
 

 

 

POLITECNICO DI TORINO 

Doctoral Degree in Aerospace Engineering 

 

 

 

 

Thesis 

 

 

Development of refined models for multilayered 

composite and sandwich structures  

Analytical formulation, FEM implementation 

and experimental assessment 

 

 

 

 

Advisors 

Prof. Marco DI SCIUVA 

Prof. Marco GHERLONE 

 

Author 

Luigi IURLARO 

 

XXVII Cycle, 2012-2014 



 

 

  



 

 

 

 

 

 

 

“e volta nostra poppa nel mattino,  

de' remi facemmo ali al folle volo”  

(Dante Alighieri, Inferno, Canto XXVI)  



 

 

  



 

 

 

 

 

 

 

 

 

Acknowledgements 

First and foremost, I would like to express my sincere gratitude to Prof. Marco Di 

Sciuva, my research advisor, that provided, during the years, insight, guidance and 

motivation. All the time spent with him has been a precious occasion of cultural and 

personal growth. It has been an honor and a pleasure to work with him. For his patient 

guidance, suggestions and constant supports, I would like to thank Prof. Marco Gherlone, 

my research co-advisor and friend. I am aware of all I owe to them. 

 

I offer my sincere gratitude to Dr. Alexander Tessler, who provided fruitful suggestions 

and interesting ideas, and to Dr. Massimiliano Mattone for his availability and excellent 

solutions about experimental issues.  

 

For the host period at the International Center for Numerical Methods in Engineering 

(CIMNE), in Barcelona, I owe a special thanks, firstly, to Prof. Eugenio Oñate and to Prof. 

Sergio Oller, and, secondly, to the CIMNE community made by extraordinary people.           

 

 

Finally, the deepest gratitude is for my parents; without their unconditional love nothing 

would have been possible. This work is dedicated to them.     

 

 

  



 

 

 





 



i 
 

 

 

 

 

 

 

Contents 

 Introduction v 

 Preliminaries ix 

   
1 Theories for laminated plates 1 

 1. Introduction .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  1 

 2. Variational statement  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . .  .  .  . 2 

  2.1 Virtual Displacement Principle   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3 

  2.2 Reissner Mixed Variational Theorem   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4 

 3. Equivalent Single Layer Models   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5 

  3.1 Classical Laminated Plate Theory  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

.  .  .  .  .  .  .  .  .  .  . 

6 

  3.2 First-Order Shear Deformation Theory   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

.  .  .  .  .  .  .  .  .  .  .  .  .  . 

6 

  3.3 Higher-order Shear Deformation Theory   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

.  .  .  .  .  .  .  .  .  .  .  .  .  . 

7 

 4. Layer-wise Models   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

. 

8 

 5. Zigzag Models .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9 

  5.1 The choice of the zigzag function .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

.  .  .  .  .  .  .  .  .  . 

10 

  5.2 Review zigzag models .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

.  .  .  . 

11 

 6. Multiple Models Method   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 13 

     
2 Refined Zigzag Theory 14 

 1. Motivation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 14 

 2. Refined Zigzag Theory for plates: displacements, strains and stresses .  .  .  .  .  .  .  .  

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .. 

15 

  2.1 Kinematic assumptions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

.  .  .  .  . 

16 

  2.2 Refined zigzag function .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

.  .  .  .  . 

17 

  2.3 Non-linear strains and stresses .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

.  .  .  .  .  .  .  .  . 

20 

 3. Non-linear equations of motion  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 21 

  3.1 Linear bending   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 25 



ii 
 

  3.2 Free vibrations  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  25 

  3.3 Linear buckling .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 25 

 4. Extension of RZT to functionally graded structures.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 26 

  4.1 Refined zigzag function for functionally graded materials .  .  .  .  .  .  .  .  .  .  .  

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

.  .  .  .  .  .  .  .  .  .  .  .  .  .  . 

28 

  4.2 Governing equations  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 29 

 5. First-order zigzag models  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 30 

  5.1 Murakami’s zigzag function.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    

.  .  .  .  .  .  . 

31 

  5.2 Governing equations  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 33 

     
3 Mixed Refined Zigzag Theory 34 

 1. Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 34 

 2. Reissner Mixed Variational Theorem .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

.  .  .  .  .  .  .  .  .. 

37 

 3. RZT
(m)

 plate model: kinematics and transverse shear stresses . .  .  .  .  .  .  .  .  .  .  .  .  

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 

39 

  3.1 Polynomial assumption .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 40 

  3.2 Equilibrium-based assumption  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

.  .  .  .  .  .  .  .  . 

41 

 4. RZT
(m)

 governing equations and constitutive relations  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 

44 

 Appendix 1. RZT integrated transverse shear stresses  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

.  .  .  .  .  .  .  .  .  .  .  .  .  .  . 

49 

     
4 (3,2)-Mixed Refined Zigzag Theory 51 

 1. Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 51 

 2. Reissner Mixed Variational Theorem .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

.  .  .  .  .  .  .  .  .. 

53 

 3. Higher-order kinematics .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 54 

  3.1 Derivation of the zigzag function .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

.  .  .  .  .  .  .  .  .  . 

56 

 4. Assumed transverse stresses .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

.  .  .  . 

57 

  4.1 Transverse normal stress  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

.  . 

57 

  4.2 Transverse shear stresses .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

.  .  .  .  .  . 

59 

 5. Governing equations and constitutive relations .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

.  .  .  .  .  .  .  .  .  .  .  .  .  . 

64 

 6. Thermo-mechanical beam model .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

.  .  .  .  .  .  . 

67 

     
5 Finite Elements Formulation 75 

 1. Introduction .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   75 

 2. Exact static stiffness RZT beam element .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

.  .  .  .  .  .  .  .  .  .  . 

76 

  2.1 Refined Zigzag Theory for beams  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 78 

  2.2 Consistent shape functions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

.  .  .  .  .  .  . 

81 

  2.3 Mass matrix, exact stiffness matrix and consistent load vector  .  .  .  .  .  .  .  . 82 

 3. (3,2)-Mixed Refined Zigzag Theory beam element   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 83 

  3.1 Kinematic restatement  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    

.  .  .  .  . 

84 

  3.2 Nine-nodes, fifteen-dof’s anisoparametric element   .  .  .  .  .  .  .  .  .  .  .  .  .  . 84 

  3.3 Six-nodes, twelve-dof’s constrained anisoparametric element .  .  .  .  .  .  .  .  .  

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 

85 

  3.4 Temperature field representations  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

.  .  .  .  .  .  .  .  .  .  . 

87 

  3.5 Consistent mass matrix, stiffness matrix and consistent load vector .  .  .  .  .  .  

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 

89 



iii 
 

 4. (3,2)-Mixed Refined Zigzag Theory plate element  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 

90 

  4.1 Kinematic restatement   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

.  .  .  .  . 

91 

  4.2 Eighteen-nodes, thirty-six dof’s anisoparametric element  .  .  .  .  .  .  .  .  .  .  .  

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 

92 

  4.3 Nine-nodes, twenty-seven dof’s constrained anisoparametric element .  .  .  .  .  

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 

92 

  4.4 Consistent mass matrix, stiffness matrix and consistent load vector .  .  .  .  .  . 96 

  Appendix 1. RZT-based beam finite element matrices  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 

98 

  Appendix 2. (m)

(3,2)RZT -based beam finite element matrices  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 

103 

  Appendix 3. (m)

(3,2)RZT -based plate finite element matrices   .  .  .  .  .  .  .  .  .  .  .  .  .  . 104 

     
6 Analytical results 106 

 1. Introduction .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   106 

 2. RZT assessment .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 107 

  2.1 Linear bending  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

. 

108 

  2.2 Free vibrations  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

. 

131 

  2.3 Linear buckling .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

. 

138 

 3. Mixed Refined Zigzag Theory   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

.  .  .  .  . 

143 

  3.1 Linear bending  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

. 

143 

  3.2  Free vibrations  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

. 

147 

 4. (3,2)-Mixed Refined Zigzag Theory   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

.  .  .  .  .  .  .  . 

150 

  4.1 Linear bending  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

. 

150 

  Appendix 1. Mechanical properties of materials and stacking sequences   .  .  .  .  .  . 157 

  
Appendix 2. Functionally graded sandwich plates: mechanical properties and 

stacking sequences .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     159 

     
7 Finite Element results 162 

 1. Introduction .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   162 

 2. Exact static stiffness RZT beam element .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

.  .  .  .  .  .  .  .  .  .  . 

163 

  2.1 Static analysis  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   163 

  2.2 Free vibrations analysis .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

.  .  .  .  . 

166 

 3. (3,2)-Mixed Refined Zigzag  Theory-based beam element  .  .  .  .  .  .  .  .  .  .  .  .  . 167 

  3.1 Convergence   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 167 

  3.2 Static analysis .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   172 

  3.3 Dynamic response .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    

.  . 

178 

 4. (3,2)-Mixed Refined Zigzag  Theory-based plate element   .  .  .  .  .  .  .  .  .  .  .  .  . 180 

  4.1 Convergence .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 180 

  4.2  Static analysis  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 183 

  4.3 Free vibrations analysis .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

..  .  .  .  .  . 

187 

     
8 Experimental assessment 189 

 1. Introduction .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   189 

 2. Specimens   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 190 



iv 
 

 3. Materials characterization .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   190 

  3.1 Mass density   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 192 

  3.2 Young’s modulus and Poisson’s ratio . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 192 

 4. Four-points bending test .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  198 

  4.1 Experimental set-up .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  198 

  4.2 Results .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 200 

 5. Hammer test .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   .  . 203 

  5.1 Experimental set-up .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  203 

  5.2 Results .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 204 

     
 Summary and conclusions 209 

   
 References 213 

 

 

 

 

 

 

 

 

 

 

 



v 
 

 

 

 

 

 

 

Introduction 

Over the last three decades, composite materials have been increasingly used in 

different engineering field (military and civilian aircraft, aerospace vehicles, naval and 

civil structures) due to their high stiffness-to-weight and strength-to-weight ratios. 

Nowadays, relatively thick laminated composite and sandwich materials with one hundred 

or more layers find their applications in primary load-bearing structural components of the 

modern aircraft. To ensure a reliable design and failure prediction, accurate evaluation of 

the strain/stress state is mandatory.  

A high-fidelity analysis of multilayered composite and sandwich structures can be 

achieved by adopting detailed 3D finite element models that turn into a cumbersome 

modeling at high computational cost. Thus, most of the researchers efforts are devoted to 

the development of approximated models wherein assumptions on the distribution of 

displacements and/or stresses are made, thus reducing the 3-dimensional analysis to a 2-

dimensional problem. Generally speaking, three kinds of 2D approximated models are 

available: Equivalent Single Layer models, Layer-wise theories and the Zigzag models. 

Even if computationally efficient, the Equivalent Single Layer models are not accurate in 

terms of local response prediction; the Layer-wise theories, that on the contrary ensure 

great accuracy, are computationally very expensive. In the ‘80s, thanks to the original 

works by Prof. Di Sciuva, a new modeling strategy of multilayered composite and 

sandwich structures arose: the so-called Zigzag theories, wherein accuracy comparable 

with that proper of the Layer-wise models is achieved but saving the computational cost. 

Inspired by early Prof. Di Sciuva’s works, many researchers developed Zigzag models in 
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the course of these thirty years, contributing to progress in the multilayered composite and 

sandwich structures modeling field. 

For accuracy, computational cost and efficient finite element implementation, the most 

remarkable Zigzag model, inspired by the Prof. Di Sciuva’s work, is the Refined Zigzag 

Theory, recently developed by Dr. Tessler, Prof. Di Sciuva and Prof. Gherlone. From its 

first appearance, the Refined Zigzag Theory has experienced several developments in 

terms of beam and plate finite element implementations and has been extensively assessed 

on static problems. Other researchers, by using the Refined Zigzag Theory as basis, 

developed models with higher-order kinematics and including secondary effects as the 

normal deformability one, obtaining fair results. 

In this context, the present research work is motivated, first of all, by the necessity to go 

further into the investigation about the Refined Zigzag Theory prediction capabilities, to 

highlight and solve possible flaws and to develop an original higher-order zigzag model 

able to produce accurate results in those situations wherein the Refined Zigzag Theory is 

not adequate. Taking in mind the motivation of the present research work, the Thesis is 

organized following a logical (and chronological) order.  

Chapter 1 is devoted to a detailed discussion and review of models for the analysis of 

multilayered composite and sandwich structures, highlighting merits and deficiencies. 

In Chapter 2, the Refined Zigzag Theory for plates is briefly recalled. For the first time, 

the non-linear governing equations are obtained and specialized to the linear bending, 

undamped free vibrations and linear buckling problems. Moreover, due to the growing 

interest towards the advanced functionally graded materials, the Refined Zigzag Theory is 

extended to the analysis of multilayered plates embedding functionally graded layers. 

Finally, a comparison of the Refined Zigzag function with the Murakami’s one is set. 

In Chapter 3, the first substantial attempt to enhance the Refined Zigzag Theory is 

made. Based on the Reissner Mixed Variational Theorem, the Mixed Refined Zigzag 

Theory is developed in order to improve the constitutive transverse shear stresses 

prediction and, as consequence, the transverse shear stiffness estimation. 

The formulation of a novel higher-order zigzag model (called (3,2)-Mixed Refined 

Zigzag Theory), originated by the Refined Zigzag Theory, is introduced in Chapter 4, 

wherein the discussion is focused on plate problems. Moreover, an extension to the 

thermo-mechanical analysis, but limited to the beam problems for sake of conciseness, is 

presented. Based on the Reissner Mixed Variational Theorem, the novel higher-order 

zigzag model includes the transverse normal deformability effect, by extending the 
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transverse displacement approximation with respect to the Refined Zigzag Theory, and the 

transverse normal stress, neglected in the Refined Zigzag Theory. The kinematics, in terms 

of in-plane displacements assumption, is also enriched with respect to the Refined Zigzag 

Theory. The formulation of the novel higher-order zigzag model is motivated by the need 

of a computational model able to accurately analyze the response of thick multilayer 

composite beams/plates wherein secondary effects (the higher-order displacements patterns 

along the thickness, the transverse normal deformability and the transverse normal stress), 

neglected by the Refined Zigzag Theory, become significant. 

Finite elements implementations are the subject of Chapter 5. Firstly, a novel Refined 

Zigzag Theory-based beam element, employing exact static shape functions, is presented. 

Secondly, a (3,2)-Mixed Refined Zigzag Theory-based beam element suitable for a 

thermo-mechanical analysis of thick multilayered composite and sandwich beams is 

formulated. Later, a (3,2)-Mixed Refined Zigzag Theory-based plate element is introduced. 

Chapters 6 and 7 are devoted to the numerical results. In Chapter 6, only analytical 

solutions, that is exact or approximated ones by using the Rayleigh-Ritz’s method, are 

presented. A in-deep investigation of the Refined Zigzag Theory prediction capabilities in 

problems concerning the linear bending, free vibrations and buckling problems of 

multilayered composite and sandwich plates, also including functionally graded layers, is 

carried out. To assess the improvements of the Mixed Refined Zigzag Theory with respect 

to the original displacement-based model formulation, the linear bending and free 

vibrations problems of laminated composite and sandwich plates are taken into 

consideration. Finally, the (3,2)-Mixed Refined Zigzag Theory performances are tested on 

the bending problem of a thick laminated composite plate. The finite element results, 

collected in Chapter 7, are devoted to the assessment of the RZT-based beam element 

employing exact static shape functions, both on static and free vibrations problems, and 

comparing the results with those obtained by means an already developed beam element 

based on the same underlying theory. The (3,2)-Mixed Refined Zigzag-based beam and 

plate elements, once their convergence is proved, are used to solve static and dynamic 

problems. 

Finally, in Chapter 8, the results of an experimental campaign acted out are presented 

along with the experimental set-up used. The tests concern the four-point bending test of 

sandwich beams, for the static analysis, and hammer test on cantilever sandwich beams, for 

the free vibrations problems. The experimental results are compared with those obtained 

by using the Refined Zigzag Theory-based beam element as further theory assessment. 
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The present research activity supports the great accuracy of the Refined Zigzag Theory 

and for this reason deals with some overlooked aspects, as the application to the 

functionally graded materials (Chapter 2), the mixed formulation (Chapter 3), the 

implementation of a beam finite element employing exact static shape functions (Chapter 

5) and the correlation with experimental results (Chapter 8). By enriching the Refined 

Zigzag Theory and using the Reissner Mixed Variational Theorem, a novel higher-order 

mixed zigzag model, called (3,2)-Mixed Refined Zigzag Theory is developed (Chapter 4). 

The higher-order zigzag model constitutes the underlying theory for a beam finite element, 

suitable for a thermo-mechanical analysis, and a plate element, formulated taking into 

account only mechanical loads. The results presented (Chapters 6-8), along with those 

already published in the open literature by other authors, still encourage the use of the 

Refined Zigzag Theory in the analysis of relatively thick multilayered composite and 

sandwich structures. Moreover, when the transverse normal stress and the transverse 

normal deformability effects are not negligible, the (3,2)-Mixed Refined Zigzag Theory 

appears proficient to solve these cases in virtue also of its efficient finite element 

implementations. 

The author’s auspice is that the models belonging to the Refined Zigzag Theory class 

becomes to attract attention of the companies involved in the design and analysis of 

multilayered composite and sandwich structures and of the finite element commercial 

codes that still implemented models not suitable for the analysis of composite and 

sandwich structures, as extensively demonstrated.  
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Preliminaries 

The objective of this section is to briefly review some basic equations, concerning the 

mechanics of orthotropic materials, that are abundantly used in the theoretical 

developments. Many details, above all about the mathematics, are omitted and the 

interested reader can refer to [Reddy, 2004] for a complete discussion.  

Strain-displacement relations 

Consider a deformable body of known geometry, constitution, load and boundary 

conditions. Each material points of the body is referred to a Cartesian coordinate system 

(x1,x2,x3) and the Cartesian components of the displacement vector u are iU  where the 

Latin index takes values 1, 2 and 3. 

 According to the standard solid mechanics [Reddy, 2004], the strain is measured by 

using the Green-Lagrange strain tensor E, that is defined in terms of displacement 

gradients as [Reddy, 2004] 

   
1

2

T T
E        

 
u u u u  (P.1) 

Performing the dot product, the orthogonal components of the Green-Lagrange tensor 

are given by  

 
1

2
jk k j j k j i k iE U U U U      (P.2) 



x 
 

where the notation i  is used to denote the derivative with respect to the coordinate xi. If 

the displacement gradient is small, that is 1 u , the E tensor reduces to the 

infinitesimal strain tensor,  , which components read as 

 
1

2
ij i j j iU U      (P.3) 

Constitutive material law 

Herein, the constitutive equation of linear elasticity for the case of infinitesimal 

deformation of an orthotropic material, referred to as the Hooke’s law, is discussed. 

Denoted with σ  the stress tensor, the material constitutive law reads as [Reddy, 2004] 

ij ijkl klC   (P.4) 

where ijklC  is the fourth-order tensor of material parameters, called stiffness tensor, and for 

an orthotropic material it depends on nine independent coefficients.  

With reference to Eq. (P.4), a plane stress state with respect to the x1-x2 plane is 

characterized by the following condition 

33 0   (P.5) 

The constitutive material law, according to the plane stress state, reads as 

3 3 3 3

C

C

  

   

 

 




 (P.6) 

where the Greek index takes values 1 and 2 and 3  is the engineering transverse shear 

strain, defined as 3 32   . In Eq. (0.6), the reduced stiffness coefficients,C , appear 

and read as 

33 33

3333

C C
C C

C

 

    (P.7) 

whereas the stiffness coefficients related with the transverse shear stresses are not affected 

by the plane-stress assumptions. For these stiffness coefficients, since the subscript 

depends only on two indices, a different notation is adopted: 3 3Q C   . 
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It is worth to note that, by making use of Eq. (P.6), it is possible to state in an equivalent 

way, called mixed form, the constitutive law, Eq. (P.4). By introducing the compliant 

coefficient, 
1

33 3333S C , the constitutive material law in mixed form reads as 

33 33

3 3

33 33 33 33

C S R

Q

S S R

   

  

 

  

 

  

 



 

 (P.8) 

wherein 33R C  . 

When the thermal effect due to a temperature variation, 0T T   , with respect to a 

reference one, 0T , has to be taken into consideration, the constitutive law is enriched by the 

thermal contribution and the mixed form of the constitutive law, Eq. (P.8), becomes 

[Gherlone et al., 2007] 

33 33

3 3

33 33 33 33 33 33

C S R

Q

S S R S

    

  

 

   

 

   

   



   

 (P.9) 

where 33 33S R       and ij ijkl klC   with kl  denoting the thermal expansion 

coefficients in the geometric axes.   

 



 



 

 

 

 

 

 

 

Chapter 1 

Theories for laminated plates 

 

1. Introduction 

In the last thirty years, composite materials have been increasingly used in many 

industrial applications due to their high specific mechanical properties, reduced weight, 

high corrosion and fatigue resistance. Along with these positive aspects, multilayered 

composite structures offer the possibility to tailor the mechanical properties according to 

the specific application by choosing carefully the fiber orientation and the stacking 

sequence. In aerospace field, the increasing use of composite and sandwich materials for 

primary load bearing structural components requires computational tools able to accurately 

predict the stress field in order to achieve reliable design and failure analysis. In particular 

near the geometric singularities, like as holes or free edges, where the stress field becomes 

three-dimensional and stress intensity factors arise, the computational model has to be very 

accurate, above all on the prediction of the transverse stresses, due to the key role played 

by them in damage mechanisms like as debonding and delamination. 

It is trivial to note that the actual stress field in multilayered composite structures can be 

computed by exact Elasticity-based solutions. In the open literature, several exact solutions 

are available: Pagano [Pagano, 1969; Pagano, 1970] developed exact solutions for cross-

ply and sandwich plates in the framework of linear Elasticity; Srinivas and Rao [Srinivas et 
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al., 1970; Srinivas et al., 1971] obtained exact solution for the static and dynamic analysis 

of thick laminates; Noor and Burton [Noor et al., 1990], Savoia and Reddy [Savoia et al., 

1992] published solutions for cross-ply and antisymmetric angle-ply rectangular plates. It 

is easy to note that exact Elasticity solutions are available only for a limited set of 

geometries, loads and boundary conditions (in the case of plates, mainly bi-sinusoidal 

transverse pressure and simply support boundary condition). By using the Fourier series, 

the exact Elasticity solution can be easily extended to case of a plate with a general load. 

When an exact solution is not available, stress analysis can be performed by high-fidelity 

3D finite elements models that turns out to be accurate but computationally expensive. 

From this point of view, an interesting solution is to develop approximate 2D models: in 

these models, the distribution along one of the coordinate axes of the reference frame is 

assumed for the primary variables, thus reducing a 3D problem to a 2D one. In the 

framework of the displacement-based plate/shell models, the through-the-thickness 

distribution of displacement components is assumed whereas the behavior of the elastic 

body in the plane generated by the remaining two coordinate axes is recovered by solving 

the governing equilibrium equations along with the variationally consistent boundary 

conditions. 

In this chapter, the models formulated for the analysis of multilayered composite and 

sandwich plate/shell structures are examined following a common accepted classification 

[Reddy, 2004]. The models can be divided into (i) displacement-based models, wherein the 

primary variables are only the displacement components on which the assumptions are 

made; and (ii) mixed models, wherein displacements and stresses are assumed 

independently. Along with this classification, the plate/shell models can be divided into (a) 

Equivalent Single Layer (ESL) models and (b) Layer-wise (LW) ones, according to the 

type of kinematics assumed. In the former class of structural theories, the kinematics 

assumed is C
1
-continuous, that is the displacement components and their derivatives are 

assumed to vary continuously along the plate/shell thickness. This means that the 

multilayer structure is substituted with a plate/shell made by an equivalent single layer. On 

the contrary, LW models postulates a C
0
-continuous kinematics, that is a distribution of 

displacements (first of all, in-plane displacements) continuous along the thickness with 

first order derivatives showing a jump at layer interfaces (the reason of this discontinuity 

will be explained hereinafter). Moreover, according to [Ghugal et al., 2002] the LW 

models are further divided into (a) layer dependent, wherein the number of kinematic 

variables increases with the number of layers; and (b) layer independent, wherein the 
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number of variables remains constant and independent on the number of layers. A 

particular class of LW layer independent models are the so-called Zigzag (ZZ) models. In 

this context, the terminology “layer-wise models” is used to indicate only the layer 

dependent LW theories, whereas the ZZ models are treated separately.  

2. Variational statement 

According to the classification before mentioned, the plate/shell models can be divided 

into displacement-based and mixed models, depending on the type of primary variables. 

This difference reflects also the variational principle on which the model is formulated. In 

fact, displacement-based models are formulated via the Virtual Displacements Principle 

[Reddy, 2004] whereas mixed models are developed using the Reissner Mixed Variational 

Theorem [Reissner, 1950]. In this paragraph, the two variational statement are briefly 

recalled.  

2.1. Virtual Displacements Principle 

All the displacement-based models are formulated via the Virtual Displacement 

Principle. Omitting many details that the reader can find in [Reddy, 2004], it is important to 

remark that the Virtual Displacements Principle is the weak form of the 3D Elasticity 

equations that are solved by assuming as arbitrary test functions the virtual displacements 

[Zienkiewicz et al., 2000]. In formula, the principle reads as 

0T T Td d d  
  

     ε σ u b u t  (1.1) 

where ,   are the body volume and the external surface, respectively; ,ε σ  are the strain 

and stress vectors and u  contains the displacement components. The body forces and the 

external surface applied loads are quoted as ,b t , respectively. Recognizing the virtual 

variation of the strain energy, U , the virtual variation of the work done by inertial forces, 

iW , and that done by external applied loads, W , the Virtual Displacement Principle 

appears also as  

0iU W W       (1.2) 

that represents the common way to present the Principle of Virtual Work (D’Alembert’s 

Principle). 
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When a displacement-based model is developed, the only primary variables are the 

displacements thus the strain field and the stress one come from the strain-displacement 

relations and the constitutive material law, respectively.  

2.2. Reissner Mixed Variational Theorem 

In the framework of multilayered composite structures modeling, an important role is 

played by the Reissner Mixed Variational Theorem [Reissner, 1950], since it allows for an 

independent assumption on displacements and transverse shear and normal stresses. It is 

interesting to note that the Reissner Mixed Variational Theorem is a particular case of a 

more general two-field variational principle, the Hellinger-Reissner one [Hellinger, 1914] 

that allows independent assumption on displacements and all the six stress tensor 

components. Details about the two principles can be found in [Zienkiewicz et al., 2000]; in 

this context the Reissner Mixed Variational Theorem is stated and the quantities involved 

explained. The above cited theorem reads as 

   33 33 33

      0

T aT a a a

T T

d d d

d d

    

 

  

 

    

  

  

 

ε σ τ γ γ

u b u t
  (1.3) 

where 33,a aτ  denote the assumed transverse shear and normal stresses, respectively, while 

33,a aγ  denote the transverse shear and normal strains coming from the constitutive 

relations, using 33,a aτ . The counterpart, that is the strain coming from the strain-

displacement relations, are denoted as 33,γ . It is important to remark that, in this case, the 

stress vector σ  contains, for the transverse shear and normal stress part, the assumed 

stresses. 

Due to the arbitrary virtual variation of the stress variables, the solution procedure of the 

Reissner Mixed Variational Theorem leads the compatibility terms between the strains 

coming from the assumed displacements and those coming from the constitutive equations 

to be solved in a form wherein the integration is limited to the plate thickness, 

henceforward called weak form, that is  

 

 33 33 33

0

0

aT a

a a



  

 

 

τ γ γ
  (1.4) 
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wherein the ...  notation stands for the integration over the entire thickness.  

By solving the compatibilities, Eq. (1.4), the assumed stresses are expressed in terms of 

the kinematic variables, thus reducing the complexity of the model.    

3. Equivalent Single Layer Models 

The Equivalent Single Layer models, called also Smeared models, assume a C
1
-

continuous distribution along the thickness of displacements. In this way, the ESL models 

substitute the multilayered plate/shell with an equivalent single layer plate/shell. Due to 

this feature, the ESL models are generally an extension to multilayered structures of the 

models developed for homogeneous isotropic plates/shells. 

The typical assumption of an ESL model for a generic displacement component, 

( , , )iu z tx , reads as 

( )

0

( , , ) ( ) ( , )
N

j

i j i

j

u z t f z u t


x x   (1.5) 

where ( )jf z  represents the base functions of the through-the-thickness assumption of the 

displacement component ( , , )iu z tx  and ( ) ( , )j

iu tx  are the model kinematic variables that are 

determined by solving the governing equations and the variationally consistent boundary 

conditions.  

Generally speaking, as base functions, powers of the thickness coordinate, that is 

( ) j

jf z z , are chosen and depending on the maximum order in the polynomial expansion, 

it is possible to distinguish between first-order ELS models and higher-order ESL ones. In 

the open literature are also available ESL models adopting the trigonometric functions as 

base for the through-the-thickness distribution of displacements. In the framework of the 

trigonometric ESL models, are noticeable the works done by Touratier [Touratier, 1991] 

that, to the best author knowledge, was the first to adopt trigonometric functions in 

smeared models.        

It is not intent of this paragraph to carry out a detailed review of ESL models, thus the 

author addresses the interested reader to review works [Ghugal et al., 2002; Wanji et al., 

2008; Khandan et al., 2012].  
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3.1. Classical Laminated Plate Theory 

The Classical Laminated Plate Theory (CLPT) represents the extension to multilayered 

plates of the Classical Plate Theory (CLT) developed by Kirchhoff for isotropic plates. It is 

the simplest ESL model and the assumed kinematics reads as 

( , , ) ( , ) ( , )

( , , ) ( , )z

U z t u t z w t

U z t w t

    



x x x

x x
  (1.6) 

where the subscript 1,2  . Consistent with the kinematic assumptions of the CLPT, 

,u w 
 represent the in-plane and transverse displacements of a point located on the 

reference plane (i.e., 0z  ) of the plate. The kinematics in Eq.(1.6) implies that the cross-

section remains plane after deformation and transverse shear and normal deformations are 

neglected, thus accounting only for bending and in-plane stretching.  

It is well-known the role played by the transverse shear stresses on the plate/shell 

structural response. Neglecting the transverse shear effect leads to relevant errors: for the 

isotropic plate, the CLPT can be applied when the span-to-thickness ratio of the plate is 

a/2h > 30 (that is, for thin plate); for a multilayered laminate, the minimum value of the 

span-to-thickness ratio that justifies the application of the CLPT increases up to 50. Along 

with the span-to-thickness ratio, the application of the CLPT depends also on the stiffness 

ratio between the adjacent layers: the use of the CLPT for highly heterogeneous stacking 

sequences leads to relevant errors, even if the span-to-thickness ratio is greater that 50.  

3.2. First-Order Shear Deformation Theory 

The First-Order Shear Deformation Theory (FSDT) [Whitney et al., 1970] represents the 

extension to the multilayered laminate of the Reissner-Mindlin plate theory [Mindlin, 

1951; Reissner, 1945]. With respect to the CLPT, the FSDT relaxes the hypothesis 

suggested by Kirchhoff allowing a transverse shear deformation of the plate. The 

kinematics of the FSDT reads as 

( , , ) ( , ) ( , )

( , , ) ( , )z

U z t u t z t

U z t w t

   



x x x

x x
  (1.7) 

where 
  represents the rotation around the x  coordinate axis.  

Consistent with the displacement field in Eq. (1.7), the transverse shear strain is 

assumed constant along the plate thickness, thus yielding to a piece-wise constant 
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distribution of transverse shear stress that violates the Elasticity conditions at layer 

interfaces. Moreover, since the distribution is constant along the thickness, the zero-

transverse shear stresses condition at the top and bottom plate surface is not satisfied. The 

gap between the transverse shear stresses distribution provided by the FSDT and that 

obtained by the Elasticity requires the use of a shear correction factor [Whitney, 1973; 

Vlachoutsis, 1992; Hutchinson, 2001] in the FSDT that acts reducing the shear stiffness of 

the plate. The shear correction factor estimation is not easy since it depends on the stacking 

sequence, the geometry and the boundary and loading conditions. 

By the inclusion of the transverse shear effect, the FSDT could be able to provide 

moderately accurate global responses (maximum deflection, first natural frequency and 

buckling load) if an adequate shear correction factor is adopted and the plate features a 

span-to-thickness ratio a/2h > 20. Although the global responses are moderately accurate, 

the through-the-thickness distribution of displacements and stresses for a multilayered 

plate deviates from that provided by the exact solution due to the FSDT through-the-

thickness C
1
-continuity kinematic assumptions.   

3.3. High-Order Shear Deformation Theory 

As remarked before, the inclusion of the transverse shear effect in the FSDT guarantees 

an increase in accuracy, on condition that the plate remains thin. By increasing the plate 

thickness, the through-the-thickness linear distribution of the displacements provided by 

the FSDT is no more correct as suggested by the Pagano exact Elasticity solution [Pagano, 

1969; Pagano, 1970]. In fact, the thickness effect acts making the displacements 

distribution non-linear along the thickness and requires a description with a higher-order 

polynomial. 

The term High-Order Shear Deformation Theory (HSDT) refers to a set of ESL models 

adopting a polynomial assumption for the displacements with a order greater than one. The 

reader can refer to [Ghugal et al., 2002; Wanji et al., 2008; Khandan et al., 2012] for a 

detailed review of the HSDTs.  

A fundamental contribution in the framework of HSDTs was given by the third-order 

shear deformation theory developed by Reddy [Reddy, 1984; Reddy, 1990] and assuming 

the following kinematics  
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 3

2

4
( , , ) ( , ) ( , )
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 
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 



x x x

x x

  (1.8) 

The transverse shear stresses distribution provided by this model is parabolic along the 

thickness direction and able to satisfy the zero-transverse shear stresses condition on the 

top and bottom plate surface. For this reason, the model does not require any shear 

correction factors. It is worth to note that, due to smeared-type approximation of 

displacements, the transverse shear stresses are discontinuous at the interface between two 

layers with different mechanical properties. 

4. Layer-wise Models 

The multilayered composite structures are characterized by a severe transverse 

anisotropy since they are made by the superposition of considerably different layers. The 

transverse anisotropy is responsible for the zigzag effect, that is, the distribution along the 

thickness of in-plane displacements is not C
1
-continuous but C

0
-continuous, showing a 

change in the slope at layer interfaces. The jump of the first-order derivative with respect 

to the thickness coordinate of the in-plane displacement at layer interface derives from 

equilibrium consideration: according to the Cauchy’s theorem, the transverse shear stresses 

have to be equal at layer interfaces. The unique way to ensure a continuity condition on 

these stresses having layers with different mechanical properties is to ensure a jump in the 

transverse shear strains, obtainable with a discontinuous first-order derivative of in-plane 

displacements with respect to the thickness coordinate at layer interfaces. It is easy to 

understand that the zigzag effect is the main responsible for the inaccuracy of the ESL 

models in predicting the local (through-the-thickness distribution of displacements and 

stresses) and global (maximum deflection, natural frequencies and buckling load) response 

of multilayered structures. 

The problem of reproducing a C
0
-continuous displacement field along the thickness can 

be addressed by adopting LW models, wherein an ESL-like assumption is made for every 

single layer. According to Reddy [Reddy, 2004], the LW models are divided into partial 

theories and full theories: the former assume a C
0
-continuous distribution only for the in-

plane displacements; on the contrary, the latter ones include the zigzag effect also in the 

transverse displacement assumption. The purpose of this paragraph is only to explain the 
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basic idea of the LW theories, without giving a detailed review. Readers interested may 

refer to [Ghugal et al., 2002; Wanji et al., 2008; Khandan et al., 2012]. 

For the sake of simplicity, partial LW models are taken into consideration. A typical 

displacements assumption of a partial LW model reads as  

( ) ( ) ( ) ( )

( )

( , , ) ( , ) ( , ) .... ( , )

( , , ) ( , )

k k k n k

k

z

U z t u t z t z t

U z t w t

       



x x x x

x x
  (1.9) 

where the superscript (k) means that the quantities are referred to the kth layer. As Eq. (1.9) 

shows, the LW models adopt for each layers an ESL-like assumption with a polynomial 

degree up to n. Along with the assumption of Eq. (1.9), the continuity conditions on 

displacements and transverse stresses have to be satisfied at layer interfaces. These contact 

conditions only reduce the total number of kinematic variables that still remains dependent 

on the number of layers. 

With LW models, high accuracy is obtained at the expense of a substantial 

computational cost that increases with the number of layers. This makes the LW models 

inadequate for the analysis of multilayered structures made by one hundred or more layers, 

as the structures for real applications are.  

5. Zigzag Models 

The basic idea of the Zigzag models, pioneered by Di Sciuva [Di Sciuva, 1983; Di 

Sciuva, 1984a,b; Di Sciuva, 1986] is to model the actual cross-section distortion typical of 

multilayered structures by using a limited and fixed number of kinematic variables, in 

order to preserve the computational cost. The kinematics of a Zigzag model can be 

presented in a multi-scale view: the assumed displacement field is given by the 

superposition of a coarse kinematics and a fine one. The former represents the behavior on 

the total laminate thickness scale whereas the fine kinematics describes the behavior on the 

layer thickness scale. An ESL model is adequate to constitute the coarse kinematics due to 

the C
1
-continuous assumption. The layer refinement, that is the fine kinematics, is given by 

the product of a priori known piecewise continuous function of the thickness coordinate, 

called zigzag function, and a kinematic variable function of the in-plane coordinate axes, 

called zigzag amplitude, that rules the magnitude of the zigzag effect. In this way, a Zigzag 

model retains the same kinematic variables of the ESL model adopted for the coarse 

kinematics in addition to the zigzag amplitudes, one in each directions, thus resulting in a 

constant number of the kinematic-variables model. 
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The typical Zigzag kinematics (for the sake of simplicity, constant transverse 

displacement distribution and ESL coarse kinematics with polynomial basis functions are 

considered) reads as 

( ) ( )

( )

( , , ) ( , ) ( , ) .... ( , ) ( ) ( , )

( , , ) ( , )

k n k

k

z

U z t u t z t z t z t

U z t w t

           



x x x x x

x x
  (1.10) 

where the Greek subscript takes values 1,2   and ( , ), ( , ),...., ( , )u t t t   x x x  represent 

the kinematic variables of the coarse kinematics, ( ) ( )k z  the zigzag function and ( , )t x  

the zigzag amplitude. On the whole, the Zigzag model in Eq. (1.10) has 2(n+1)+1 

kinematic variables coming from the coarse kinematics plus two zigzag amplitudes, giving 

a constant 2(n+1)+3 number of variables irrespective of the number of layers. 

5.1. The choice of the zigzag function 

Once the ESL model describing the coarse kinematics has been chosen, the fundamental 

step in the development of a Zigzag model is the choice of the zigzag function: the 

predictive capabilities of models assuming the same ESL coarse kinematics depend on the 

zigzag function. In the open literature, two kind of zigzag functions are available: the 

former is the Di Sciuva’s zigzag function [Di Sciuva, 1983; Di Sciuva, 1984a,b; Di Sciuva, 

1986] originally developed in the framework of a displacement-based zigzag model; the 

second one, attributed to Murakami [Murakami, 1986], was introduced, for the first time, 

in the framework of a Reissner Mixed Variational Theorem-based zigzag model. 

The Di Sciuva’s zigzag function is physically-based since it is formulated in order to 

satisfy, a priori, the continuity conditions of transverse shear stresses at layer interfaces. 

The fulfillment of continuity of transverse shear stresses leads the zigzag function to be 

defined on the basis of the mechanical proprieties of the layers and changes accordingly 

the stacking sequence. 

On the contrary, Murakami derived his zigzag function examining the distribution along 

the thickness of the in-plane displacements of a periodic laminate, that is a laminate 

featuring a stacking sequence made by the succession of the same two materials. As the 

exact Elasticity solution suggests, in this case the through-the-thickness distribution of in-

plane displacements shows a periodicity also in the slope change, that is the same in 

magnitude but opposite in sign from an interface to the subsequent one. The Murakami’s 
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zigzag function is defined in order to reproduce this periodic behavior and for this reason is 

no mechanical properties-dependent. 

For a long time, the Di Sciuva and Murakami zigzag functions have been involved in 

the development of zigzag models, both displacement-based and mixed ones, without an 

in-deep investigation and comparison of the predictive capabilities of the zigzag functions 

being performed. Recently, Gherlone [Gherlone, 2013] has covered this lack in the open 

literature, carried out a comparison of the two zigzag functions in the framework of a first-

order zigzag model, that is a model assuming the FSDT as coarse kinematics, both 

displacement-based and mixed one, focusing on the elasto-static response of multilayered 

composite and sandwich beams. The conclusion of the investigation performed by 

Gherlone states the superior predictive capabilities of the Di Sciuva’s zigzag function over 

the Murakami’s one. The same conclusions made by Gherlone [Gherlone, 2013] have been 

lately confirmed by Iurlaro et al. [Iurlaro et al.,2014a] also for the static, free vibrations 

and buckling load problems of sandwich plates. 

For a detailed description of the zigzag functions and their use in the development of a 

First-Order Zigzag model, see Chapter 2. 

5.2. Review zigzag models 

The research activity of this Thesis focuses on Zigzag models and for this reason the 

author considers worthwhile a review of the main works done in the last thirty years, 

distinguishing the Zigzag models on the basis of the zigzag function employed. 

As pioneer of Zigzag theories, of remarkable importance are the works done by Di 

Sciuva. In addition to the already cited early work [Di Sciuva, 1983; Di Sciuva, 1984a,b], 

it is important to mention the paper published in the framework of a linear zigzag model 

[Di Sciuva, 1984a,b; Di Sciuva, 1986; Di Sciuva, 1987] and in the framework of the cubic 

zigzag model [Di Sciuva, 1990; Di Sciuva, 1992; Di Sciuva, 1994; Di Sciuva, 1997] by the 

same author. While the Di Sciuva’s linear zigzag model is obtained as refinement of the 

FSDT, the cubic one is formulated starting from the Reddy’s third-order shear deformation 

theory and is able to satisfy a priori the continuity of transverse shear stresses at layer 

interfaces and the zero-conditions at the top and bottom plate surfaces. The Di Sciuva’s 

cubic zigzag model is further developed in order to represent the interlaminar slip that 

occurs at damage interface [Di Sciuva, 1997]. Inspired by the Di Sciuva’s works, many 

zigzag model arose. In the framework of cubic models, a contribution was given by Cho 

and Parmenter [Cho et al., 1993] and recently by Nemeth [Nemeth, 2012]. By using the 
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sublaminates approach, a 3D finite element based on a linear zigzag model accounting for 

a linear distribution across the sublaminate thickness of a transverse displacement was 

formulated by Cho [Cho et al., 2000]. An important contribution in the development of 

zigzag models was given by Icardi: in [Icardi, 2001a,b; Icardi, 2005] a higher-order zigzag 

model accounting for a piece-wise cubic distribution of in-plane displacements and 

piecewise four-order distribution of transverse displacement is developed. The transverse 

shear and normal stresses continuity conditions are not sufficient and the continuity 

condition on the gradient of transverse normal stress is enforced at layer interfaces. In 

[Icardi, 2011] an adaptive approach is proposed: the assumed kinematics can be refined 

with higher-order terms in order to improve locally the solution, where necessary. The 

coupled thermo-electro-mechanical analysis by using Zigzag models are performed in 

[Kapuria et al., 2003; Topdar et al., 2004; Kapuria et al., 2004]. In [Oh et al., 2005] a 

cubic zigzag model able to solve the elasto-dynamic equations of multilayered composite 

plates with multiple delaminations is presented. Examples of trigonometric ESL model in 

conjunction with Di Sciuva’s zigzag function can be found in [Vidal et al., 2006; Arya et 

al., 2002]. A cubic zigzag model, very similar to the Di Sciuva’s one, is developed in 

[Xiaohui et al., 2011; Xiaohui et al., 2012] and a finite element not requiring the continuity 

of the first order derivative of the transverse displacement is formulated. Interesting is the 

predictor-corrector approach introduced in [Lee et al., 1996] where the Di Sciuva’s linear 

zigzag theory is used in the predictor step to obtain the distribution of the transverse shear 

stresses coming from integration of the Elasticity equilibrium equations. In the corrector 

step, that distribution is used in conjunction with a higher-order model in order to enhance 

the prediction of displacements and stresses. Recently, based on the Di Sciuva’s original 

researches, a linear zigzag model, called Refined Zigzag Theory, for beams/plates/shells 

has been developed by Tessler, Di Sciuva and Gherlone [Tessler et al., 2007; Tessler et al., 

2009a,b; Di Sciuva et al., 2010; Tessler et al., 2010a,b; Tessler et al., 2011; Gherlone et 

al., 2011; Versino, 2012; Versino et al., 2013; Versino et al., 2014]. The Refined Zigzag 

Theory has received remarkable attention by several researchers, among these are worth 

considering Narita and co-workers [Honda et al., 2013], Oñate [Oñate et al., 2012; Eijo et 

al., 2013a,b,c] and Flores [Flores, 2014]. Appealing developments in the framework of 

Refined Zigzag Theory are found in [Barut et al., 2012; Barut et al., 2013] wherein the 

Refined Zigzag Theory kinematics has been enriched with a smeared quadratic term in the 

in-plane assumptions and transverse displacement. 



Chapter 1 – Theories for laminated plates 

 

13 

 

The Murakami’s zigzag function has been extensively used by Carrera and co-workers 

[Carrera, 2000; Carrera, 2004; Brischetto et al., 2009a,b; Carrera et al., 2009]. Other 

works employing the Murakami’s zigzag function are those of Bhaskar [Ali et al., 1999; 

Umasree et al., 2006], Ganapathi [Ganapathi et al., 2001; Ganapathi et al., 2002], 

D’Ottavio [D’Ottavio et al., 2006a,b] and Vidal and Polit [Vidal et al., 2011].        

6. Multiple models methods 

In this chapter, a brief mention of the Multiple models methods is done, addressing the 

interesting readers to Reddy [Reddy, 2004] for a detailed description. 

The key idea of the Multiple models methods is to use different models in the analysis 

of a large and complex structure, in order to adopt more accurate but also computationally 

expensive models only where it is necessary, for example near an hole, and less accurate 

models in the other structural regions. In this way, this method allows an optimal use of the 

computational resources.  

Two kind of multiple models methods exist: (i) sequential methods; the problem is 

solved by using a low accurate model with the purpose of obtaining the boundary 

conditions for a localized analysis of sensible zones that is performed in a second step 

adopting high-fidelity models; (ii) simultaneous methods; the problem is solved by 

adopting different models or different level of discretization. 

The interested reader is addressed to the Reddy’s book [Reddy, 2004] for further details.  

 



 



 

 
 

 

 

 

 

 

 

Chapter 2 

Refined Zigzag Theory  

 

1. Motivation 

As previously stated in Chapter 1, the Di Sciuva’s early works inspired several 

researchers working in the field of structural analysis, motivating them to adopt the zigzag 

concept in the modeling of multilayered composite and sandwich structures. With respect 

to the existing shear deformable theories for beams and plates, the improvement in the 

response prediction of the elasto-static and elasto-dynamic behavior of multilayered 

structures made by Di Sciuva was remarkable. Above all, the inclusion of the zigzag 

contribution into the Timoshenko beam and the Reissner-Mindlin plate kinematics, leads 

the Di Sciuva’s model to predict accurately the through-the-thickness distribution of in-

plane displacements and stresses, if compared with the exact Elasticity solution, of thick 

and highly heterogeneous beams/plates and to satisfy the interlaminar transverse shear 

stresses continuity. Nevertheless, as highlighted in Tessler et al. [Tessler et al., 2009a], the 

early linear zigzag model proposed by Di Sciuva [Di Sciuva, 1983; Di Sciuva, 1984] was 

affected by serious drawbacks. Briefly, the shortcomings arisen in the original Di Sciuva’s 

model were (i) the shear-force inconsistency, that is, the transverse shear forces coming 

from the integrated transverse shear stresses do not match with those obtained by the 

constitutive transverse shear stresses, and (ii) the C
1
-continuity requirement for a finite 
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element implementation, thus resulting in a less efficient formulation with respect to C
0
-

continuous finite elements. Recently, Wanji and co-workers solve the problem of the C
1
-

continuity condition, by developing a C
0
-type element [Xiaohui et al., 2012]. 

In order to preserve the accurate global and local prediction capabilities provided by the 

former Di Sciuva’s linear zigzag model and, simultaneously, to overcome the drawbacks 

above discussed, recently the Refined Zigzag Theory (RZT) has been proposed by Tessler, 

Di Sciuva and Gherlone [Tessler et al., 2007; Tessler et al., 2009a,b; Di Sciuva et al., 

2010; Tessler et al., 2010a,b; Tessler et al., 2011; Gherlone et al., 2011; Versino, 2012; 

Versino et al., 2013; Versino et al., 2014]. The RZT belongs to the class of displacement-

based zigzag models accounting for a piecewise linear distribution of in-plane 

displacements and a constant transverse one.  

In this Chapter, the theoretical bases of the RZT are recalled starting from the assumed 

kinematics. Successively, by using the D’Alembert Principle and adopting the Von 

Kàrmàn strain-displacement relations, the non-linear governing equations for plates are 

obtained and specialized to the linear bending problem and linear eigenvalues problem of 

free vibrations and buckling loads. Later, a brief presentation of the advanced functionally 

graded materials is carried out and the extension of the RZT to functionally graded plates 

presented. Finally, in a general notation, a first-order zigzag model is presented, letting 

open the possibility to chose the zigzag function. A section is reserved to describe the 

Murakami’s zigzag function and to highlight the main differences with respect to the 

Refined Zigzag function, that belongs to the Di Sciuva’s type zigzag function.  

The content of this Chapter have been subject of publications on International Journals, 

in particular, the non-linear governing RZT equations are derived in [Iurlaro et al., 2013a], 

wherein they are used to solve the linear bending, undamped free vibrations and linear 

buckling problems of sandwich plates. The extension of the RZT to the advanced 

functionally graded materials is presented in [Iurlaro et al., 2014b], wherein the bending 

and free vibrations problems of sandwich panels embedding functionally graded layers, 

both as face-sheets and core, are solved. 

2. Refined Zigzag Theory for plates: displacements, strains and stresses 

Consider a laminated plate of uniform thickness 2h with N perfectly bonded orthotropic 

layers, of thickness 2h
(k)

,  as shown in Figure 2.1. The orthogonal Cartesian coordinate 

system (x1,x2,z) is taken as reference where the thickness coordinate z ranges from -h to +h. 
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The middle reference plane (or midplane) of the plate, Sm , is placed on the (x1,x2)-plane. 

The plate is bounded by a cylindrical edge surface, S, constituted by two distinct surfaces, 

Su and Ss, on which the geometrical and mechanical boundary conditions are enforced, 

respectively. Moreover, the intersection of the surface S and of the (x1,x2)-plane is the 

curve C which represents the perimeter of the midplane, Sm. As for the edge surface, the 

curve C is composed by two distinct curves, Cu and Cs, originated by the intersection of Su 

and Ss with the (x1,x2)-plane, respectively. Finally, St and Sb represent the top and bottom 

external surfaces of the plate (at z = h and z = −h), respectively. The plate represented in 

Figure 2.1 is subjected to a transverse pressure loads, applied on the midplane Sm, to 

surface tractions, acting on the top, St, and on the bottom, Sb, surfaces and to traction 

stresses prescribed on Ss. 

2.1. Kinematic assumptions 

According to the Refined Zigzag Theory kinematic assumptions [Tessler et al., 

2010a,b], the orthogonal components of the displacement vector read as  

   
( , , ) ( ) ( ) ( ) ( )

( , , ) 

,

( , )

, ,
k k

z

U t t t

t

z t u z z

U z t w

        



x x x x

x x   
(2.1) 

where the superscript (k) is used to denote quantities corresponding to the kth lamina and t 

represent the time variable. The subscript 1,2   denotes the component of the 

displacement vector along the x - coordinate axis while the notation  1 2,x xx  has been 

used.     

The RZT displacement field, Eq. (2.1), as any zigzag theories, results from the 

superposition of a coarse kinematics and a fine one. As coarse kinematics the FSDT has 

been assumed, whereas, the behavior on the layer thickness scale is reproduced by the 

layer-wise contribution given by the product  
( ) ,( )

k
z t   x . Since the FSDT has been 

assumed, , ,u w   are the classical kinematic variables representing the in-plane uniform 

displacement, the bending rotation and the transverse deflection, respectively. The RZT 

adds to the FSDT kinematics a piecewise linear contribution given by the product of the 

zigzag amplitude, ),( t x , and the zigzag function,  
( )

k
z . The zigzag function is an a 

priori known function of the thickness coordinate, thus the RZT model for plate results in a 

fixed (seven) number of kinematic variables: the five FSDT variables plus the two zigzag 

amplitudes. 
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Figure 2.1 General plate notation. 

 

2.2. Refined zigzag function 

The key aspect in each zigzag theory is the formulation of the zigzag function adopted. 

As stated in Chapter 1, the Di Sciuva’s zigzag function comes from the fulfillment of the 

interlaminar transverse shear stresses continuity conditions that leads, according to what 

has been explained previously, to a constant through-the-thickness distribution of 

transverse shear stresses in the framework of a linear zigzag model.  

In order to overcome the shortcomings that affected the Di Sciuva’s model, in RZT the 

interlaminar transverse shear stresses continuity condition has been only partially satisfied, 

allowing a discontinuity of these stresses at layer interfaces. The results, if compared with 

the exact Elasticity solution, demonstrate remarkable accuracy in terms of in-plane 

displacements and stresses distribution along the thickness, along with a through-the-

thickness distribution of transverse shear stresses that approximate in an average way the 

exact distribution in each layer. In other words, the fulfillment of the transverse shear 

stresses continuity condition leads a reduced kinematic-variables model (like the original 

Di Sciuva’s one) to be over-constrained; the RZT, relaxing the continuity conditions, adds 

a variable to the kinematics that allows for a piecewise constant distribution of transverse 

shear stresses, accurate in an average sense, and that avoids the shear forces inconsistency. 
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In what follow, the RZT zigzag function estimation procedure is recalled. For further 

details, reader can refer to [Tessler et al., 2007; Tessler et al., 2009a,b; Di Sciuva et al., 

2010; Tessler et al., 2010a,b; Tessler et al., 2011; Gherlone et al., 2011; Versino, 2012; 

Versino et al., 2013; Versino et al., 2014]. 

Consistent with the RZT kinematics and by using the linear strain-displacement 

relations, the transverse shear strains read as 

 ( ) ,( ) ( )

( , ,) ( )

kk

z z t

t

z

wt

   

  

   

 

  

  

x

x x

  (2.2) 

The transverse shear stresses come straightforwardly from the Hooke’s law, thus  

 ( ) ( ) ( );       , 1,2k k k

z zQ         (2.3) 

An alternative way of measuring the shear strain is by introducing the strain measure 

[Tessler et al., 2010a,b] 

       (2.4) 

 Thus, combining Eq. (2.3) and Eq. (2.4), an alternative expression for the transverse 

shear stress is obtained  

   ( ) ( ) ( ) ( ) ( ) ( )1 ( ) ;       , 1,2k k k k k k

z z zQ Q z Q                       (2.5) 

The transverse shear stress is thus composed by two contributions: the continuity 

condition is enforced only on the zigzag-dependent contribution, ( )k

z , that is, on the 

transverse shear stress obtained by vanishing the shear measure   and considering the 

diagonal contribution of the transverse shear stress vector, that is   . The constraint 

reads as  

   ( ) ( 1) ( ) ( ) ( 1) ( 1) 1 ( ) 1 ( )k k k k k k

z z z zQ z Q z                     (2.6) 

It is easy to realize that constraint in Eq. (2.6) actually involves a combination of the 

shear modulus of the layer and the zigzag function, that is, Eq. (2.6) resolves into the 

following condition   

 ( ) ( )1 ( )k k

zQ z G       (2.7) 
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where G  is the weighted-average transverse shear stiffness coefficient of the lamina level 

coefficient ( )kQ .  

From Eq. (2.7), the spatial derivative of the zigzag function can be recovered and reads 

as 

( )

( )
( ) 1k

z k

G
z

Q






     (2.8) 

The problem now moves on the definition of the weighted-average transverse shear 

stiffness coefficient G : the RZT kinematic assumptions adopt the FSDT as coarse 

kinematics and, as a consequence, the   variable represents the average bending rotation 

of the cross-section. In order to make 
  the average bending rotation, the following 

relation has to be satisfied 

( )1
( ) 0

2

k

z z
h

    (2.9) 

By using the expression for the spatial derivative of the zigzag function, Eq. (2.8), into 

Eq. (2.9), the weighted-average transverse shear stiffness coefficient is obtained    

1 1
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( ) ( )
1

1 1 1
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 

 



   
     

  
   (2.10) 

Once the stacking sequence is defined, the transverse shear moduli of each layer are 

known and the weighted-average transverse shear stiffness coefficient can be computed by 

using Eq. (2.10). Successively, the first order derivative of the zigzag function in each 

layer derives from Eq. (2.8). Since the zigzag function is a piecewise linear function of the 

thickness coordinate, its spatial derivative is piecewise constant through-the-thickness. In 

order to completely define the zigzag function, two additional conditions have to be 

enforced. In the former Di Sciuva’s model, this problem was addressed by choosing the 

fixed layer; in the RZT the missing conditions derive from Eq. (2.9) [Di Sciuva et al., 

2010]    

(1) ( )( ) ( ) 0Nz h z h         (2.11) 

By using Eq. (2.11) , Eq. (2.8) and Eq. (2.10), the zigzag function is completely defined 

and, as it is easy to realize, is dependent only on the shear moduli and the thickness of each 

layer. This means that once the stacking sequence is defined, the zigzag function is 
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obtained. In Figure 2.2 an example of the through-the-thickness plot of the zigzag 

functions in each direction for a three-layer plate is given. 

 

Figure 2.2 Through-the-thickness distribution of the zigzag functions. 

In the case of homogeneous plates, the zigzag functions vanish identically and the 

displacement field, Eq. (2.1), reduces to that of FSDT. Recently, Tessler et. al. [Tessler et 

al., 2010a,b; Tessler et al., 2011] showed that within RZT, the homogeneous plates should 

be modeled as laminated plates with infinitesimally small differences in the transverse 

shear moduli of the material layers (homogeneous limit methodology), thus producing 

highly accurate response predictions. Moreover, Gherlone [Gherlone, 2013] showed that 

when the external layers of a laminate are weaker than the adjacent layers, in terms of 

transverse shear stiffness, the RZT zigzag functions can be adapted naturally to the 

effective shear properties of the stacking sequence and lead to accurate results. 

2.3. Non-linear strains and stresses 

In order to develop a plate theory which accounts for moderately large deflection and 

small strains, the von Kàrmàn’s non-linear strain-displacement relations are used [Chueng-

Yuan, 1980]. Consistent with the displacement field of Eq. (2.1), the in-plane and 

transverse shear strains are [Iurlaro et al., 2013a] 

 ( ) ( ) ( )

( ) ( )

2 k k k

k k

z

u u z w w                

   

      

   

        

 

  
  (2.12) 
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(a) Zigzag function in the          -plane1( , )x z (b) Zigzag function in the          -plane2( , )x z
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where w        and ( ) ( )k k

z    .  Hooke’s constitutive relations are then invoked to 

compute the stresses 

( ) ( ) ( ) ( ) ( ) ( );    k k k k k k

z zC Q            (2.13) 

where ( )kC
 and ( )kQ

 are the transformed elastic stiffness coefficients referred to the ( ), zx  

coordinate system and relative to the plane-stress condition that assumes that transverse 

normal stress is negligibly small with respect to the in-plane stresses.  

3. Non-linear equations of motion 

The non-linear plate governing equations and the variationally consistent boundary 

conditions are derived by using the D’Alembert’s principle that reads as 

0i eU W W       (2.14) 

where   is the variational operator, U, Wi and We are the strain energy, the work done by 

the inertial forces and that done by the applied external loads, respectively. The variation 

of the strain energy is given by 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

11 11 22 22 12 12 1 1 2 2  

m

k k k k k k k k k k

z z z z

S

U dS                (2.15) 

By using the displacement field, Eq. (2.1), coupled with the non-linear strain-

displacement relations, Eq. (2.12), and the constitutive material law, Eq. (2.13), the virtual 

variation of the strain energy, in tense notation, results as 

   
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   
 

     





  (2.16) 

where n  denotes the direction cosine of n , the unit outward vector normal to C, with 

respect to the in-plane coordinate x . Moreover, the following membrane, bending and 

transverse shear stress resultants are introduced    

   

   

( ) ( )

( ) ( )

, , 1, , ( )

, 1, ( )
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k k
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 
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

 
  (2.17) 
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The variation of the work done by external applied loads reads as  

 

 

( )

( ) (1)

( , )

 ( , ) ( ) ( , ) ( )

m

m

k
ze z z

S S

t N b

S

W q t U dS T U T U dS

p t U z h p t U z h dS



 

   

   

 

   

    

 



x

x x

  (2.18) 

where the equivalence among the surfaces, St=Sb=Sm, is set. Introducing the displacement 

components definition into Eq.(2.18), yields    
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  (2.19) 

Introducing the following definitions 

 

t b

t b

p p p

m h p p

  

  

 

 
  (2.20) 

the variation of the work done by external loads reads 

 ( , ) ( , ) ( , )
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e

S

n nn zn
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N u M M V w d
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    
  




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  (2.21) 

with the force and moment resultants of the prescribed tractions follows  

   ( ), , , , , ,k
n n zn znN M M V T zT T T



        (2.22) 

The virtual work of the inertial forces is  

 ( ) ( ) ( )

m

k k k

i z z

S

W U U U U dS         (2.23) 

where 
( )k is the material mass density of the kth layer. Moreover, the dot indicates 

differentiation with respect to the time variable. Substituting the displacement field and 
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performing integration through the thickness, gives rise to the 2-D form of the virtual work 

of inertial forces 

   

  

0 1 0 1 2 1

0 1 2 0
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
  (2.24) 

the mass moments of inertia are defined as 

   

    
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
  (2.25) 

By introducing Eqs. (2.16), (2.21) and (2.24) into the D’Alembert principle, the non-

linear differential equations of motion are obtained [Iurlaro et al., 2013a] 
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  (2.26) 

along with the variationally consistent boundary conditions 
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  (2.27) 

It is worthwhile to note that Eqs. (2.26) represent a generalization of the FSDT 

governing equations. In fact, the RZT displacement field is given by the superposition of 

the FSDT displacement field and of a through-the-thickness piecewise linear contribution 

related to the zigzag kinematic variables,  . Thus, the FSDT equations of motion can be 

recovered by the first three equations in Eqs. (2.26) neglecting all the mass moments of 

inertia multiplying the second order time derivative of  . Furthermore, since the von 

Kàrmàn strain-displacement relations are used, the non-linear contribution appears only in 

the third equation: in order to recover the linear equations of motion, the contribution given 

by the in-plane stress resultants to this equation has to be neglected. 
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The plate constitutive equations are derived by introducing the strain-displacement 

relations and the constitutive material law in Eqs. (2.17) and then integrating over the 

laminate thickness. To be consistent with [Tessler et al., 2010a], an extended notation is 

adopted according to which the force and moment stress resultants are collected in the 

following vector  
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Consequently, the constitutive equations appear as 
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with the non-linear membrane, linear bending and transverse shear strain measures 

defined, respectively, as 
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and the stiffness matrices  
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  (2.31) 

where ,C Q  are the reduced elastic stiffness coefficient in the usual matrix notation 

[Tessler et al., 2010a].   

By introducing Eqs. (2.29) into Eqs. (2.26), the equations of motion in terms of the 

kinematic variables are obtained. 
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3.1. Linear bending 

In order to derive the equilibrium equations for the static linear response of the plate 

subjected only to transverse pressure and surface tractions applied on the top and bottom 

plate surfaces, the membrane strains are linearized with respect to the displacement 

components, that is  1,1 2,2 1,2 2,1,  ,  
T

m u u u u e , and the inertial terms are neglected. Thus, 

the static linear equilibrium equations read as [Tessler et al., 2010a] 

0; 0

0; 0

N p Q q

M Q m M Q
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 
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     
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  (2.32) 

3.2. Free vibrations 

The governing equations for linear free vibrations of the plate may be obtained from 

Eqs. (2.26) by neglecting the non-linear terms of the membrane strain measures and by 

discarding the external loads [Iurlaro et al., 2013a] 
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  (2.33) 

3.3. Linear buckling 

The governing equations of the linearized problem of buckling for symmetrically 

laminated plates subjected to uniformly distributed in-plane stress resultants, nN , can be 

formulated by using the Euler’s method of the adjacent equilibrium configurations. It is 

assumed that the plate remains flat during the pre-buckling equilibrium state and that the 

external in-plane stress resultants vary neither in magnitude nor in direction during the 

buckling [Brush et al., 1975]. Under these assumptions, the linearized stability equations 

read [Iurlaro et al., 2013a] 
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  (2.34) 
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with the appropriate homogeneous boundary conditions. The force and moment stress 

resultants appearing in Eq. (2.34), and denoted with (
*
), are increment with respect to the 

pre-buckling state, ,eqN are the in-plane stress resultants at the equilibrium state.  

4. Extension of RZT to functionally graded structures 

The Refined Zigzag Theory was originally developed to model the typical cross-section 

distortion of multilayered structures made by orthotropic materials, that is structures 

having a piecewise constant distribution of the mechanical properties along the laminate 

thickness. The challenging aim of modeling the in-plane displacements distribution slope 

change was addressed by enriching the FSDT kinematics with a zigzag contribution guided 

by the zigzag function. 

Starting from the early 1980s, an advanced class of composite materials arose, the 

functionally graded materials (FGMs), wherein two or more phases are combined together 

in order to obtain a synergic combination of their mechanical properties. The main 

difference with respect to the traditional fiber-reinforced composite materials is the 

continuous and smooth through-the-thickness variation of the mechanical and thermal 

properties. The continuous changing in material properties along the layer thickness gives 

the possibility to realize multilayered structures wherein the mismatch of proprieties at 

layer interfaces is removed, thus preventing delamination or spalling failure caused by 

mismatch of the thermal expansion coefficient between layers. An in-depth investigation 

covering all the issues concerning the FGMs can be found in [Birman et al., 2007]. 

Generally speaking, FGMs are particulate composites wherein the fraction volume of 

the phases varies along the grading direction, that is the thickness one, thus tailoring the 

distribution of mechanical and thermal proprieties. According to the microstructures, 

examples of FGMs showing an isotropic and orthotropic behavior are available [Birman et 

al., 2007]. The main problem in the FGMs modeling is to find the equivalent mechanical 

properties, that is, the mechanical properties of the FGM considered as a whole. For this 

purpose, several homogenization methods are available in literature [Jha et al., 2013; 

Zuiker, 1995; Yin et al., 2004]. More appealing results the possibility to obtain an 

analytical law governing the distribution of the Young’s modulus, the Poisson ratio and the 

thermal expansion coefficient. The interest in finding an analytical law for the mechanical 

properties distribution comes from the interest in obtaining a 3D Elasticity-based closed 

form solutions for some basic problems, in a similar manner to what has been done for 
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orthotropic multilayered structures. In the open literature, two properties gradation laws are 

very common: the polynomial and the exponential one [Jha et al., 2013]. 

  The importance of a 3D Elasticity-based solution is to highlight the main effects that a 

2D approximated theory has to be able to reproduce in order to accurately model a 

functionally graded structure. The continuous and smooth variation of the mechanical 

properties makes the Elasticity governing equations a set of partial differential equations 

with variable coefficients, thus the Pagano solution procedure [Pagano, 1969] is no longer 

applicable. A simple solution is to adopt a “sub-layers strategy”, that is, a functionally 

graded layer is divided into a certain number of mathematical layers wherein the 

mechanical properties are constant and equal to an average value. This procedure, known 

as modified Pagano solution [Wu et al., 2010], converges by increasing the number of sub-

layers. 

The 3D investigations demonstrate that the smooth and gradual variation of the 

mechanical properties along the thickness direction makes the behavior of the functionally 

graded structures quite different from that of traditional multilayered composite ones. In 

particular, the through-the-thickness distribution of in-plane displacements can exhibit a 

higher-order pattern different from the piecewise linear one that may be observed in the 

traditional multilayered orthotropic structures (even if thin or moderately thick). Thus, the 

3D solution guides the researchers in the formulation of 2D approximated theories. In the 

open literature, many efforts have been made [Zenkour, 2004; Zenkour, 2005a,b; Reddy, 

2000; Natarajan et al., 2012; Das et al., 2006; Xiang et al., 2013; Abrate, 2006; Abrate, 

2008; Wu et al., 2010]. 

Traditionally, the Zigzag theories, and consequently, the RZT, have been developed in 

order to model structures wherein a mismatch in the mechanical properties takes place. 

When functionally graded structures are considered, the discontinuity in the material 

properties is removed, therefore smeared models could be accurate in predicting the 

through-the-thickness distribution of displacements and stresses. Moreover, in order to 

reproduce the higher-order distribution of quantities that are typical of functionally graded 

structures, the models could be more complex than the FSDT; for example, the third-order 

shear deformation theory by Reddy [Reddy, 2000] should be adopted. 

An alternative way of reproducing the higher-order behavior of functionally graded 

structures is by enriching the FSDT with a non-linear contribution. This strategy can be 
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employed by extending the RZT to FGMs-made multilayered structures [Iurlaro et al., 

2014b]. 

4.1. Refined zigzag function for functionally graded materials 

The displacement field of the RZT in case of functionally graded structures remains that 

given in Eq. (2.1). Along with the displacement field, all the others conditions, like as the 

loading ones, remains the same with respect to what has been previously stated. 

The difference between the previous case and the present one relies on the constitutive 

material law: in the former case, the elastic stiffness coefficients were constant along the 

layer thickness whereas in the latter one they obey to an analytical law, thus becoming 

variable along the layer thickness. The generalized Hooke’s law for functionally graded 

materials, in compact notation, read as 

( ) ( ) ( ) ( ) ( ) ( )( ) ;    ( )k k k k k k

z zC z Q z            (2.35) 

where ( ) ( )kC z
 and ( ) ( )kQ z

 are the transformed elastic stiffness coefficients computed 

following the analogous relations for the traditional materials [Reddy, 2004]. The problem 

is thus to generalize the derivation of the zigzag function to the functionally graded 

materials. 

According to the original RZT formulation, the zigzag functions are derived using two 

conditions that are here generalized to the functionally graded materials case [Iurlaro et 

al., 2014b]: 

(i)   is assumed to be the average rotations of the transverse normal. This implied 

that the values of the zigzag functions  
( )

k
z  at the top and bottom plate 

surfaces have to be equal. For simplicity, this value is set to zero. 

(ii) A partial through-the-thickness continuity condition on the transverse shear 

stresses is used to determine a relation for the zigzag function slope. 

Recalling the same procedure developed previously and taking in mind Eq. (2.35), the 

definition of the weighted-average transverse shear stiffness coefficient, that appears in the 

expression of the zigzag function slope, reads as 

( )

( 1)

1

( )
1

1

2 ( )

k

k

z
N

k
k z

dz
G

h Q z








 
 
 
 

    (2.36) 
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where z(k-1) and z(k) denote the bottom and top kth layer interfaces, respectively; 

consequently, the spatial derivative of the zigzag function follow 

( )

( )
( ) 1

( )

k

k

G
z

Q z






     (2.37) 

The inherent variability of the mechanical properties along the thickness direction of the 

functionally graded layers affects the zigzag function that ceases to be a piecewise-linear 

function, as for the traditional multilayered composite and sandwich structures. For 

multilayered structures with functionally graded layers, ( ) ( )k z  is a piecewise-non-linear 

function whose shape depends on the grading law of the transverse shear stiffness. 

4.2. Governing equations and constitutive relations 

Consider a laminated plate of uniform thickness 2h with N perfectly bonded 

functionally graded layers as shown in Figure 2.1.  

The governing equations are derived by using the D’Alembert’s principle, Eq. (2.14), in 

the analogous manner of Sect. 2 and the same results are obtained both in terms of 

governing equations and variationally consistent boundary conditions.  

The main differences with respect to Sect. 2 relies on the definition of the mass 

moments of inertia since the functionally graded materials exhibit a through-the-thickness 

distribution of mass density 

   

    

( ) 2

0 1 2

2
( ) ( ) ( ) ( )

0 1 2

, , ( ) 1, ,

, , ( ) (z), (z), ( )

k

k k k k

I I I z z z

I I I z z z    

  



   




  (2.38) 

and on the stiffness matrices, due to the variation of the elastic stiffness coefficients 

( )

1

( )

2

( ) ( )

1 2

( )

2

( )

1

( ) ; ( ) ( )

( ) ( ) ( ) ; ( ) ( ) ( )

( ) 0 0 0 0 0

( ) 0 0 ( ) 0 0 0 ; 

0 0 0 0 ( ) ( )

1 ( ) 0 0
( )

0 0 1 ( )

T T

k

k

k k

k

k

z z z

z z z z z z

z z

z z z

z z z

z
z

z



   









 





 

 

 
 

  
 
 

 
  
 
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Β
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  (2.39) 
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5. First-order zigzag models 

Although no commonly used in the open literature, the term first-order zigzag model 

can be used to group all the displacement-based models enriching the FSDT kinematics by 

adding a piecewise linear contribution given by the product of a priori known zigzag 

function, ( ) ( )k z , and an additional kinematic variable, the zigzag amplitude ( , )t x , 

function of the in-plane coordinates. According to these assumptions, the displacement 

field read as 

( ) ( )( , , ) ( , ) ( , ) ( ) ( , )

( , , ) ( , )

k k

z

U z t u t z t z t

U z t w t

      



x x x x

x x
  (2.40) 

where, for the sake of simplicity, a model assuming a constant distribution of transverse 

displacement is considered.  

According to the kinematics in Eq. (2.40), the first-order zigzag models can be 

distinguished based on the zigzag function adopted. From this point of view, the Refined 

Zigzag Theory can be recovered by Eq. (2.40) assuming ( ) ( )( ) ( )k kz z   . 

In the open literature, two kind of zigzag functions are available: (i) the Di Sciuva’s 

type and (ii) the Murakami’s zigzag function. The (i) refers to a methodology according to 

which define a zigzag function, that is the fulfillment of the interlaminar transverse shear 

stresses continuity conditions, rather than to a precise zigzag function. On the contrary, the 

(ii) defines a precise zigzag function, formulated on the basis of the mechanical behavior 

of periodic laminates. Thus, since the first-order zigzag models are distinguished on the 

basis of the zigzag function adopted, two models can be formulated: the Di Sciuva’s type, 

for example the RZT, and the Murakami’s type, that is a model like that in Eq. (2.40) 

wherein the Murakami’s zigzag function, quoted herein as ( ) ( )kS z , is adopted. It is worth 

to note that, even if the RZT postulates a partial continuity condition transverse shear 

stresses, it belongs to the Di Sciuva’s type zigzag functions, since it derives by handling 

the transverse shear stresses and resulting in a mechanical properties-dependent zigzag 

function. The RZT has been already discussed (see Sect. 2.2); in what follows, a brief 

presentation of the Murakami’s zigzag function is given. Readers can refer to the original 

Murakami’s work  [Murakami, 1986] for more details. 
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5.1. Murakami’s zigzag function 

Before defining the Murakami’s zigzag function, it appears useful to introduce 

notations: the z-coordinate of an interface is denoted with z(i), with i=1,2, ..N and z(0)= -h. 

The distance of the layer mid-plane from the reference frame is denoted with ( )k

mz  while the 

layer thickness is ( )2 kh (see Figure 2.3). According to this notation, the local non-

dimensional thickness coordinate,  ( ) 1;1k   , is defined as   

( )
( )

( )

k
k m

k

z z

h



   (2.41) 

 

Figure 2.3 Thickness notation. 

Consistent with the thickness notation introduced, the Murakami’s zigzag functions is 

defined as 

( ) ( )( ) ( 1)k k kS z     (2.42) 

wherein  ( ) ( ) ( ) .k k k

mz z h     

The Murakami’s zigzag function has the following properties: 

(i) It ranges between the values -1 and +1; 

(ii) It is independent of the mechanical properties of the layers and is equal in both 

the directions, that is ( ) ( )

1 2( ) ( )k kS z S z ; 

(iii) The only parameter involved in the definition of ( ) ( )kS z  is the layer index k. 

In Figure 2.4 the Murakami’s zigzag function is compared with the RZT one for a 

symmetric three-layer plate and the resulting kinematics of the two first-order zigzag  

z

x

(0)z

(1)z

(2)z

(3)z
(3)2h

(2)2h

(1)2h

k=1

k=2

k=3

z

x(2)

mz

(2)h

(2)h

(2)
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Figure 2.4 Comparison of zigzag functions. 

 

 

Figure 2.5 Comparison of first-order zigzag models kinematics. 
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models adopting the Murakami’s zigzag function and the RZT ones is highlighted in 

Figure 2.5. 

Since the Murakami’s zigzag function takes values ranging between -1 and +1, the fine 

kinematics participates to the resulting one by adding a value that, at layer interfaces, is 

equal to the zigzag amplitudes,  . On the contrary, the Refined Zigzag Theory adds a 

contribution that is always given by the product of the zigzag function value at the 

considered z-coordinate value and the zigzag amplitude, with the exception of the top and 

bottom plate surface, where the fine kinematics does not participate to the resulting 

kinematics as consequence of the vanishing zigzag function (see Figure 2.5). 

5.2. Governing equations and constitutive relations 

The RZT represents a special case of the first-order zigzag model given in Eq.(2.40), 

wherein the RZT zigzag function is adopted. In order to obtain the governing equations 

and variationally consistent boundary conditions of the general case, the same procedure, 

previously explained, has to be followed. For sake of brevity, the same equations are not 

reported and the reader is addressed to Sect. 2 for details about the derivation of the 

equilibrium equations. 



 

 
 

 

 

 

 

 

 

Chapter 3 

Mixed Refined Zigzag Theory   

 

1. Introduction 

The most challenging purpose of any theory for multilayered composite and sandwich 

structures is to accurately model the arising transverse shear stress field. Above all, the 

importance of an accurate evaluation of transverse shear stresses is remarked by the role 

played by these stresses in the failure processes, like as delamination and debonding. This 

motivated several researchers to develop analytical and numerical models wherein 

attention has been focused on the transverse shear stresses [Kant et al., 2000].    

In order to accurately model the transverse shear stresses, a post processing technique in 

conjunction with an ESL or a Zigzag model is strongly required. In the open literature, 

several methods are suggested: a well established one is based on the integration of the 

local 3D equilibrium equations once the in-plane stresses have been estimated. This 

technique is not suited for a finite element implementation due to the presence of the 

derivatives of the in-plane stresses which require high-order shape functions to be 

computed. The order of the shape functions required by a post processing technique that 

integrates the equilibrium equations could be reduced by following the approach suggested 

by Rolfes et al. [Rolfes et al., 1998]: here, by neglecting the effect of the in-plane stresses 

resultants and by assuming a cylindrical bending in each plane, the transverse shear 
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stresses are expressed in terms of their force resultants, so reducing the order of the 

derivate.  

Beside this technique, several predictor-corrector approaches have been proposed. 

Based on the FSDT, Noor and Burton [Noor et al., 1989] employ the predictor-corrector 

approach to estimate the shear correction factors: in the predictor phase, the transverse 

shear stresses distribution coming from the constitutive equations and those resulting from 

integration of the equilibrium equations are used to compute the shear correction factors; in 

the corrector phase, an enhanced prediction of the stresses is reached due to the shear 

correction factors estimated in the previous step. In the framework of Zigzag theories, Lee 

and Cao [Lee et al., 1996] resort to a predictor-corrector approach: in the predictor step, the 

Di Sciuva’s linear zigzag model is used to obtain the transverse shear stresses by 

integration of the equilibrium equations; in the corrector phase, the transverse shear 

stresses computed serve to reconstruct an enhanced displacements and stresses field by 

using a higher-order zigzag model. The idea of using model of different order is also 

present in Cho and Kim [Cho et al., 1996]: by assuming an equivalence between  the shear 

strain energy computed with a lower order model and with another more accurate, relations 

between the kinematic variables of the two models are established. In this way, the 

predictor phase solve the problem with the lower order model, while in the corrector phase, 

more accurate solution is computed by means of the higher-order model making use of the 

relations set before.  

A novel post processing technique is suggested by Bhar and Satsangi [Bhar et al., 

2011]: this approach is based on a least square error method. Once the solution has been 

computed by means of an HSDT, it is possible to compute the error in the equilibrium 

equations assuming a piecewise parabolic approximation for the transverse shear stresses. 

The error is minimized with respect to the transverse shear stresses at the top and bottom 

surface of the layer and with respect to the shear stresses resultants. In this way, a set of 

two algebraic equations for each layer is achieved. By using the continuity conditions of 

the transverse shear stresses at the layer interfaces, the layer-based systems are assembled 

and solved in terms of shear stresses at interfaces.        

From the brief literature review above, it is clear that a post-process of the in-plane 

results or complex predictor-corrector strategies are necessary to provide accurate 

estimation of the transverse shear stresses. The desirable objective is to obtain accurate 

constitutive transverse shear stresses. A way to overcome the need of a post-processing 
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technique is to develop mixed approach based on the Reissner Mixed Variational Theorem 

[Reissner, 1950], wherein a stress field may be assumed independently from the 

displacement one. Thus, the stresses become, together with the displacements, primary 

variables in the analysis. Murakami [Murakami, 1986; Toledano et al., 1987], by assuming 

a quadratic approximation for the transverse shear stresses in each layer, was the first to 

develop a mixed model using a zigzag kinematics. In the framework of FSDT, Auricchio 

and Sacco [Auricchio et al., 2003] presented a model based on a more general mixed 

variational formulation. In the same work, Auricchio and Sacco compared two different 

strategies of modeling the transverse shear stresses: in the first one, the shear stresses are 

approximated by means of polynomials of the second order in the thickness coordinate; in 

the second one, the transverse shear stresses pattern is derived from the integration of the 

local equilibrium equations. In the framework of the Reissner Mixed Variational Theorem-

based models, remarkable is the work of Kim and Cho [Kim et al., 2007] wherein the 

FSDT is adopted as kinematics while the assumed transverse shear stress field derive from 

a higher-order zigzag model. By establishing a relation between the kinematic variables of 

the two models, the solution obtained by the mixed model is used in order to obtain a better 

description of displacements and stresses by means of the higher-order zigzag model. 

The objective of this Chapter is to develop a mixed Refined Zigzag Theory, RZT
(m)

, via 

the Reissner Mixed Variational Theorem. In particular, the RZT
(m)

 model assumes the RZT 

kinematics along with an independent transverse shear stress field, derived by using the 

strategy proposed by Tessler [Tessler, 2014], according to which the profile of the stresses 

derives from integration of the local equilibrium equations. To the best author’s  

knowledge, the idea of assuming in a mixed approach a transverse shear stresses field 

coming from the integration of the local equilibrium equations appears for the first time in 

[Auricchio et al., 2003]. From this point of view, the novelty in the Tessler’ strategy 

consists in a generalization of the procedure proposed in [Auricchio et al., 2003]. In fact, 

while in [Auricchio et al. 2003] the external surface loads are neglected, in [Tessler, 2014] 

the traction conditions at the top and bottom plate faces are satisfied also in the presence of 

external loads. The work done by Tessler [Tessler, 2014] is focused on the beam problems; 

recently, the RZT
(m)

 has been extended to the plate problems in [Iurlaro et al., 2013b], 

wherein slight modification of the original procedure is required to overcome some 

problems that may arise by adopting the Tessler’s strategy (see Sect. 3.2). In the 

framework of mixed approach, the most common assumption on transverse shear stresses 
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is the layer-wise polynomial one, introduced by Murakami [Murakami, 1986]. To be 

thorough, the Murakami’s assumption [Murakami, 1986] is briefly recalled. Moreover, by 

using a general formalism for the assumed transverse shear stresses, the derived RZT
(m)

 

equations hold true also by adopting the layer-wise polynomial assumption. 

2. Reissner Mixed Variational Theorem 

When the term mixed is used to denote a variational principle in Elasticity, it means that 

the principle assumes secondary variables as independent along with the primary variables. 

In other words, mixed means that the independent variables belong to different fields, for 

example displacements and stresses may represent the independent variables of a 

variational principle in Elasticity [Reddy, 2002]. 

The Reissner Mixed Variational Theorem, allowing independent assumption on 

displacements and transverse shear and normal stresses, is a special case of a more general 

principle for an elastic body, the Hellinger-Reissner one [Reddy, 2002]. The Reissner 

Mixed Variational Theorem is derived from the Hellinger-Reissner principle by assuming 

that strains are related with stresses by constitutive relations. The Reissner Mixed 

Variational Theorem is here briefly recalled. 

The total potential energy functional [Reddy, 2002] is given by 

  ˆ( , ) ( )i ij ij i i i i

V S

u W f u dV t u dS



       (3.1) 

where the Latin index take values 1,2,3 and  ( )ijW   is the strain energy density function,
if  

the body force vector component, 
iu  the displacement vector component and 

ît  the 

specified traction vector on boundary S  of the volume V occupied by the body.  

Now, the linear strain-displacement relations  

 
1

2
ij j i i ju u      (3.2) 

and the displacement boundary conditions on Su 

ˆ  i i uu u on S  (3.3) 

are introduced in the functional of Eq. (3.1) by means of the Lagrange’s multipliers method 

(in this case, for physical consideration, the Lagrange’s multiplier related with constraint in 
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Eq. (3.2) is the stress component, while that related with constraint in Eq. (3.3) is a traction 

vector component). The modified functional is defined    

   
1

( , , ) ( )
2

ˆ ˆ                    ( )

u

i ij ij ij i i ij ij j i i j

V V

i i i i i

S S

u W f u dV u u dV

t u dS t u u dS



    
 

         

  

 

 
 (3.4) 

According to Reissner’s hypothesis, the strains are related with stresses by a constitutive 

law 

( )
ijij c ijW    (3.5) 

where ( )c ijW   is the complementary strain energy density function; in this way the strain 

can be eliminated by Eq. (3.4) using Eq. (3.5). Moreover, the existence of a constitutive 

law leads to a relation between the complementary and the strain energy density function 

that reads as  

( ) ( )c ij ij ij ijW W      (3.6) 

 Introducing Eq. (3.6) into Eq. (3.4), the Reissner’s functional is obtained 

 
1

( , ) ( )
2

ˆ ˆ                 ( )

u

R i ij j i i j ij c ij i i

V

i i i i i

S S

u u u W f u dV

t u dS t u u dS



  
 

       
 

  



 
 (3.7) 

As consequence of Eq. (3.5), the strain components are given by [Kim et al., 2007] 

 

 
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z
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  

 

    

    





     

    

    

 (3.8) 

where C  are the elastic material coefficients. Moreover, the superscript a denotes the 

transverse strains derived from the complementary strain energy density function, that is 

from the assumed transverse shear and normal stresses, a

z and a

zz , in order to distinguish 

them from the same strains coming from displacements.  

Since the Reissner Mixed Variational Theorem assumes as independent variables the 

displacements and transverse stresses, the variation become 
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   

ˆ ˆ       ( )

u

a a a a a a

R ij ij z z zz zz z z zz zz i i

V

i i i i i

S S

f u dV

t u dS t u u dS



              

 

       
 

  



 
 (3.9) 

Rearranging Eq. (3.9), the variation of the Reissner functional appears as     

     

ˆ ˆ       ( )

u

a a a a a a

R z z zz zz z z z zz zz zz

V

i i i i i i i

V S S

dV

f u dV t u dS t u u dS



                  

  

        
 

   



  
 (3.10) 

The stationary condition of the functional, 0R  , gives the Euler-Lagrange 

equations, along with the boundary conditions, of the Reissner Mixed Variational 

Theorem. Among the Euler-Lagrange equations, two constraints of compatibility between 

the transverse shear and normal strains coming from the constitutive law and those derived 

by using the strain-displacement relations, appear. In formula 

0

0

a

z z

a

zz zz

  

 

 

 
 (3.11) 

3. RZT
(m)

 plate model: kinematics and transverse shear stresses  

A mixed RZT model, here quoted as RZT
(m)

, is developed via the Reissner Mixed 

Variational Theorem. In agreement with RZT model, the RZT
(m)

 neglects the transverse 

normal stress too, thus the variational statement on which the RZT
(m)

 model is based 

becomes 

    0a a a

R z z z z z e

V

dV W                     
   (3.12) 

where the inertial forces are neglected and eW  represents the virtual variation of the work 

done by external loads. With respect to Eq. (3.10), in Eq. (3.12) the boundary terms on Su 

and S  disappear since, analogously to the Virtual Work Principle, it is supposed that the 

body experiences a virtual displacement from the equilibrium configuration that is able to 

satisfy the geometrical and mechanical boundary conditions. 

The Reissner Mixed Variational Theorem requires independent assumption on 

displacements and transverse shear stresses. The RZT
(m)

 model assumes as kinematics that 

of the RZT model while the assumed transverse shear stresses are derived by a novel 
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procedure proposed by Tessler [Tessler, 2014] in the framework of mixed RZT for beams 

and here extended to the plate problem. The procedure proposed by Tessler [Tessler, 2014] 

is not the unique possibility: in the open literature, in fact, is common to adopt the 

transverse shear stress assumption introduced by Murakami [Murakami, 1986]. For 

completeness, both strategies are presented in the following. 

Regardless the type of assumption, formally, the assumed transverse shear stresses can 

be expressed as     

( ) ( ) ( ) ( )a z z f v n vτ Z f x Z n x  (3.13) 

where  1 2

T
a a a

z z τ  collects the assumed transverse shear stresses, the thickness 

coordinate dependent matrices, ( )z
f

Z and ( )z
n

Z , rule the stresses profile along the 

laminate thickness, ( )
v

f x contains stresses function of the in-plane coordinates, and the 

external surface traction are collected in  1 1 2 2( )
T

b t b tp p p pvn x .    

3.1. Polynomial assumption 

The use of polynomial approximation for the transverse shear stresses in a mixed-field 

formulation appears for the first time in [Murakami, 1986], and since then has been 

adopted by many investigators. For each material layer, a polynomial thickness distribution 

is assumed and is expressed as 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )
ka b k k t k k k k

z z b z t mF z F z T F z         (3.14) 

where ( )b k

z  and ( )t k

z  are the values of the transverse shear stresses at the bottom and top 

interface of the kth layer, respectively; ( )kT  stands for the average shear stress in the kth 

layer of thickness 2h
(k)

  

( )( )

( 1)

( )

( )

1

2

kk

k

z
k a

zk z
T dz

h
 



   (3.15) 

Moreover, the base functions used for the approximation in the thickness direction of 

the stresses in Eq. (3.14) are defined as  
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 

2

2

2

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

3 1 1
;  

4 2 4

3 1 1
;  

4 2 4

3
1

2

k k k

b

k k k

t

k k

m

F

F

F

 

 



  

  

 

 (3.16) 

where  ( ) ( ) ( ) [ 1; 1]k k k

mz z h      , ( )k

mz  representing the coordinate of the kth midplane. 

The formalism in Eq. (3.13) can be easily recovered by enforcing the traction conditions 

in Eq. (3.14) and the continuity conditions of transverse shear stresses at layer interfaces. 

Although the approximation in Eq. (3.14) is widespread in the open literature, Auricchio 

and Sacco [Auricchio et al., 2003] highlighted a serious drawback of this kind of 

assumption. In fact, when the number of stress variables increases, that is by increasing the 

number of layers, the compatibility term in the Reissner’s functional is enforced stronger 

and stronger leading the assumed stresses to fit with those coming from the kinematic 

assumptions yielding to no improvements or to highly non-smooth through-the-thickness 

distributions of the assumed transverse shear stresses.     

3.2. Equilibrium-based assumption 

Three-dimensional equilibrium equations of Elasticity are commonly used in an attempt 

to derive improved, layer interface-continuous transverse shear stresses. Auricchio and 

Sacco [Auricchio et al., 2003], motivating by the unsuccessful results provided by the 

polynomial assumption of transverse shear stresses, use an equilibrium-integration 

approach to derive transverse shear stresses for the FSDT-based plate analysis. Moreover, 

an ad hoc function has to be added to the integrated transverse shear stresses in order to 

satisfy the traction-free boundary conditions on the top bounding surface, whereas the 

bottom zero-traction condition was enforced a priori. 

Recently, Tessler [Tessler, 2014] presented a mixed-field formulation for RZT beams, 

which derives the transverse shear stress from the two-dimensional Elasticity equilibrium 

equations. A key step in the formulation is that the transverse shear stress is made to satisfy 

exactly the first (axial) equilibrium equation, and hence it satisfies a priori the top and 

bottom traction conditions of arbitrary distributions, including the special cases of zero-

traction conditions. The derived stress is also fully continuous along layer interfaces. The 

problem is reduced to replacing two second-order derivatives of the kinematic variables 

with two unknown stress functions that are determined using Reissner’s mixed-field 
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theorem.  

Herein, the Tessler’ methodology [Tessler, 2014] is used to derive the transverse shear 

stresses for the plate case. By neglecting the body forces, the first two equilibrium 

equations of Elasticity read as 

  ,          z z               (3.17) 

Integrating with respect to the z-coordinate and enforcing the traction conditions at the 

bottom plate surface (z=-h) yields 

  ,         

z

b

z

h

p dz         


       (3.18) 

In order to derive an expression of the transverse shear stresses in terms of RZT 

kinematic variables, the Hooke’s law and the linear strain-displacements relations are 

introduced in Eq. (3.18). In this way, after some straightforward manipulations, the 

transverse shear stresses involving eighteen second-order partial derivatives of the RZT 

kinematic variables, ,u   and 
 , are obtained. The high number of stress variables, that 

is of kinematic variables derivatives, can cause the same problems of inaccuracy 

experienced in [Auricchio et al., 2003] with the polynomial approximation of transverse 

stresses. To circumvent the over fitting deficiency, the simple strategy pursued herein is to 

simplify the expression of transverse shear stresses in terms of kinematic variables by 

adopting the cylindrical bending hypothesis. In this manner, each transverse shear stress is 

related only to the second order partial derivatives, with respect to the x  coordinate, of the 

kinematic variables ,u   and  . Thus, the integrated shear stresses become (see 

Appendix 1)  

( ) ( ) ( ) ( )

z z z

b k k k k

z

h h h

p C dz u zC dz C dz              
  

     
            

     
    (3.19) 

where a contracted notation (the Voigt-Kelvin notation) for the elastic coefficients, ( )kC , is 

adopted. 

In order to include in Eq. (3.19) the traction load applied on the top plate surface, tp , 

the integration is extended to the entire laminate thickness, obtaining    

( ) ( ) ( ) ( )t b k k k kp p C u zC C                      (3.20) 
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The Eq. (3.20) can be used to obtain the second order derivative  

 
1

( ) ( ) ( ) ( )k b t k k ku C p p zC C             

        
 

 (3.21) 

By introducing Eq. (3.21) into Eq. (3.19), the transverse shear stresses read as 

1 1
( ) ( ) ( ) ( )

1
( ) ( ) ( ) ( )

1
( ) ( ) ( ) ( ) ( ) ( )

1

        

        

z z

k k b k k t

z

h h

z z

k k k k

h h

z z

k k k k k k

h h

C C dz p C C dz p

C zC C dz zC dz

C C C dz C dz

      

     

       





  

 

 



 



 

   
      
   

 
   

 

 
  

 

 

 

 

 (3.22) 

The Eq. (3.22) represents the transverse shear stresses obtained by integration of the 

three-dimensional equilibrium equations and adopting the RZT kinematics. The procedure 

followed allows to identify the z-coordinate shape function that rule the profile of the 

equilibrium-based transverse shear stresses. It is worth to note that these shape functions 

depend only on the mechanical properties of the layers, thus they are known a priori once 

the lamination is set. 

For convenience, the shape functions are quoted as follows 

1 1
( ) ( ) ( ) ( )

1
( ) ( ) ( ) ( )

1
( ) ( ) ( ) ( ) ( ) ( )

( ) 1 ; ( )

( )

( )

z z

pb k k pt k k

h h

z z

k k k k

h h

z z

k k k k k k

h h

Z z C C dz Z z C C dz

Z z C zC C dz zC dz

Z z C C C dz C dz

     



    



       

 

 



 



 

  

 

 

 

 

 

 (3.23) 

and it is easy to note that the shape functions satisfy the following relations 

( ) 1; ( ) 0;

( ) 0;  ( ) 1;

( ) 0;  ( ) 0;

( ) 0; ( ) 0;

pb pb

pt pt

Z z h Z z h

Z z h Z z h

Z z h Z z h

Z z h Z z h

 

 

 

 

 

 

    

    

    

    

 (3.24) 

thus ensuring the fulfillment of the traction conditions at the bottom and top plate surfaces. 

The idea proposed by Tessler [Tessler, 2014] is to adopt these functions as base for the 

approximation of the assumed transverse shear stresses, that is 
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( ) ( ) ( ) ( )a pb b pt t

z Z z p Z z p Z z f Z z f   

              (3.25) 

where the second order derivatives that appear in Eq. (3.22) are substituted with stress 

variables, f 

  and f  , functions of the in-plane coordinates. It is worth to note that Eq. 

(3.25) exhibits the same formalism of Eq. (3.13), thus no manipulations are required to fit 

with Eq. (3.13). 

4. RZT
(m)

 governing equations and constitutive relations 

Herein, the problem of a laminated plate subjected to surface traction and transverse 

distributed loads is considered. Refer to Chapter 2 for the problem statement and the 

notation.  

The governing equations and the variationally consistent boundary conditions are 

derived by searching for the stationary condition of the functional (Eq. (3.12)) wherein the 

RZT kinematics is adopted and the assumed transverse shear stresses are those given in Eq. 

(3.25). Thus, the governing equations and the boundary conditions derive by setting the 

first variation of the Reissner’ functional 
R  equal to zero (Eq. (3.12)). The transverse 

shear stresses assumption does not involve kinematic variables, thus the vanishing 

condition of the Reissner’ functional can be decomposed as  

 

 

 0 

 0a

a

u R z z e

V

a a

R z z z

V

dV W

dV

   

  

     

   

     



   





 (3.26) 

where u and a
  denote the virtual variation of the functional with respect to the 

displacement components and assumed transverse shear stresses, respectively. Thus, Eq. 

(3.26) means that the solution of the stationary condition of the Reissner’ functional can be 

performed by substitution, that is, once the second line of Eq. (3.26) is solved, the result 

can be used to satisfy the first line of Eq. (3.26). Henceforth, second line in Eq. (3.26) is 

called the weak form of the compatibility constraint. 

Here, the solution of the weak form of the compatibility constraint follows. In order to 

make easier the derivation, the tensor notation is substituted with the matrix one. 

Consistent with the RZT
(m)

 kinematics, the transverse shear strains are given by  
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( ) ( )
1 1 1 11 1 1

( ) ( )
2 2 2 22 2 2

0

0

k k
z z z

k k
z z z

wU U

wU U

  

  

          
           

           
γ  (3.27) 

The transverse shear strains coming from the assumed transverse shear stresses are 

computed by reverting the Hooke’s law, that is 

1

2

a

za a

z





 
  
 

T
γ D τ  (3.28) 

where 1TD Q  represents the shear deformability matrix. 

The assumed transverse shear stress in Eq. (3.25) is arranged in the vector form given in 

Eq. (3.13). By using Eq. (3.25) in vector form, and Eq. (3.27) and (3.28), the weak form of 

the compatibility constraint becomes 

 
( )

1 1 11

( )
2 2 22

0
0

0

k

T

k

w

w

 


 

       
        

       
v f T f v n vf Z D Z f Z n  (3.29) 

where, for the arbitrary of the virtual variation, the integration over the body volume is 

substituted with the integration over the laminate thickness. Solving Eq. (3.29), the stress 

variables vector is obtained in terms of kinematic variables and surface traction applied 

loads 

( )
1 1 1 11

( )
2 2 22

1

0

0

      

k

T T T

k

T T

w

w

 

 





       
       

       
v f T f f f

f T f f T n v

f Z D Z Z Z

Z D Z Z D Z n

 (3.30) 

that can be written in a compact form 

1 1 1

2 2 2

n

w

w
 

 

 

   
     

    
v vf A A A n  (3.31) 

Introducing Eq. (3.31) into Eq. (3.13), the expression of the assumed transverse shear 

stresses able to satisfy the weak form of the compatibility constraint is derived  

 1 1 1

2 2 2

( ) ( ) ( ) ( ) ( )a

n

w
z z z z

w
 

 

 

   
      

    
f f n f vτ Z A Z A Z Z A n x  (3.32) 

It is convenient to further simplify Eq. (3.32) introducing the following definition  
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 ( ) ( ) ; ( ) ( ) ; ( ) ( ) ( )p nz z z z z z z      
f f n f

T Z A T Z A T Z Z A  (3.33) 

thus yielding  

1 1 1

2 2 2

( ) ( ) ( ) ( )a

p

w
z z z

w
 

 

 

   
     

    
vτ T T T n x  (3.34) 

Even if the RZT
(m)

 model assumes transverse shear stresses coming from integration of 

the three-dimensional equilibrium equations, Eq. (3.25), it is worth to note that the 

obtained equations hold true also if the polynomial layerwise assumption (Sect. 3.1) is 

kept, thanks to the general formalism, Eq. (3.13), adopted.  

Once the weak form of the compatibility constraint is solved, the governing equations 

and the variationally consistent boundary conditions derive from the first line of Eq. (3.26), 

that is 

   0a

z z e

V

dV W           (3.35) 

By using the assumed displacement field, the constitutive material law, the strain-

displacement relations and the assumed transverse shear stresses, Eq. (3.35) can be 

expressed in terms of the kinematic variables, after integration by parts 

    

  

 +

0

mS

e

C

N u M Q M Q Q w dS

N u M M N w Q w n d W



 

            



         

   

    

        

       




 (3.36) 

where n  denotes the direction cosine of the unit outward vector normal to C, with respect 

to the in-plane coordinate x . Moreover, the following membrane, bending and transverse 

shear stress resultants are introduced   

   

   

( ) ( )

( )

, , 1, , ( )

, 1, ( )

k k
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z z

N M M z z

Q Q z



    



   

 

 



 
 (3.37) 

The virtual variation of the work done by external loads read as 

 

 

( )

( ) (1)

( , )

 ( , ) ( ) ( , ) ( )

m
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k
ze z z

S S
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 

   

   

 

   

    

 



x

x x
 (3.38) 
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and introducing the displacement components definition, it can be expressed as 

 ( , ) ( , ) ( , )

m

e

S

n nn zn

C

W p t u m t q t w dS

N u M M V w d



   



    

   

   

   

    
  





x x x

 (3.39) 

where the force and moment resultants of the prescribed tractions  

   ( ), , , , , ,k
n n zn znN M M V T zT T T



       (3.40) 

and the resultants of the applied surface tractions 

 

t b

t b

p p p

m h p p

  

  

 

 
 (3.41) 

are introduced. Finally, the linear governing equations of RZT
(m)

 plate model are obtained  

:  0

:   0

:  0

:     0
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 
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  
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   
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 (3.42) 

along with the variationally consistent boundary conditions 

on or on 

on or Q on 

on or on 

on or on 
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 
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 

 

 

 

 

 

 (3.43) 

 It is worth to note that the governing equations of RZT
(m)

 model are equal to those of 

the linear RZT model [Tessler et al., 2010]. The membrane, bending and shear force and 

moment stress resultants are defined as 

   

 

 

   

( ) ( ) ( )

1 2 12 11 22 12

1 1 2 2 12 12 21

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

11 1 11 22 2 22 12 1 12 2 12

( ) ( )

2 2 1 1 2 2 2 1 1 1

, , , ,

, , , , , ,

, , , , , ,

, , , , , ,

T k k k

m

T

b

k k k k k k k k k k k

T a k a a k a

s z z z z

N N N

M M M M M M M

z z z

Q Q Q Q

   

 

  

          

     

 

 

 

N

M

Q

 (3.44) 
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Since the transverse shear stress assumption does not affect the in-plane behavior, the 

membrane and bending force and moment stress resultants are equal to the RZT ones, that 

is 

m m

T

b b

    
    
    

N eA B

M eB D
 (3.45) 

where the stiffness matrices are, analogously to RZT, defined as 

( )

1

( )

2

( ) ( )

1 2

 ;  ; ; 

0 0 0 0 0

0 0 0 0 0 ; 

0 0 0 0

T

k

k

k k

z

z

z

  







 

  

 
 

  
 
 

A C B CΒ D Β CΒ

Β
  (3.46) 

while the linear membrane and bending strain measures defined, respectively, as 

 

 

1 1 2 2 2 1 1 2

1 1 1 1 2 2 2 2 2 1 1 2 2 1 1 2

,  ,  

,  ,  ,  ,  ,  ,  

T

m

T

b

u u u u

       

     

         

e

e
  (3.47) 

The shear force resultants are, in this model, obtained by integration of the assumed 

transverse shear stresses, that can be arranged in the following form 

( ) ( ) ( )a

s pz z 
v

τ T e T n x   (3.48) 

where the shear measure and the shape functions matrix are   

 1 1 2 2 1 2

( ) ( ) ( )

, , ,

a

s p

s

z z

w w



  

   

 

   

    

v
τ T e T n x

T T T

e

  (3.49) 

Thus, by integrating the assumed transverse shear stresses, the shear force resultants 

appear 

( )

2

( )

1

( ) ( )

0 0 1

1 0 0

T a T T

s s p s

k

k

z z   







    

 
  
 

v n v
Q B τ B T e B T n Ge G n

B
  (3.50) 

Finally, the constitutive relations can be arranged in the following form 
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m m

T

b b

s s

      
             
            

v

n

N A B 0 e 0

M B D 0 e 0 n

Q 0 0 G e G

 (3.51) 

It is worth to note that, with respect to the RZT model, the RZT
(m)

 introduces an 

additional shear stiffness matrix n
G , related with the surface traction loads v

n , while the 

shear stiffness matrices related with the kinematic variables, G , are computed not using 

the material constitutive law, that is by using the elastic material coefficient, but using Eq. 

(3.34) that could be considered as a modified constitutive law consistent with the 

transverse shear stresses assumption. 

Appendix 1. RZT integrated transverse shear stresses 

Herein, the way to obtain Eq. (3.19) starting from Eq. (3.18) is elucidated. 

The constitutive material law, given in Eq. (2.13) is here recalled 

( ) ( ) ( )k k kC     (A1.1) 

where 
( )kC  are the transformed elastic stiffness coefficients referred to the (x,z) 

coordinate system and relative to the plane-stress condition, and 
( )k

  the strain 

components. According to Eq. (A1.1), the in-plane normal and shear stresses read as 

( ) ( ) ( ) ( ) ( ) ( ) ( )

11 11 11 22 22 16 12

( ) ( ) ( ) ( ) ( ) ( ) ( )

22 21 11 22 22 26 12

( ) ( ) ( ) ( ) ( ) ( ) ( )

12 16 11 26 22 66 12

;

;

=   

k k k k k k k

k k k k k k k

k k k k k k k

C C C

C C C

C C C

   

   

   

  

  

 

 (A1.2) 

wherein the full-index notation is adopted. According to the cylindrical bending 

assumption in the (x1,z)-plane, the stresses in Eq. (A1.2) become 

 ( ) ( ) ( ) ( ) ( )

11 11 11 11 1 1 1 1 1 1 1

( ) ( )

22 120;   = 0  

k k k k k

k k

C C u z    

 

      


 (A1.3) 

where the strain is expressed in terms of the kinematic variables by using the linear strain-

displacement relations. Similarly, the cylindrical bending in the (x2,z)-plane leads to   

 ( ) ( ) ( ) ( ) ( )

22 22 22 22 2 2 2 2 2 2 2

( ) ( )

11 120;   = 0  

k k k k k

k k

C C u z    

 

      


 (A1.4) 

Thus, using a contract notation, Eq. (A1.3) and Eq. (A1.4) are formally condensed in 
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 ( ) ( ) ( )

( ) ( )0;   = 0  

k k k

k k

C u z        

 

   

 

     


 (A1.5) 

and Eq. (A1.5) can be used to treat the cylindrical bending assumption in the  ,x z  plane. 

 By substituting Eq. (A1.5) in Eq. (3.18), the transverse shear stress, obtained by 

integration of the local 3D equilibrium equations and under the cylindrical bending 

assumption, reads as 

 ( ) ( ) ( ) ( ) ,         

z

b k k k k

z

h

p C u zC C dz                


          (A1.6) 

and, after some manipulations, the transverse shear stress becomes 

( ) ( ) ( ) ( )

z z z

b k k k k

z

h h h

p C dz u zC dz C dz              
  

     
            

     
    (A1.7) 

 



 



 

 
 

 

 

 

 

 

 

Chapter 4 

(3,2)-Mixed Refined Zigzag Theory   

 

1. Introduction 

The increasing use of composite and sandwich materials for primary load-bearing 

components in the form of thick multilayered beam/plate/shell-like structures, requires 

accurate stress prediction in order to achieve reliable design. The plane stress assumption, 

on which the majority of plate models are based, ceases to be valid when the laminate 

thickness increases thus yielding to a fully three-dimensional stress field. Moreover, the 

increasing thickness affects the distribution along the z-coordinate of the in-plane 

displacements that stop to be piecewise linear along the laminate thickness assuming a 

higher-order pattern even within each single layer. 

From these observations, it appears clear that a model suitable for the analysis of thick 

laminates has to be able to account for a non-linear distribution of in-plane displacements 

along the thickness of each layer and the transverse normal deformability effect. 

In the past, extensive efforts were devoted to the development of higher-order plate 

theories including the transverse normal deformability effect. In the framework of ESL 

models, the {m,n}-order models proposed by Tessler and co-workers [Tessler, 1993; Cook 

et al., 1998; Barut et al., 2001] deserve special mention. The {m,n} notation indicates the 

order of the polynomial assumption for the in-plane displacements (m) and transverse one 
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(n). Moreover, in [Tessler, 1993; Cook et al., 1998; Barut et al., 2001] the assumptions 

involve also the transverse shear strains and the transverse normal stress, adopting a 

smeared parabolic distribution and a cubic one, respectively. The strains and stress 

assumptions are subjected to the Elasticity-based equilibrium conditions of zero transverse 

shear stresses and zero-value transverse normal stress gradient, at the top and bottom plate 

surface. Moreover, in order to further reduce the number of variables, least-squares 

compatibility constraint between the strains coming from the displacement field and those 

coming from the assumed strains or stress is enforced. However, due to the smeared 

approximation of in-plane displacements, the {m,n}-order plate models [Tessler, 1993; 

Cook et al., 1998; Barut et al., 2001] suffers from a not accurate description of 

displacements distribution along the thickness of a multilayered structures.  

The early enhancement of the zigzag model kinematics is attributed to Di Sciuva [Di 

Sciuva, 1992] which developed a cubic zigzag model able to satisfy the interlaminar 

continuity conditions on transverse shear stresses. The cubic Di Sciuva’s model [Di Sciuva, 

1992] postulates a constant transverse displacement and is based on the plane stress 

hypothesis, thus neglecting the transverse normal deformability. A remarkable contribution 

to the early developments of cubic zigzag model is addressed to Cho and Parmenter [Cho 

et al., 1993]. In the context of higher-order zigzag models, it is worth to mention the work 

done by Icardi [Icardi, 2001b], wherein a piece-wise cubic and a piece-wise fourth-order 

assumption for in-plane and transverse displacements, respectively, is done. Interlaminar 

continuity conditions on transverse shear stresses are enforced along with continuity 

requirements on transverse normal stress and its gradient, whereas traction conditions are 

enforced at the top and bottom plate surfaces along with zero-value transverse normal 

stress gradient. Recently, Tessler and co-workers [Barut et al., 2012; Barut et al., 2013] 

enrich the RZT kinematics adding a piece-wise parabolic contribution to the in-plane 

displacements description and assuming a smeared parabolic distribution for the transverse 

displacement. The transverse normal stress is independently assumed through the thickness 

in the form of a smeared cubic polynomial involving two stress variables. Subsequently, 

the stress variables are expressed in terms of the kinematic ones by satisfying a least-

square statement. Finally, the governing equations and the variationally consistent 

boundary conditions are derived by the Virtual Work Principle. 

In this Chapter, a mixed higher-order zigzag model, quoted as 
(m)

(3,2)RZT , is developed via 

the Reissner Mixed Variational Theorem. The assumed kinematics postulates a piece-wise 
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cubic distribution along the laminate thickness of in-plane displacements and a smeared 

parabolic pattern for the transverse one. The assumed transverse shear stresses are derived 

with the aid of the local three-dimensional equilibrium equations whereas the assumed 

transverse normal stress is smeared cubic along the thickness as suggested by the Elasticity 

solution.    

2. Reissner Mixed Variational Theorem 

The variational statement by means the 
(m)

(3,2)RZT  model is formulated is the Reissner 

Mixed Variational Theorem in the complete form, that is taking into account also the 

transverse normal stress 

   

                   0

a a a a

z z zz zz z z z

V

a a

zz zz zz edV W

              

   

     


  



  (4.1) 

where We represents the work done by the applied load.  

Similarly to the RZT
(m)

 model, the solution procedure of the variational statement can 

be performed by splitting the contribution as follows 

 

 

 

 0

 0

 0

a a

z z zz zz e

V

a a

z z z

V

a a

zz zz zz

V

dV W

dV

dV

   

  

      

  

  


   




 



 









  (4.2) 

The weak form of the compatibility constraint on the assumed transverse shear and 

normal stresses, second and third line of Eq. (4.2), can be solved separately due to the 

independence of the stress assumption from the kinematic variables. Thus, once the 

assumed stress profile is stated, the weak form of the compatibility constraint can be 

solved. Successively, the first line of Eq. (4.2) is fulfilled by using the solution of the 

second and third line of Eq. (4.2). 

In what follows, the assumed kinematics is presented and the procedure for the 

definition of a novel zigzag function explained. Moreover, the assumed transverse normal 

stress is stated and the weak form of the compatibility constraint solved. This result is 

firstly used in the derivation of the assumed transverse shear stresses, due to the coupling 

produced by the mixed form of the Hooke’s law between in-plane stresses and transverse 
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normal one, and finally involved, along with the solution of the compatibility constraint on 

transverse shear stresses, in the fulfillment of the first line of Eq. (4.2). 

3. Higher-order zigzag kinematics 

Consider a laminated plate of uniform thickness 2h with N perfectly bonded orthotropic 

layers, of thickness 2h
(k)

, as shown in Figure 4.1. The orthogonal Cartesian coordinate 

system (x1,x2,z) is taken as reference where the thickness coordinate z ranges from -h to +h. 

The middle reference plane (or midplane) of the plate, Sm , is placed on the (x1,x2)-plane. 

The plate is bounded by a cylindrical edge surface, S, constituted by two distinct surfaces, 

Su and Ss on which the geometrical and mechanical boundary conditions are enforced, 

respectively. Moreover, the intersection of the surface S and of the (x1,x2)-plane is the 

curve C which represents the perimeter of the midplane, Sm. As for the edge surface, the 

curve C is composed by two distinct curves, Cu and Cs, originated by the intersection of Su 

and Ss 
with the (x1,x2)-plane, respectively. Finally, St and Sb represent the top and bottom 

external surfaces of the plate (at z= h and z= −h), respectively. The plate represented in 

Figure 4.1 is subjected to a transverse pressure loads, applied on Sb and St, to surface 

tractions, acting on the top, St, and on the bottom, Sb, surface and to traction stresses, 

prescribed on Ss. 

 

Figure 4.1 General plate notation. 

z
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2, 2
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Even if not already published, the higher-order kinematic assumptions for the in-plane 

displacements have been formulated by Gherlone and Tessler. In this Thesis, those 

assumptions are enriched with a through-the-thickness parabolic distribution of the 

transverse displacement. According to that kinematics, the orthogonal components of the 

displacement vector read as 

  2 3 ( )( , ) ( , ) ( , ) ( , ) ( ) ( , )

( ) ( , ) ( ) ( , ) ( ) ( , )

( , , )

( , , ) 

k

w w w

b b t t a

k

z

u t z t z t z t z t

H z w t H z w t H z w t

U z t

U z t

            





 

 x x x

x

x x

x x

x

x   
(4.3) 

where the superscript (k) is used to denote quantities corresponding to the kth lamina and t 

represent the time variable. The subscript 1,2   denotes the component of the 

displacement vector along the x - coordinate axis while the notation  1 2,x xx  has been 

used.  

The kinematic assumption in Eq. (4.3) is an enrichment of a RZT-like displacement 

field: the in-plane displacements, ( )kU , are given by the superposition of the RZT-like in-

plane displacements and a smeared quadratic and a cubic contribution. Thus, the , ,u     

and ( )k

 represent, respectively, the uniform in-plane displacement, the rotation along the 

  axis, the zigzag amplitude and the zigzag function, that is different from that of the 

RZT and will be later defined (Sect. 3.1). The   and   are regarded as additional 

kinematic variables accounting for the actual distortion of the normal in a thick plate. 

Instead, the transverse displacement, zU , is assumed to vary in an ESL-view quadratically 

along the thickness direction. Thus, ,b tw w  are the bottom and top transverse 

displacements, respectively, whereas the average transverse displacement and the base 

functions used in the approximation are defined as     

2

2

2 2

2 2

1 1 1 3
( ) ; ( )  

2 4 2 4

1 1 3 3 3
( )  ( )  

4 2 4 2 2

w

z b

w w

t a

w U z H z z z
h h h

H z z z H z z
h h h

    

     

  (4.4) 

The (3,2)-order zigzag kinematics in Eq. (4.3) involves 13 unknown variables, 

independent on the number of layers. In order to reduce the computational cost also in the 

view of a finite element implementation, the kinematics can be condensed introducing a 

novel zigzag function, piecewise cubic, thus yielding to the following reduced kinematics 
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  ( )( , , )

( , , ) 

( , ) ( , ) ( ) ( , )

( ) ( , ) ( ) ( , ) ( ) ( , )

k k

w w w

b b t t az

u t z t z tU z t

U H z w t H z w t H z wz tt

        

 

x x xx

xx x x   
(4.5) 

where ( )( )k z  represents the novel third-order zigzag function. 

3.1. Derivation of the zigzag function 

Consistent with the assumed kinematics (Eq. (4.3)) and by using the strain-displacement 

relations and the constitutive material law, the transverse shear stress read as 

 ( ) ( ) ( )k k k

z z zQ U U          (4.6) 

By introducing the strain measure zU        , the transverse shear stress in 

Eq. (4.6) can be rearranged in the following form  

 ( ) ( ) ( ) ( ) 2 ( ) ( )1 2 3k k k k k k

z z zQ Q z z Q                         
 

  (4.7) 

Similar to the RZT, the conditions by means of which is possible to define the zigzag 

function are enforced on the zigzag-dependent contribution of the transverse shear stress, 

( )k

z , and considering only the diagonal contribution, that is for   . The conditions 

require (i) the zero-value of ( )k

z  at the top and bottom plate surface, that is  

 ( ) ( ) 21 2 3 0k k

z
z h

Q z z       


     
 

  (4.8) 

By solving Eq. (4.8), the additional kinematic variables,   and  , are expressed in 

terms of the RZT degrees of freedom 

( ) (1)

0

( ) (1)
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 
 

 
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 
   

 
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   
   

    
   

  (4.9) 

Substituting Eq. (4.9) into Eq. (4.7), it is then enforced the condition (ii): the continuity 

condition at layer interfaces of the zigzag dependent transverse shear stress, ( )k

z , that is   

 

 

( 1)

( )

( ) ( ) 2

0 0

( 1) ( 1) 2

0 0

1 2 3

                       1 2 3
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Q z z
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 

 

  

  



 
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 
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 

  (4.10) 
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It is worth to note that Eq. (4.10) supplies N-1 conditions, equal to the layer interfaces, 

whereas, in order to completely define the zigzag contribution, N+1 conditions are 

required. Thus, two conditions remain to enforce. 

Finally, by introducing Eq. (4.9) into Eq. (4.3), the displacements field read as 

   2 3 ( )

0 0( , ) ( , ) ( ) ( , )

( ) ( , ) ( ) ( , ) (

( , , )

( , ( , )) ),

k

w w w

b b tz t a

k
u t z t z z z tU z t

H z w t H z w t H zU z t w t

           

  

 x x x

x x

x

xx   
(4.11) 

and the novel zigzag function can easily be identified  

   2 3 ( )

0 0( ) ( )kk
z z zz         (4.12) 

In order to completely define the zigzag function, conditions (iii) are fulfilled: the 

vanishing condition of the zigzag function at the top and bottom plate surface, that is 

   1
( ) ( ) 0

N
h h       (4.13) 

4. Assumed transverse stresses  

The assumed transverse stresses are continuous along the thickness and able to satisfy 

the traction conditions at the top and bottom plate surface. Two different approaches are 

employed in the approximation of the assumed transverse shear and normal stress. In the 

following, the two strategies are explained.     

4.1. Transverse normal stress 

The already cited models [Tessler, 1993; Cook et al., 1998; Barut et al., 2001], wherein 

the transverse normal stress is introduced, assumed a smeared cubic profile of transverse 

normal stress being inspired by the Elasticity solution. In agreement with this observation, 

the transverse normal stress is postulated smeared cubic, thus represented as a power series 

up to third order 

3

0

a k

zz k

k

a z


   (4.14) 

  In order to get a transverse normal stress able to satisfy the traction conditions at the 

top and bottom plate surface, the equilibrium conditions are enforced, that is 
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  (4.15) 

By solving conditions in Eq. (4.15), a two-parameter assumption on the transverse 

normal stress is obtained  

   

2 2 3 2

( ) ( )
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1 1
( ) / 1 / 1
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 
    

V zP q L q

P

L

  (4.16) 

where  1 2

T

v vq qvq  is the unknown stress vector and  
T

b t

z zq qzq  collects the 

transverse pressure loads applied at the bottom and top plate surface.  

Once the assumed transverse normal stress is defined, the weak form of the 

compatibility constraint is solved, that is  

  0a a

zz zz zz      (4.17) 

where the integral over the body volume is replaced by the integral over the laminate 

thickness in virtue of the arbitrary virtual variation of the stress variables. 

 Consistent with the assumed kinematics, Eq. (4.5), the transverse normal strain reads as 

( ) ( ) ( )w w w

zz z z z b b z t t z aU H z w H z w H z w         (4.18) 

whereas the transverse normal strain coming from the assumed transverse normal stress is 

computed reverting the Hooke’s law, that is  

( ) ( ) ( )

33 33

a k a k k

zz zzS S R       (4.19) 

By introducing Eq. (4.18) and Eq. (4.19) into Eq. (4.17), the weak form of compatibility 

constraint reads as  

( ) ( ) ( ) ( )

33 33 33

( ) ( ) ( ) ( )

     ( ) ( ) =0   

T T w w w

z b b z t t z a

k k k k
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     

   

V

V z

q P

P q L q
  (4.20) 

with solution  
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  (4.21) 

where the z-coordinate dependence is omitted for the sake of brevity. 

The assumed transverse normal stress able to fulfill the weak form of the compatibility 

constraint is obtained by introducing Eq. (4.21) into Eq. (4.16) 
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  (4.22) 

In order to simplify the notation, the assumed transverse normal stress can be arranged 

in the following form  
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  (4.23) 

where the definition of the shape functions can be inferred by comparing Eq. (4.22) with 

Eq. (4.23).  

4.2. Transverse shear stresses 

The assumption on the transverse shear stresses follows the same procedure employed 

in the development of the RZT
(m)

 model, that is by integration of the three-dimensional 

equilibrium equations. In this way, a continuous across the thickness distribution of 

transverse shear stresses able to satisfy the traction condition at the bottom plate surface is 

obtained. As in the RZT
(m)

 model, by substituting the second order derivatives of a 

kinematic variable, the tangential load applied at the top is introduced yielding to assumed 

continuous transverse shear stresses able to satisfy the traction condition also at the top 

plate surface. Moreover, in order to circumvent over fitting problems, the cylindrical 
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bending assumption is adopted here. 

By neglecting the body forces, the first two Elasticity equilibrium equations, under the 

cylindrical bending assumption, read as  

z z        (4.24) 

Integrating with respect to the z-coordinate and enforcing the traction conditions at the 

bottom plate surface yields 

z

b

z

h

p dz    


      (4.25) 

According to the mixed form of Hooke’s law, the in-plane stress, under the cylindrical 

bending assumption, is given by 

( ) ( ) ( )

33
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zzC S R         (4.26) 

Similarly to the RZT
(m)

 model (see Chapter 3), by introducing Eq. (4.26) into Eq. (4.25) 

and by using the strain-displacement relations and Eq. (4.23), the transverse shear stresses 

read as 
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  (4.27) 

Integration is extended up to the top plate surface, in order to derive a relation of the 

second order derivative of the uniform in-plane displacement taking into account also the 

surface loads applied at the top
 
 

 
1

( ) ( ) ( )

33

( ) ( ) ( )

33

( ) ( ) ( ) ( )

33

( ) ( ) ( ) ( )

33 33

               

               

               

         

k k k u t b

k k k

k k k k

k k w k k w

b b t t

u C S R A p p

zC S R A

C S R A

S R A w S R A w

      



    



     

   



 


     


  

  

   

( ) ( ) ( ) ( )

33 33      

 

k k w k k

aS R A w S R   
  


qz

zA q

  (4.28) 



Chapter 4 – (3,2)-Mixed Refined Zigzag Theory 

 
 

61 
 

Subsequently, Eq. (4.28) is introduced in Eq. (4.27) yielding to a transverse shear stress 

expression that, in a tense notation, reads as 
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  (4.29) 

where the z-coordinate shape function, defined in Eq. (4.30), fulfill the vanishing condition 

at the top and bottom plate surface with except for ( )pbZ z  and ( )ptZ z  that assume zero  

and unit value in order to satisfy the traction condition at the external laminate surfaces. 
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Integration of the local equilibrium equations allows to identify z-coordinate shape 

functions that could be involved in the approximation of the assumed transverse shear 

stresses. The second order derivatives in Eq. (4.29) are substituted with unknown stresses 

function of the in-plane coordinates, thus the assumed transverse shear stresses read as 

( ) ( ) ( ) + ( )

         ( ) ( ) ( ) + ( )

a pb b pt t

z

wb wb wt wt wa wa qz

Z z p Z z p Z z f Z z f

Z z f Z z f Z z f z

   

        

       

    

   zΖ q
  (4.31) 

Once the assumed transverse shear stresses are defined, the weak form of the 

compatibility constraint can be solved and the result used, coupled with Eq. (4.23), in the 

solution of the first line of Eq. (4.2). 

Firstly, the weak form of the compatibility constraint is solved. Here, to make easier the 

derivation, the tensor notation is substituted with matrix one 

  0
Ta a  τ γ γ   (4.32) 

where the integration over the body volume is substituted with integration over the 

laminate thickness in virtue of the arbitrary virtual variation. By using the strain-

displacement relations and consistent with the assumed kinematics, Eq. (4.5), the 

transverse shear strains read as  
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  (4.33) 

while the transverse shear strains coming from the assumed stresses, derives by reverting 

the Hooke’s law  
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The assumed transverse shear stresses in Eq. (4.31) can be arranged in a matrix form as 
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where the matrix shape function can be easily identified by comparing Eq. (4.31) with Eq. 

(4.35), and v
n is the vector containing the tangential loads, as defined in Chapter 3. 

By introducing Eq. (4.33), (4.34) and (4.35) into Eq. (4.32), performing the variation   
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and solving with respect to the stress unknowns vector 
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(4.37) 

In a more convenient compact form, Eq. (4.36) reads as  
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Finally, by using the solution of the weak form of the compatibility constraint, Eq. 

(4.38), into Eq. (4.35), the assumed transverse shear stresses are arranged in the form 
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where are used the following definitions  
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  (4.40) 

5. Governing equations and constitutive relations 

According to the Reissner Mixed Variational Theorem, the equations governing the 

elastostatic behavior and the variationally consistent boundary conditions are derived by 

solving  
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 By using the strain-displacement relations and performing the integration by parts, the 

first contribution at the left-hand side of Eq. (4.41) reads as 
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  (4.42) 

where n  denotes the direction cosine the unit outward vector normal to C, with respect to 

the in-plane coordinate x . Moreover, the following membrane, bending and transverse 

shear stress resultants are introduced    
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  (4.43) 

The variation of the work done by the external loads reads as 
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By introducing the equivalence among the surfaces t b mS S S   and the assumed 

kinematics, the variation of the external work becomes  
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Using the definition 
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and introducing the force and moment resultants of the prescribed tractions  
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the virtual variation of the external work appears 
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  (4.48) 

By equating Eq. (4.42) and (4.48), the linear governing equations are derived 
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along with the variationally consistent boundary conditions 
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The model constitutive relations come by expressing the stresses in terms of the 

kinematic variables in Eq. (4.43) and by using the definition of the assumed transverse 

shear and normal stresses as derived after fulfillment of the weak form of the compatibility 

constraint, that is Eq. (4.23) and (4.39). To ease the derivation, firstly the assumed 

transverse normal stress is rewritten in a more convenient form, that is  

( ) ( ) + ( ) ( )a
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  (4.52) 

while the shape function matrices ( ), ( ), ( )m b wz z zA A A derive by comparing Eq. (4.51) 

with Eq. (4.23). The membrane, bending and normal stress resultants are collected as 
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 while the shear stress resultants are   
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Consequently, the constitutive equations appear as 
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  (4.55) 

where the transverse shear strain measure vector is  

 1 2 1 2 1 2 1 2 1 2, , , , , , , , ,
T

s b b t tw w w w w w         e   (4.56) 

with the stiffness matrices defined as 
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6. Thermo-mechanical beam model 

In this paragraph, the (m)

(3,2)RZT
 
model for the beam problem is introduced. The purpose is 

double: firstly, the relations that are derived in this paragraph are required for the finite 

element implementation that will be introduced in Chapter 5; secondly, the coupling 

between mechanical and thermal loads on the governing equations is assessed on a simpler 

case. Since the previous paragraphs are devoted to a detailed description of the (m)

(3,2)RZT  

model, the discussion of this section will be briefly and some details will be omitted. 

Consider a beam of length L, and cross-section with area A = 2h x b made of N 

orthotropic layers perfectly bonded together. The beam is located in a Cartesian coordinate 

reference frame (x1,x2,z), where x1 denotes the beam longitudinal axis, and z is referred to 

the thickness coordinate (see Figure 4.2). 

Moreover, the beam is subjected to forces for unit length applied at the top and bottom 

surface (see Figure 4.3). Furthermore, the beam is subjected to prescribed axial and shear 

tractions acting on the two end cross-sections. 
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Figure 4.2 Beam geometry and reference frame. 

 

Figure 4.3 General beam notation. 

Consistent with the (m)

(3,2)RZT  model, the assumed kinematics for the axial and the 

transverse displacement reads as 
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(4.59) 

The assumed transverse normal stress is continuous along the beam thickness and able 

to satisfy the traction conditions at the top and bottom beam surface 
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where v
q  is the unknown stress variables and z

q  collects the forces for unit length applied 

at the bottom and top surface. 

Similar to the plate model, the weak form of the compatibility constraint 

  0a a

zz zz zzb       (4.61) 

has to be satisfied. By introducing the assumed transverse normal stress, Eq. (4.61), and 

using the strain-displacement relations accounting for the thermal field (see Preliminaries) 

along with the assumed kinematics, Eq. (4.61) becomes  
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where  1,T x z  denotes the temperature distribution. The equation is solved in terms of 

the unknown stress variables, that is 
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  (4.63) 

where the temperature field is assumed to be written as      1 1,T x z T x T z    . 

Finally, the unknown stress variables vector, Eq. (4.63), is introduced in the assumed 

transverse normal stress, Eq. (4.61)  
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where the z-coordinate shape functions are introduced, similar to plate model.  
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The assumed transverse shear stress is approximated to vary along the thickness by 

adopting the z-coordinate shape functions that derive by integration of the local 

equilibrium equations, that is 
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By using the constitutive material law, Eq. (4.65) becomes 
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Again, integration is extended up to the top surface and the traction condition satisfied 
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Eq. (4.67) is used to obtain the second-order derivative of the uniform axial 

displacement in terms of the other kinematic variables derivatives and the external applied 

loads    
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By introducing Eq. (4.68) into Eq. (4.66), the z-coordinate shape functions that rule the 

pattern along the thickness of the transverse shear stress appear. In tense notation, the shear 

stress coming from integration of the three-dimensional equilibrium equations reads as 

   
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where   ( ) ( ) ( ) ( )

33 11 33 11( ) ( )T k k T k kf z S R A z S T z    .  

As for the plate model, the shape functions of the integrated transverse shear stress are 

used as base for the transverse shear stress assumption, that is 
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where , , , ,w w w

b t af f f f f 
 are unknown stress variables and the meaning of ( )TZ z

is 

easily derivable by comparing Eq. (4.70) with Eq. (4.69). In order to make easier the 

derivation, the Eq. (4.70) is arranged in matrix notation  
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where the unknown stress variables are collected in v
f .    

Once the assumed transverse shear stress is advanced, the weak form of the 

compatibility constraint has to be fulfilled  
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By introducing Eq. (4.70), and by expressing the shear strains coming from the assumed 

kinematics and that from the assumed transverse shear stress, Eq. (4.72) becomes 
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Solving for the unknown stress variables vector, it is obtained   
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Stress variables vector is now introduced in Eq. (4.71) and the assumed transverse shear 

stress able to satisfy the weak form of the compatibility constraint reads as 

1 1 1 1 1 1

1 1 1

( ) ( ) ( ) ( ) ( )

        ( ) + ( ) ( ) ( )

a w w w

z b b t t a

p q T

T z T z T z w T z w T z w

z z T z T x

   



        

   v zT n T q
  (4.75) 

The governing equations and the variationally consistent boundary conditions related 

with the beam problem (Figure 4.3) are derived by solving the remaining part of the 

Reissner Mixed Variational Theorem, that is 
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By using the strain-displacement relations coupling with the constitutive material law 

and consistent with the assumed kinematics, integration by parts leads to the governing 

equations 
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and the variationally consistent boundary conditions  
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where the resultants of the prescribed traction applied in 1 0,x L  read as 
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It is worth to note that Eq. (4.77) hides, under the stress resultants, the dependence on 

the temperature variation. In order to revel that, the constitutive relations and the stress 

resultants are shown. Consistent with notation in Eq. (4.52) and Eq. (4.56), the strain 

measures are defined as 
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The membrane, bending, normal and shear stress resultants are  
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According to Eq. (4.80) and Eq. (4.79), integrating the stresses over the cross-section 

area, the constitutive relations appear 
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where the stiffness matrices are defined as 
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and the following definitions are introduced 
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Chapter 5 

Finite Elements Formulation   

 

1. Introduction 

The formulations of beam/plate/shell finite elements based on zigzag theories abound in 

the open literature. In the framework of the Refined Zigzag Theory, several researchers 

have recently developed finite elements achieving interesting results. Two RZT-based 

beam elements were developed, almost simultaneously, by Gherlone et al. [Gherlone et al., 

2011] and Oñate et al. [Oñate et al., 2010]. As demonstrated by Gherlone [Gherlone et al., 

2011], the RZT-based beam element suffers for the shear locking phenomenon, a 

deficiency that affects the isoparametric elements and consisting in an erroneous 

overestimation of the transverse shear stiffness. In open literature, several solutions have 

been proposed to address the shear locking deficiency [Reddy, 1997]. Although the 

underlying theory is the same, the two RZT beam elements [Oñate et al., 2010; Gherlone 

et al., 2011] have different peculiarities as result of two different approaches adopted to 

circumvent the shear locking. Gherlone et al. [Gherlone et al., 2011] adopted the 

anisoparametric interpolation scheme, as proposed by Tessler et al. [Tessler et al., 1981] 

for the shear locking suppression, yielding to a 3-nodes/9-dof’s beam element. The 

anisoparametric interpolation requires that the bending degree of freedom, typically the 

bending rotation, is approximated with the linear Lagrange polynomials whereas the 
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deflection degree of freedom (the transverse displacement) is approximated with a 

quadratic Lagrange polynomials. The anisoparametric interpolation scheme leads to the 

existence of additional nodes with only extra deflection degrees of freedom. In order to 

recover an isoparametric-like nodal pattern but saving the anisoparametric interpolation, a 

constrained element can be formulated. Gherlone et al. [Gherlone et al., 2011] enforced 

three different constraints yielding to as much constrained 2-nodes/8-dof’s elements: a 

discussion on the best choice of the constraint condition is presented by the authors. In 

Oñate et al. [Oñate et al., 2010], a simple 2-nodes/8-dof’s linear Langrangian beam 

element was developed and the shear locking avoided adopting the reduced integration 

technique. The comparison on the two modeling strategies is not still performed in the 

open literature. Following the same idea of Gherlone et al. [Gherlone et al., 2011], recently 

Versino et al. [Versino et al., 2013] formulated an anisoparametric triangular plate element, 

both unconstrained (6-nodes/24-dof’s) and constrained (3-nodes/21-dof’s), and the element 

was implemented in the ABAQUS
®
 finite element commercial code via an user-element 

subroutine. By using the RZT model, Oñate and co-workers [Eijo et al., 2013] developed a 

4-nodes/28-dof’s bilinear quadrilateral element wherein a linear shear strain field is 

assumed to avoid shear locking. 

Generalization of the RZT model for shell structures and relative finite element 

implementations was performed by Versino et al. [Versino et al., 2014], in the framework 

of small displacements and rotation, and Flores [Flores, 2014], for large displacements and 

rotations analysis. 

The formulation of higher-order Refined Zigzag Theory models by Barut et al. [Barut et 

al., 2012] leads to the implementation of a triangular plate element [Barut et al., 2013] 

based on the extended theory.  

In this Chapter, several finite element formulations are introduced: firstly, a novel 2-

nodes/8-dof’s RZT-based beam element employing an exact static stiffness matrix is 

developed; secondly, beam and plate elements based on the mixed (3,2)-Refined Zigzag 

Theory (aka 
(m)

(3,2)RZT ) are developed.   

2. Exact static stiffness RZT beam element  

As stated in Sect.1, the RZT-based beam element has already been formulated. 

Moreover, two different formulations are available: one proposed by Gherlone et al. 

[Gherlone et al., 2011] and the second given by Oñate et al. [Oñate et al., 2010]. The main 
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difference relies on the shape functions: in [Gherlone et al., 2011] a Lagrangian 

anisoparametric (linear for the in-plane degrees of freedom and parabolic for the transverse 

displacement) element is formulated whereas in [Oñate et al., 2010] a linear Lagrangian 

element is proposed. The shear locking is circumvented in [Gherlone et al., 2011] in virtue 

of the anisoparametric interpolation strategy, whereas in [Oñate et al., 2010] the reduced 

integration of the shear contribution to the stiffness matrix is required. Although these 

basic differences, both the elements follow the usual procedure according to which the 

degree of freedom variation along the axial beam coordinate is independent on the 

remaining ones and approximated by using polynomial shape functions that relate it with 

its nodal values. Only in [Gherlone et al., 2011], by developing a constrained element, an 

interdependent interpolation scheme is achieved.  

A more interesting way to find an interpolation for the field variables, that is to find 

shape functions, is to solve the homogeneous part of the static equilibrium equations. In the 

open literature, several works have been published wherein the shape functions are derived 

from the exact static solution. Eisenberger [Eisenberger, 1994] developed a 2-nodes/4-

dof’s Timoshenko beam element wherein the shape functions are derived by solving the 

homogeneous differential equations of the model adopting the power series solution 

method. Later, Pilkey et al. [Pilkey, 1996] proposed an element adopting the exact static 

stiffness matrix suitable for the analysis of general cross-section beams, thus accounting 

for the coupling between the displacement into the two perpendicular planes. Noteworthy 

is the work done by Reddy in [Reddy, 1997], wherein several finite elements, based on 

Timoshenko and Reddy’s [Reddy, 2004] theory, are developed and compared. In 

particular, the comparison is focused on the performances of the isoparametric finite 

elements, those adopting the reduced integration and those employing exact shape 

functions. The higher-order shear deformation theory proposed by Heyliger and Reddy 

[Heyliger et al., 1988] has been used in [Murthy et al., 2005] to develop an exact beam 

element. Extension to the 3D Timoshenko beam element adopting exact shape functions 

has been performed in [Luo, 2008]. 

The use of exact static (henceforward denoted as consistent) shape functions results in 

several benefits: the stiffness matrix is exact, that is no errors of discretization are 

introduced in the stiffness. Due to the exact stiffness matrix, the element shows 

superconvergent behavior if compared with the isoparametric version of the same element. 

The consistent shape functions ensure that the finite element achieves exact solution, in the 



Chapter 5 – Finite Elements Formulation 

 
 

78 
 

nodes and inside the element, for concentrated loads applied at nodes, whereas, in case of 

distributed loads, the finite element solution fits with the exact one only at the nodes, while 

inside the element the convergence is reached by using a number of elements greater than 

the minimum one (that depends on the boundary conditions) but lower to that required by 

the isoparametric element [Reddy, 1997]. Even though the inertial forces are neglected, the 

consistent mass matrix along with the exact stiffness one produces faster convergence if 

compared with isoparametric element, also in dynamic problems. Moreover, the consistent 

shape functions introduce an interdependence between the field variables that allows to 

avoid numerical drawbacks, as well as the shear locking [Luo, 2008]. 

In this Chapter, the RZT-based 2-nodes/8-dof’s beam element adopting consistent shape 

functions is formulated. The consistent mass matrix and the exact stiffness one are 

computed along with the force vector.  

In the subsequent section, the basic RZT equations for the beam problem are briefly 

recalled.        

2.1. Refined Zigzag Theory for beams 

Consider a beam of length L and cross-section with area A = 2h x b, made by N 

orthotropic layers perfectly bonded together. The beam is located in a Cartesian coordinate 

system (x1,x2,z), where x1 denotes the beam longitudinal axis, and z is referred to the 

thickness coordinate (see Figure 5.1).  

 

Figure 5.1 Beam geometry and reference frame. 

Moreover, the beam is subjected to transverse pressure applied at the top and the bottom 

surface along with surface traction acting on the top and bottom surface (see Figure 5.2). 
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Furthermore, the beam is subjected to prescribed axial and shear tractions acting on the end 

cross-sections. 

 

Figure 5.2 Load applied system. 

According to the Refined Zigzag Theory, the orthogonal components of the 

displacement vector are defined as [Tessler et al., 2007]  
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where      1 1 1 1 1 1, ,u x x x   and ( )

1 ( )k z  are the uniform axial displacement, the bending 

rotation, the zigzag amplitude and the zigzag function, respectively.  

By using the Virtual Work Principle, the static governing equilibrium equations and 

variationally consistent boundary conditions read as [Gherlone et al., 2011] 

 
1 1

1 1 1

1 1

1

1 1

1 1

1 1

0

0

0

0

( ) ( )

( ) ( )

( ) ( )

( ) ( )

b t

t b

t b

N p p

M V h p p

V q q

M V

either u x u or N x N

either x or M x M

either w x w or V x V

either x or M x M

 

  

  

  

    

 

 

   

    

   

  

 

 

 

 

 (5.2) 

where the bar-superscripted symbols denote the prescribed displacements and stress 

resultants; the applied loads are depicted in Figure 5.2 and the following definitions for the 

stress resultants are introduced [Tessler et al., 2007] 
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   ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1 1 1 1 1 1, , , , , , , ,k k k k k k k

z zN M M V V b z          (5.3) 

Performing the integration over the beam cross-section, the constitutive equations of the 

beam model are obtained [Tessler et al., 2007] 
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 (5.4) 

where the stiffness coefficients are defined in [Tessler et al., 2007]. 

By using the constitutive equations, Eq. (5.4), the equilibrium equations in terms of the 

kinematic variables are obtained 
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 (5.5) 

The solution of the homogeneous part of the equilibrium equations, Eq. (5.5), appears in 

[Tessler et al., 2007] and reads as 
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where 
ia  (i=1,..8) are unknown constants that are determined by enforcing the appropriate 

boundary conditions. Moreover, 
iC  (i=1,..8), 

* * *

11 12 22, ,D D D  and R are combination of 

stiffness coefficients defined in [Tessler et al., 2007].  

2.2. Consistent shape functions  

The topology of the beam element consists in a simple 2-nodes/4-dof’s (see Figure 5.3). 

 

Figure 5.3 Beam element topology. 

The solution of the homogeneous part of Euler-Lagrange equations, Eq. (5.6), can be 

used to derive consistent shape functions for the element in Figure 5.3 by enforcing the 

equivalence with the nodal degrees of freedom at the location x1=0 and x1=L  
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and a is the vector of the eight unknowns ai (i=1,..8). By solving in terms of a and 

substituting into Eq. (5.6), after collecting the nodal values degrees of freedom, the shape 

functions appear (see Appendix 1 for the expressions).    

2.3. Mass matrix, exact stiffness matrix and consistent load vector 

According to the usual finite element notation, the shape functions matrix is denoted by 

N and the degrees of freedom are interpolated by using their nodal values, organized in e
q , 

that is  

 

 

 

 

 

1 1

1 1 ( )

1 1

1

( )

0 0 0 0, , , , , , ,

e

Te

L L L L

u x

x

x

w x

u w u w





   

 
 
 

 
 
 
 



Nq
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(5.8) 

The consistent shape functions given in Appendix 1 give rise to an interdependent 

interpolation scheme, that is each kinematic variable is approximated by using not only its 

nodal values but involving also the nodal values of the remaining variables. The full 

interdependence is held true for the axial displacement, whereas the bending rotation, the 

zigzag amplitude and the deflection degrees of freedom keep out the axial displacement 

nodal values from their approximation.  

The mass and stiffness matrix, and the load vector derive by using Eq. (5.8) in the 

dynamic version of the Virtual Work Principle  
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Consistent with Eq. (5.8), the strain vector read as 
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(5.10) 

and the stress vector is related with strain by means of the constitutive material matrix 



Chapter 5 – Finite Elements Formulation 

 
 

83 
 

( )

1

( )

1

0

0

k

k

z

E

G

 
   

 
σ Dε ε  (5.11) 

 By using Eq. (5.8), (5.10) and (5.11) into Eq. (5.9), the mass matrix, the stiffness 

matrix and the load vector appear 
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where N  is a combination of shape functions and the element-level equilibrium equation 

is 

( ) ( ) ( ) ( ) ( )e e e e e M q K q F  (5.13) 

The stiffness matrix calculated by using the shape functions coming from the solution of 

the Euler-Lagrange equations is exact, that is no discretization errors are introduced for the 

stiffness evaluation, whereas the mass matrix is not and errors in the total mass evaluation 

are still present. Due to the exact stiffness evaluation, the beam element formulated is 

expected to show super-convergent behavior in static analysis and faster convergence with 

respect to the isoparametric independent element in dynamic analysis.    

3. (3,2)- Mixed Refined Zigzag Theory beam element 

In this paragraph, the formulation of the (3,2)-Mixed Refined Zigzag Theory-based 

beam element suitable for a coupled thermo-mechanical analysis of laminated beams is 

presented by using the relations obtained in Chapter 4. 

As already highlighted in Sect. 1, the RZT-based elements suffer for the shear locking 

deficiency; in order to avoid shear locking, the (3,2)-Mixed Refined Zigzag Theory -based 

beam element is developed employing the anisoparametric interpolation strategy. 

Successively, two constrained beam elements are formulated.   
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3.1. Kinematic restatement  

In the framework of finite elements, it could be useful to develop a rotation-free 

element, that is an element without rotational degrees of freedom, above all when problems 

concerning small displacements and high rotations have to be solved. The matter is to 

perform a change in variables, i.e. to express the bending rotation degree of freedom in 

terms of in-plane displacements at the top and bottom beam surface. This implies that the 

kinematics of the model should be more conveniently expressed in terms of the 

displacement values at the top and bottom beam surface. The change in variables is 

straightforward by considering the meaning of the degrees of freedom and reads as  

1 1;   
2 2

t b t bu u u u
u

h


 
   (5.14) 

where ,t bu u  are the in-plane displacements at the upper and lower beam surfaces. 

Consistent with Eq.(4.60), the kinematics becomes 
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 (5.15) 

where L1(z) and L2(z) are the linear Lagrange’s polynomials. By enforcing the change in 

variables also to Eq. (4.64) and Eq. (4.75), the assumed transverse normal stress reads as   
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 (5.16) 

and the assumed transverse shear stress becomes 
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 (5.17) 

where the novel z-coordinate functions ( ), ( ), ( )u u u

b t bA z A z T z  and ( )u

tT z  derive by simple 

manipulation of the formulas. 

3.2. Nine-node, fifteen-dof’s anisoparametric element 

Following the anisoparametric interpolation strategy, the lowest order beam element is 

characterized by a linear interpolation of the in-plane degrees of freedom and by a 

quadratic polynomial interpolation for the transverse displacement, that is 
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where 3 3xI and 3 3x0  are the 3 x 3 identity and zero matrix, respectively, and 
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are the linear and the quadratic Lagrange polynomials, where 
( )

12 1ex L    is the non-

dimensional axial coordinate and 
( )eL is the beam element length. The topology of this 

element is reported in Figure 5.4.  

It is worth to note that, contrary to the in-plane and transverse displacements of the top 

and bottom beam surfaces, the zigzag rotation and the average transverse displacement 

degrees of freedom are only formally attributed to the nodes placed on the half-thickness 

coordinate, since they cannot be calculated at a precise thickness coordinate. 

 

Figure 5.4 Anisoparametric virgin beam element topology ( 0 ). 

3.3. Six-node, twelve-dof’s constrained anisoparametric element 

The shape functions matrix in Eq. (5.18) shows that each degree of freedom is 

approximated by using its nodal values, as in the standard finite element approximation. A 
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way to eliminate the additional w-dof’s is to introduce an interdependency of these dof’s 

from the other ones. This is achieved by satisfying a constraint that basically tends to 

reduce of one order the polynomial degree that expresses the transverse shear strain. In the 

(m)

(3,2)RZT model two ways to measure the shear strain are possible: the first one is based on 

the transverse shear strain coming from the linear strain-displacement relations, 

1 1 1z zU   ; the second one is using the definition of the transverse shear strain 

measure, 1 1 1zU     . Thus, two constrained beam elements are developed, namely 

 and
  , according to the constraint enforced (the subscript denotes the constrained 

quantity). Since the anisoparametric element of Eq. (5.18), hence called also virgin and 

denoted by 
0 , introduces three additional w-dof’s, the constraint has to be enforced to 

three z-locations, that is 
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 (5.20) 

in the case of 
 element, whereas the 

 requires that 
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 (5.21) 

Solving Eqs. (5.20) and (5.21) in terms of 
* *,b tw w and *w and substituting the expression 

in Eq. (5.18), the shape functions matrix of the constrained elements is obtained and read 

as 
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 (5.22) 

where  
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The vector 3 1x1 is a 3 x 1 vector made by ones and the parameter distinguishes 

between  ( 0  ) and  ( 1  ). Since in the   element the constraint is applied 

on
1z , the zigzag rotation is not involved in the interpolation of the deflection degrees of 

freedom, contrary to the   element that is developed enforcing a constraint on the 

transverse shear measure. For this reason, the parameter   takes values equal to zero or 

one respectively for   and   element.  

The resulting beam element topology for  and   is reported in Figure 5.5. 

 

Figure 5.5 Anisoparametric constraint beam element topology (  ,  ). 

3.4. Temperature field representation 

The temperature field representation uses the topology defined for the kinematic 

variables and can assume different distribution  along the axial direction depending on the 

element considered. In particular, the use of the virgin element allows a parabolic 

distribution of the temperature along the axial direction, due to the additional nodes located 

in the middle of the beam element (see Figure 5.4). By adopting the constrained elements, 

the topology (see Figure 5.5) keeps out nodes placed in the middle of the element thus 

allowing only for a linear distribution of the temperature. On the contrary, the through-the-

thickness distribution of the temperature is assumed to be quadratic, regardless the type of 

element. 

For the virgin element, the temperature distribution is given by 
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where the polynomials that appear in  T zH  are the same used for the transverse 

displacement assumption (see Chapter 4) and where the nodal temperature values (see 

Figure 5.6) are collected in Θ  as follows 

 
1 2 1 2 1 2

* * *, , , , , , , ,T

b b b t t t m m mT T T T T T T T TΘ  (5.26) 

 

Figure 5.6 Nodal values of temperature. 

 For the constrained elements, the distribution of temperature along the axial direction is 

linear combined with a parabolic through-the-thickness one. In this case, the temperature 

field is given by 

         1 1 1, T TT x z T z T x z x      H N Θ  (5.27) 

where the following definitions are introduced  
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 
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1 2 1 2
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( ) ( ) ( )
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w w w
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x x

L L L L
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x N x N x
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     
 
 

H

N 0 0

N 0 N 0 N

0 0 N

 (5.28) 

and the nodal values of temperature, consistent with the nodal pattern in Figure 5.7, are 

collected in Θ  as follows 

 
1 2 1 2 1 2
, , , , ,T

b b t t m mT T T T T TΘ  (5.29) 

 

Figure 5.7 Nodal values of temperature. 

3.5. Consistent mass matrix, stiffness matrix and consistent load vector 

The consistent mass matrix, the stiffness matrix and the consistent load vector are 

obtained by introducing the variables interpolation, Eq. (5.18) for the virgin element or Eq. 

(5.22) for the constrained elements, into the dynamic version of the Reissner Mixed 

Variational Theorem. Since the assumed transverse normal and shear stresses, Eq. (5.16) 

and (5.17), are already able to fulfill the weak form of the compatibility constraint, the 

remaining part of the Reissner Mixed Variational Theorem concerns the equilibrium 

between the work done by stresses and strains, that of inertial forces and external loads is 

considered, that is    

  T T

e

V V

dV dV W    u u ε σ  (5.30) 

Consistent with the finite element interpolation of the kinematic variables, the strain 

vector is given by 
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 

( ) ( )

( ) ( )

11 1

e e

T k k

z zz  





ε B q

ε
 (5.31) 

whereas the stress vector read as 

 

( ) ( ) ( ) ( )

( )

11 1

e e e e

f e T

T k a a

z zz  

  



σ S q S f S Θ

σ
 (5.32) 

where the strain and stress matrices are defined in Appendix 2.  

By introducing Eq. (5.31) and Eq. (5.32) in the work done by inertial forces and that 

done by stresses and strains, the element mass and stiffness matrices appear  

( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )  

;  

e T T

V

e e T e

V

e e T e e e T e

f e T T

V V

z z dV

dV

dV dV



 





 





 

M N H H N

K B S

F B S f F B S

 (5.33) 

along with two vectors, 
( )e

F and 
( )e

TF , that contribute to the right-hand-side of the element-

level equilibrium equation. The ( )zH matrix is defined in Appendix 2.   

The load vector follows by the definition of the work done by external loads wherein 

the finite element approximation, Eq. (5.18) or Eq. (5.22) depending on the developed 

element, is introduced and reads as  

     ( )

1

10

 
c

L n
e b t b t b t b t

i i i i i

i

p p q q dx P P T T x


 F N N  (5.34) 

where N  is a matrix made by the 1
st
, 2

nd
, 4

th
 and 5

th
 shape functions, nc is the number of 

concentrated loads, , ,b t b

i i iP P T  and t

iT , acting along the axial and thickness directions and at 

the bottom and top surface, respectively, and applied in xi . 

Finally, the element-level equilibrium equation appears 

( ) ( ) ( ) ( ) ( ) ( ) ( )e e e e e e e

T    M q K q F F F Θ  (5.35) 

4. Mixed (3,2)-Refined Zigzag Theory plate element  

In this section, a C
0
-continuous (3,2)-Mixed Refined Zigzag Theory bending rotations-

free plate element is developed. 
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Similar to the beam element, in order to avoid the shear locking deficiency that affects 

the isoparametric element, an anisoparametric interpolation scheme is adopted leading to 

the development of an element, called virgin, with extra nodes with only transverse 

displacements degrees of freedom. In order to reduce the number of nodal unknowns and 

to recovery an isoparametric-like nodal configuration, a constrained element is formulated 

by adopting the linked interpolation strategy developed by Tessler [Tessler et al., 1985] 

and employed by Gherlone [Gherlone et al., 2011] and Versino [Versino et al., 2013] in 

the formulation of beam and plate elements, respectively.   

4.1. Kinematic restatement 

In order to develop a bending rotations-free element, the 
(m)

(3,2)RZT  kinematics is restated 

by adopting the change in variables of Eq. (5.14) in both directions. In this way, the 

restated kinematics read as    

     1

( )

2( , ) ( , ) ( ) ( , )

( ) ( , ) ( )

( , , )

( , ( , ) (, ) ) ( , )

b t k

w w w

b b t t a

k

z

U z t L z L z

U

u t u t z t

H z w t H zz t w t H z w t

      

 





x x

xx x

x x

x  
(5.36) 

where    1 2,L z L z  are the linear Lagrange’s polynomials and ,b tu u   are the bottom and 

top in-plane displacements, respectively.  

Consistent with the restated kinematics, the assumed transverse normal stress is 

( ) ( ) ( ) ( )

         ( ) ( ) ( ) ( )

a t t b b

zz

w w w

b b t t a

A z u A z u A z A z

A z w A z w A z w z

 

                     

   qz

z
A q

 (5.37) 

where the novel z-coordinate shape functions, ( ),  ( )t bA z A z   are easily derivable by 

simple manipulation of Eq. (4.24). Along with the transverse normal stress, the assumed 

transverse shear stresses become 

111 1

222 2

1 1

2 2

( ) ( ) ( ) ( )

        ( ) ( ) ( ) ( )

b t
ba u u w

b t bb t
b

tw w

t a p q

t

wu u
z z z z
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w w
z z z z

w w


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

      
           

      

    
     

   
v

τ T T T T

T T T n T q

 (5.38) 

wherein the z-coordinate matrices of shape functions ( ), ( )u u

b tz zT T  derive by enforcing the 

change in variables to Eq. (4.40). 
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4.2. Eighteen-node, thirty-six dof’s anisoparametric element  

By adopting the anisoparametric interpolation strategy to circumvent the shear locking, 

the lowest order element requires a linear interpolation of the in-plane displacements and 

zigzag amplitudes along with a quadratic approximation for the transverse displacements, 

that is 

3 3 3
( ) ( ) ( )

1 1 1

3 3 3
( ) ( ) ( ) ( ) ( ) ( )

1 1 1

; ; ;

; ;

i i i

b i b t i t i

i i i

i ij i ij i ij

b ii b ij b t ii t ij t ii ij

i i i

u u u u

w w w w w w w w w

        

     

  

  

  

     

  

  

 (5.39) 

where i  are the linear element parametric coordinates [Zienkiewicz et al., 2000], ii  and 

ij   , 1,2,3;  i j i j  are the quadratic shape functions given by [Zienkiewicz et al., 2000]    

 2 1 ;  4ii i i ij i j         (5.40) 

Equivalently, Eq. (5.39) can be arranged in the common adopted compact matrix 

notation, that is 

 

 
   

 

1 2 1 2 1 2

(12) (12) (12) (23) (23) (23) (31) (31) (31)

1 2 3

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 1 2 1 2

, , , , , , , ,

, , , , , , , , , , ,

, , , , , , , ,

e

T

b b t t b t

e T T T T

b t b t b t

T i i i i i i i i i

i b b t t b t

u u u u w w w

w w w w w w w w w

u u u u w w w

 

 









u Nq

u

q u u u

u

 
(5.41) 

The interpolation scheme of Eq. (5.39) is consistent with the element topology shown in 

Figure 5.8. 

4.3. Nine-node, twenty-seven dof’s constrained anisoparametric element 

In order to reduce the number of nodal unknowns and to recover an isoparametric-like 

nodal configuration, a constrained element is developed employing the strategy proposed 

by Tessler [Tessler et al., 1985], adopted by Gherlone [Gherlone et al., 2011] and Versino 

[Versino et al., 2013] in the framework of RZT-based beam and plate element and 

previously involved in the formulation of the constrained (m)

(3,2)RZT -based beam element. 

A way to eliminate the extra-w dof’s leading to an isoparametric-like nodal pattern is to 

use the continuous edge constrains. One possibility is to adopt the constraint typically 
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adopted in the FSDT anisoparametric element [Tessler et. al., 1985] wherein the transverse 

shear strain along each element edge  

   
1

2
nz s z n s z nt nbz U U u u

h
         (5.42) 

is set to be constant along the local edge coordinate s (see Figure 5.9), that is 

  0s nz z   (5.43) 

In the framework of the RZT-like models, the transverse shear strain can be evaluated 

also taking into account the transverse shear strain measure wherein the zigzag amplitude 

effect is included. Thus, a second edge constraint that can be enforced reads as  

  0s nz z   (5.44) 

where the strain measure is defined as 

   nz nz nz z     (5.45) 

Thus, depending on the constraint used, Eq. (5.43) or Eq. (5.44), two constrained 

elements can be formulated. In order to distinguish them, that based on Eq. (5.43) is 

denoted as  whereas that adopting Eq. (5.44) is quoted as  . 

Consistent with the kinematic definitions (Figure 5.8), the top and bottom in-plane 

displacements and the zigzag amplitude oriented along the normal to the edge element are 

expressed in terms of the kinematic variables as     

1 2

1 2

1 2

sin cos

sin cos

cos sin

nb b ij b ij

nt t ij t ij

n ij ij

u u u

u u u

 

 

    

  

  

 

 (5.46) 

where ij  is the angle between the ij-edge and the x1 axis. 

It is worth to note that constraint in Eq. (5.43) and Eq. (5.44) are z-coordinate dependent 

due to the quadratic distribution of the transverse displacement, thus, as for the beam 

element formulation, the constraints are enforced at the three z-location, that is  

 

 

 

0

0 0

0

s nz

s nz

s nz

z h

z

z h







   

  

   

 (5.47) 
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Figure 5.8 Anisoparametric plate element topology ( 0 ). 

 

 

Figure 5.9 Triangular element edge definitions of s, n and 12 .  
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in case of   element, whereas in case of   element  

 

 

 

0

0 0

0

s nz

s nz

s nz

z h

z

z h


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   

  

   

 (5.48) 

Enforcing constraints Eq. (5.47) or Eq. (5.48), the additional w-dof’s, that is those 

defined at the center of the element edges, are expressed in terms of the corner nodal dof’s  

   
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 
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 (5.49c) 

where 
( , ) ( , )

1 2,i j i jx x  are the in-plane coordinates of nodes i and j and the parameter 

distinguishes between element  ( 0  ) and  ( 1  ). By introducing Eqs. (5.49) in 

Eqs. (5.39), the interpolation of kinematic variables for the constrained element, consistent 

with the nodal pattern shown in Figure 5.10, is reached 
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 (5.50) 

 wherein 
1 2,i i   are combination of the linear element parametric coordinates and are 

defined as  
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   1 2

1 1
;

2 2 2 2

i i
i j k k j i k j j ka a b b

h h

 
          (5.51) 

where the subscripts are given by the cyclic permutation i=1,2,3, j=2,3,1 and k=3,1,2 and 

( ) ( ) ( ) ( )

1 1 2 2,k j j k

i ia x x b x x    . 

  By following the common used compact matrix notation, the kinematic variables are 

given by  
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

u Nq

q u u u

u

 (5.52) 

where the shape functions matrix can be easily defined by comparing Eq. (5.52) with Eq. 

(5.50). 

 

Figure 5.10 Anisoparametric constrained plate element topology (  ,  ). 
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The element consistent mass matrix, the stiffness matrix and the consistent load vector 
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Theorem part dealing with the balance between the work done by stresses and strains and 

those done by the external loads and the inertial forces, that is 

  T T

e

V V

dV dV W    u u ε σ  (5.53) 

The strain vector is related with the nodal unknowns by means of the following relation 

 

( ) ( )

( ) ( ) ( ) ( ) ( )

11 22 12 1 1

e e

T k k k k k

z z zz     





ε B q

ε
 (5.54) 

where the definition of the 
( )eB matrix is given in Appendix 3. The stress vector read as 

 

( ) ( ) ( )

( ) ( ) ( )

11 22 12 1 2

e e e

f e

T k k k a a a

z z zz     

 



σ S q S f

σ
 (5.55) 

  where ( ) ( ), ,e e

f eS S f  are declared in Appendix 3.  

By using Eq. (5.54) and Eq. (5.55) into Eq. (5.53), the mass and stiffness matrices and 

the load vectors appear  

   

( )

( ) ( ) ( )

( ) ( ) ( )

( )

1

( ) ( )  

 
c

e T T

V

e e T e

V

e e T e

f e

V

n
e T T

i

iS

z z dV

dV

dV

dS x













 







 v z

M N H H N

K B S

F B S f

F n q N CN

 (5.56) 

where the expression of ( )zH is given in Appendix 3, whereas N is made by the 1
st
,2

nd
, 3

rd
, 

4
th

, 6
th

 and 7
th

 rows of the shape functions matrix and vector C collects all the concentrated 

loads in the order consistent with that assumed for N . 

Finally, the element-level equilibrium equation reads as     

( ) ( ) ( ) ( ) ( ) ( )e e e e e e

  M q K q F F  (5.57) 
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Appendix 1. RZT-based beam finite element matrices 

Here, the shape functions derived by the solution of the homogeneous part of the Euler-

Lagrange’s equations is given. 

It is worth to note that the solution of Eq. (5.7) is expressed in terms of hyperbolic 

functions, that produces numerical drawbacks like round-off errors. In order to circumvent 

this problem, the solution is expressed in terms of the exponential function.  

According to the order defined in Eq. (5.8), the shape functions matrix read as 

 
 
 
 
 
 

1

2

3

4

n

n
N

n

n

 
 

where (see next page) 
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 

 
 

 
 

 
 

 
 

1 3 6 2 3 5

1 3 6 2 3 5

2 7 2 7 2 7 2 2 7 2 7 2 7 2

* * * * * *

11 11 11 11 11 11

2

2 2 2
0 0

2 2 2 2

2 2 2
0 0

2 2 2 2

1 0 0 0 0 0 0 0 0

0 0
2 2 2 2

2

n n

n n

n n

n n

L m n L m n
m n m n

L m n L m n
m n m n

X
C C m C C Lm C C C C m C C Lm C C

D D D D D D

C C
L

       

 

       

 

 

    
       

    
       




 


 

1n

2 24 2 8 4 2 8
7 2 7 2 7 2 7

1 2

2 2
2

2 0 2

p p p pL C C L C C L C C L
L L L

m m m Lm

     
   

 

 
 
 
 
 
 
 
 
 
 
 

           
 
 
          
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 

   
 

   
 

*

11 4 2 5 *2
2 8 7 11* *

11 11

3 *
2 2 8 *2 11 4 2 5

8 11* *

11 11

2

7 2 21 3 6 1 3 6 2 2

*

11
2

0 0 0 0 0 0

2 4
3

2
2 4

2 2 6 2

22 2

1 2 2 6

p

p

n p

n n

n n

D C C CC m
m n m n C L m D

D D

C LL m n L m n C Lm D C C C
D L L m n

D L D

C LC

D
X

  

  
  

         

 

  
     

    
         

 

      
  




n

 

     

   

   

* *
11 11 4 2 5 3 6

2 *

11

*

2 11 4 2 5
2* *

11 11

*

2 2 11 4 2 5

* *

11 11

2

2 3 5 2 3 5 2 22 2

*

11

2

0 0 0 0 0 0

2 2
3

2 2 6

2 2

2 2 6

p

n

p

n n n

n n

D D C C C

L D

mC D C C C
m n m n C L m m m n

D D

L m n L m n mC L m D C C C
Lm L n

D L D

C LC

D

  








         

 

  



      

     
       

 

       
  

  *

11 4 2 5 3 5
2 *

11

2

T

n

m D C C C

L D

 




 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

 

 

 



Chapter 5 – Finite Elements Formulation 

 
 

101 
 

 

 

   

   
 

 

   

2
2*

11

3

2 2 8 *2
8 11*

11

2 *1 3 6 1 3 6 2 2
7 2 2 11 1*

11

3

2
2*

11

0 0 0 0 0 0

0 2 2

2
0 2 4

2 2 2

2 2
0 2 2

2 2 21

0 0 0 0 0 0

0 2 2

p

p

n p

n n
p

n n

p

C m
m n m n C L m

D

C LL m n L m n C Lm
D L

D L

C
C L D

D
X

C m
m n m n C L m

D

L m



  
  

        
   

 



      

  
     

   
       




     




n

   

   

2 2

*

11

2
2 3 5 2 3 5 2 2 2 2

2*

11

0 2
2 2 2

2 2
0 2

2 2 2

T

n n n

n n

n L m n C Lm m
Lm

D L

C C L m

D L



          


 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
  
 
 

            
  
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 

   

   

   

   

   

1 3 6 1 3 6
2

4
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2
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0 0 0
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T
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n n
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L m n L m n
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X

m n m n m

L m n L m n
Lm

       


 

       


 

 
   
 
  

  
 

    


 
 

  
    
 
  

  
 

    
 

 

n  

 

and  

   

   

 

 

1 1 3 2 2 2 2 2

1 1 1

* * * 3 *

11 11 2 5 11 4 2 11

3

2 8 2

* 2 2

1 8 2 3 11
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4 2 7 5 11
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2 ; 2 ; / / 6 ;

2 ; 2 ;

; 2 ;

2 ; 4

Rx Rx RL RL RL RL

p n p n

p n

p

n p

RL

n p

X e e x x x e e e e

m D n D L C C D C C L D

n Ln m C L

D L

C C L L D e C

   

 

  

     

   

        

     

     

    

       3 *

2 11

* 2 3 2 *

6 11 2 11 7 8 2

2 ;
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p p n p

L e D Le

D C L D Le L       

 

          
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Appendix 2. 
(m)

(3,2)
RZT - based beam finite element matrices  

The strain matrix is given by 

   

3 1 1 3 1

3 1 3 1( )

1 3 1 3 11

3 1 3 1

( )

1 1 2 1( ), ( ), ( ) ; ( ), ( ), ( )

x z x
T

x x z we T

x x

x w x

T k T w w w

w b t aL z L z z H z H z H z

 
         
 
 

 

0 p 0

0 0 HN
B

p 0 0N

0 H 0

p H

 

Here, the stress matrices for the 
(m)

(3,2)RZT  beam element are defined 

   

   

3 1 3 1

( ) ( )

33 11 3 1( )

( ) ( ) ( )

11 1 33 11 3 11

3 1 3 1

( )

( ), ( ), ( ) ; ( ), ( ), ( )

( ), ( ), ( ) ; ( ), ( ), ( )

x u x
T k k

w x we T

k k k

u x u

x w x

T u u T w w w

u b t w b t a

T u u T w w w

u b t w b t a

e

f

S R

C S R

A z A z A z A z A z A z

T z T z T z T z T z T z





 
 

         
 
 

 

 



0 T 0

A 0 AN
S

p A 0 AN

0 T 0

A A

T T

S  

 
 

 

( ) ( )

1 2 33 11 1 2

1 2 1

1 2 1 2

( ) ( ) ( ) ( )

33 11 33 11

1( )

1 1

( )

( ) ( ) ;    

( )

( ) 0

0 ( )

( ) 0

k k qz

x x

T T T T

p x q e

qz

x x

k k k k

T T

Te

T T

T

T

S R z

z z

z

S R z S z
x

z
x

z

 



 





 
 

  
 
 

 
  

       
 

v z z

0 A 0

T 0 T f n q q

0 A 0

A H
N

S T
N

A
 

 

 and the following definitions are used 

 

   

    

  

1
( ) ( ) ( )

33 33 33

1

( ) ( ) ( ) ( )

33 11 33 11

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (

11 33 11 33 11 33 11 11 33

( ) ( )

( ) ( ) ( ) ( ) ( )

( )

 

T k T k k

T T

T T

T T T T T

z

k k k k

T T T

h

k k k u k k k k k

T T

z S z S z

z z z z D z z D z

z S R z S z dz

C S R A S R S z C S









 



  

  





 



 

  

  



f f f f

A P P P P H

T Z Z Z Z Z Z

Z A H

A H  ) ( )

11

z

k k u

h

R A dz




 

 

The matrix involved in the definition of the mass matrix reads as 
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1 1 3

1 3

( )
x

x w

z
 

  
 

p 0
H

0 H
 

Appendix 3. 
(m)

(3,2)
RZT - based plate finite element matrices  

Here, the matrices and vectors involved in the definition of the mass and stiffness 

matrices are introduced. 

6 1 6 1 6 1 1 2 6 1

3 1 3 1 3 1 3 1 3 1

1 6 1 2 6 1 6 1 6 1( )

1

3 1 3 1 3 1 3 1 3 1

2

6 1 1 2 6 1 6 1 6 1

3 1 3 1 3 1 3 1 3 1

( )

1 1 2 1( ),0, ( ),0, (

x x x z z x

T x x x x x z w

x x x xe T

x x x w x x

x x x x

x x x x w x

T kL z L z 

  
 
  
      
     
 
 



0 0 0 p p 0

0 0 0 0 0 H
N

p 0 p 0 0 0
B N

0 0 0 H 0 0
N

0 p p 0 0 0

0 0 0 0 H 0

p    

 

( )

2 1 2 2),0 ; 0, ( ),0, ( ),0, ( ),

( ), ( ), ( )

T k

T w w w

w b t a

z L z L z z

H z H z H z





p

H

  

The stress matrices are defined as 

   

( ) ( ) ( )

3 6 33 1 33 1 3 3 2 33 2 3 3

( )

1 2 3 2 6 1 2 6 2

2 1 6 1 1 3 2 1 3

( ) ( ) ( )

11 22 12
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1
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 

   
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   

   
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
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T
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A
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0 0 0 0 0 0
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Chapter 6 

Analytical results 

 

1. Introduction 

In this Chapter, for the first time in the open literature, the response prediction 

capabilities of the RZT model on the undamped free vibration and critical load analyses of 

panels are assessed. The relevant mismatch in the mechanical properties between two 

adjacent layers, namely the face and the core, makes the analysis of sandwich panels 

challenging for every theory. Thus, particular attention is focused on these structures along 

with widely used cross-ply laminates, both symmetric and non-symmetric. For comparison 

purposes, the exact Elasticity solution as derived by Pagano [Pagano, 1970] is taken as 

reference. When not available, high-fidelity FE models or results reported in the open 

literature play the role of reference solution. Particular attention is focused on the First-

Order Shear Deformation Theory (FSDT). As explained in Chapter 2, the RZT model 

assumes the FSDT kinematics as its baseline to which the zigzag contribution is added. 

From this point of view, it results very interesting the comparison between the RZT and 

FSDT in order to appreciate the effect of the inclusion of zigzag effect. Moreover, in this 

context, a comparison between the RZT zigzag function and the Murakami’s one 

[Murakami, 1986] is carried out. Finally, the linear bending and free vibration problems 
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involving functionally graded sandwich panels are solved in order to investigate the RZT 

modeling capabilities of these advanced composites. 

Later, the same linear bending and free vibration problems solved with the RZT are re-

taken into consideration in order to assess the capabilities of the mixed RZT model, aka 

RZT
(m)

, in enhancing the transverse shear stiffness and stresses prediction with respect to 

the traditional RZT model. In this context, the comparison of the two transverse shear 

stresses modeling strategies is performed highlighting the advantages and drawbacks.   

Finally, the (3,2)-Mixed Refined Zigzag Theory, quoted as (m)

(3,2)RZT , is assessed on 

elasto-static problems pertaining the bending of cross-ply panels with two, three and four-

layers, both symmetric and unsymmetric. The test cases are chosen in order to highlight the 

peculiarities of the model: the capabilities to capture the actual non-linear distribution of 

in-plane displacements along the thickness of thick laminates, the inclusion of a non 

constant distribution along the thickness of the transverse displacement and the transverse 

normal deformability effect, the accurate transverse shear stresses prediction. 

In this Chapter, only exact solutions or approximated ones, obtained by using the 

Rayleigh-Ritz’s method are considered, postponing the discussion concerning FE solutions 

to next Chapter. 

Some of the contents of the present Chapter have been item of publications on 

International Journals [Iurlaro et al., 2014b] and proceedings of International Conferences 

[Iurlaro et al., 2013b; Iurlaro et al., 2014a,c]. In this Chapter, the already published results 

are re-taken into consideration and extended. 

2. RZT assessment 

To assess the accuracy of the Refined Zigzag Theory for the analysis of multilayered 

composite and sandwich structures, both orthotropic and functionally graded, the linear 

boundary value problem of bending and the linear eigenvalues problems of free vibration 

and buckling of rectangular plates, both simply supported and clamped (along one or more 

edges), are considered. The rectangular plates are defined in the Cartesian domain 

1 2[0, ], [0, ], [ , ]x a x b z h h    . Mechanical material properties, as well as stacking 

sequences, taken into consideration are listed in Appendix 1.  
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2.1. Linear Bending 

The numerical results presented in this section refer to the linear boundary value 

problem of multilayered composite, both traditional and functionally graded, sandwich 

plates, fully simply supported and/or clamped along one edge, and subjected to bi-

sinusoidal or a uniform pressure. In the framework of RZT, the governing equations of the 

problem are Eqs. (2.32). 

Problem 1. A rectangular (b=3a) simply supported plates subjected to bi-sinusoidal 

transverse pressure,      1 2 0 1 2, sin / sin /q x x q x a x b  .  

For this problem, an exact Elasticity solution is available and is used as reference in the 

comparisons. The simply supported boundary conditions read  

1 2 2 2 1 1 1

2 1 1 1 2 2 2

0, : 0

0, : 0

x a u w N M M

x b u w N M M





 

 

       

       
 (6.1) 

and the exact solution is given by the following trigonometric expansion [Tessler et al., 

2010a,b] 

   

   

1 2

1 2
1 1 1 1 1 1

1 2
2 2 2 2 2 2

sin sin

, , , , cos sin

, , , , sin cos

z

x x
U W

a b

x x
u U

a b

x x
u U

a b

 

 
 

 
 

   
    

   

   
      

   

   
      

   

 (6.2) 

where  1 2 1 2, , , , , ,U V W      are the unknowns amplitudes of the kinematic variables 

which are determined from the satisfaction of the equilibrium equations. For comparison 

purposes, analytic solutions are also obtained using the First-Order Shear Deformation 

Theory (FSDT) with different shear correction factors: at first, the unit value is used for 

both factors k1
2
 and k2

2
, then values of the shear correction factors are estimated by 

extending to the plate case (and assuming the cylindrical bending hypothesis) the 

procedure proposed in [Raman et al., 1996] in the framework of laminated beams. In order 

to investigate the influence of the zigzag function, the Murakami’s zigzag function is 

implemented in the framework of a first-order displacement-based zigzag model that, as 

highlighted in Chapter 2, gives the same governing equations of the RZT. The solutions 

obtained by means of the first-order zigzag model adopting the Murakami’s zigzag 

function is quoted as MZZ. 



Chapter 6 – Analytical results 

 

109 
 

Three cross-ply laminates (laminate L1, L2 and L9; see Table A1.3) are considered and 

the non-dimensional transverse displacement at the center of the plate, for different span-

to-thickness ratio a/2h, is computed and the results obtained by using the RZT, MZZ and 

the FSDT are compared with the 3D Elasticity solution (see Tables 1-3).   

Results collected in Tables 1-3 show that the FSDT solutions computed by using the 

unit value for the shear correction factors is very stiff, if compared with the Elasticity 

solution, above all when the plate is thick. By increasing the span-to-thickness ratio, the 

FSDT solution converges to the reference due to the reduced influence of the transverse 

shear strain. By adopting a suitable value of the shear correction factor, the FSDT solution 

improves the accuracy even in the regime of thick laminates but overestimating the 

maximum deflection of around 2% for laminate L1 and 13% for laminate L2 and L9, when 

a/2h = 8. The RZT solution matches very well with the Elasticity one over the entire range 

of span-to-thickness ratios considered with an error of 2% for laminate L1, 0.2% for 

laminate L2 and 0.8% for laminate L9, when a/2h = 8. The MZZ solution behaves 

according to the laminate considered. Two scenarios are available: the first one (Tables 1 

and 2), wherein the MZZ gives the same RZT results, thus providing accurate results. The 

second one (Table 3), wherein the MZZ results are between the RZT and FSDT ones (with 

unit shear correction factors), thus underestimating the reference solution. Since the 

framework of the RZT and the MZZ model differs only for the zigzag function adopted, 

the reason of the worst behavior of the MZZ model is up to the Murakami’s zigzag 

function. Laminates L1, L2 and L9 give rise to three different situations: laminate L1 (two-

layers, unsymmetric), due to the stacking sequence, is almost devoid of zigzag effect (see 

Figures 6.1-6.2) and the consequence is that the choice of the zigzag function does not 

affect the results, both in terms of global (maximum transverse displacements) and local 

response (through-the-thickness distributions of displacements and stresses). Laminate L2 

(three-layers, symmetric) originates an in-plane displacements distribution along the 

thickness that is periodic (that means a recurring alternation of two layers). For this reason, 

the Murakami’s zigzag function ensures accurate results, that fit with the RZT ones. For 

the unsymmetric stacking sequence (laminate L9), the Murakami’s zigzag function, that is 

the MZZ model, provides results that are not accurate if compared with the reference 

solution due to the non periodic structure of the stacking sequence. Results for laminate L2 

and L9 confirm what Murakami himself stated in his work [Toledano et al., 1987]: “The 

inclusion of the zig-zag shaped C
0 

function was motivated by the displacement 

microstructure of periodic laminated composites [..]. Obviously, for arbitrary laminate 
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Table 1. Problem 1, Laminate L1: normalized maximum deflection, 
2 4

11 0(10 / ) ( / 2, / 2)w D q a w a b ; 
2k  is 

the shear correction factor and D11 is the first element of the bending stiffness matrix.  

a/h  3D Elasticity RZT MZZ FSDT FSDT 

     k1
2
=  k2

2
=1  k1

2
= 0.5011 

 k2
2
= 0.1632 

8  2.891 2.820 2.820 2.604 2.965 

10  2.682 2.633 2.633 2.486 2.717 

20  2.383 2.369 2.369 2.328 2.386 

50  2.293 2.291 2.291 2.284 2.294 

100  2.280 2.280 2.280 2.278 2.280 

 

Table 2. Problem 1, Laminate L2: normalized maximum deflection, 
2 4

11 0(10 / ) ( / 2, / 2)w D q a w a b ; 
2k  is 

the shear correction factor and D11 is the first element of the bending stiffness matrix. 

a/h  3D Elasticity RZT MZZ FSDT FSDT 

     k1
2
=  k2

2
=1 

k1
2
= 0.1212 

k2
2 
= 0.3438 

8  4.990 4.978 4.978 1.575 5.625 

10  3.706 3.699 3.699 1.369 3.987 

20  1.737 1.735 1.735 1.093 1.757 

50  1.121 1.121 1.121 1.015 1.122 

100  1.031 1.031 1.031 1.004 1.031 

 

Table 3. Problem 1, Laminate L9: normalized maximum deflection, 
2 4

11 0(10 / ) ( / 2, / 2)w D q a w a b ; 
2k  is 

the shear correction factor and D11 is the first element of the bending stiffness matrix. 

a/h  3D Elasticity RZT MZZ FSDT FSDT 

     k1
2
=  k2

2
=1 

k1
2
= 0.1260 

k2
2 
= 0.1632 

8  3.286 3.259 2.545 1.474 3.743 

10  2.603 2.589 2.065 1.353 2.815 

20  1.543 1.541 1.380 1.192 1.562 

50  1.205 1.205 1.178 1.147 1.207 

100  1.155 1.155 1.148 1.141 1.156 
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configurations, this periodicity is destroyed.”. Nevertheless the observation made by 

Murakami and the results provided by himself in [Toledano et al., 1987], along with the 

substantial investigation recently carried on by Gherlone [Gherlone, 2013], the use of the 

Murakami’s zigzag function abound in the open-literature (see Chapter 1) even in the case 

of arbitrary stacking sequence laminates. The Refined Zigzag Theory function, being 

inspired by the original works made by Di Sciuva, is mechanical-properties dependent, 

thus is able to accommodate the actual in-plane displacements distribution along the 

thickness of any laminates, regardless the stacking sequence. On the contrary, the 

Murakami’s zigzag function is mechanical-properties independent and it provides change 

in slope of in-plane displacements at the interface between two adjacent layers that is 

always the same in amplitude, but opposite in sign, violating the actual in-plane 

displacements distribution (see Figures 6.7-6.8, 6.13-6.14). 

Figures 6.1-6.6 show a comparison of the through-the-thickness distribution of 

normalized in-plane displacements and stresses for laminate L1, with a span-to-thickness 

ratio a/2h =8. 

Due to the stacking sequence, laminate L1 produces a distribution of in-plane 

displacements along the thickness with an almost vanishing zigzag effect. For this reason, 

the FSDT provides relatively accurate results, with a slight overestimation of in-plane 

displacements and underestimation of in-plane normal stresses. The transverse shear 

stresses (Figures 6.5 and 6.6) are derived by integration of the local equilibrium equations 

(for this reason are quoted with (EE)), and fit very well with the Elasticity solution. The 

RZT and MZZ provide the same accurate results, since in this case, the zigzag effect plays 

a limited role and the results are not affected by the choice of the zigzag function.  

Figures 6.7-6.12 compare the results for an unsymmetric three-layers sandwich plate 

(laminate L3, see Table A1.3). As the Elasticity solution suggests, the actual distribution of 

in-plane displacements for a sandwich stacking sequence is strongly affected by the zigzag 

effect as a consequence of the significant mismatch of mechanical properties between the 

faces and the core. The requirement of continuity of transverse shear stresses at face-core 

interface is fulfilled with a sizeable jump in the slope of the first-order derivative with 

respect to the thickness coordinate of the in-plane displacements. The ESL nature of the 

FSDT is the reason for a not accurate local response, both in terms of displacements and 

stresses. The MZZ model is not able to fit with the Elasticity solution as consequence of 

the Murakami’s zigzag function. On the contrary, the RZT results are in agreement with 

the reference solution, both in terms of displacements and stresses.  
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Figure 6.1. Problem 1, Laminate L1, a/2h=8: through-the-thickness distribution of normalized in-plane 

displacement,  ( ) 4 4 ( )

1 11 0 110k kU D q a U .  

 

Figure 6.2. Problem 1, Laminate L1, a/2h=8: through-the-thickness distribution of normalized in-plane 

displacement,  ( ) 4 4 ( )

2 11 0 210k kU D q a U .  
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Figure 6.3. Problem 1, Laminate L1, a/2h=8: through-the-thickness distribution of normalized in-plane 

normal stress,  2 2 ( )

11 0 114 kh q a  .  

 

Figure 6.4. Problem 1, Laminate L1, a/2h=8: through-the-thickness distribution of normalized in-plane 

normal stress,  2 2 ( )

22 0 224 kh q a  . 
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Figure 6.5. Problem 1, Laminate L1, a/2h=8: through-the-thickness distribution of normalized transverse 

shear stress,  2 ( )

1 0 12 k

z zh q a  .  

 

Figure 6.6. Problem 1, Laminate L1, a/2h=8: through-the-thickness distribution of normalized transverse 

shear stress,  2 ( )
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Figure 6.7. Problem 1, Laminate L3, a/2h=8: through-the-thickness distribution of normalized in-plane 

displacement,  ( ) 4 4 ( )

1 11 0 110k kU D q a U . 

 

Figure 6.8. Problem 1, Laminate L3, a/2h=8: through-the-thickness distribution of normalized in-plane 

displacement,  ( ) 4 4 ( )
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Figure 6.9. Problem 1, Laminate L3, a/2h=8: through-the-thickness distribution of normalized in-plane 

normal stress,  2 2 ( )

11 0 114 kh q a  . 
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Figure 6.11. Problem 1, Laminate L3, a/2h=8: through-the-thickness distribution of normalized transverse 

shear stress,  2 ( )

1 0 12 k

z zh q a  . 

 

Figure 6.12. Problem 1, Laminate L3, a/2h=8: through-the-thickness distribution of normalized transverse 

shear stress,  2 ( )
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Figures 6.13-6.16 compare the RZT, MZZ and FSDT solutions with the exact Elasticity 

one for a symmetric five-layers sandwich plate (laminate L4, see Table A1.3). The actual 

in-plane displacements distribution along the thickness show a slope change at the 

interface between face and core, whereas the interface between the two plies of each face 

are devoid of discontinuity on the first-order derivative with respect to the thickness 

coordinate. The reason relies on the equal values assumed by the shear moduli of the 

material used for the faces: in this situation, the in-plane displacement distribution does not 

exhibit any slope change. From a zigzag model point of view, this behavior can be 

captured only if the zigzag function takes into account the mechanical properties of the 

plies; otherwise the result may be not in agreement with the Elasticity solution. In fact, the 

RZT model is very accurate if compared with the Pagano’s solution whereas the MZZ 

model provides the same results as the FSDT adopting a unit value for the shear correction 

factors. The use of a not suitable zigzag function leads the variational statement to give a 

near-zero zigzag amplitude that let the zigzag contribution vanish, thus keeping only the 

FSDT kinematics alive. For this reason, the MZZ results are the same of the FSDT (with 

2 2

1 2 1k k  ) ones.    

The results discussed in this section reveal the major drawback of the Murakami’s 

zigzag function, that is its inability to provide accurate response (sometimes also with  

significant errors) for stacking sequences different from the periodic and symmetric ones. 

When the Murakami’s zigzag function is adopted to solve a problem involving arbitrary 

stacking sequences, the variational principle, that is the Virtual Work Principle, gives a 

zigzag amplitude that is near-zero thus leading the zigzag contribution of the MZZ model 

to vanish. As a result, the MZZ model reduces to the FSDT kinematics with a unit shear 

correction factor. For this reason, the MZZ model and the FSDT ones provide the same, 

both global and local, results. The RZT model adopts a zigzag function mechanical-

properties dependent, thus is able to accommodate the actual in-plane displacement 

distributions of any kind of stacking sequences.  

Problem 2. A square cantilever plate is subjected to transversal pressure  1 2 0,q x x q . 

For this set of load and boundary conditions the exact RZT solution does not exist and 

an approximate one is computed by using the Rayleigh-Ritz’s method. The kinematic 

variables are approximated in the following way 

    1 2

1 1

, , , , , , ( ) ( )
mp mp mp

M P

mp m p

m p

u w U W x x        
 

    (6.3) 
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Figure 6.13. Problem 1, Laminate L4, a/2h=8: through-the-thickness distribution of normalized in-plane 

displacement,  ( ) 4 4 ( )

1 11 0 110k kU D q a U . 

 

Figure 6.14. Problem 1, Laminate L4, a/2h=8: through-the-thickness distribution of normalized in-plane 

displacement,  ( ) 4 4 ( )

2 11 0 210k kU D q a U .   
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Figure 6.15. Problem 1, Laminate L4, a/2h=8: through-the-thickness distribution of normalized transverse 

shear stress,  2 ( )

1 0 12 k

z zh q a  . 

 

Figure 6.16. Problem 1, Laminate L3, a/2h=8: through-the-thickness distribution of normalized transverse 

shear stress,  2 ( )
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where 1 2( ), ( )m px x   are the Gram-Schmidt polynomials built to satisfy the geometric 

boundary conditions: for the particular expression of these polynomials refer to [Tessler et 

al., 2010a,b]. In order to compare the RZT, MZZ and FSDT results, a high-fidelity FEM 

(MSC/MD-NASTRAN
®
) solution is used. The model is regularly discretized using linear-

strain solid elements, HEXA8. There are sixty-five elements along each span direction, 

five elements through the thickness of the bottom face, eight elements along the top face 

and fifteen through the core thickness. Analytical FSDT and MZZ solutions are computed 

as for the RZT one. 

Figures 6.17 and 6.18 report the through-the-thickness distribution of the relevant in-

plane displacement and transverse shear stress: RZT preserves its accuracy also for the 

clamped boundary condition whereas the MZZ model provides results not accurate as for 

the simply supported boundary condition (see Figures 6.7-6.12). Even adopting the shear 

correction factors, the FSDT results overestimates the maximum in-plane displacement and 

heavily underestimates the maximum transverse shear stress.    

Problem 3. A square, simply supported, functionally graded Type A (see Appendix 2) 

sandwich plate subjected to a bi-sinusoidal pressure, 1 2 0 1 2( , ) sin( / )sin( / )q x x q x a x b  . 

Two different values of the grading index, k, and several values of a/2h  are considered. 

For this set of load and boundary conditions, the Elasticity solution, as derived by 

Pagano [Pagano, 1970] and obtained by decomposition of the functionally graded layer 

with several sub-layers, is available and it is assumed as reference in the comparisons. For 

comparison purposes, the analytical FSDT solution with appropriate shear correction 

factors is estimated along with the analytical Third-Order Shear Deformation Theory 

(TSDT) [Reddy, 2000] one. 

Results reported in Table 4 are normalized according to the following relations 

 

   

   

3 31

1 3 3

0 0

11 22
11 22 1 12

0 0

12 12 2 22

0 0

0, / 2, ( / 2, / 2)
10 ; 10 ;

2 ( / 2 ) 2 ( / 2 )

( , ) 1
( , ) / 2, / 2, ; 0, / 2,0

( / 2 ) ( / 2 )

1 1
0,0, ; / 2,0,0

( / 2 ) ( / 2 )

T T z
z

z z

z z

E U b h E U a b
U U

q h a h q h a h

a b h b
q a h q a h

h a
q a h q a h

 
   

   

 

 

 

 (6.4) 

The RZT is able to provide accurate response predictions (for both displacements and 

stresses) if compared with the reference solution for all the values of the span-to-thickness 

ratio and grading index considered. The FSDT with the appropriate shear correction factors  
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Figure 6.17. Problem 2, Laminate L3, a/2h=8: through-the-thickness distribution of normalized in-plane 

displacement,  ( ) 4 4 ( )

1 11 0 110k kU D q a U . 

 

Figure 6.18. Problem 2, Laminate L3, a/2h=8: through-the-thickness distribution of normalized transverse 

shear stress,  2 ( )
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Table 4. Problem 3, Type A. Comparison of normalized local responses (see Eqs. (6.4)).The FSDT solution 

adopts k1
2
 =k2

2
=0.0854 (k=5) and k1

2
 =k2

2
=0.3 (k=3),

  
as shear correction factors. 

k a/2h Model 
zU

 
1U  11  

22  
12  1z  2 z  

5 8  Elasticity 9.667 -0.3045 3.641 0.342 -0.226 0.212 0.069 

 
 RZT 9.634 -0.3034 3.543 0.334 -0.221 0.210 0.068 

 
 TSDT 5.612 -0.1987 2.386 0.271 -0.172 0.267 0.069 

 
 FSDT  11.707 -0.1072 1.294 0.286 -0.163 0.275 0.085 

 
10 Elasticity 8.683 -0.2521 2.997 0.301 -0.196 0.236 0.068 

 
RZT 8.671 -0.2503 2.925 0.294 -0.192 0.235 0.067 

 
TSDT 4.956 -0.1768 2.120 0.231 -0.148 0.282 0.062 

 
FSDT 9.860 -0.1119 1.341 0.262 -0.152 0.281 0.078 

 
20 Elasticity 6.428 -0.1704 2.035 0.185 -0.124 0.291 0.051 

 
RZT 6.431 -0.1706 1.990 0.181 -0.121 0.291 0.051 

 
TSDT 4.023 -0.1518 1.806 0.138 -0.097 0.313 0.041 

 
FSDT  

 

6.622 -0.1292 1.516 0.173 -0.110 0.306 0.053 

3 8 Elasticity 17.344 -1.027 1.671 0.155 -0.102 0.281 0.060 

  RZT 17.349 -1.029 1.649 0.153 -0.101 0.280 0.059 

  TSDT 15.305 -0.914 1.486 0.142 -0.094 0.303 0.058 

  FSDT  18.431 -0.648 1.049 0.142 -0.087 0.318 0.064 

 10 Elasticity 16.105 -0.932 1.514 0.131 -0.088 0.300 0.053 

  RZT 16.121 -0.935 1.495 0.129 -0.087 0.300 0.053 

  TSDT 14.234 -0.855 1.386 0.120 -0.081 0.317 0.051 

  FSDT 16.723 -0.676 1.088 0.122 -0.077 0.326 0.056 

 20 Elasticity 15.790 -0.805 1.298 0.083 -0.061 0.336 0.038 

  RZT 15.804 -0.806 1.282 0.082 -0.060 0.336 0.038 

  TSDT 14.625 -0.784 1.263 0.078 -0.058 0.342 0.037 

  FSDT  15.892 -0.735 1.170 0.080 -0.058 0.343 0.038 
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underestimates the transverse shear stiffness and, as consequence, overestimates the 

maximum deflection. Moreover, the FSDT underestimates the in-plane displacements and 

stresses, especially for low values of a/2h and high values of grading index. The way to 

avoid the need of the shear correction factors is to adopt a higher-order kinematics, that is 

the Third-Order Shear Deformation Theory (TSDT) proposed by Reddy [Reddy, 2000]. 

Considering the results of Table 4, appears that the TSDT underestimates the maximum 

deflection, the in-plane displacements and stresses. The error decreases by increasing the 

span-to-thickness ratio and decreasing the grading index. The transverse shear stresses of 

Table 4 derive by integration of the equilibrium equations, thus a not accurate prediction of 

in-plane stresses affects the transverse shear stresses one. For this reason, the RZT is able 

to provide accurate estimations whereas the FSDT and TSDT models overestimate the 

shear stresses. Results in Table 8 show that the FSDT errors on the maximum deflection 

are lower than the TSDT ones (even if the former overestimates the deflection whereas the 

latter underestimates it) as results of the use of a shear correction factor that is more 

efficient than the inclusion of a third-order polynomial term in the in-plane displacements 

approximation.   

Figures 6.19-6.24 show a comparison of the through-the-thickness distribution of 

normalized displacements and stresses for the Type A sandwich plate with a/2h=8 and a 

grading index k=5. 

The behavior of a functionally graded sandwich plate is more complex than that of a 

traditional multilayered orthotropic composite one: the distribution of the in-plane 

displacements in the functionally graded face-sheets may exhibit non-linear trends, 

following in a certain way the distribution of mechanical properties along the functionally 

graded layer thickness. The FSDT provides through-the-thickness distributions of in-plane 

displacements and stresses not in agreement with the reference solution. In particular, 

maximum in-plane normal stresses are heavily underestimated. Due to the inaccuracy in 

predicting the in-plane normal stresses, the FSDT transverse shear stresses derived by 

integration of the local equilibrium equations do not fit with the exact solution. Moreover, 

the error on the in-plane stresses evaluation affects also the estimation of the shear 

correction factors, which result too low causing an underestimation of the transverse shear 

stiffness (see Table 4). Adopting a third-order kinematics for the in-plane displacements, 

the TSDT may reproduce the non-linear distribution of the displacement components. Even 

if the distribution is not linear, as appears from Figures 6.19 and 6.20, the TSDT is not able 

to fit with the reference solution and the maximum in-plane displacements and normal 
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Figure 6.19. Problem 3, Type A, a/2h=8, k=5: through-the-thickness distribution of normalized (see Eqs. 

(6.4)) in-plane displacement. 

 

Figure 6.20. Problem 3, Type A, a/2h=8, k=5: through-the-thickness distribution of normalized (see Eqs. 

(6.4)) in-plane displacement. 
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Figure 6.21. Problem 3, Type A, a/2h=8, k=5: through-the-thickness distribution of normalized (see Eqs. 

(6.4)) in-plane stress.  

 

Figure 6.22. Problem 3, Type A, a/2h=8, k=5: through-the-thickness distribution of normalized (see Eqs. 

(6.4)) in-plane stress. 
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Figure 6.23. Problem 3, Type A, a/2h=8, k=5: through-the-thickness distribution of normalized (see Eqs. 

(6.4)) transverse shear stress. 

 

Figure 6.24. Problem 3, Type A, a/2h=8, k=5: through-the-thickness distribution of normalized (see Eqs. 

(6.4)) transverse shear stress. 
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stresses are underestimated. As a consequence, the transverse shear stresses coming from 

the equilibrium equations are not accurate if compared with the reference. On the contrary, 

RZT is able to provide accurate response predictions, both in terms of displacements and 

stresses.  

The TSDT and RZT assume, as kinematic baseline, the FSDT; TSDT adds a cubic 

smeared term to the in-plane displacement approximation, whereas the RZT considers a 

piecewise linear contribution which becomes a non-linear one due to the actual distribution 

of the mechanical properties taking place in the functionally graded layer. Thus, while the 

TSDT adds a non-linear contribution independent of the mechanical properties, the RZT 

superimposes to the FSDT kinematics a non-linear contribution that depends on the 

through-the-thickness distribution of transverse shear stiffness moduli. On the contrary, the 

non-linear term in the TSDT cannot be greater than the third polynomial order. For this 

reason, the RZT prediction capabilities are superior to those of the TSDT. 

The way the refined zigzag function mat be naturally and accurately modified for a 

wide range of stacking sequences is a remarkable properties of RZT. 

Problem 4. A square, cantilevered, functionally graded sandwich plate subjected to a 

uniform transverse pressure, 1 2 0( , )q x x q . 

For this set of load and boundary conditions, the exact Elasticity solution is not 

available and a high-fidelity FE model, obtained by using MSC/MD-NASTRAN
®
, is used 

as reference solution in the comparison. The model is regularly discretized by using the 

HEXA8, linear-strain element and is comprised of sixty elements along each span 

direction, three elements through the thickness of homogeneous layer (the core for Type A; 

the face-sheets for Type B) and twenty elements through the thickness of functionally 

graded layer (the face-sheets for Type A; the core for Type B), for a total number of 

491,172 dof’s, for the Type A, and 290,238 dof’s, for the Type B. The mechanical 

properties associated to each element along the functionally graded thickness layers vary 

according to the grading law, in order to simulate it with a piece-wise constant function. 

For this problem, the plate mostly experiences a cylindrical bending: Figures 6.25-6.28 

show a comparison of the through-the-thickness distribution of prevalent normalized in-

plane displacement and transverse shear stress (derived by integration of the equilibrium 

equations (EE)), for the functionally graded sandwich plates Type A (k=5, a/2h=8, Figures 

6.25 and 6.26) and Type B (k=5, a/2h=10, Figures 6.27 and 6.28). 
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Figure 6.25. Problem 4, Type A, a/2h=8, k=5: through-the-thickness distribution of normalized (see Eqs. 

(6.4)) in-plane displacement. 

 

Figure 6.26. Problem 4, Type A, a/2h=8, k=5: through-the-thickness distribution of normalized (see Eqs. 

(6.4)) transverse shear stress. 
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Figure 6.27. Problem 4, Type B, a/2h=10, k=5: through-the-thickness distribution of normalized (see Eqs. 

(6.4)) in-plane displacement. 

 

Figure 6.28. Problem 4, Type B, a/2h=10, k=5: through-the-thickness distribution of normalized (see Eqs. 

(6.4)) transverse shear stress. 
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The accuracy of the RZT in the response prediction is not affected by changing the load 

and boundary conditions, since the distributions of in-plane displacement and transverse 

shear stress fit with the reference solution. As for Problem 3, the FSDT and TSDT 

solutions still remain inaccurate and no improvements are reached changing the load and 

boundary conditions. 

When Type B functionally graded sandwich plate is considered, the through-the-

thickness distribution of in-plane displacement (Figure 6.27) provided by FSDT, TSDT 

and RZT are very accurate. For this functionally graded sandwich plate, the grading core 

has only the effect of removing the discontinuity at the face-core interface leading to a 

smooth through-the-thickness distribution of transverse shear stress (Figure 6.28), thus 

reducing the risk of delamination failure. Each model is able to reproduce accurately the 

distribution of displacement since the face-to-core shear stiffness ratio is low, leading to a 

reduced zigzag effect. An approximated estimation of the face-to-core shear stiffness ratio 

may be performed considering as face stiffness the ceramic shear modulus and as core 

stiffness the average value estimated by 

  
3

2

1
( )

z

m c m c

c z

G G G G V z dz
h

    (6.5) 

The face-to-core stiffness ratio estimated as above explained is around 3, thus likely too 

low to make the zigzag effect pronunced. As a consequence, also models not accounting 

for the zigzag effect, that is the FSDT and TSDT, are able to provide accurate results. 

2.2. Free vibrations 

In this section, free-vibration analyses are conducted for simply supported and fully 

clamped square sandwich plates. Frequencies of undamped free vibration are the 

eigenvalues of Eqs. (2.33) and the related eigenvectors represent the corresponding modal 

shapes. 

Problem 5. A simply supported, cross-ply square sandwich plate (laminate L5, see 

Table A1.3). 

The simply support boundary condition and the cross-ply stacking sequence allow to 

find an exact solution for the RZT model and, in a similar way, for the FSDT and MZZ 

model. For this problem, the approximation of the RZT kinematic variables reads as 
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 (6.6) 

where mp  are the circular frequencies, related to the corresponding natural frequencies, 

mpf , by the simple relation 2mp mpf   and where m and p are the number of half-waves 

along the x1- and x2-direction, respectively, of each mode shape. In Table 5, the first six 

non-dimensional circular frequencies obtained using RZT for two values of the span-to-

thickness ratio are presented and compared with other solutions available in literature. 

Solution quoted as LW [Rao et al., 2004a] is obtained using a layer-wise model wherein a 

cubic expansion in the thickness direction for the three displacement components is 

assumed and the continuity of transverse stresses at layer interfaces is ensured. The LW 

model is able to estimate accurate natural frequencies for laminated composite and 

sandwich plates, therefore its solution can be taken as a reference result in this comparison. 

Moreover, solution quoted as HSDT [Srinivas et al., 1970] is obtained by means of a 

higher-order ESL theory which assumes a cubic variation across the thickness for the three 

displacement components. 

Both high-order and first-order displacement-based equivalent single layer models 

(HSDT and FSDT with k1
2
= k2

2
 = 1, 5/6), highly overestimate the natural frequencies. This 

is due to the difference of mechanical properties between core and faces which causes an 

overestimation of the stiffness of the plate. When FSDT is used with k1
2
 and k2

2
 evaluated 

according to [Raman et al., 1996], although an improvement may be observed, frequencies 

are underestimated. The error is always below 2% when the plate is thin (a/2h=100), 

whereas ranges from 7% (fundamental frequency) to 30% (6
th

 frequency) when the plate is 

moderately thick (a/2h=10). It is worth to note that the FSDT coupled with suitable value 

of the shear correction factors, is able to ensure more accurate predictions with respect to 

the HSDT model. This is due to the sandwich stacking sequence: the ESL models tend to 

heavily overestimate the transverse shear stiffness and only the FSDT is able, with the aid 

of very low shear correction factors, to reduce this estimation thus achieving more accurate 

results. The frequencies predicted by the MZZ model fit with those computed by using the 

FSDT with k1
2
= k2

2
 = 1, as expected. In fact, the L5 stacking sequence (see Table A1.3) is 
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not a periodic one, thus the Murakami’s zigzag function is not suitable for the elasto-

dynamic analysis of this sandwich leading the zigzag contribution to vanish and the FSDT 

kinematics to survive. This demonstrates that the Murakami’s zigzag function can lead to 

erroneous predictions not only on the static problems, but also for eigenvalues one. On the 

contrary, the RZT model is able to ensure accurate frequencies estimation (with a 

maximum error of 0,26%  on the 6
th

 frequency for the thick plate, a/2h=10). 

Figure 6.29 shows the contour plots of the first six mode shapes obtained with the RZT 

and corresponding to the frequencies reported in Table 5, for a/2h=10. 

In order to investigate the influence of the core-to-face thickness ratio on the predictive 

capabilities of RZT and of other models, the fundamental frequency of laminate L5, 

a/2h=10, has been estimated for different values of the core-to-face thickness ratio tc/tf 

(Table 6). The solution for this problem, based on the propagator matrix method and on a 

semi-analytical solution of a higher-order mixed approach [Rao et al., 2004b], is used as 

reference and quoted as Exact in Table 6. 

The HSDT overestimates the stiffness of the plate leading to high values of the 

fundamental frequency. The error of HSDT reduces as the core-to-face thickness ratio 

increases since the plate approaches the behavior of a single-layer plate. When the core-to-

face thickness ratio is small, the shear correction factors estimation procedure is not 

effective and FSDT leads to an underestimation of the reference frequency values (more 

than 30% for tc/tf=4). For higher values of tc/tf, better results are obtained by means of 

FSDT. Taking into account the results reported in Tables 5 and 6, the shear correction 

factors estimation procedure coupled with FSDT, provides accurate frequency estimations 

for thin sandwich plates or thick laminates with a sizeable value of the core-to-face 

thickness ratio. Regardless the core-to-face thickness ratio, the MZZ model gives the same 

results of those obtained with the FSDT model with 
2 2

1 2 1k k  , due to the sandwich 

stacking sequence. The RZT confirms a very good agreement with the reference solution in 

the considered range of tc/tf, thus demonstrating the wide range of applicability of the 

proposed model for sandwich plates. 

Results of Tables 6 and 7 are also useful to assess the effect of adding an adequate 

zigzag function rather than to expand the polynomial order of an ESL model. In fact, as the 

results demonstrate, the RZT overcomes the HSDT model in accuracy for every span-to-

thickness ratio and core-to-face ratio considered, thus supporting the major benefits got by 

enriching the FSDT kinematics with a zigzag contribution rather than with higher-order  



Chapter 6 – Analytical results 

 

134 
 

Table 5. Problem 5, Laminate L5, core-to-face thickness ratio, tc/tf =10: comparison on the first six non-

dimensional circular frequencies,   24

22mp mp f fa h E   , where f  and 
2 fE are the mass density 

and the transverse Young’s modulus of the face, respectively. 

a/2h Mode: m,p LW RZT MZZ HSDT 

FSDT 

k1
2
= 1 

k2
2
 = 1 

k1
2
= 5/6 

k2
2
 = 5/6 

k1
2
=0.0032 

k2
2
=0.0032 

10 1,1 1.85 1.85 14.28 4.86 14.28 14.00 1.71 

 1,2 3.22 3.23 32.46 8.02 32.46 31.11 2.75 

 2,2 4.29 4.30 44.28 10.30 44.28 42.24 3.44 

 1,3 5.22 5.24 55.14 11.74 55.14 51.95 3.91 

 2,3 6.09 6.12 63.11 13.47 63.11 59.51 4.42 

 3,3 7.68 7.70 77.63 16.13 77.63 72.86 5.17 

100 1,1 11.94 11.95 16.28 15.51 16.28 16.27 11.84 

 1,2 23.40 23.41 44.92 39.03 44.92 44.88 23.33 

 2,2 30.94 30.96 64.81 54.76 64.81 64.74 30.48 

 1,3 36.14 36.17 95.52 72.76 95.52 95.33 36.02 

 2,3 41.45 41.47 109.56 83.44 109.56 109.35 41.01 

 3,3 49.76 49.80 144.72 105.38 144.72 144.38 48.78 

 

Table 6. Problem 5, Laminate L5, a/2h=10: comparison on the fundamental non-dimensional circular 

frequency,  4 2

1 1 2f fa h E   , where 
f  and 

2 fE
 
are the mass density and the transverse Young’s 

modulus of the face, respectively. 

tc/tf Exact RZT MZZ HSDT FSDT (k1
2
=k2

2
=1) FSDT (k1

2
= k2

2
) 

4 1.91 1.91 14.28 9.00 14.28 1.32 (0.0017) 

10 1.85 1.85 14.28 4.86 14.28 1.71 (0.0032) 

20 2.13 2.13 13.30 3.14 13.30 2.09 (0.0058) 

30 2.33 2.34 12.36 2.85 12.36 2.31 (0.0084) 

40 2.47 2.47 11.57 2.83 11.57 2.46 (0.0109) 

50 2.57 2.57 10.90 2.86 10.90 2.56 (0.0135) 
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polynomial terms. This consideration was already highlighted by Di Sciuva and Icardi in 

[Di Sciuva et al., 2000], wherein the authors discussed the influence of higher-order 

approximation on the prediction of global responses of sandwich plates.   

Problem 6. A fully clamped, cross-ply square sandwich plate (laminate L6). 

For this kind of boundary condition, the exact RZT, FSDT and MZZ solution does not 

exist and an analytic one is computed by using the Rayleigh-Ritz’s method. The spatial  

 

 

Figure 6.29. Problem 5, Laminate L5, a/2h=10: contour plots of the first six mode shapes obtained with 

RZT. 

 

Figure 6.30. Problem 6, Laminate L6, a/2h=5: contour plots of the first six mode shapes obtained with RZT. 
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approximation of the kinematic variables is the same of that in Eq. (6.3) whereas the 

amplitudes vary cyclically in the time domain. 

In Table 7, the first six circular frequencies, computed with different approaches, are 

compared with the reference solution, cited as 3D FE [Kulkarni et al., 2008], obtained by 

means of three-dimensional finite element analysis. 

The FSDT is able to improve the accuracy by adopting a suitable shear correction factor 

even though the model leads to the underestimation of the reference frequency values 

especially for higher-order modes. The error reduces by increasing the span-to-thickness 

ratio and the results approach the 3D FEM solution. The RZT is able to preserve its 

remarkable accuracy also for clamped boundary condition, even considering higher modes, 

ensuring a maximum error around the 4% in the most challenging case (a/2h=5, 6
th

 

frequency mode). As a result of the use of a not suitable zigzag function, the MZZ results 

are the same of the FSDT (with unit shear correction factors) ones.  

The contour plots of the first six mode shapes, obtained with RZT for a/2h=5, are 

represented in Figure 6.30. 

Problem 7. A square, cantilevered, functionally graded sandwich plate. 

The non-dimensional natural frequencies computed by using the RZT, the FSDT and 

the TSDT model are compared with those coming from the same high-fidelity FE model 

used in Problem 4 (Tables 8 and 9). Due to the clamped boundary conditions, the 

Rayleigh-Ritz’s method is employed and the spatial approximation of the kinematic 

variables is performed by using the Gram-Schmidt polynomials. The number of the 

polynomials used is indicated for each models. 

In Table 8, the FSDT solution adopting the shear correction factor underestimates the 

frequencies with an error that increases with the mode number. The reason may lie in the 

value of the shear correction factor: it is computed according to the procedure proposed in 

[Raman et al, 1996] and extended to the plate case. This procedure is energy-based and 

requires the estimation of the transverse shear strain energy coming from the integrated 

transverse shear stresses, that depend on the in-plane ones. A not accurate evaluations of 

the latter, affects the estimation of the shear correction factor thus leading to erroneous 

results. The use of a higher-order model, namely the TSDT, is not effective in enhancing 

the accuracy. In fact, the TSDT overestimates the natural frequencies with a relative error 

around the 27% on the first frequency. The 4
th

 mode is a prevalent in-plane one and, as 

consequence, all models are able to accurately estimate the corresponding natural 

frequency due to an accurate estimation of the membrane stiffness. 
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Table 7. Problem 6, Laminate L6, core-to-face thickness ratio, tc/tf=8: first six non-dimensional circular 

frequencies,  1100mp mp c fa E   , where c is the mass density of the core and 1 fE
 
is the longitudinal 

Young’s modulus of the face. M and P are the number of Gram-Schmidt used to ensure converged results for 

each model. 

a/2h Mode: m,p 3D FE RZT(M=P=10) MZZ(M=P=9) 
FSDT(M=P=9) 

k1
2
=k2

2
=1 

FSDT(M=P=10) 

k1
2
=0.0825 

k2
2
=0.1446 

5 1,1 12.05 12.14 32.03 32.03 11.40 

 2,1 18.27 18.43 50.29 50.29 16.34 

 1,2 20.57 20.77 50.81 50.81 19.53 

 2,2 24.87 25.12 64.15 64.15 22.79 

 3,1 26.40 26.74 72.78 72.78 22.32 

 3,2 30.64 31.88 83.03 83.03 27.41 

10 1,1 11.22 11.26 27.72 27.72 11.13 

 2,1 16.68 16.73 45.26 45.26 16.02 

 1,2 18.96 19.05 45.39 45.39 18.97 

 3,1 22.71 22.80 58.06 58.06 22.08 

 2,2 23.53 23.61 67.72 67.72 22.26 

 3,2 28.07 28.20 77.00 77.00 26.99 

 

Table 8. Problem 7, Type A, a/2h=8, k=5: first eight non-dimensional frequencies,  

 4 2(2 )c Tf f a h E , where c  and TE
 
are the mass density and the Young’s modulus of the 

homogeneous core. M and P are the number of Gram-Schmidt polynomials used to ensure convergent results 

for each model. The shear correction factors are k1
2
=k2

2
= 0.085414. 

MSC/MD-NASTRAN
® 

RZT(M=P=11) TSDT(M=P=9) FSDT(M=P=11) 

0.465 0.466 0.591 0.394 

0.531 0.533 0.654 0.464 

1.034 1.036 1.291 0.971 

1.345 1.344 1.345 1.344 

1.593
 

1.616 2.004 1.194 

1.598
 

1.605 1.903 1.479 

1.673 1.696 2.105 1.282 

1.926 1.951 2.422 1.548 
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 The RZT fits very well with the reference solution, with an error around the 1% for the 

8
th

 mode frequency.  

In Table 9, the FSDT slightly overestimates the natural frequencies, above all for the 

high-order modes, with an error increasing with the grading index. Nevertheless, the FSDT 

appears accurate in an engineering sense, if compared with the reference solution. The 

TSDT and RZT models fit with the reference, with a slightly better estimation of the 

former model over the latter one. Similar to Problem 4, the good performances of the ESL 

models, that is the FSDT and TSDT, is due to the high core-to-face stiffness ratio that 

makes the zigzag effect not relevant. 

2.3. Linear buckling 

In this section, results concerning the critical buckling load of (i) simply supported 

sandwich plates subjected to uniform uni-axial compressive load, (ii) fully clamped 

sandwich plates under uniform bi-axial compressive load, and (iii) plates supported on two 

edges, clamped on the others and subjected to in-plane shear load, are presented. Buckling 

loads may be calculated within RZT as eigenvalues of the stability equations, Eqs. (2.34), 

coupled with suitable homogeneous boundary conditions. The generalized displacement 

components in Eqs. (2.34) are measured from the state just prior to the occurrence of the 

buckling.  

Problem 8. A square sandwich plate (laminate L7, see Table A1.3), simply supported 

on all edges and subjected to a uniform uni-axial compressive load, 1N . 

Comparison of the critical buckling load, for different values of span-to-thickness ratio, 

a/2h, and face-to-overall thickness ratio, tf/2h, is made. Several models are considered in 

order to assess the predictive capabilities of RZT (see Table 10). Solution quoted as 3D 

[Noor et al., 1994] is taken as reference in the comparison: the face-sheets and the core are 

treated as three dimensional continua and the buckling response is obtained by using the 

solution procedure suggested by Srinivas and Rao [Srinivas et al., 1970].  

The FSDT, with the classical shear correction factors, overestimates the uni-axial 

buckling load parameter; whereas the results converge to the reference solutions, in an 

engineering sense, if the shear correction factors are adopted. The RZT increases its 

accuracy for high values of the span-to-thickness ratio and by increasing the face-to-

thickness ratio. The MZZ model behaves in a similar manner of the FSDT (k1
2
=k2

2
=1) 

when the face-to-thickness ratio value is low, whereas it provides results closer to the 

reference  
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Table 9. Problem 7, Type B, a/2h=10: first five non-dimensional frequencies,  4 2(2 )c cf f a h E    

where c  and cE
 
are the mass density and the Young’s modulus of the ceramic phase. M and P are the 

number of Gram-Schmidt polynomials used to ensure convergent results for each model. 

k MSC/MD-NASTRAN
® 

RZT(M=P=12) TSDT(M=P=10) FSDT(M=P=11) 

3    k1
2
=k2

2
= 0.704 

 0.115 0.115 0.114 0.116 

 0.271 0.272 0.272 0.278 

 0.677 0.679 0.676 0.693 

 0.856 0.860 0.869 0.878 

 0.954 0.960 0.957 0.994 

5    k1
2
=k2

2
= 0.627 

 0.114 0.114 0.114 0.115 

 0.268 0.269 0.269 0.276 

 0.667 0.669 0.667 0.687 

 0.844 0.848 0.847 0.869 

 0.937 0.945 0.943 0.984 

 

Table 10. Problem 8, Laminate L7: uni-axial overall buckling load parameter,  2 3

1 1 2

cr

fn N b E h  where 
1

crN  

is the uniform uni-axial critical load and 2 fE  is the transverse Young’s modulus of the face. 

 tf /2h =0.025  tf /2h =0.05  tf /2h =0.1 

a/2h 5 10 20  5 10 20  5 10 20 

3D  1.503 2.238 2.554  2.082 3.737 4.659  2.605 5.608 7.897 

RZT 1.539 2.263 2.566  2.115 3.765 4.681  2.628 5.633 7.921 

MZZ  1.676 2.334 2.588  2.509 4.108 4.806  3.517 6.905 8.474 

FSDT            

kx
2
= ky

2
 =1 1.682 2.337 2.589  2.622 4.122 4.811  4.029 6.952 8.491 

kx
2
=ky

2
=5/6 1.566 2.278 2.571  2.390 3.971 4.758  3.623 6.631 8.368 

 kx
2
=0.820, ky

2
=0.782  kx

2
=0.697, ky

2
=0.643  kx

2
=0.541, ky

2
=0.479 

kx
2
, ky

2
  1.539 2.263 2.566  2.116 3.767 4.682  2.620 5.638 7.926 
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solution, with respect to the FSDT (k1
2
=k2

2
=1), even if the error still remains around the 

35% (tf /2h =0.1, a/2h=5). 

Problem 9. A fully clamped rectangular sandwich plate (laminate L8, see Table A1.3) 

under bi-axial compression, 2 10.5N N . 

The same problem has been solved in [Chakrabarti et al., 2007] and, for comparison 

purposes, the same material and geometrical configuration has been used here. The RZT 

approximate solution is obtained by using the Rayleigh-Ritz method and the same spatial 

approximation for the incremental kinematic variables as in Eqs. (6.3). The FSDT and 

MZZ solutions are computed in a similar manner. Since the RZT, MZZ, and FSDT 

solutions are approximate, a convergence study was carried out to select the required 

number of Gram-Schmidt polynomials, i.e. the values of M and P. The critical buckling 

stress, for different values of the aspect ratio a/b, is estimated by means of the above 

mentioned models and compared with several other solutions available in literature. In 

particular, two references are considered: a 2D finite element solution, by Khatua and 

Cheung [Khatua et al., 1973], and one obtained with the Finite Strip Method (FSM), by 

Yuan and Dawe [Yuan et al., 2001],
 
wherein the core is represented as a three-dimensional 

solid with quadratic through-the-thickness in-plane displacements and a linear transverse 

displacement, whereas the face-sheets are modeled as thin plates, i.e. according to the 

assumptions of the Classical Laminate Theory (CLT). 

In Table 11, the critical buckling stresses are compared for the four above stated 

formulations and the results reported in [Chakrabarti et al., 2007]. 

The FSDT results, obtained with the classical values for the shear correction factors, 

overestimate the reference solutions available in literature especially for values of the 

aspect ratio, a/b, lower than 1. Instead, the use of the shear correction factors improves 

FSDT critical buckling stress predictions. Due to the stacking sequence, the MZZ model is 

able to predict critical buckling loads that are in agreement with the published results, for 

every value of the aspect ratio, a/b, considered. The RZT demonstrates its accuracy also in 

predicting critical buckling loads. Again, since the Yuan and Dawe solution [Yuan et al., 

2001] is based on a higher-order kinematics, results in Table 11 demonstrate the 

ineffectiveness in adopting higher-order models to predict global responses. 
 
  

Problem 10. A rectangular sandwich plate (laminate L8, see Table A1.3), simply 

supported on two opposite edges and clamped along the other edges, subjected to a 

uniform in-plane shear load, 12N . 
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The same problem has been solved in [Chakrabarti et al., 2007], therefore, for 

comparison purposes, the same material properties and geometry have been used here. The 

RZT approximate solution is obtained by using the Rayleigh-Ritz method. In this case, the 

boundary conditions read as: 

* * * * * * *

1 2 2 2 1 1 1

* * * * * * *

2 1 2 1 2 1 2

0, :   0

0, :  0

x a u w N M M

x b u u w

 

   

       

       
 (6.7) 

where the displacements and stress resultants denoted with 
*( )  are incremental with 

respect to the pre-buckling state. The incremental kinematic variables are approximated in 

the following way 

 

 

* * * ** * *

1 2 1 2 1 2

1 2 1 2 1 2

1 1

, , , , , ,

                  , , , , , , ( ) ( )
M P

mp mp mp mp mp mp mp m p

m p

u u w

U V W x x

   

 
 



   
 (6.8) 

where 1( )m x
 
and 2( )p x  are trigonometric functions and Gram-Schmidt polynomials, 

respectively,  built to satisfy the geometric boundary conditions. In a similar way, the 

FSDT and MZZ solutions are obtained by means of the Rayleigh-Ritz’ s method. 

Critical buckling stress values obtained by means of several models and with different 

values of the aspect ratio a/b, are reported in Table 12. Also in this case, the FSDT solution 

obtained with the classical values of the shear correction factors, overestimates the solution 

available in literature [Yuan et al., 2001] and the others reported for comparison. When the 

shear correction factors are computed, FSDT improves and its results approach the 

reference solutions, even if the solution remains conservative for every value of the aspect 

ratio considered. Critical buckling stresses obtained with RZT compare favorably with the 

reference values within the considered range of aspect ratio values. Due to the stacking 

sequence, the MZZ preserves its accuracy regardless the loading condition, thus providing 

results in agreement with the published ones. 

The contour plots of the buckling mode, obtained with RZT for each value of the aspect 

ratio considered in Table 12, are represented in Figure 6.31. 
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Table 11. Problem 9, Laminate L8, b=0.5969 m: the critical buckling stress (
1 2cr

cr fN t  in N mm
-2

.) 

 Aspect ratio (a/b) 

 0.5 0.7 1.0 

Khatua and Cheung 
 

170.91 112.41 81.45 

Yuan and Dawe 
 

170.11 111.15 80.95 

RZT (M=P=8) 170.37 111.25 80.99 

MZZ(M=P=5) 170.60 111.50 81.25 

FSDT(M=P=6) k1
2
= k2

2
 =1 220.72 129.73 89.65 

 k1
2
= k2

2
 =5/6 220.36 129.61 89.59 

 k1
2
= k2

2
 = 0.0264  170.26 111.18 80.93 

 

Table 12.  Problem 10, Laminate L8, b=0.5969 m: critical buckling stress (
12 2cr

cr fN t  in N mm
-2

). 

 Aspect ratio (a/b) 

 0.5 0.7 1.0 

Yuan and Dawe 
 

256.80 172.00 134.60 

RZT(M=P=9) 257.44 172.04 134.54 

MZZ(M=P=9)  257.46 172.22 134.68 

FSDT(M=P=10) k1
2
= k2

2
 =1 336.59 208.81 158.12 

 k1
2
= k2

2
 =5/6 336.00 208.54 157.95 

 k1
2
= k2

2
 = 0.0264  256.68 171.44 133.96 

 

Figure 6.31. Problem 10, Laminate L8: contour plots of the buckling mode shapes obtained with RZT for 

each values of the aspect ratio considered in Table 12. 
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3. Mixed Refined Zigzag Theory  

The results of the linear bending problems shown in previous section, demonstrate the 

capabilities of the RZT model to predict accurately the distribution of transverse shear 

stresses along the thickness coordinate, regardless the type of loads and boundary 

conditions. The transverse shear stresses plotted till now are obtained by integration of the 

local equilibrium equations and, for this reason, quoted as (EE), that stands for Equilibrium 

Equations. As discussed in Chapter 3, the integration of the in-plane stresses may not be 

very efficient to be implemented in a finite elements framework and the desirable objective 

is to develop models able to produce accurate constitutive transverse shear stresses, quoted 

as (CE), since obtained by Constitutive Equations. This motivate the development of the 

Mixed Refined Zigzag Theory, based on the Reissner Mixed Variational Theorem. 

In this paragraph, results of the previous one are taken into consideration again and the 

discussion on the accuracy of the constitutive transverse shear stresses (CE) provided by 

the RZT
(m)

 model is performed. Moreover, the two modeling strategies for the assumed 

transverse shear stresses, described in Chapter 3, are compared. The Mixed Refined Zigzag 

Theory adopting the assumed transverse shear stresses coming from integration of the local 

equilibrium equations is quoted as 
(m)

1RZT (see Eq. (3.25)), whereas that one employing the 

assumed transverse shear stresses as approximated by Murakami [Murakami, 1986] (see 

Eq. (3.14)), is denoted as 
(m)

2RZT . 

3.1. Linear bending 

Herein, problems concerning the elasto-static deformation of sandwich plates, with 

simply supported or clamped boundary conditions, and subjected to bi-sinusoidal or 

uniform pressure, are solved.  

Problem 11. A simply supported rectangular plate (b=3a) subjected to a bi-sinusoidal 

transverse pressure, 1 2 0 1 2( , ) sin( / )sin( / )q x x q x a x b  . 

In Table 13, the maximum transverse (central) deflection of laminates L1 and L3 (see 

Table A1.3) computed with the RZT and the two RZT
(m)

 models is compared with the 

exact Elasticity solution, for several values of the span-to-thickness ratio. For this set of 

loads and boundary conditions, the exact RZT and RZT
(m)

 solution exists and is obtained 

by employing the spatial approximation of Eq. (6.2). 
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Table 13. Problem 11: normalized maximum (central) deflection, 2 4

11 0(10 / ) ( / 2, / 2)w D q a w a b .  

Laminate a/2h 3D Elasticity RZT 
(m)

1RZT  
(m)

2RZT  

L1 

8 2.546 2.512 2.547 2.545 

10 2.449 2.427 2.449 2.448 

20 2.319 2.314 2.319 2.319 

50 2.283 2.282 2.283 2.283 

100 2.278 2.277 2.278 2.278 

L3 

8 37.037 36.788 37.038 36.894 

10 31.701 31.578 31.701 31.629 

20 16.379 16.368 16.379 16.373 

50 7.048 7.048 7.048 7.048 

100 5.280 5.280 5.280 5.280 

 

Figure 6.32. Problem 11, Laminate L1, a/2h=8: through-the-thickness distribution of normalized transverse 

shear stress,  2 ( )

1 0 12 k

z zh q a  . 
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In the thick plate regime, the mixed approach improves the prediction of the maximum 

deflection with respect to the displacement-based model, leading to a near-zero error, 

whereas by increasing a/2h the RZT solution approaches the exact one. Even if the 

differences are paltry, the assumption of transverse shear stresses coming from integration 

of the local three dimensional equilibrium equations appears to work better than the 

polynomial assumption strategy.    

Figures 6.32 and 6.33 compare the constitutive transverse shear stresses, denoted as 

(CE), of the RZT model with those of the two mixed models. The exact Elasticity solution 

is taken as reference in the comparison. 

Due to the non fulfillment of the transverse shear stresses continuity at layer interfaces, 

the RZT model provides piece-wise constant constitutive stresses that violate the contact 

equilibrium condition. Nevertheless, the RZT model is able to recover the actual 

distribution of shear stresses by integrating the local equilibrium equations in virtue of the 

accurate in-plane stresses prediction. The parabolic, vanishing at the top and bottom plate 

surface and continuous across layer interfaces distribution of constitutive transverse shear 

stresses is achieved by using the mixed models. By comparison, the 
(m)

2RZT stresses are 

significantly less accurate with respect to the 
(m)

1RZT ones because they follow closely the 

piece-wise constant distribution of the RZT constitutive shear stresses. This drawback was 

already highlighted in Auricchio et al. [Auricchio et al., 2003], even if in the FSDT 

framework. The same authors elucidated the reason of this behavior: when the stationary 

condition of the variational principle is set, the transverse shear strain coming from the 

assumed transverse shear stresses are enforced to equal, in a weak form, those coming 

from the displacement field. Increasing the number of the layers, the variational equation is 

enforced stronger and stronger, leading the assumed transverse shear stresses to fit with the 

constitutive ones. This is due to the fact that the number of stress variables involved in the 

polynomial assumption depends on the number of layers. The same conclusion made by 

Auricchio [Auricchio et al., 2003] holds true also in this case, allowing to demonstrate the 

superior predictive capabilities ensured by the novel transverse shear stresses assumption 

strategy (see Chapter 3).    

Problem 12. A cantilever square sandwich plate subjected to a uniform transverse 

pressure,  1 2 0,q x x q . 

For this problem, the exact solution does not exist. To assess the accuracy of RZT
(m)

, a 

high-fidelity FE (MSC/MD-NASTRAN
®

) solution is used as reference. The model is  
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Figure 6.33. Problem 11, Laminate L1, a/2h=8: through-the-thickness distribution of normalized transverse 

shear stress,  2 ( )

2 0 22 k

z zh q a  . 

 

Figure 6.34. Problem 12, Laminate L3, a/2h=8: through-the-thickness distribution of normalized transverse 

shear stress,  2 ( )

1 0 12 k
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regularly discretized using linear-strain solid elements, HEXA8. There are sixty-five 

elements along each span direction, five elements through the thickness of the bottom face, 

eight elements along the top face and fifteen elements along the core thickness. 

Figure 6.34 shows the distribution along the thickness of the prevalent constitutive 

transverse shear stress for different models compared with the FE solution. Also changing 

the load and boundary conditions, the 
(m)

1RZT model preserves its remarkable accuracy 

comparable only with that of the integrated RZT stress, quoted as RZT (EE). This case 

represents a pathological situation for the RZT since its constitutive transverse shear stress 

heavily overestimates the actual value at the bottom face. The 
(m)

2RZT distribution, in virtue 

of the variational equivalence, follows the RZT constitutive stress thus providing an 

inaccurate evaluation.  

Numerical results presented in this paragraph demonstrate that the constitutive 

transverse shear stresses of the RZT model can be easily improved by developing a mixed 

model, based on the Reissner Mixed Variational Theorem, wherein the assumed 

kinematics is that of the RZT and the assumed transverse shear stresses derive by 

integration of the equilibrium equations, as presented in Chapter 3. The use of the 

polynomial approximation for the assumed stresses, introduced for the first time by 

Murakami [Murakami, 1986] and widely adopted in the open literature, leads to errors 

clearly visible in the local responses (see Figures 6.32-6.34) rather than in the global ones 

(see Table 13). 

3.2. Free vibrations 

In the present section, the numerical results concerning the free vibration problems of 

sandwich plates, both simply supported and clamped, and solved by means of the mixed 

formulation of the RZT, are presented and compared in order to assess the improvement 

achievable with respect to the displacement-based formulation. 

Problem 13. A simply supported, cross-ply square sandwich plate (laminate L5, see 

Table A1.3). 

In Table 14, the non-dimensional free vibration frequencies computed with several 

models are compared with the reference solution [Rao et al., 2004], quoted as LW. The 

considerations about the results provided by the MZZ and FSDT models, along with the 

HSDT [Srinivas et al., 1970] have already been discussed above (see Sect. 2.2), thus herein 

the attention is focused on the results obtained with the two mixed models. Both mixed 

RZT models estimate natural frequencies that fit with the RZT  
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Table 14. Problem 13, Laminate L5, a/2h=5, tc/tf =10: first six non-dimensional circular frequencies, 

  24

22mp mp f fa h E   , where f  and 
2 fE are the mass density and the transverse Young’s 

modulus of the face, respectively. The FSDT is computed with k1
2
= k2

2
=0.0032. 

Mode: m,p LW RZT 
(m)

1RZT  
(m)

2RZT  MZZ HSDT FSDT 

1,1 1.85 1.85 1.85 1.85 14.28 4.86 1.71 

1,2 3.22 3.23 3.22 3.22 32.46 8.02 2.75 

2,2 4.29 4.30 4.30 4.30 44.28 10.30 3.44 

1,3 5.22 5.24 5.23 5.23 55.14 11.74 3.91 

2,3 6.09 6.12 6.11 6.11 63.11 13.47 4.42 

3,3 7.68 7.70 7.69 7.69 77.63 16.13 5.17 

 

Table 15. Problem 13, Laminate L5, a/2h=10: fundamental non-dimensional circular frequency, 

 4 2

1 1 2f fa h E   , where 
f  and 

2 fE
 
are the mass density and the transverse Young’s modulus of 

the face, respectively. 

tc/tf Exact RZT 
(m)

1RZT  
(m)

2RZT  MZZ HSDT FSDT (k1
2
= k2

2
) 

4 1.91 1.91 1.91 1.91 14.28 9.00 1.32 (0.0017) 

10 1.85 1.85 1.85 1.85 14.28 4.86 1.71 (0.0032) 

20 2.13 2.13 2.13 2.13 13.30 3.14 2.09 (0.0058) 

30 2.33 2.34 2.33 2.33 12.36 2.85 2.31 (0.0084) 

40 2.47 2.47 2.47 2.47 11.57 2.83 2.46 (0.0109) 

50 2.57 2.57 2.56 2.56 10.90 2.86 2.56 (0.0135) 
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ones, even if a tendency to improve the estimation appears by moving toward high-order 

modes. 

In order to investigate the effect of the core-to-face thickness ratio, in Table 15 the 

results on the first natural frequency are compared for different models. The RZT is able to 

provide accurate results for each core-to-face thickness ratio value, thus the enhancement 

of the transverse shear stiffness reached with the mixed formulations is not effective. 

Moreover, no differences between the two mixed models appear. 

Problem 14. A fully clamped, cross-ply square sandwich plate (laminate L6, see Table 

A1.3). 

In Table 16 the first six natural frequencies are compared: the use of a mixed RZT 

formulation enhances the response prediction with differences between the 
(m)

1RZT  and 

(m)

2RZT model. In fact, as results in Table 16 demonstrate, the 
(m)

1RZT results are closer to 

the reference ones, with respect to those estimated with the 
(m)

2RZT  model. 

Table 16. Problem 14, Laminate L6, core-to-face thickness ratio, tc/tf=8: first six non-dimensional circular 

frequencies,  1100mp mp c fa E   , where c is the mass density of the core and 1 fE
 
is the longitudinal 

Young’s modulus of the face. M and P are the number of Gram-Schmidt polynomials used to ensure 

convergent results for each model. The shear correction factors used are k1
2
=0.0825, k2

2
=0.1446. 

a/2h Mode: m,p 3D FE RZT(M=P=10) 

(m)

1RZT

(M=P=10) 

(m)

2RZT

(M=P=10) 

MZZ(M=P=9) 
FSDT(M=P=10) 

 

5 1,1 12.05 12.14 12.07 12.13 32.03 11.40 

 2,1 18.27 18.43 18.27 18.41 50.29 16.34 

 1,2 20.57 20.77 20.63 20.74 50.81 19.53 

 2,2 24.87 25.12 24.90 25.08 64.15 22.79 

 3,1 26.40 26.74 26.38 26.69 72.78 22.32 

 3,2 30.64 31.88 31.49 31.83 83.03 27.41 

10 1,1 11.22 11.26 11.23 11.26 27.72 11.13 

 2,1 16.68 16.73 16.69 16.74 45.26 16.02 

 1,2 18.96 19.05 19.00 19.06 45.39 18.97 

 3,1 22.71 22.80 22.74 22.81 58.06 22.08 

 2,2 23.53 23.61 23.52 23.60 67.72 22.26 

 3,2 28.07 28.20 28.21 28.20 77.00 26.99 
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4.  (3,2)-Mixed Refined Zigzag Theory  

In this section, the response prediction capabilities of the (3,2)-Mixed Refined Zigzag 

Theory is assessed on problems concerning the linear bending of multilayered composite 

and sandwich plates, simply supported and clamped, subjected to bi-sinusoidal or uniform 

distributed load.  

The accuracy of the model in solving static problems involving concentrated loads and 

dynamic problems will be discussed in the Chapter devoted to the finite element results. 

4.1. Linear bending 

For comparison purposes, the exact Elasticity solution, as derived by Pagano [Pagano, 

1970], is taken as reference in the comparison. When not available, a high-fidelity FE 

model is considered. 

Problem 15. A simply supported rectangular (b=3a) plate subjected to bi-sinusoidal 

transverse pressure,      1 2 0 1 2, sin / sin /q x x q x a x b  , applied at the top surface.  

For this set of load and boundary conditions, the exact (3,2)-Mixed Refined Zigzag 

Theory exists and is obtained by following the approximation of kinematic variables as 

that in Eq. (6.2). In Figures 6.35-6.42, the through-the-thickness distributions of 

displacements and stresses obtained by means of the (3,2)-Mixed Refined Zigzag model 

are compared with the Elasticity solution for a symmetric three-layer thick plate.  

As consequence of the laminate thickness (a/2h=5), the distribution of in-plane 

displacements ceases to be piece-wise linear and becomes piecewise non-linear (Figures 

6.35-6.36). The (3,2)-Mixed Refined Zigzag model, developed also to account for this 

response typical of thick laminates, behaves in an efficient way, matching with the 

Elasticity solution. In addition, the (3,2)-Mixed Refined Zigzag model postulates a non-

constant distribution of the transverse displacement along the thickness that reveals to be in 

perfect agreement with the reference. Accurate in-plane stresses prediction is also ensured 

by the model along with a constitutive transverse shear (Figures 6.39-6.40) and normal 

stress (Figure 6.42).      

In order to assess the global response prediction capabilities of the (3,2)-Mixed Refined 

Zigzag model, especially for thick laminates, the maximum (central) deflection for several 

span-to-thickness ratios is compared in Tables 17-19.  
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Figure 6.35. Problem 15, Laminate L10, a/2h=5: through-the-thickness distribution of normalized in-plane 

displacement,  ( ) 4 4 ( )

1 11 0 110k kU D q a U . 

 

Figure 6.36. Problem 15, Laminate L10, a/2h=5: through-the-thickness distribution of normalized in-plane 

displacement,  ( ) 4 4 ( )

2 11 0 210k kU D q a U . 
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Figure 6.37. Problem 15, Laminate L10, a/2h=5: through-the-thickness distribution of normalized transverse 

displacement,  4 4

11 010z zU D q a U . 

 

Figure 6.38. Problem 15, Laminate L10, a/2h=5: through-the-thickness distribution of normalized in-plane 

normal stress,  2 2 ( )

11 0 114 kh q a  . 
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Figure 6.39. Problem 15, Laminate L10, a/2h=5: through-the-thickness distribution of normalized in-plane 

normal stress,  2 2 ( )

22 0 224 kh q a  . 

 

Figure 6.40. Problem 15, Laminate L10, a/2h=5: through-the-thickness distribution of normalized transverse 

shear stress,  2 ( )

1 0 12 k
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Figure 6.41. Problem 15, Laminate L10, a/2h=5: through-the-thickness distribution of normalized transverse 

shear stress,  2 ( )

2 0 22 k

z zh q a  . 

 

Figure 6.42. Problem 15, Laminate L10, a/2h=5: through-the-thickness distribution of normalized transverse 

normal stress,  2 2 ( )
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Table 17. Problem 15, L1: normalized maximum (central) deflection, 
2 4

11 0(10 / ) ( / 2, / 2)w D q a w a b . The 

shear correction factors are k1
2
=0.5011, k2

2
=0.1632.    

a/h  3D Elasticity 
(m)

(3,2)RZT  RZT MZZ FSDT 

4  4.368 4.460 4.161 4.161 5.026 

6  3.310 3.279 3.197 3.197 3.500 

8  2.891 2.854 2.820 2.820 2.965 

10  2.682 2.652 2.633 2.633 2.717 

20  2.383 2.373 2.369 2.369 2.386 

50  2.293 2.292 2.291 2.291 2.294 

100  2.280 2.280 2.280 2.280 2.280 

 

Table 18. Problem 15, L2: normalized maximum (central) deflection, 
2 4

11 0(10 / ) ( / 2, / 2)w D q a w a b . The 

shear correction factors are k1
2
=0.1212, k2

2
=0.3438. 

a/h  3D Elasticity 
(m)

(3,2)RZT  RZT MZZ FSDT 

4  12.238 12.212 12.139 12.139 18.523 

6  7.352 7.346 7.325 7.325 9.082 

8  4.990 4.988 4.978 4.978 5.625 

10  3.706 3.705 3.699 3.699 3.987 

20  1.737 1.737 1.735 1.735 1.757 

50  1.121 1.121 1.121 1.121 1.122 

100  1.031 1.031 1.031 1.031 1.031 

 

Table 19. Problem 15, L9: normalized maximum (central) deflection, 
2 4

11 0(10 / ) ( / 2, / 2)w D q a w a b . The 

shear correction factors are k1
2
=0.1260, k2

2
=0.1632. 

a/h  3D Elasticity 
(m)

(3,2)RZT  RZT MZZ FSDT 

4  7.190 7.145 6.938 5.808 11.303 

6  4.540 4.542 4.471 3.504 5.724 

8  3.286 3.292 3.259 2.545 3.743 

10  2.603 2.608 2.589 2.065 2.815 

20  1.543 1.544 1.541 1.380 1.562 

50  1.205 1.206 1.205 1.178 1.207 

100  1.155 1.155 1.155 1.148 1.156 
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The (3,2)-Mixed Refined Zigzag model improves the global response prediction with 

respect to the RZT model, especially in the thick plate regime: the maximum errors 

originated by the RZT solutions, when a/2h=4, are 4,7%, 0.8% and 3.5%. The (3,2)-Mixed 

Refined Zigzag model reduces these errors to 2.1%, 0.2% and 0.6%, respectively. Thus, 

the (3,2)-Mixed Refined Zigzag model is not only efficient in providing accurate local 

response for thick laminate (see Figures 6.35-6.42) but also in enhancing the global 

response. When the span-to-thickness ratio decreases, the (3,2)-Mixed Refined Zigzag 

solution approaches the RZT one and together fit with the reference solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 6 – Analytical results 

 

157 
 

Appendix 1. Mechanical properties of materials and stacking sequences 

In the following, the mechanical properties of materials used as face-sheet (Table A1.1) 

in sandwiches, or simply adopted in multilayered composite plates, are listed along with 

the mechanical properties (Table A1.2) of materials used as core in sandwiches.  Finally, 

the stacking sequence of laminates considered in the numerical tests are listed ((Table 

A1.3).  

Table A1.1 Mechanical properties of isotropic and orthotropic materials. The Young’s moduli, 
( )k

iE , and 

the shear moduli, 
( )k

ijG , are expressed in GPa; the density 
( )k is expressed in kg m

-3
. 

Orthotropic Materials Isotropic Materials 

 A P Q F1 F2 F3 F4  F5 F6 F7 

( )

1

kE  157.9 5.9 525 50 131 19 276 

( )kE  50 62.5 65.5 
( )

2

kE  9.584 10 21 10 10.34 1 6.9 

( )

3

kE  9.584 10 21 10 10.34 1 6.9 

( )

12

k  0.32 0.25 0.25 0.25 0.22 0.32 0.25 

( )k  0.34 0.34 0.25 ( )

13

k  0.32 0.25 0.25 0.25 0.22 0.32 0.25 

( )

23

k  0.49 0.25 0.25 0.25 0.49 0.49 0.3 

( )

12

kG  5.930 5.9 10.5 5 6.895 0.52 6.9 

( )

13

kG  5.930 0.2 10.5 5 6.205 0.52 6.9 

( )

23

kG  3.227 0.7 10.5 5 6.895 0.338 6.9 

( )k  - - - - 1627 - 681.8 
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Table A1.2 Mechanical properties of core materials. The Young’s moduli, ( )k

iE , and the shear moduli,
( )k

ijG , 

are expressed in GPa; the mass density, ( )k , is expressed in kg m
-3

.  

Orthotropic Materials Isotropic Materials 

 N C1 C2  C4 C5 

( )

1

kE  10
-5

 3.2×10
-5

 0.5776 

( )kE  6.89×10
-3

 negligible 
( )

2

kE  10
-5

 2.9×10
-5

 0.5776 

( )

3

kE  75.85×10
-3

 0.4 0.5776 

( )

12

k  0.01 0.99 0.0025 

( )k  0 - 
( )

13

k  0.01 3×10
-5

 0.0025 

( )

23

k  0.01 3×10
-5

 0.0025 

( )

12

kG  22.5×10
-3

 2.4×10
-3

 0.1079 

( )kG  - 0.131 
( )

13

kG  22.5×10
-3

 7.9×10
-2

 0.1079 

( )

23

kG  22.5×10
-3

 6.6×10
-2

 0.22215 

( )k  - - 1000 
( )k  97 - 
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Table A1.3 Laminate stacking sequences (from bottom to top surface); tc and tf  are the core and the single 

face-sheet thickness, respectively. 

Laminate  
Normalized lamina thickness. 

h
(k)

/h 
Lamina materials Lamina orientation [°] 

L1  (0.5/0.5) (A/A) (0/90) 

L2  (0.25/0.5/0.25) (A /A/A) (0/90/0) 

L3  (0.1/0.7/0.2) (F1/N/Q) (0/Core/0) 

L4  (0.05/0.05/0.8/0.05/0.05) (F1/ F1/N/ F1/ F1) (0°/90°/ Core /90°/0°) 

L5  (0.5tf/0.5tf/tc/0.5tf/0.5tf) (F2/ F2/ C4/ F2/ F2) (0°/90°/Core/0°/90°) 

L6  (0.5tf/0.5tf/tc/0.5tf/0.5tf) (F4/ F4/ C2/ F4/ F4) (0°/90°/Core/90°/0°) 

L7  (0.1tf/0.1tf)5/tc/(0.1tf/0.1tf)5 (F3/ F3)5/ C1/( F3/ F3)5 (0/90)5/Core/(90/0)5 

L8  (0.5334/4.597 /0.5334) mm (F7/ C5/ F7) (0/Core/0) 

L9  (0.25/0.25/0.25/0.25) (A /A/A/A) (0/90/0/90) 

L10  (0.25/0.5/0.25) (P/P/P) (0/90/0) 

 

Appendix 2. Functionally graded sandwich plates: mechanical properties and 

stacking sequences 

Two stacking sequences are taken into consideration (see Figure A2.1), namely: a 

sandwich plate with functionally graded face-sheets and a homogeneous core (Type A) and 

a sandwich plate with functionally graded core and homogeneous face-sheets (Type B). 

Type A. Three-layer orthotropic functionally graded sandwich plate, with each lamina 

oriented at 0°, wherein the core is homogeneous whereas the face-sheets are functionally 

graded. The core and the face-sheets have the same thickness (Figure A2.2). Table A2.1 

collects the mechanical properties assumed as the reference ones. 

Table A2.1 Reference mechanical properties for Type A sandwich plates. 

LE   TE  LTG  TTG  LT  TT  
  

174.6 GPa 6.89 GPa 3.5 GPa 1.4 GPa 0.25 0.25 10
3
 

3/kg m  
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Figure A2.1 Configuration of functionally graded sandwich plates: (left) Type A, functionally graded face-

sheets and homogeneous core; (right) Type B, homogeneous face-sheets and functionally graded core. 

The gradation of the properties is only for the Young moduli, the shear moduli, and the 

mass density whereas the Poisson ratios are assumed to be constant throughout the entire 

thickness. In each layer, the mechanical property P(z) is obtained by the following relation 

(0)( ) ( )P z P f z  (A2.1) 

where P
(0)

 denotes the value of the corresponding reference mechanical property given in 

Table A2.1, while the grading law, a piecewise function, is defined as  

 

 

/3 /( 2 /3)

/3 /(2 /3)

, / 3

( ) 1,                  / 3 / 3

,   / 3

k z h h

k z h h

e h z h

f z h z h

e h z h

   

  

    


   


 

 (A2.2) 

where 2h is the total laminate thickness and k is the grading index. 

Type B. Three-layer functionally graded sandwich plate, wherein the face-sheets are 

homogeneous and isotropic whereas the core is functionally graded. The span-to-thickness 

ratio is a/2h = 10. The core, the bottom and the top face-sheet thickness are denoted by hc, 

hb, ht respectively, and the following relations hold: hc/hb = 4; hc/hb = 2. The mechanical 

properties are collected in Table A2.2.   

The mechanical properties of each layer are derived by the rule of mixture, that is  

 ( ) ( )m c m cP z P P P V z    (A2.3) 

where Vc(z) is the fraction volume distribution of the ceramic phase through the laminate 

thickness, P(z) is the equivalent mechanical property (i.e., the Young modulus or the mass 

density) and Pc, Pm the corresponding mechanical properties value of the ceramic and 

1z h 
1z h 

4z h 4z h

2 1 3z h 

3 1 3z h

2 5 7z h 

3 3 7z h

z z

(a) Type A (b) Type B

Functionally graded

face-sheet

Functionally graded

face-sheet

Homogeneous core Functionally graded core

Homogeneous face-sheet

Homogeneous face-sheet
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metallic phase, respectively (see Table A2.2). The functionally graded sandwich plate 

Type B features a power-law distribution of the fraction volume of the ceramic phase along 

the laminate thickness defined as follows  

2

2
2 3

3 2

3

0 for

( ) for

1 for

k

c

h z z

z z
V z z z z

z z

z z h

  

 

   
 

   

 (A2.4) 

where z2,z3 denote the bottom and top core interfaces coordinate (see Figure A2.1) and k 

the grading index. 

Table A2.2 Mechanical properties of the metallic and ceramic phases for Type B sandwich plates. 

Ceramic Metallic 

360 GPacE   72.5 GPamE   

0.3c   0.3m   

33800 /c kg m   32707 /m kg m   

 

 

 

 

 



 

 

 

 

 

 

 

Chapter 7 

Finite elements results 

 

1. Introduction 

This Chapter is devoted to the assessment of the finite elements formulated previously 

and presented in Chapter 5. Firstly, the novel RZT-based beam element is employed to 

solve static and free vibrations problems of soft-core sandwich beams. The purpose is to 

verify the super-convergent nature of the element, with respect to the already developed 

RZT-based beam elements [Oñate et al., 2010; Gherlone et al., 2011], in static problems, 

wherein several load and boundary conditions are considered and in free vibrations 

problems, wherein only cantilever beam is considered. 

Secondly, the (3,2)-Mixed Refined Zigzag Theory-based beam and plate elements 

performances are discussed. The anisoparametric interpolation scheme adopted to develop 

the shear locking-free beam element originates three kinds of elements, different for the 

number of nodes/dof’s and shape functions (see Chapter 5). The convergence analysis for 

all the beam elements is performed considering the bending problem of a simply supported 

sandwich beam subjected to a sinusoidal distributed load, for which an exact solution 

within the framework of the theory exists. To investigate the effect of the mismatch in the 

mechanical properties of the adjacent layers, the face-to-core stiffness ratio assumes 

different values. Once the convergence of the elements is assessed, the element response 
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capabilities are investigated on problems concerning the bending and the dynamic response 

to an impact. 

The (3,2)-Mixed Refined Zigzag Theory-based plate element is, at first, subjected to a 

convergence analysis considering the bending problem of a simply supported 4-layer 

symmetric orthotropic plate subjected to bi-sinusoidal distributed load, for which an exact 

model solution is available. Later, the response capabilities of the element are assessed on 

the bending problem of a tapered cantilever sandwich plate, subjected to a point load 

applied at the tip, and on free vibrations problem of the same structure.     

2. Exact static stiffness RZT beam element 

In Chapter 5, the formulation of a novel RZT beam element has been presented. This 

element differs from the already developed ones [Oñate et al., 2010; Gherlone et al., 2011] 

since it employs exact static shape functions, that is, shape functions derived by the exact 

solution of the homogenous part of the static equilibrium equations. The advantage in 

developing finite elements adopting exact static shape functions relies on the exact 

estimation of the element stiffness matrix with respect to analogues elements employing 

polynomial shape functions, thus resulting in better performances. Exact static stiffness 

beam elements ensure superior predictive capabilities, with respect to the comparable 

elements with polynomial shape functions, also in free vibration problems showing a 

super-convergent behavior. 

In this section, the performances of the exact static stiffness RZT beam element, herein 

quoted as RZT-e, are assessed on static and free vibration problems of sandwich beams 

and comparisons with the anisoparametric constrained RZT element, developed by 

Gherlone et al. [Gherlone et al., 2011] and herein quoted as RZT-p, are made.    

2.1. Static analysis 

Problem 1. To assess the performances of the RZT-e beam element in static problems, 

several load and boundary conditions are considered (see Figures 7.1 and 7.2). The 

problems solved pertain the elasto-static deformation of symmetric sandwich beams, with 

two values of the length-to-thickness ratio, L/2h, and made by Aluminum skins and soft-

core made by Rohacell
®
 IG31 (see Table 1). The face-to-core thickness ratio is around 0.83 

and the core-to-laminate thickness one is around 0.375. 
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Table 1. Mechanical material properties. 

Material E [MPa] G [MPa]    [kgm
-3

] 

Aluminum 73000 28077 2700 

Rohacell
®
 IG31 31 13 31 

Rohacell
®
 WF110 180 70 110 

 

Figure 7.1. Problem 1: structural configurations for point load case. 

 

Figure 7.2. Problem 1: structural configurations for uniform distributed load case. 

Tables 2 and 3 collect results on the non-dimensional maximum deflection, estimated at 

x1=L/2 for the S-S, C-S and C-C boundary conditions and at x1=L for the C-F 

configuration. The non-dimensional maximum deflection is defined as w
FEM

/w
EX

, wherein 

w
EX

 denotes the analytical RZT solution, obtained as explained in [D’Angelo, 2014], and 

w
FEM

 the finite elements one. The convergence analysis is performed using several number 

of elements, starting from the minimum (one element for the C-F boundary condition and 

two in other cases) to ten elements along the beam length.  

The RZT-p element shows slower convergence ratio for the C-S and C-C boundary 

conditions both for point and uniform distributed load case. In particular, the solution  

S-S C-F

C-S C-C

S-S C-F

C-S C-C
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Table 2. Problem 1: non-dimensional maximum deflection for point load case (Figure 7.1). 

n
(e)

  S-S C-F C-S C-C 

 L/2h 10 20 10 20 10 20 10 20 

1 RZT-p - - 0.82 0.81 - - - - 

 RZT-e - - 1.00 1.00 - - - - 

2 RZT-p 0.79 0.82 0.95 0.94 0.36 0.37 0.01 0.004 

 RZT-e 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

4 RZT-p 0.95 0.95 0.99 0.98 0.85 0.86 0.76 0.79 

 RZT-e 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

6 RZT-p 0.98 0.98 0.99 1.00 0.93 0.94 0.90 0.91 

 RZT-e 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

8 RZT-p 0.99 1.00 1.00 1.00 0.96 0.97 0.94 0.95 

 RZT-e 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

10 RZT-p 1.00 1.00 1.00 1.00 0.98 0.98 0.96 0.97 

 RZT-e 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

Table 3. Problem 1: non-dimensional maximum deflection for distributed load case (Figure 7.2). 

n
(e)

  S-S C-F C-S C-C 

 L/2h 10 20 10 20 10 20 10 20 

1 RZT-p - - 0.70 0.67 - - - - 

 RZT-e - - 1.00 1.00 - - - - 

2 RZT-p 0.85 0.89 0.91 0.89 0.43 0.45 0.01 0.004 

 RZT-e 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

4 RZT-p 0.96 0.98 0.98 0.97 0.87 0.88 0.76 0.79 

 RZT-e 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

6 RZT-p 0.98 0.99 0.99 0.99 0.94 0.95 0.90 0.91 

 RZT-e 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

8 RZT-p 0.99 0.99 1.00 0.99 0.97 0.97 0.94 0.95 

 RZT-e 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

10 RZT-p 0.99 1.00 1.00 1.00 0.98 0.98 0.96 0.97 

 RZT-e 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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estimated with two elements, for the C-C configuration, heavily underestimates the 

analytical solution. In fact, in this case, as consequence of the boundary and simmetry 

conditions, the unique unconstrained degree of freedom is the transverse displacement at 

the mid-length that produces an overstiff solution. Doubling the number of elements, the 

RZT-p element improves of 70% its accuracy. For both the C-S and the C-C boundary 

conditions, under point load and uniform distributed one, ten elements are not sufficient to 

recover the exact solution, whereas an error lower the 1% is reached for the S-S and C-F 

configuration with ten elements. Moreover, no substantial differences on the convergence 

behavior are appreciated by changing the length-to-thickness ratio. 

On the contrary, the RZT-e element is able to reach exact solution with only one 

element for every structural configuration and length-to-thickness ratio considered. This 

result is in agreement with the element formulation. In fact, the shape functions of the 

RZT-e element reproduce the solution of the homogeneous part of the static equilibrium 

equations, that means that are able to recover the exact solution (at nodes and within the 

element) of beam element subjected to concentrated load at nodes. For this reason, the 

results in Table 2 are expected. But, as results in Table 3 demonstrate, the RZT-e element 

is able also to recover the exact nodal solution also in the uniform distributed load cases. 

This behavior is not unique of the RZT-e element but is proper of every finite elements 

employing the exact static shape functions, since, as discussed by Reddy [Reddy, 1997], 

the finite element approximation space is the same as that for the general solutions of the 

model. It is worth to clarify that for exact nodal solution is implied that the element 

recovers, only at its nodes and non within the element, the same values predicted by the 

analytical solution and not the exact Elasticity solution. 

As shown in Chapter 5, the RZT-e beam shape functions could be hard to handle, due to 

the complex structure and the involvement of transcendental functions but they ensure the 

convergence to the exact nodal solution, in static problems, with only one element, 

between two consecutive concentrated loads and/or constraints, thus saving the 

computational cost in large scale analyses of frame structures, for example.  

2.2. Free vibrations analysis 

Problem 2. The exact static shape functions ensure the exact estimation of the element 

stiffness matrix thus reaching exact nodal solution in static problems, as discussed before. 

For free vibrations problems, the consistent element mass matrix, along with the exact 

element stiffness matrix, could provide the element with a super-convergent behavior. In 



Chapter 7 – Finite elements results 

 

167 

 

order to assess this advantage of the RZT-e over the RZT-p element, the first non-

dimensional flexural free frequencies of the sandwich beam previously considered are 

compared in Tables 4 and 5. For the free vibrations problem, an analytical RZT solution is 

still unavailable and for comparison purposes, a high-fidelity FE one is taken as reference. 

The non-dimensional free frequency is given by f 
FEM

/f 
REF 

, wherein f 
FEM

 denotes the 

frequencies computed by using the RZT-e and RZT-p element whereas f 
REF

 denotes the 

reference solution. 

Results in Tables 4 and 5 demonstrate the super-convergent nature of the RZT-e 

element with respect to the RZT-p. In the low frequency regime, the RZT-e element 

reaches the reference solution (with errors lower than 1%) with four/six elements whereas 

the RZT-p requires a number of elements greater than ten. Moving towards the higher 

frequency modes, the convergence with RZT-e is reached later but the element preserves 

its better performances with respect to the RZT-p. The difference between the convergence 

in the low and high frequencies regime is due to the element mass and stiffness matrices 

estimation. In the low frequency modes, the response is mainly affected by the stiffness 

matrix, thus an exact estimation of it guarantees very fast convergence. The response in the 

high frequency regime is mostly governed by the mass matrix, that for the RZT-e element 

is not exact, as for the RZT-p, but better estimated with respect to the RTZ-p since 

consistent with more accurate shape functions. For this reasons, moving towards the high 

frequencies modes, the convergence is delayed for the RZT-e but still better than the RZT-

p one. As for the static problem, no relevant differences in the elements behavior appear by 

doubling the length-to-thickness ratio and the RZT-e still performs better than the RZT-p. 

3. (3,2)-Mixed Refined Zigzag Theory-based beam element 

In this section, the 
(m)

(3,2)RZT -based beam element formulated in Chapter 5, is assessed on 

problems pertaining the elasto-static deformation of soft-core sandwich beams, simply 

supported and subjected to a sinusoidal distributed load applied at the top surface, and 

dynamic response of a double cantilever beam subjected to an impulsive load. To validate 

the accuracy of the model in severe conditions, a compliant layer problem, wherein large 

interlaminar slip occurs, is taken into consideration. 

3.1. Convergence 

A fundamental step in the assessment of a novel finite element is the convergence 

analysis. This analysis is performed for a simply supported sandwich beam subjected to a 
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sinusoidal pressure applied at the top surface. For this set of load and boundary condition, 

the exact (3,2)-Mixed Refined Zigzag Theory solution exists and is obtained by  

Table 4. Problem 2: non-dimensional flexural free frequencies, L/2h=10. 

n
(e)

  Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

2 RZT-p 1.074 1.611 5.023 3.341 4.516 

 RZT-e 1.002 1.017 1.272 1.894 1.722 

4 RZT-p 1.017 1.075 1.221 1.661 1.689 

 RZT-e 1.000 1.003 1.011 1.018 1.160 

6 RZT-p 1.007 1.032 1.084 1.179 1.319 

 RZT-e 1.000 1.001 1.003 1.009 1.019 

8 RZT-p 1.004 1.018 1.045 1.093 1.161 

 RZT-e 1.000 1.001 1.001 1.004 1.009 

10 RZT-p 1.002 1.012 1.029 1.058 1.098 

 RZT-e 1.000 1.001 1.001 1.002 1.005 

200 RZT-p 1.000 1.001 1.001 1.001 1.001 

 RZT-e 1.000 1.001 1.001 1.001 1.001 

 

Table 5. Problem 2: non-dimensional flexural free frequencies, L/2h=20. 

n
(e)

  Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

2 RZT-p 1.064 1.625 7.845 7.915 7.996 

 RZT-e 0.994 1.022 1.375 2.092 3.051 

4 RZT-p 1.009 1.072 1.183 1.620 2.994 

 RZT-e 0.992 1.000 1.015 1.021 1.183 

6 RZT-p 1.000 1.028 1.068 1.150 1.279 

 RZT-e 0.991 0.997 1.003 1.010 1.020 

8 RZT-p 0.996 1.014 1.036 1.076 1.139 

 RZT-e 0.991 0.996 1.000 1.003 1.008 

10 RZT-p 0.994 1.007 1.022 1.047 1.083 

 RZT-e 0.991 0.996 1.000 1.001 1.004 

200 RZT-p 0.991 0.996 1.000 1.000 1.000 

 RZT-e 0.991 0.996 1.000 1.000 1.000 
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approximating the kinematic variables with trigonometric functions able to satisfy the 

boundary conditions. 

In Chapter 5, three (3,2)-Mixed Refined Zigzag Theory-based beam elements are 

formulated: the first one, denoted with 0  is the so-called virgin element, that is the nine-

node/fifteen-dof’s anisoparametric element with nodes where only extra w-degrees of 

freedom are defined. In order to recover an isoparametric-like configuration, two 

constrained six-node/twelve-dof’s elements, namely the 
  and the 

 , where the 

subscript denotes the quantity on which the constraint is enforced, are developed by 

condensing out the extra w-degrees of freedom.  

The analysis is performed considering a symmetric sandwich beam with Aluminum 

face-sheets and IG31 core (see Table 1). The length-to-thickness ratio is L/2h=10 and the 

face-to-core thickness ratio is 0.05. In order to assess the influence of the face-to-core 

stiffness ratio, the Young’s modulus of the core is scaled with a multiplying factor able to 

ensure face-to-core stiffness ratio reported in Table 6, wherein the non-dimensional 

average (in integral sense, along the thickness) maximum deflection, obtained with the 

three elements, is shown. The non-dimensional deflection is defined as Uz
FEM

/Uz
EX

, where 

Uz
EX

 denotes the exact (average, in integral sense) analytical displacement and Uz
FEM

 that 

computed with the finite element approximation. 

Results in Table 6 show that elements 0  and 
  converge to the exact solution over 

the entire range of face-to-core stiffness ratio values considered, with a convergence rate 

that increases with the heterogeneity of the stacking sequence. The constrained element 

  ensures better convergence behavior when the mismatch between the mechanical 

properties of the face and the core reduces. This is a consequence of the constraint used: 

the 
  element enforces the strain measure   to be constant along the beam length, 

whereas the 
  works on the average transverse shear strain (for the details, see Chapter 

5). The main difference between the two strain measures,   and  , is that the   includes 

the zigzag amplitude into its definition, whereas   not. For this reason, by increasing the 

face-to-core thickness ratio, the zigzag deformation of the cross-section becomes relevant 

and the zigzag amplitude plays an important role. Neglecting it results in an 

underestimation of the exact beam deflection, as it happens for the 
 element. Since 

elements 
0  and 

  predict the same non-dimensional average maximum deflections (see 

Table 6), it is worth to examine if there are some discrepancies between results provided 
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Table 6. Non-dimensional maximum deflection: convergence analysis for the 
(m)

(3,2)RZT beam element. 

E
(f)

/E
(c) 

10
3 

10
2
 10 

n
(e) Elem.    

6 
0 ,     0.998 0.990 0.978 

 
  0.284 0.847 0.975 

10 
0 ,    0.999 0.996 0.992 

 
  0.495 0.936 0.991 

20 
0 ,    1 1 0.998 

 
  0.788 0.983 0.998 

50 
0 ,    1 1 1 

 
  0.958 0.997 1 

 

Figure 7.3. One and two-elements discretizations of a cantilever beam using 0 and  element. 

Table 7. Non-dimensional average deflection, 0/z zU U 
, in different locations along the beam length (see 

Figure 7.3). 

 n
(e)

 = 1 n
(e)

 = 2 

 A B A B C D 

Tip Load 0.97 0.99 0.98 0.99 1.00 1.00 

Uniform Load 0.94 0.97 0.95 0.98 0.99 1.00 

by the two elements within the element span. For this reason, the same sandwich beam, 

now cantilevered at one end, is considered. Two different loading conditions are 

A B

A B

A B C D

A B C D

0



n(e)=1 n(e)=2
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considered, that is a point load applied at the free-end and a uniform distributed load, and 

the problem is solved with 
0  and   by using one and two-elements discretization (see 

Figure 7.3). Table 7 compares the non-dimensional average deflection, defined as 

0/z zU U  , where 
zU   and 0

zU


 are computed by using the   and the 
0  element, 

respectively. Slightly different results are provided inside the elements: these differences 

are more pronounced for the distributed load case and, for both cases, tend to vanish by 

increasing the number of elements. In fact, by using two elements, the non-dimensional 

deflection reaches the unit value both in the middle and at the end node of the second 

element. Even if not reported, the in-plane displacement and stress distribution along the 

thickness are the same with both elements; whereas for the transverse normal and shear 

stress the   element requires a finer discretization to reach the same results as those 

provided by 0 .   

Due to the better performance of 
  with respect to 

 , and thanks to the less number 

of dof’s with respect to 0 , the 
  element is employed in next sections. 

3.2. Static analysis 

In this section, results concerning the bending problem of simply supported beams are 

given. The first problem concerns a soft-core sandwich beam subjected to sinusoidal 

distributed load applied at the top surface; whereas the second problem investigates the 

accuracy of the model in reproducing the interlaminar slip between two unidirectional 

layers. 

Problem 3. An unsymmetric sandwich beam made by Aluminum face-sheets and IG31 

soft core. The beam length and the length-to-thickness ratio are, respectively, L = 200 mm 

and L/2h = 6. The top face thickness is two-times that of the bottom face and the core 

thickness is 80% of the laminate one. The beam is subjected to a sinusoidal distributed 

load, applied at the top surface,    1 1sin /oq x q x L . 

For this set of load and boundary conditions, the exact Elasticity solution exists and is 

assumed as reference in the comparison. Figures 7.4-7.8 show the distribution along the 

thickness of the in-plane and transverse displacements, in-plane and transverse shear and 

normal stresses, normalized according to the following relations  



Chapter 7 – Finite elements results 

 

172 

 

 

Figure 7.4. Problem 3, unsymmetric soft-core sandwich beam, L/2h=6: through-the-thickness distribution of 

normalized in-plane displacement,  ( ) 3 3 4 ( )

1 0 110 8k k

fU E h q L U .  

 

Figure 7.5. Problem 3, unsymmetric soft-core sandwich beam, L/2h=6: through-the-thickness distribution of 

normalized transverse displacement,  3 4

08z f zU E h q L U . 
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Figure 7.6. Problem 3, unsymmetric soft-core sandwich beam, L/2h=6: through-the-thickness distribution of 

normalized in-plane stress,  ( ) 2 2 ( )

11 0 114k kh q L  . 

 

Figure 7.7. Problem 3, unsymmetric soft-core sandwich beam, L/2h=6: through-the-thickness distribution of 

normalized transverse shear stress,  ( ) ( )

1 0 12k k

z zh q L  . 
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Figure 7.8. Problem 3, unsymmetric soft-core sandwich beam, L/2h=6: through-the-thickness distribution of 

normalized transverse normal stress,  02zz zzh q L  . 

 

Figure 7.9. Problem 4, compliant layer scale factor r = 10
-3

, L/2h=6: through-the-thickness distribution of 
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   

3 3

( ) 3 ( )

1 14 4

0 0

2
( ) ( ) ( ) ( )

11 11 1 12

0 0

8 8
10 ;     

4 2
;     , ,

f fk k

z z

k k k k

z zz z zz

E h E h
U U U U

q L q L

h h

q L q L
     

 

 

 (7.1) 

where Ef  is the Young’s modulus of the face-sheet. 

The model is able to provide distribution of the axial displacement that fits with the 

reference solution over the entire thickness; as consequence, also the distribution on the 

axial normal stress is accurately reproduced. The assumed transverse shear stress is able to 

catch the actual distribution provided by the Elasticity solution, whereas the transverse 

normal stress, due to the smeared-type assumption, slightly deviates from the actual pattern 

but recovers the exact value at the top and bottom beam surfaces. A similar scenario is 

valid for the through-the-thickness distribution of transverse displacement: the model 

response, neglecting a zigzag effect for the transverse displacement, is not able to 

reproduce the same behavior of the Elasticity solution, affected also by the application of 

the load only at the top surface, but is able to provide very accurate result of deflection 

both in the mean sense that in local response, with an error less than 1% for the 

displacement at the bottom beam surface.   

Problem 4. A simply supported two-layer unidirectional beam made by material A (see 

Table A1.1, Chapter 6) is subjected to sinusoidal distributed load,    1 0 1sinq x q x L . 

The beam length is L = 220 mm and the length-to-thickness ratio is L/2h = 6. In order to 

assess the response prediction capabilities of the model in problem involving large 

interlaminar slip, a compliant layer is introduced between the two layers, that is a layer 

with the same mechanical properties of the adjacent ones but with a transverse shear 

modulus reduced, with respect to the nominal value, of a parameter r. The unidirectional 

layers thickness is 49% of the laminate one, whereas the compliant layer thickness is 2% of 

the entire one.  

Figures 7.9-7.12 compare the through-the-thickness distribution of axial displacement 

and transverse shear stress, normalized according relations defined as in Eq. (7.1) wherein 

E1 is introduced in place of Ef, with the Elasticity solution. Two different values of the 

parameter r are taken into consideration. For both values, the results follows accurately the 

reference solution, that shows a large interlaminar slip as consequence of a reduced 

transverse shear modulus in the compliant layer. Transverse shear stresses that correctly 

approach the zero value in the compliant layer are provided by the model and that fit very  
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Figure 7.10. Problem 4, compliant layer scale factor r = 10
-4

, L/2h=6: through-the-thickness distribution of 

normalized in-plane displacement,  ( ) 3 3 4 ( )

1 0 110 8k k

LU E h q L U . 

 

Figure 7.11. Problem 4, compliant layer scale factor r = 10
-3

, L/2h=6: through-the-thickness distribution of 

normalized transverse shear stress,  ( ) ( )

1 0 12k k

z zh q L  . 
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Figure 7.12. Problem 4, compliant layer scale factor r = 10
-4

, L/2h=6: through-the-thickness distribution of 

normalized transverse shear stress,  ( ) ( )

1 0 12k k

z zh q L  . 

 

Figure 7.13. Problem 5: impact load time history and Fourier transform.  
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well with the reference solution, a part from a slight difference in the maximum shear 

stress location.   

3.3. Dynamic response 

Problem 5. In this section, the accuracy of the element in providing accurate dynamic 

response is assessed on a problem pertaining the response of a double cantilever sandwich 

beam subjected to an impact occurring in the middle span and on the top surface. The 

beam is a symmetric soft-core sandwich one, with Aluminum face-sheets and IG31 core. 

The beam length and width are, respectively, L = 200 mm and b = 66 mm; whereas the 

face-to-core thickness and the core-to-laminate thickness ratios are, respectively, equal to 

0.05 and 0.91. For comparison purposes, a high-fidelity FE model, made by linear-elastic, 

QUAD4 membrane elements (36,000 dof’s) is taken as reference. The impact force is 

modeled as a point load varying in time according to the following relation 

sin 0
( )

0

t
t T

F t T

t T

  
   

  
 

 (7.2) 

where T is the contact time. In this section, two contact times are taken into consideration 

to verify the influence on the model response. In Figure 7.13, the time-histories of the two 

impact loads along with the Fourier transform are depicted. It is worth to note that, halving 

the contact time, the frequency content of the impact load doubles (see Fourier transform) 

thus involving higher-order frequencies mode in the response. For this reason, two 

different discretizations (number of elements, n
(e)

) are used for the solution: n
(e) 

= 56 for a 

contact time T = 1 ms, n
(e) 

= 76 for a contact time T = 0.5 ms. To obtain the model 

response, an explicit 2
nd

-order Runge-Kutta scheme is adopted. To reduce the 

computational cost, the reference solution is obtained by approximating the response in the 

modal space: 150 modes are included in the response to an impact load with T = 1 ms, 

whereas 200 modes are employed in the solution for an impact load with a contact time T = 

0.5 ms.  

  Figures 7.14 and 7.15 compare the response (in terms of transverse displacement) time 

histories with the reference solution in three different locations: Figure 7.14 represents the 

response in the impact point and the opposite one along the thickness direction, that is on 

the point on the bottom surface; whereas Figure 7.15 shows the response in the point back 

the impact one and in the point located on the bottom surface and at x1 = L/4. Figures 7.14 
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and 7.15 demonstrate the remarkable accuracy of the model in predict the dynamic 

response, both qualitatively and quantitatively. The thickness deformation 

 

Figure 7.14. Problem 5: time history response, L/2h = 10, T = 1 ms, n
(e) 

= 56. 

 

 

Figure 7.15. Problem 5: time history response, L/2h = 10, T = 1 ms, n
(e) 

= 56. 
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 provided by the model fits very well with the reference solution (Figure 7.14) and no 

propagation delay appears in the model response with respect to the reference (Figure 

7.15). 

Figures 7.16 and 7.17 show how the response changes (in terms of transverse 

displacement) by halving the contact time, thus approaching an impulsive load. Also in this 

case, the model preserves its accuracy. In fact, the response in the impact point and in the 

opposite point along the thickness direction is in satisfying agreement with the reference 

solution, a part a slight overestimation of the thickness deformation. Also in this case, no 

propagation delay appears and the response in a point located x1 = L/4 compares favorably 

with the reference.   

4. (3,2)-Mixed Refined Zigzag Theory plate element 

Herein, the (3,2)-Mixed Refined Zigzag Theory-based plate element is assessed on 

static and free vibrations problems. Due to the possibility to analyze geometry more 

complex than a traditional rectangular plate, in this paragraph, the element accuracy is 

tested on the bending problem concerning the elasto-static deformation of a tapered 

cantilever soft-core sandwich plate subjected to a tip load and the free vibrations problem 

of the same structure. 

4.1. Convergence 

In this section, the problem solved analytically in the previous Chapter (problem 15, 

Chapter 6) is re-taken into consideration to perform the convergence analysis.    

Figures 7.18 and 7.19 show the non-dimensional in-plane and transverse displacements 

and non-dimensional transverse shear stresses for different values of the number of 

elements of a regular mesh. The non-dimensional displacements and stresses are defined as 

the ratio between the finite element solution, denoted by the superscript FEM, and the 

analytical solution, quoted with the superscript EX. As Figure 7.18 demonstrates, the 

developed element converges to the analytical solution. The in-plane stresses are not 

plotted since they are related with the displacement field by means of the linear strain-

displacement relations and the material constitutive law. The transverse shear stresses, that 

are assumed by the model, show convergence to the analytical solution (Figure 7.19) with 

a very fast ratio. 

In order to investigate the effect of an irregular discretization, the convergence analysis 

is performed also by using an unstructured triangular mesh, automatically generated thanks  
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Figure 7.16. Problem 5: time history response, L/2h = 10, T = 0.5 ms, n
(e) 

= 76. 

 

 

Figure 7.17. Problem 5: time history response, L/2h = 10, T = 0.5 ms, n
(e) 

= 76. 
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Figure 7.18. Convergence analysis, regular mesh: non-dimensional in-plane and transverse displacements in 

different locations. On the right, the mesh topology with n
(e)

=16. 

 

Figure 7.19. Convergence analysis, regular mesh: non-dimensional transverse shear stresses in different 

locations. On the right, the mesh topology with n
(e)

=16. 
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to a Matlab
®
 open-source code (Figure 7.20). In Table 8 the non-dimensional 

displacements and stresses, evaluated as in Figures 7.18 and 7.19, are reported for different 

number of elements. To qualify an unstructured grid, the number of elements is not 

sufficient. The second and third columns of Table 8 list two parameters, the qmean and qmin, 

that refer to the mean element size and the minimum one in the grid. Greater is the gap 

between these two parameters and more heterogeneous are the size of the elements. Thus, 

in Table 8, by increasing the number of elements, it is not possible to indentify always a 

monotonic increasing or decreasing trend due to the mesh quality parameters. Despite this 

consideration, the variation is low and the general trend is convergent. This ensure the 

convergence of the results when geometrically complex problems, wherein a regular mesh 

is not possible, have to be solved.    

4.2. Static analysis 

Problem 6. A cantilever tapered soft-core sandwich plate with in-plane dimension a = 

900 mm, b = 300 mm and c =100 mm (see Figure 7.21) is subjected to unit transverse point 

load at the tip. The symmetric stacking sequence is made by Aluminum face-sheets and 

WF110 core (see Table 1), with a face-to-core thickness ratio equal to 0.125 and a core-to-

laminate thickness equal to 0.8. An unstructured grid made by n
(e) 

= 328 elements is used 

to obtain the solution (see Figure 7.21). For comparison purposes, a high-fidelity FE model 

made with linear-elastic, tetrahedral TET10 elements (77,436 dof’s) is assumed as 

reference in the comparison. 

Figures 7.22-7.24 show the through-the-thickness distribution of in-plane and transverse 

displacements for a point (point A in Figures 7.22-7.24) located at the tip and opposite, 

along the plate chord, to the loaded point. The displacements are normalized according to 

the following relations 

2 2

( ) 3 ( )

1 1

4 4
10 ;     

f fk k

z z

E h E h
U U U U

Fa Fa
   (7.3) 

where Ef is the face-sheet Young’s modulus and F is the applied load. 

As results in Figures 7.22-7.24 demonstrate, the results compare favorably with the 

reference solution even if a slight gap between the two solutions appears for the in-plane 

displacements along the core thickness. The transverse displacement, although smeared 

approximated, provide results, as the bottom transverse displacement, with an error less 

than 1%.  
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Table 8. Convergence analysis, unstructured mesh: non-dimensional displacements and transverse shear 

stresses evaluated in different location, as in Figures 7.18 and 7.19. 

n
(e)

 qmean qmin 1 1/FEM EXU U  2 2/FEM EXU U  /FEM EX

z zU U  1 1/FEM EX

z z   2 2/FEM EX

z z   

69 0.901 0.758 0.96 0.97 0.86 1.22   1.02 

92 0.891 0.574 0.97 1.11 0.96 1.04 1.12 

114 0.906 0.784 0.97 1.00 0.96 1.04 1.05 

120 0.929 0.775 0.96 0.99 0.96 1.06 1.06 

122 0.948 0.834 0.99 1.02 0.96 1.04 1.03 

340 0.905 0.696 1.00 1.03 0.98 1.01 0.96 

388 0.946 0.771 1.00 0.99 0.99 1.02 1.01 

 

 

Figure 7.20. Unstructured mesh examples. 

 

 

Figure 7.21. Problem 6 , a/2h = 8: in-plane geometry and unstructured mesh, n
(e)

=328. 
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Figure 7.22. Problem 6, a/2h=8, point A: through-the-thickness distribution of normalized in-plane 

displacement,  ( ) 3 2 ( )

1 110 4k k

fU E h Fa U . 

 

Figure 7.23. Problem 6, a/2h=8, point A: through-the-thickness distribution of normalized in-plane 

displacement,  ( ) 3 2 ( )
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Figure 7.24. Problem 6, a/2h=8, point A: through-the-thickness distribution of normalized transverse 

displacement,  24z f zU E h Fa U . 

 

Figure 7.25. Problem 6, a/2h=8: static deformation of the bottom plate surface. 
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Finally, Figure 7.25 depicts the elastic deformation of the bottom plate surface with a 

rough representation. 

4.3. Free vibrations analysis 

Problem 7. In this section, the same high-fidelity FE model (see Figure 7.26) used to 

provide reference solution in the static problem, is employed as reference for the free 

vibrations problem. For the (3,2)-Mixed Refined Zigzag Theory-based plate element 

solution the unstructured mesh of Figure 7.21 is used. 

In Table 9, the first ten frequencies are compared: the (3,2)-Mixed Refined Zigzag 

Theory results are in perfect agreement with the reference ones. The element is able to 

catch both the mainly flexural modes, quoted with the superscript f in Table 9, than the in-

plane and the coupled torsion/flexural modes, quoted with the superscript p and ft, 

respectively, with high accuracy reaching a maximum error, for the 10
th

 frequency, around 

the 3%.  

Table 9. Problem 7, a/2h=8: first ten free frequencies, in Hz. The superscript f denotes a mainly flexural 

mode, p denotes the in-plane modes and ft a coupled torsion/flexural mode.  

Mode MSC/MD-NASTRAN 
(m)

(3,2)RZT  

1
f
 3.37 3.37 

2
f
 9.18 9.18 

3
p
 9.84 10.02 

4
ft
 10.84 10.97 

5
f
 16.36 16.36 

6
ft
 23.60 23.82 

7
f
 24.27 24.30 

8
ft
 32.93 33.07 

9
ft
 33.61 33.77 

10
p
 35.13 36.13 
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Figure 7.26. High-fidelity FE model: 15,960 linear-elastic tetrahedral TET10 elements. 

 



 



 

 

 

 

 

 

 

Chapter 8 

Experimental assessment 

 

1. Introduction 

This Chapter is devoted to the discussion of the experimental campaign carried out 

within the present research activity. The purpose is to provide a set of experimental results 

useful for a theory assessment. The experimental measures focus on the deflection, via a 

four-points bending test, and the natural frequencies, via a hammer test, of sandwich beams 

made by the 7075 Aluminum alloy (Ergal) and a Rohacell
®
 core. Since the measured 

quantities are global responses, the three models presented in this Thesis provide very 

similar results and for this reason only the Refined Zigzag Theory (RZT) is assessed. 

Moreover, to enrich the comparison and to value the benefits ensured by the RZT, the 

results coming from the Timoshenko’s beam theory (TBT), adopting the shear correction 

factor, are included. In particular, two values for the shear correction factors are 

considered: the first one is the classical 5/6 value; whereas, the second one is estimated by 

using the procedure proposed in [Raman et al, 1996]. 

The whole experimental campaign has been conducted at the LAQ-AERMEC 

laboratory of the Mechanical and Aerospace Engineering Department of the Politecnico di 

Torino.  
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2. Specimens 

The specimens consist in sandwich beams made by the 7075 Aluminum alloy (Ergal) 

and Rohacell
®
 core. In order to investigate the effect of the core mechanical properties, two 

types of core are considered: the IG31 and the WF110. To investigate the effect of the 

length-to-thickness ratio and the core-to-face thickness ratio, different geometries are 

provided. The shape of the specimens is also dictated by the test: for a four-points bending 

test, a simply supported beam is required, whereas for an hammer test, a cantilever 

boundary condition has to be realized (see Figures 8.1 and 8.2). 

The specimens are listed in Table 1 with a nomenclature that contains indications about 

the core material, the beam length, face thickness and the boundary conditions to which 

they are subjected. All the dimensions listed in Table 1 have been measured with a caliper 

in three different positions along the beam span and an average value is provided. 

Table 1. Specimens: nomenclature and measured geometry. For reference, see Figures 8.1 and 8.2. 

Specimen Ltot Leff b hf hc hf/ hc L/htot 

IG31_32_5_SS 36.10 32.10 48.43 5.00 6.00 0.83 20.00 

WF110_32_5_SS 35.90 32.0 48.53 5.00 6.27 0.79 19.67 

IG31_32_5_CF 42.60 32.00 48.53 5.00 6.07 0.82 19.91 

IG31_64_5_CF 85.30 64.00 48.40 5.00 6.00 0.83 40.00 

WF110_32_5_CF 42.60 32.00 48.18 5.00 6.10 0.82 19.87 

WF110_64_5_CF 85.30 64.00 48.40 5.00 6.20 0.81 39.51 

WF110_48_2_CF 64.00 48.00 72.13 2.00 20.13 0.09 19.89 

WF110_96_2_CF 128.00 96.00 72.13 2.00 20.10 0.09 39.83 

3. Material characterization 

In this section, the procedure followed to characterize the mechanical properties of 7075 

Aluminum alloy (Ergal) and the Rohacell
®

 IG31 and WF110 are presented along with the 

results obtained. For reference, in Table 2, the nominal values of the mechanical 

proprieties are collected.  

It is trivial to note that the material characterization is necessary to make the 

comparison between the experimental and numerical results reasonable.    
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Figure 8.1. Specimen geometry for the four-points bending test (SS notation in Table 1). 

 

Figure 8.2. Specimen geometry for the hammer test (CF notation in Table 1).

 

Figure 8.3. INSTRON machine: A. Console; B. Load Cell; C. Clamps; D. Hydraulic actuator. 
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Table 2. Material mechanical proprieties: nominal values; the Young’s and shear modulus in MPa. 

Material E G 

7075 Aluminum alloy 73000 28077 

Rohacell
®

 IG31 36 13 

Rohacell
®

 WF110 180 70 

3.1. Mass density 

The mass density of the Rohacell
®
 IG31 and WF110 are estimated by weighting three 

core specimens, for each typology, and dividing by the corresponding volume. The core 

mass density is obtained by averaging the three measures. The Aluminum alloy mass 

density is obtained by weighting three sandwich beams of those listed in Table 1 and 

subtracting the mass of the core. The Ergal mass density is obtained by averaging the three 

measures. The results are collected in Table 3. 

Table 3. Measured mass density in kgm
-3

. 

 7075 Aluminum alloy Rohacell
®
 IG31 Rohacell

®
 WF110 

  2849 36.8 112 

 

3.2. Young’s modulus and Poisson’s ratio 

The Young’s modulus and the Poisson’s ratio of the Aluminum alloy are characterized 

by following the standard test methods provided by the ASTM B557M and E 111 norms. 

The traction load is applied by means of the servo-hydraulic system of the INSTRON 8516 

(see Figure 8.3) able to apply a maximum load of 120 kN. One of the longitudinal stress-

longitudinal strain curve obtained by the standard test is shown in Figure 8.4, from which 

one value of the Young’s modulus is derived. The Poisson’s ratio is evaluated by 

considering the transverse strain, as prescribed by the standards. Both the Young’s 

modulus and the Poisson’ ratio are estimated by averaging the values obtained in three 

tests.  

The Young’s and the shear modulus evaluation of the Rohacell
® 

IG31, and similarly of 

the WF110, is performed into two steps. Firstly, a three-points bending test is carried out 

using three Rohacell
®
 specimens of each typology, tested twice, with length L = 218 mm, 

width b = 67 mm and height h = 20 mm. In Figure 8.5, the experimental set-up used for the 

three-points bending test is shown: a displacement-control system (B) is fixed to a rigid 

frame (A); the load cell (C) measures the load applied to the specimen for each applied 
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transverse displacement and two linear displacement transducers, LVDT, (D and E) are 

located at the center of the specimen and at a quarter of its length. The data coming from 

the load cell and the linear displacement transducers are stored and plotted in Figures 8.6 

and 8.7 along with the linear interpolation of each experimental set of measures. To obtain 

the core Young’s and shear moduli, a bi-parametric analysis with a high-fidelity FE model 

(1,200 linear-elastic QUAD4 membrane elements) is performed. The Young’s and shear 

moduli are changed assuming values within an interval defined by the variation of ±20% of 

the nominal values (see Table 2) and the FE solution computed several times in order to 

obtain the surface as those in Figures 8.8 and 8.9 (for sake of conciseness, only the WF110 

are displayed). The surface in Figure 8.8 refers to the deflection at the center of the core 

specimen while that in Figure 8.9 concerns the deflection at a quarter of the specimen 

length. The Young’s and shear moduli are obtained by finding the couple of values that 

gives the same experimental value of deflection at each location. By considering Figures 

8.8 and 8.9 it is easy to understand that no dependence on the shear modulus appears and 

the only parameter that can be estimated is the Young’s modulus. This is due to the 

negligible effect of the shear deformation to the total deflection of the specimen.  

 

Figure 8.4. Ergal stress/strain curve obtained by the standard test. 
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Figure 8.5. Rohacell
®
 three-points bending test: A. rigid frame; B. displacement-control system; C. load cell; 

D., E. linear displacement transducers.  

By performing the same bending analysis with the Timoshenko’s beam theory, the same 

results of the finite element analysis are obtained, with an error lower than 1%. Thus, 

considering the Timoshenko’s beam theory, the deflection w, at a given location along the 

beam axis, of a simply supported beam with a concentrated force at the beam mid-span 

reads as 

3

2

PL PL
w

EJ k GA
    (8.1) 

where P, L, A, J are, respectively, the applied load, the beam length, the cross-section area 

and the moment of inertia. Since Eq. (8.1) is consistent with the Timoshenko’s beam 

theory, a shear correction factor k
2
=5/6, adequate for an isotropic single layer, is required 

to reduce the transverse shear stiffness. The parameters   and   depend on the location 

along the beam axis: for a simply supported beam, they assume values 1/48 and 1/4, 

respectively, for the central deflection, and 11/768 and 1/8, for the deflection at a quarter of 

the beam length.  

By taking into consideration Eq. (8.1), it is easy to note that the deflection is given by 

the superposition of two contributions: the first one due to the bending and the second one 

due to the transverse shear. The ratio between the deflection due to the bending, namely 

wb, and the contribution due to the shear, ws, is 
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2

2

1
/

6
s b

h
w w

L k

 
 
 

 (8.2) 

Due to the specimen dimension, the ratio in Eq. (8.2) reaches an almost vanishing value, 

about 0.002. This means that the measured deflection is only due to the bending, that is, the 

only mechanical property that affects the deflection is the Young’s modulus whereas the 

shear one is ineffective. Thus, from this first step, the Young’s modulus of the Rohacell
®
  

IG31 and that of the Rohacell
®

 WF110 is obtained by averaging three values, for each 

foam, obtained by comparing the experimental values of transverse displacement with 

those coming from the FE model.  

The second step is focused on the estimation of the shear modulus. From the above 

consideration, it results clear that for a homogeneous isotropic specimen the transverse 

shear deformation effect on the total deformation depends only on the slenderness, L/h. A 

way to augment the shear deformation effect is by increasing the bending-to-shear stiffness 

ratio. For this reason a sandwich-like stacking sequence wherein the Rohacell
®
 core is 

bounded by two 7075 Aluminum alloy face-sheets is considered and the results coming 

from the experimental four-points bending test (see Sect. 4), are used as reference to obtain 

the core shear modulus. Two specimens are considered: the IG31_32_5_SS and the 

WF110_32_5_SS, in order to characterize both the polymeric foams employed in the 

experimental campaign. By using the experimental results (see Sect. 4) in terms of 

transverse displacement at the center and under the load pin of the sandwich specimen, an 

updating of a high-fidelity FE model (made by linear-elastic QUAD8 elements: 10 

elements along the face-sheets thickness, 12 along the core thickness and 640 along the 

beam length) is carried out by assuming as Aluminum mechanical proprieties those 

obtained by the material characterization, whereas, for the Rohacell
®
 core, the Young’s 

modulus coming from the former step is assumed. The Rohacell
® 

shear modulus, instead, 

assumes different values in the range [0.8Gn;1.2Gn] where Gn is the nominal shear 

modulus, see Table 2. For the IG31_32_5_SS specimen, and similarly for the 

WF110_32_5_SS, the value of the shear modulus that ensures a match between the 

experimental displacement and the numerical one, with a maximum error of 1%, is 

pinpointed (see Figures 8.10 and 8.11). Since the four-points bending test provides two 

values of displacements in two different positions (see Sect. 4), for each sandwich 

specimen, the match has been made two times. Thus, the shear modulus for each foam is 

the average between these two values. In Table 4 the mechanical proprieties are collected. 
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Figure 8.6. Three-points bending test: force-displacement curve (Rohacell
®
 IG31).  

 

Figure 8.7. Three-points bending test: force-displacement curve (Rohacell
®
 WF110). 

0 0.5 1 1.5 2 2.5 3
-2.5

-2

-1.5

-1

-0.5

0

 

 

Experimental (x=L/2)

Experimental (x=L/4)

Linear fitting

Linear fitting

F
o

rc
e,

 [
k

g
]

Deflection, [mm]

F
o

rc
e,

 [
k

g
]

Deflection, [mm]

0 0.5 1 1.5 2 2.5 3
-12

-10

-8

-6

-4

-2

0

2

w [mm]

F
 [

k
g
]

 

 

Linear fitting

Experimental (x=L/2)

Linear fitting

Experimental (x=L/4)



Chapter 8 – Experimental assessment 

 

197 
 

 

Figure 8.8. Deflection (in mm) at the center of the WF110 specimen as function of the Young’s and shear 

moduli (in MPa). Finite elements result with an applied force of 1 N. 

 

 

Figure 8.9. Deflection (in mm) at a quarter of the length of the WF110 specimen as function of the Young’s 

and shear moduli (in MPa). Finite elements result with an applied force of 1 N. 
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It is worth to note that, for the IG31 foam (see Figure 8.10), the values of the shear 

modulus are not almost identical as for the WF110 foam (see Figure 8.11). Moreover, as 

shown in Table 4, the standard deviation on the Young’s modulus of the IG31 is greater, in 

terms of percentage with respect to the mean value, of that of WF110, thus giving the idea 

of a greater dispersion of the mechanical proprieties of the former foam with respect the 

latter one.  

4. Four-points bending test  

In this section, experimental results concerning the four-points bending test on 

sandwich beams are presented and compared with the RZT numerical ones. 

4.1. Experimental set-up  

The four-points bending test is performed on the universal testing machine 

METROCOM (see Figure 8.12) equipped with two linear displacement transducers (HBM-

LVDT ± 2.5 mm), a load cell (HBM- Strain Gage Load Cell, 200 kg) and a load 

transmission system (two cylinders connected to the load cell by means of a rigid plate). 

Along with the transverse displacements in two positions along the beam axis, the axial 

strain is measured by using a strain gage located on the bottom beam face. The load and 

boundary conditions, as the positions of the LVDTs and the strain gage, are depicted in 

Figure 8.13. The distance between the two load cylinders is Ld = 110.5 mm and that 

between the support and the load cylinder is L1 = 105.25 mm. As for the material 

characterization of core, the test is performed in displacement control. 

Table 4. Characterized material mechanical proprieties: the Young’s and shear modulus in MPa. For the 

Aluminum alloy and the core shear modulus, due to the reduced number of test, only the mean value is given. 

For the core Young’s modulus, six test have been performed and the standard deviation is given along with 

the average value.   

Material E G 

7075 Aluminum alloy 69570 25766 

Rohacell
®
 IG31 40.3±4.9 12.4 

Rohacell
®
 WF110 196±8.6 65.4 
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Figure 8.10. Rohacell
®
 IG31 shear modulus characterization: updating of the numerical model via 

experimental results on a four-points bending test of IG31_32_5_SS specimen. 

 

Figure 8.11. Rohacell
®
 WF110 shear modulus characterization: updating of the numerical model via 

experimental results on a four-points bending test of WF110_32_5_SS specimen. 
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Figure 8.12. Four-Points Bending Test: experimental set-up. 

 

Figure 8.13. Load and boundary conditions, sensors placement. 

4.2. Results 

The results of the four-points bending test are reported in Figures 8.14-8.17 in terms of 

transverse displacement at the center of the beam, wm, transverse displacement under the 

load cylinder, wc, and axial strain measured at the center of the beam with a strain gage 

located at the bottom beam surface. The results concerning the IG31_32_5_SS beam are 

given in Figures 8.14 and 8.15, while those for WF110_32_5_SS beam are shown in 

Figures 8.16 and 8.17. In both case, the RZT solution has been obtained employing 440 

beam anisoparametric constrained element, as formulated in [Gherlone et al., 2011]. 
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Figure 8.14. Four-points bending test: IG31 core, transverse displacements in two locations. 

 

 

Figure 8.15. Four-points bending test: IG31 core, axial strain at the center of the beam, bottom face. 
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Figure 8. 16. Four-points bending test: WF110 core, transverse displacements in two locations. 

 

 

Figure 8.17. Four-points bending test: WF110 core, axial strain at the center of the beam, bottom face. 
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In both cases, the RZT results fit very well with the experimental values, both in terms 

of displacement and strain. The error on the transverse displacement valuated at the center 

is around the 1.7% whereas that under the load pin is 1.1%, for the IG31_32_5_SS beam. 

The error on the maximum deflection (at the center of the beam) reduces at 0.8%, for the 

WF110_32_5_SS beam, while that concerning the deflection under the load remains 

unchanged. Greater difference between the two beams appears about the axial strain: for 

the IG31_32_5_SS, the error reaches the 8.9%, whereas it is around the 4.4% for the 

WF110_32_5_SS beam. 

5. Hammer test 

In this section, results concerning the experimental evaluation of the first five natural 

frequencies of sandwich beams are presented. The experimental measure is performed by 

means of an hammer test [Ewins, 1984]. For this purpose, a cantilever constraint has been 

realized and the specimens involved in this experimental campaign are those listed in 

Table 1 with notation CF. It is possible to note that the specimens consist in sandwich 

beams made by both Rohacell
®

 IG31 and WF110 core, in order to investigate the effect of 

the core stiffness, and are characterized by two nominal values of the face-to-core 

thickness ratio, 5/6 and 2/20, and two nominal values of the length-to-thickness ratio, 20 

and 40.   

5.1. Experimental set-up 

In the experiment, the natural frequencies are measured by the experimental modal 

analysis wherein the beam is excited by an impulse hammer (Bruel & Kjaer 8202 with 

force transducer 8200) and the acceleration responses are observed by ten accelerometers 

(Bruel & Kjaer 4518). The excitation force and the acceleration signal are stored using 

LMS-Siemens SCADAS III and processed by a workstation to obtain the frequency 

response function (FRF).  The Least Square Complex Exponential algorithm (implemented 

in LSM-Siemens Test.Lab) was used to estimate the modal data. The beam is cantilevered 

at one end by two heavy and rigid steel blocks joined each other by bolted connections. In 

Figure 8.18 the experimental set-up for the IG31_32_5_CF is shown as example. The 

accelerometers are placed along the beam axis being careful to avoid the coincidence with 

the nodes of the first five modes (known in advance by means of a FE analysis).  
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5.2. Results 

In Tables 5-10, the RZT and Timoshenko’s beam theory (TBT) results are given in terms 

of percentage errors with respect to the experimental values. For reference, the 

experimental frequency values are listed in Tables 5-10. Moreover, in Figure 8.19 the 

frequency response function (FRF) obtained for the IG31_32_5_CF is displayed whereas 

in Figure 8.20, the comparison of the first four modes is depicted.  

The TBT results are obtained by using two shear correction factors, k
2
: the first one is 

the common used value 5/6, whereas the second one is an ad hoc computed according to 

the procedure proposed in [Raman et al, 1996]. The TBT employing the k
2
 = 5/6 heavily 

overestimates the natural frequencies leading to percentage errors that can exceed the 

100%. The erroneous estimation of the natural frequencies is consequence of a not suitable 

shear correction factor that results disproportionate in relation with the stacking sequence, 

characterized by a sizeable face-to-core stiffness ratio. In fact, the ad hoc estimated shear 

correction factor is orders of magnitude lower than the 5/6 value.  

The adoption of a suitable shear correction factors improves the TBT predictions only 

for the first natural frequency, whereas the errors on the higher-order mode frequencies 

still remain noticeable. The higher-order modes, in fact, involve cross-section distortion 

phenomenon that are not accounted for in the TBT. Figures 8.21 show a zoom of the 

normal modes obtained by a high-fidelity FE model (made by linear-elastic QUAD4 

elements, 699,842 dof’s) for the WF110_64_5_CF specimen. As it is easy to notice, the 

first normal mode is characterized by a cross-section that remains flat whereas the third 

and fifth normal modes involve cross-section distortion phenomenon not modeled by the 

TBT kinematic assumption. Moreover, the improvements reachable by adopting the ad hoc 

shear correction factors depend also on the face-to-core stiffness ratio: for highly 

heterogeneous sandwiches (Tables 5 and 6) the error on the first natural frequency 

obtained by the TBT with the ad hoc shear correction factor are 22% and 10%, according 

to the beam slenderness. Considerations about the effect on the natural frequencies 

prediction of the shear correction factors in sandwich-like stacking sequences, by changing 

the face-to-core stiffness and thickness ratio, are discussed in [Iurlaro et al., 2013a]. 

The RZT appears substantially more accurate than the TBT adopting the ad hoc shear 

correction factor. The improvement is noticeable both on the first frequency (Tables 5 and 

6) and on the higher-order mode frequencies (Tables 7-10). It is worth to note that the RZT 

error does not manifest a monotonic trend, contrary to the TBT for which the error 
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increases by raising the frequency. This is ascribable to the core material properties 

dispersion that affects in different way the RZT and TBT solution. In particular, attention 

has to be focused on the shear modulus: in the TBT only one transverse shear stress 

resultant appears, thus originating one stiffness coefficient related to the shear modulus; 

whereas, the RZT provides two transverse shear stress resultants thus giving rise to two 

stiffness coefficients depending on the shear modulus. By increasing the mode order, these 

stiffness coefficients can participate to the vibration in different way thus making the shear 

modulus dispersion more or less influential. It is worth to note that the errors obtained by 

the experimental campaign carried out are in agreement with those obtained by Narita and 

co-workers [Honda et al., 2013] within an experimental assessment of the RZT for plates. 

 

Figure 8.18. Hammer test: experimental set-up. 

Table 5. First five natural frequencies for IG31_32_5_CF specimen. 

Mode Experimental RZT TBT (k
2
=5/6) TBT (k

2
=1.1074·10

-3
) 

1 83.9 -5.0 % 70.8 % -22.1 % 

2 331.5 -7.2 % 159.7 % -41.0 % 

3 772.0 -3.9 % 214.4 % -53.3 % 

4 1409 -0.3 % 172.1 % -62.6 % 

5 2254 1.8 % 115.6 % -69.0 % 
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Figure 8.19. IG31_32_5 specimen: frequency response function. 

 

Table 6. First five natural frequencies for IG31_64_5_CF specimen. 

Mode Experimental RZT TBT (k
2
=5/6) TBT (k

2
=1.1080·10

-3
) 

1 30.4 -4.8 % 24.8 % -10.0 % 

2 133 -14.5 % 77.3 % -30.2 % 

3 295 -15.6 % 122.6 % -39.0 % 

4 482 -13.1 % 163.6 % -46.3 % 

5 713 -10.4 % 169.7 % -52.5 % 

 

Table 7. First five natural frequencies for WF110_32_5_CF specimen. 

Mode Experimental RZT TBT (k
2
=5/6) TBT (k

2
=5.8227·10

-3
) 

1 111 8.0 % 35.2 % 3.6 % 

2 498 -3.6 % 85.4 % -18.5 % 

3 1103 -5.3 % 127.8 % -27.5% 

4 1797 -3.6 % 112.4 % -35.4 % 

5 2635 -1.1 % 80.0 % -42.1 % 
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Figure 8.20. First four mode shapes of the IG31_32_5_CF beam: experimental mode shapes are represented 

at accelerometers’ positions only. 

Table 8. First five natural frequencies for WF110_64_5_CF specimen. 

Mode Experimental RZT TBT (k
2
=5/6) TBT (k

2
=5.8194·10

-3
) 

1 34.5 3.0 % 10.9 % 2.3 % 

2 177 -4.8 % 33.8 % -9.6 % 

3 417 -8.5 %  58.6 % -16.7 % 

4 688 -10.0 % 86.3 % -22.1 % 

5 986 -9.9 % 93.5 % -26.6 % 

 

Table 9. First five natural frequencies for WF110_48_2_CF specimen. 

Mode Experimental RZT TBT (k
2
=5/6) TBT (k

2
=1.5311·10

-2
) 

1 97.6 3.0 % 22.7 % 2.5 % 

2 403 -3.5 % 80.1 %  -5.4 % 

3 848 -6.4 % 129.7 % -8.6 % 

4 1279 -7.6 % 85.1 % -10.3 % 

5 1715 -7.8 % 111.3 % -11.3 % 
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Table 10. First five natural frequencies for WF110_96_2_CF specimen. 

Mode Experimental RZT TBT (k
2
=5/6) TBT (k

2
=1.5293·10

-2
) 

1 28.4 1.1 %  6.3 % 1.0 % 

2 148 -3.2 % 26.5 % -3.8 % 

3 341 -5.3 % 51.7 % -6.1 % 

4 557 -7.2 % 79.7 % -8.3 % 

5 777 -8.3 % 52.3 % -9.6 % 

 

 

Figure 8.21. Tip cross-section deformation for the WF110_64_5_CF specimen (MSC/MD-NASTRAN
®
 

results): (a) first mode shape; (b) third mode shape; (c) fifth mode shape. 

(a) (b) (c)



 

 

 

 

 

 

Summary and conclusions 

The research work presented in this Thesis is devoted to the development and 

assessment of accurate and computationally efficient theories and numerical tools based on 

these theories. Chapters 2-5 are earmarked to the theoretical developments that serve as 

basis for the numerical results shown in Chapter 6 and 7 and the experimental ones 

discussed in Chapter 8. 

The cornerstone and the starting point of the activity is the Refined Zigzag Theory, a 

recently developed zigzag model. Some of the analytical results presented in Chapter 6 are 

devoted to a further investigation of the Refined Zigzag Theory prediction capabilities over 

a wide range of problems mainly concerning to the linear bending, free vibrations and 

buckling loads of sandwich plates, subjected to several load and boundary conditions. In 

the framework of the Zigzag models, as highlighted in Chapters 1 and 2, the cross-section 

distortion can be basically modeled in two ways: adopting the Di Sciuva’s type zigzag 

function, that is the Refined Zigzag Theory function, and the Murakami’s zigzag function. 

The problems solved in Chapter 6 constitute also the occasion to compare the prediction 

capabilities of the Murakami’s zigzag function when employed in a first-order zigzag 

model, that is a model that differs from the Refined Zigzag one only for the zigzag 

function adopted. This comparison partially covers a lack in the open literature and it is 

considered, by the author, necessary due to the increasingly interest of the research 

community in the zigzag models. The comparison involve also the First-Order Shear 

Deformation Theory, a widely used model that represents the underlying theory of all the 

finite elements implemented in commercial codes, and higher-order models belonging to 

the Equivalent Single Layer models class. The results serve to demonstrate that adding a 
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zigzag contribution to a kinematics is more efficient than enriching the same kinematics 

with higher-order terms. This observation is sustained by results concerning the global 

(maximum deflection, natural frequencies and critical buckling loads) and local (through-

the-thickness distributions of displacements and stresses) responses of sandwich plates, 

including also functionally graded layers. With respect to the higher-order models, 

remarkable accuracy in the global response can also be reached by adopting a suitable 

shear correction factor in the framework of the First-Order Shear Deformation Theory. 

Even if accurate in global responses, the First-Order Shear Deformation Theory results 

unable to fit with the reference solutions when local responses are required. The viable 

solution is to add a zigzag contribution to the First-Order Shear Deformation Theory 

kinematics, thus originating a first-order zigzag model. The Refined Zigzag Theory 

belongs to the first-order zigzag models class, due to its kinematic assumptions, and can be 

compared with the results obtained by using a first-order zigzag model adopting the 

Murakami’s zigzag function. The numerical results of Chapter 6 demonstrate a superior 

prediction capabilities of the Refined Zigzag Theory over the First-Order Shear 

Deformation Theory and the higher-order models in the bending, free vibrations and 

buckling load problems. When compared with the first-order zigzag model employing the 

Murakami’s zigzag function, three scenarios arise: the two models give the same results; 

the latter one reaches results between, in terms of accuracy, the Refined Zigzag Theory and 

the First-Order Shear Deformation one (adopting the shear correction factors);  the first-

order Murakami’s zigzag model and the First-Order Shear Deformation Theory (without 

shear correction factors) results are the same. The scenarios depend on the stacking 

sequence of laminate: for symmetric and periodic ones, the Murakami’s zigzag function 

ensures results equal to those obtained by the Refined Zigzag Theory, both in terms of 

global and local responses; when the symmetry and periodicity of the stacking sequence 

are destroyed, the Murakami’s zigzag function leads to erroneous results.  

The Refined Zigzag Theory is also a suitable model for an efficient C
0
 finite element 

implementation. As discussed in Chapter 5, beam and plate Refined Zigzag Theory-based 

element have been already developed. A novel beam element is introduced in Chapter 5, 

wherein shape functions derived by the solution of the homogeneous static equilibrium 

equations are employed in the element formulation. Results in Chapter 7 demonstrate a 

superconvergent behavior of this element with respect to an element based on the same 

underlying theory, but employing different shape functions, both in static and free 

vibrations problems.   
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Consistent with the kinematic assumption, the Refined Zigzag Theory provides piece-

wise constant constitutive transverse shear stresses along the thickness that are accurate, in 

an average sense, in each layers but violates the continuity conditions at layer interfaces. 

The way to improve the constitutive transverse shear stresses prediction is to develop a 

Mixed Refined Zigzag Theory (Chapter 3) based on the Reissner Mixed Variational 

Theorem. Results in Chapter 6 demonstrate the improvements achievable by adopting a 

mixed model, both in terms of through-the-thickness distribution of constitutive transverse 

shear stresses and in terms of global response predictions (maximum deflection and natural 

frequencies). The accuracy ensured by the Mixed Refined Zigzag model depends on the 

assumed transverse shear stress modeling strategy. Two strategies are considered: the first 

one is an equilibrium-based one, wherein the assumed transverse shear stresses are derived 

by integration of the local equilibrium equations; the second one is the widely-used, in the 

open literature, layer-wise polynomial approximation. The first way to assume the 

transverse shear stresses overcomes in accuracy the second one, as demonstrated and 

discussed in detail in Chapter 6.  

The theoretical developments presented in Chapter 4, are devoted to a novel higher-

order model, called (3,2)-Mixed Refined Zigzag Theory, based on the Reissner Mixed 

Variational Theorem, that arises from the Refined Zigzag Theory. The purpose is to 

develop a model that accounts for the non-linear piece-wise distribution of displacements 

along the thickness, the transverse normal deformability effect and the transverse normal 

stress in thick multilayered composite and sandwich beams/plates. The additional 

requirement is to develop a higher-order zigzag model involving the lower number of 

kinematic variables in order to save the computational cost. For this aim, the original 

kinematic assumption has been condensed out in a reduced one that represents the 

theoretical basis for the finite element implementations of Chapter 5. The theoretical 

assessment has been performed on a single bending problem of a thick laminates in 

Chapter 6, wherein the prediction capabilities of the model in providing accurate through-

the-thickness distribution of displacements and stresses is demonstrated. Further 

investigations on the model predictive capabilities are carried out in Chapter 7, wherein 

accurate finite elements results concerning static and dynamic problems are presented. 

Finally, in Chapter 8, for the first time, an experimental campaign is performed on a 

series of sandwich beams, with different core, slenderness and core-to-face thickness ratio. 

Both four-point bending tests and hammer tests are considered and the experimental results 

compared with those obtained by using the Refined Zigzag Theory and the Timoshenko’s 
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beam theory. The comparison with the experimental results demonstrates great accuracy of 

the Refined Zigzag theory both in static and free vibration problems. Moreover, the 

comparison with the Timoshenko’s beam theory, wherein the accuracy of the solution is 

augmented via the adoption of a suitable shear correction factor, demonstrates the superior 

capabilities of the Refined Zigzag Theory in predicting the first five natural frequencies for 

highly heterogeneous sandwich beam.   

The research activity herein presented, supported by the numerical results, encourages 

the adoption of the zigzag models in the multilayered composite and sandwich structures. 

In particular, the work identifies in the Refined Zigzag Theory and the further theoretical 

developments that originate from it (Mixed Refined Zigzag Theory and (3,2)-Mixed 

Refined Zigzag Theory), very appealing models in virtue of their accuracy, computational 

cost and efficient finite element implementations.  
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