tw| < Lϕ
√

2,

so that the distance of Tw from the set {ϕ = z} have to be less that a
�xed constant. This means, by the arbitrariness of w ∈ R2 and taking the
limit as T →∞, that {ϕ = z} must have at least one connected component
unbounded.

Moreover, by remark 6.2.1 the homogenized function is de�ned by the
minimum formula

ψhom(w) =

(
min

z∈Im(ϕ)
ψzhom

)∗∗
(w), (6.6)

so we will construct ϕ such that this minimum is reached at the level z = 0,
the unique level set of ϕ unbounded and connecting R2.

Let Q be the periodicity square for all directions νi, i.e. the square of
edge the least common multiple τ = lcm(t1, . . . , tN ) with one of the vertices
in the origin and taken as the thorus. Now we construct the zero level set
of ϕ. Inside Q, starting from the origin, we draw the lines in directions νi;
if we consider Q as the thorus, we will repeat these lines inside Q then, by
construction, they will cut each other in many segments of a certain length
Lji , for i = 1, . . . , N , j = 1, . . . ,M , for some M ∈ N, making the set L. See
for example next �gure:

ν2

ν1 ν3

Figure 6.2: The Q square with lines in directions νi and segments Lji .

We can synthetically describe a point in L as tiZ2 + νiR, indeed tiZ2 is a
point of Q, where the lines in direction νi passes through, and νiR is nothing
but the line itself.
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Observe that, by the 2-homogeneity, we have

ψ(Vi) = 1 = ψ

(
Vi
|Vi|
|Vi|
)

= |Vi|2ψ(νi) ⇒ ψ(νi) = |Vi|−2,

so that, the more |Vi| is near to 0, the more ψ(νi) is bigger. This means
intuitively that, if a vertex Vi is inside of the unit ball, i.e. |Vi| < 1, the
metric associated to ψ will be bigger than the euclidean one, in direction νi.
Hence, if we think at the previous case, in which ψ was the lenght of the
curve passing through the set ϕ = 0, in order to obtain a metric bigger than
the euclidean norm, we have to stretch the lines of ϕ = 0, i.e. the lines of
L in directions νi, so that the curve passing through them will be longer,
obtaining ψ(νi) > 1.

Following this idea we modify the length of any segments Lji , changing
them in curves such that their length will be Lji

√
ψ(νi), as the following

�gure shows

ν3
ν2

ν3

Li√ψ(ν1)

Li√ψ(ν3)

Li√ψ(ν2)

Rφ

Figure 6.3: The construction of the set Rϕ, with three segments modi�ed.

The set of all these modi�ed lines inside Q, extended by periodicity, will
represent the level set of ϕ connecting R2, i.e., by our assumption, the set
{ϕ = 0}, that we name Rϕ. For example we can take as ϕ the squared
distance from Rϕ. Hence observe that, for such a constraint, the following
hypothesis are ful�lled:

H1) ϕ ∈ C1([0, 1]);

H2) for any z ∈ Im(ϕ) one of the following two conditions holds true for
the set {ϕ = z}:

i) it is made by a unique connected component unbounded, so that
it �connects" R2.

ii) it is made by in�nitely many bounded connected component.
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The proof of H2) can be obtained arguing as in Example 5.2.1. Hence,
by theorem 5.1.1 the following homogenization result holds true:

Γ- lim
ε→0

Fε(u) = F (u) =

∫ 1

0
ψhom(u′)dt,

in the strong topology of L2, with ψhom de�ned by equations (5.3), (5.4) and
(5.5), so that we are allowed to use formula (6.6).

Note that for any i = 1, . . . , N

ψhom(νi) = lim
T→∞

1

T
min

{∫ T

0
|u′|2, |u(0)| 6

√
2, |u(T )− Tνi| 6

√
2, u ∈ Rϕ

}
.

Now take a function ui : [0, T ]→ R2 that satis�es ϕ(ui) = 0, i.e. passes
through the lines of Rϕ in direction νi with constant velocity, and with
|ui(0)| 6

√
2, |ui(T ) − Tνi| 6

√
2. Observe that, by periodicity of Rϕ, the

space covered by ui is at least√
ψ(νi) [T + 1]

and, by construction, it will be a competitor for the minimum problem de-
�ned by ψhom(νi), hence

ψhom(νi) 6 lim
T→+∞

1

T

∫ T

0
|u′|2dt = lim

T→+∞
ψ(νi)

1

T 2
[T + 1]2 = ψ(νi).

By convexity we can extend the result for any w ∈ R2, obtaining

ψhom(w) 6 ψ(w).

To get the other inequality let us consider w ∈ R2; by construction
of Rϕ, there exists T > 0 such that Tw ∈ {ϕ = 0}, and, by periodicity,
(T + k)w ∈ {ϕ = 0} too, for any k ∈ N. Now take a function function
v ∈ H1([0, T ]), with v(0) = 0, v(T ) = Tw and ϕ(v) = 0, that realizes the
minimum de�ned by ψ0

hom = ψhom. Observe that, by lemma 6.0.3, we can
assume, without loss of generality, that v′ = c. we call λi the vector sum
of the segments of v in the direction νi (without the modi�cation made by√
ψ(νi)).

Remark 6.2.2. We cannot exclude a priori the case where u repeats some
lines in the same direction νi but with opposite sign; in this case λi will not
consider these two portions of space. Therefore, in general, the space covered
by v, will be greater or equal then

∑N
i=1 λi

√
ψ(νi).

Note that, by construction, we have
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N∑
i=1

λiνi = Tw.

Hence, for T su�ciently big,

Tψhom(w) =

∫ T

0
|v′|2 =

∫ T

0
c2 = Tc2 > T

(∑N
i=1 λi

√
ψ(νi)

T

)2

=

1

T

(
N∑
i=1

λi
√
ψ(νi)

)2
(∑N

i=1 λi

)2

(∑N
i=1 λi

)2 =

(∑N
i=1 λi

)2

T

(
N∑
i=1

λi∑
i λi

√
ψ(νi)

)2

;

the coe�cients in the sum are a convex combination, then, by convexity of√
ψ and after by the 2-homogeneity of ψ, we get

Tψhom(w) >

(∑N
i=1 λi

)2

T


√√√√ψ

(
N∑
i=1

λi∑
i λi

νi

)2

=

(∑N
i=1 λi

)2

T

1(∑N
i=1 λi

)2ψ

(
N∑
i=1

λiνi

)
=

1

T
ψ(Tw) = Tψ(w).

Therefore, by these two inequalities, we get

ψhom(w) = ψ(w),

that means that the convex and 2-homogeneous function ψ is the homoge-
nized function of the oscillating constraint problem de�ned by a function ϕ,
having Rϕ as the level set {ϕ = 0}. The density result is obtained considering
the density of polygons in convex sets of R2.
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