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Wideband Fast Kernel-Independent Modeling of
Large Multiscale Structures via Nested

Equivalent Source Approximation
Mengmeng Li, Matteo Alessandro Francavilla,Member, IEEE, Rushan Chen,Member, IEEE,

and Giuseppe Vecchi,Fellow, IEEE

Abstract—We propose a wideband fast kernel-independent
modeling of large multiscale structures; we employ a nested
equivalent source approximation (NESA) to compress the dense
system matrix. The NESA was introduced by these authors for
low and moderate frequency problems (smaller than a few wave-
lengths); here we introduce a high-frequency NESA algorithm,
and propose a hybrid version with extreme wideband properties.
The equivalent sources of the wideband NESA (WNESA) are
obtained by an inverse-source process, enforcing equivalence of
radiated fields on suitably defined testing surfaces. In the low
frequency region, the NESA is used unmodified, with a complex-
ity of O(N). In the high frequency region, in order to obtain
a fixed rank matrix compression, we hierarchically divide the
far coupling space into pyramids with angles related to the peer
coupling group size, and the NESA testing surfaces are defined
as the boundaries of the pyramids. This results in a directional
nested low rank (fixed rank) approximation with O(N logN)
computational complexity that is kernel independent; overall,
the approach yields wideband fast solver for the modeling of
large structures that inherits the efficiency and accuracy of low-
frequency NESA for multiscale problems. Numerical resultsand
discussions demonstrate the validity of the proposed work.

Index Terms—Integral equations, fast solvers, wideband meth-
ods, low-rank approximation, multiscale.

I. I NTRODUCTION

I N recent years there has been a strong interest in wideband
electromagnetic algorithms for the full-wave simulation of

realistic multiscale structures. The peculiar feature of large
multiscale problems is the coexistence of dense meshes to
capture the geometric details (as in low frequency problems)
and of large scale interactions (typical of high frequency
problems). The difficulties associated to this scale variability
are enhanced in analyses requiring a large frequency range,
often with the requirement to change as little as possible the
mesh over the frequency range of interest.
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Many fast factorization schemes have been proposed in
literature to reduce the cost of MVP in iterative solutions.Fast
solvers can be grouped into two large classes: kernel-based
compression schemes (based on some suitable expansion of
the underlying integral kernel), and algebraic compression
schemes, which only require knowledge of a subset of matrix
entries. The latter, sometimes also known as rank based
methods [1]–[7], are typically quite efficient for low frequency
problems, while they progressively lose efficiency with the
increasing electrical size of the simulation domain. Conversely,
kernel-based factorizations such as FFT based methods [8]–
[10] or the multilevel fast multipole algorithm (MLFMA) [11],
[12], are more efficient, reducing memory requirements and
MVP time to O(N1.5 logN) andO(N logN), respectively.
Another fast method is the MultiLevel Matrix Decomposition
Algorithm (MLMDA) [13], that has been widely adopted
because of its excellent efficiency-vs-complicacy ratio(e.g.
[14]).

However, the above mentioned fast IE solvers require
special attention for wideband simulations: as well known,
MLFMA is not stable at low frequency (e.g. when group
size of the geometrical clustering is below∼ 0.3λ), requiring
substantial modifications to the algorithm in the low fre-
quency regime [15]–[17]. A different solution, vastly adopted
in literature, consists in combining standard low frequency
solvers (e.g., Accelerated Cartesian Expansion (ACE) [18]–
[20], FFT interpolation [21], and MultiLevel Matrix Compres-
sion Method (MLMCM) [22]) with MLFMA to account for
large scale couplings.

On the other hand, interest in algebraic decompositions has
grown recently: interpolation methods [4], [23], equivalent
source densities [24], randomized QR decompositions [25],
[26], only to cite a few. Their main appeal lies in the simplicity
to adapt to different kernels (EFIE and MFIE [26], penetrable
bodies, wire-patch junctions [27], and layered media prob-
lems).

In this work, we limit our focus to rank based methods.
Traditional rank based methods [1]–[7] suffer from perfor-
mance degradation when frequency increases: 1) the rank of
the far coupling sub-matrices increases very fast, due to the
oscillatory nature of the kernel, leading to a complexity which
can scale as poorly asO(N2) andO(N3) for memory and
CPU time, respectively [5]; 2) even when using a multilevel
algorithm, the low rank approximations need be explicitly
computed and stored at each level, which in turn worsens setup
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time and storage requirements [1]–[7].
Recently, we proposed a Nested Equivalent Source Approx-

imation (NESA [28]), in which the low rank approximation at
each level is expressed recursively in terms of its child levels,
and eventually in terms of the low rank approximation at leaf
level. The resulting algorithm has provenO(N) complexity for
static to moderate frequency problems; in this work we present
an extension which allows to handle large scale couplings.
When combined with the algorithm [28] for low frequency
couplings, it results in a wideband fast solver with complex-
ity bounded byO(N logN). Our method shares the same
motivations of other well-known wideband solvers [15]–[22];
however, our efforts aim at providing a kernel-independent
wideband algorithm. The nested approximation was inspired
by [29], [30]; differently from the mentioned works, which
employ ACA [3], [5] to obtain the low rank approximation, we
introduce equivalent sources on automatically defined surfaces,
thanks to an inverse-source process [24], [31] that enforces
equivalence of radiated fields on (properly defined) testing
surfaces, within a prescribed accuracy. A similar idea applied
to Volume Integral Equations (VIE) was exploited in [32]
to reduce the number of unknowns, by mapping volume
unknowns onto surfaces recursively.

The key point exploited here to compress high frequency
couplings consists in partitioning the interactions indirections:
the Green’s function is indeed smooth, and thus compressible,
when observation is limited to a specific (narrow enough)
direction [25]. In each direction, the rank is independent of
the group size.

Differently from fast directional multilevel algorithms [25],
[26], [33], which use randomized QR decomposition to ap-
proximate the Green’s function in each direction, we use
NESA [28] to directly compress matrix entries, yielding a
kernel independent fast solver. Finally, our new proposed
method is employed to simulate large real-life high-fidelity
multiscale structures, to address the important issue of stability
and efficiency.

The remainder of the paper is organized as follows: in
Section II, we describe the proposed algorithm; numerical
results and discussions in Section III demonstrate the validity
of the proposed method. Finally, a brief conclusion is given
in Section IV.

II. W IDEBAND NESTEDEQUIVALENT SOURCE

APPROXIMATION

In this section we first define some parameters as in Table I.
Starting from an Octree clustering of the basis functions (e.g.,
RWG [34]), if groupss andt satisfy the far coupling admissi-
bility condition (which will be discussed in the following)the
low rank approximation of the resulting sub-matrix of MoM
[34] Zs,t can be expressed as:

Zs,t = UsDs,tVt (1)

where matrixUs only relates to groups and is labeled “receiv-
ing matrix”,Vt only relates to groupt and is labeled “radiation
matrix”, andDs,t is the “translation matrix” [28]. The aim of
this work is to express radiation and receiving matrices in

TABLE I
PARAMETER NOTATION IN WNESA

∑i
τ The equivalent sphere of radiusRτ for group i

∑i
σd The testing pyramid surface for groupi in direction d

τ i RWG basis functions on equivalent sphere surface of groupi
σd

i RWG test functions on testing pyramid surface of groupi
in directiond

Zi,j sub-matrix between groupsi and j
Ii Current density coefficients for basis function in groupi
Ei Projection of the electric field onto test functions in groupi
d Directions number isd
−d Opposite direction of directiond
L Total number of levels in the Octree
N l

d
Number of non-zero directions at levell

Dl group size (edge of a cube) at levell

terms of radiation and receiving matrices of its child groups,
and recursively in terms of radiation and receiving matrices at
leaf level, extending the nested approximation of [28] to high
frequency couplings. As mentioned in section I and detailed
in the following, sub-blocks of the system matrix representing
interactions between two clustered groups of “well separated”
basis functions are rank deficient. Nevertheless, the rank of
these blocks increases very fast with group size if one directly
uses the admissibility condition employed in traditional low
rank compression schemes [1]–[7], which in turn leads to
unacceptable computational costs for large 3D problems [1]–
[7]. In order to bound high frequency ranks, the key point
consists in “limiting” the direction of observation within
narrow angles, the number of directions depending on the
observation scale (i.e., on the Octree level); following the ideas
presented in [30], we express the nested approximation from
groupst and s in directionsd and−d to their parent groups
tp andsp in directionsdp and−dp as:

U
l,−dp

sp = U
l+1,−d
s B

(l+1,l),−dp

(2)

V
l,dp

tp = C
(l,l+1),dp

V
l+1,d
t (3)

MatricesB(l,l−1),−dp

andC(l−1,l),dp

are called “transfer ma-
trices” (see Table I for the meaning of parameters); eq. (2)-(3)
allow to express the radiation/receiving matrix at levell in
terms of the radiation/receiving matrices of its child level
(l + 1). If we denote withDl the group size (the edge
of an Octree cube) at levell, the low rank approximation
of eq. (2)-(3) can be specialized to three different cases,
depending on group size:

1) High frequency couplings: level l and its child l + 1
belong to the high frequency regime(Dl, Dl+1) ≥ D0;

2) Interface couplings: level l and its childl+1 belong to
the high frequency and low frequency regimes, respec-
tively Dl ≥ D0, Dl+1 < D0;

3) Low frequency couplings: level l and its child l + 1
belong to the low frequency regime(Dl, Dl+1) < D0.

D0 is the threshold group size to discriminate high frequency
from low frequency couplings; in the following,D0 will be
set toD0 = λ, unless otherwise specified.
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Fig. 1. Distribution of the equivalent and testing basis functions of a group for
high frequency coupling in 3D view on the equivalence surface (inner sphere),
the testing surface is a pyramids with angleO(λ/Dl), and the distance from
the equivalent sphere to the pyramids isRσ = (Dl)

2 for high frequency
region. In the corner details the three independent RWG basis functions at a
point, arrows represent normal to defining edges.

A. Admissibility Conditions and Equivalent Source Distribu-
tions

In this subsection, we will first describe the admissibility
conditions, and then introduce the “equivalent source” distri-
butions. For the admissibility conditions, we follow the works
in [23], [25], [26], [30], although our nested approximation is
constructed in a different way. When considering the coupling
between groupss and t, if Dl < D0 we define it as
a low frequency coupling, and the admissibility condition
for compressibility is the same as in traditional rank based
algorithms [1]–[7]: groupt is in the far interaction list of group
s if groups t and s are not neighbours, i.e. if their defining
cubes do not share any vertex.

R(s, t) ≥ 2Dl (4)

whereR(s, t) is the center-to-center distance between groups
s and t. Low frequency couplings are computed using the
algorithm [28].

Conversely, whenDl ≥ D0, the existence of a separated
representation of the kernel is guaranteed by thedirectional
low rank property [25], [33]: given a source groups with
radiusr, interactions through Helmholtz kernel with groupsti

which are at a distance
R(s, ti)

λ
>
( r

λ

)2

, and within a cone

spanning an angleλ/r and centered in the center of group
s, admit a separable low rank representation (within a pre-
scribed accuracy), with rank independent ofr. High frequency
couplings are then computed via a directional algorithm;
the admissibility condition for compression of interactions
between groupss and t is defined by:

R(s, t)

λ
≥

(
Dl

λ

)2

(5)

Then, the directional low rank property is invoked to define

cones spanning an angleO(
λ

Dl

). The peer far coupling region

of groups andt at levell of high frequency regime is defined

as

R(s, t)

λ
≥

(
Dl

λ

)2

(6a)

R(sp, tp)

λ
<

(
Dl−1

λ

)2

(6b)

whereDl−1 = 2Dl is the parent group size at levell− 1, i.e.
the far coupling interaction list of a source groups includes
groups t satisfying the admissibility condition (5), subject
to their parentssp and tp not satisfying (5). For simplicity
of implementation, due to geometrical considerations arising
from an Octree clustering of the unknowns (clustered in cubes
rather then spheres), it is convenient to define directions as the
volumes enclosed by square pyramids, with bases described
by the faces of Octree cubes. One important advantage in
employing square pyramids is the fact that they allow to
define “hierarchical directions”, i.e. each direction of a group
is completely enclosed by the directions of its child groups
[25]. This in turn guarantees that, if two groups satisfy the
admissibility condition of eq. (5), then also their children
satisfy the admissibility condition: this is a key point to define
a nested directional approximation, as detailed in the following
Sec. II-B and Sec. II-C.

In this work, rather than selecting “dominant basis func-
tions” via ACA as in [29], [30], we design proper equivalent
and testing surface to obtain the equivalent basis functions.
Although the complexity scaling would be unaffected if ACA
was employed to select dominant sources, the algorithm would
lead to a time consuming low rank approximation. Besides,
ACA does not allow exploiting symmetries when building
the approximation, resulting in a higher memory demanding
approximation. It is well known that, in the low frequency
regime, the number of equivalent sourcesQ (i.e., the rank)
is independent of the group size [1]–[7], [28]. In the high
frequency regime, the rankQ can be made independent
of the group size too, exploiting the directional low rank
property. Even more important, the introduced equivalent and
testing surfaces lead to an intrinsically multiscale family of
auxiliary sources, improving field representation in multiscale
problems, which in turn leads to a significant improvement in
convergence speed [28].

B. High Frequency Wideband Nested Equivalent Source Ap-
proximation via Inverse-source Process in Directions

Fig. 2 shows a schematic representation of the process
to evaluate couplings between groupst and s at peer level,
when in the high frequency regime. The equivalent source
distributions, located on surfacesΣt,s

τ , are shown in red; the
testing functions where field equivalence is enforced, indicated
with Σt,s

σ±d , are shown in green. For the sake of simplicity,
actual sources are not shown in Fig. 2. By convention, if group
s is in directiond of group t, we will indicate the opposite
direction as−d, i.e. groupt is in direction−d of group s.
Equivalent sourcesτ t are obtained by enforcing (in a weak
sense) equivalence of fields radiated byτ t and actual sources,
on the faces of the wedge enclosing directiond. This procedure
(indicated with 1 in Fig. 2) clearly involves a forward radiation
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Fig. 2. Coupling between two groupst and s at peer level using equivalent RWG basis functions and inverse-source equivalence in high frequency region.
Equivalent source distributions are sought on inner sphereΣt

τ andΣs
σ , by enforcing testing radiation field on the boundary of the pyramidsΣt

σd in direction
d andΣs

σ−d in direction−d, respectively. The inverse-source determination processfor groupt is symbolized by 1 (contains forward and backward radiation
processes), this leads to assembly of the radiation matrixVd in direction d for groupss; likewise, 3 symbolize the process to compute the receivingmatrix
U

−d in direction−d of group t. The inter-group translation matrix construction is symbolized by 2.

Fig. 3. Illustration of the radiation process of parent group tp with the radiation matrices of its child groupt. The inverse-source determination process,
by testing the field radiated by equivalent source surfaceΣt

τ andΣtp

τp on testing surfaceΣtp

σdp
in direction dp, the process is symbolized by 4.dp is the

direction of parent grouptp, it is contained in directiond of the child groupt.

operator (to evaluate fields radiated by actual sources), and
an inverse problem, to reconstruct equivalent sourcesτ t from
fields onΣs

σd . Formally, we can write the equivalence of fields
as:

Zσd
t ,t

It = Zσd
t ,τt

Id
τt

(7)

Then, we can solve forId
τt

, collecting the coefficients of equiv-
alent sourcesτ t, which radiate the same field as actual sources
in the region delimited by the wedge enclosing directiond:

Id
τt

= Z
†

σd
t ,τt

Zσd
t ,t

It (8)

where(·)† denotes pseudo-inverse; in this work we compute
pseudo-inverses by means of a truncated SVD. By reciprocity,
if fields E−d

τs tested onΣs
τ are known (where the dependence

on direction−d has been made explicit), we can find coeffi-
cientsI

σ
−d
s

of equivalent sourcesσ−d
s on Σs

σ−d radiating the
same fieldE−d

τs :

E−d
τs

= Z
τs,σ

−d
s

I
σ
−d
s

(9)

By solving eq. (9) forIs
σ−d , the field tested on actual testing

functions of groups reads as:

E−d
s = Z

s,σ
−d
s

Z
†

τs,σ
−d
s

E−d
τs

. (10)

Finally, after defining atranslation matrix Ds,t collecting
couplings between equivalent sourcesτ t andτ s as:

Ds,t = Zτs,τt (11)

we can express fields in groups due to sources in groupt
from eq. (9), (10), and (11)

E−d
s = Zs,tIt = Z

s,σ−d
s

Z
†

τs,σ
−d
s

Ds,tI
d
τt

= Z
s,σ

−d
s

Z
†

τs,σ
−d
s

Ds,tZ
†

σd
t ,τt

Zσd
t ,t

It (12)

Eq. (12) is the single level WNESA approximation ofZs,t:

Zs,t = Z
s,σ

−d
s

Z
†

τs,σ
−d
s

Ds,tZ
†

σd
t ,τt

Zσd
t ,t

= U
−d
s Ds,tV

d
t (13)

whereU−d
s = Z

s,σ
−d
s

Z
†

τs,σ
−d
s

is thereceiving matrix of group

s in direction −d, and V
d
t = Z

†

σd
t ,τt

Zσd
t ,t

is the radiation
matrix of groupt in directiond.

C. Multilevel WNESA

Differently from traditional rank based methods [1]–[7],
in WNESA we express radiation and receiving matrices at
the generic levell 6= L recursively in terms of radiation and
receiving matrices at leaf level; this is done by introducing
proper transfer matrices which allow to ascend/descend the
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tree, as mentioned in Sec. II. Fig. 3 illustrates the main idea of
a two level nested approximation for radiation matrix in high
frequency regime: the testing surfaceΣtp

σdp in directiondp of
grouptp (parent group oft) is enclosed by the testing surface
Σt

σd in direction d of group t. Accordingly, the radiation
matrix in directiond of group t can be used to approximate
couplings of grouptp in directiondp, since the conditions of
the directional low rank property are satisfied. With the help
of Fig. 3, in analogy with eq. (7) and (8) we can obtain the
coefficientsIdp

τ
p
t

of equivalent sourcesτ tp at parent level by
enforcing equivalence of fields radiated byτ tp andτ t on the
surfaceΣtp

σdp , indicated with 4 in Fig. 3. Formally:

Idp

τ
p
t
= Z

†

σdp

tp
,τtp

Zσdp

tp
,τt
Iτ

td
(14)

Analogous derivations allow expressing fieldsE−d
τs

on Σs
τ in

terms ofE−dp

τsp
on Σsp

τp :

E−d
τs

= Z
τs,σ

−dp

sp
Z
†

τsp ,σ
−dp

sp

E−dp

τsp
. (15)

Finally, after defining the translation matrix at parent level
from τ sp to τ tp as

Dsp,tp = Zτsp ,τtp (16)

the two-level high frequency WNESA approximation is
straight forward:

Zsp,tp = U
−d
s B

−dp

s,spDsp,tpC
dp

tp,tV
d
t (17)

where we have introduced the transfer matricesC
dp

tp,t =

Z
†

σdp

tp
,τtp

Zσdp

tp
,τt

from child directiond to parent directiondp,

and B
−dp

s,sp = Z
τs,σ

−dp

sp
Z
†

τsp ,σ
−dp

sp

from parent direction−dp

to child direction−d. Eq. (17) can be easily extended to a
generic number of levelsl as:

Z
l
s,t =U

L,−dL

s B
(L,L−1),(−dL,−dL−1)
s . . .

B
(l+1,l),(−dl,−dl+1)
s D

l
s,tC

(l,l+1),(dl,dl+1)
t . . .

C
(L−1,L),(dL−1,dL)
t V

L,dL

t

(18)

As mentioned at the beginning of this section, when computing
couplings at the bottom of the tree the directional low rank
approximation is not invoked, and couplings are evaluated as
in [28]. If we denote aslin the level at the interface between
low and high frequency regions, we can generalize eq. (18) to
a mixed frequency scenario as in eq. (19).

Note that, when WNESA is applied to an EFIE problem,
radiation and receiving matrices in a specified direction are
linked by a transpose operation; we then need to compute and
store only one of the two. The above WNESA algorithm is
schematically summarized in Algorithm 1 in Appendix.

D. Further Acceleration in Evaluating WNESA Approximation

As discussed in [28], symmetry considerations suggest to
introduce some strategies to further accelerate the algoirthm
and increase memory savings. At each levell:

1) The relative locations of RWGs on the equivalent and
testing spheres are the same within a certain level: only
N l

d pseudo-inverses appearing in eq. (8) and (14) need

be computed, whereN l
d is the number of non-empty

directions at levell.
2) For each directiond, each group has at most 8 children:

no more than8N l
d transfer matrices need be computed

and stored for 3D problems.
3) The number ofpotential translators isN l

D = (8Dl +
1)3−(2Dl+1)3; however, considering that the number of
groups per level grows asD−2

l (unknowns are distributed
on surfaces only), and that the cardinality of far field
interaction lists scales asD2

l (as detailed later, see Sec.
II-E, eq. (23)), if one computes and stores only the
necessary translators, the number of stored translators per
level is actually constant. Besides, it can be verified that
translation matrices are not full rank: they are further
compressed through ACA [28].

4) At the top levels of the tree, corresponding to the high
frequency regime, the number of translation matricesN l

D

can be very large; a single level nested cross approxima-
tion [29], [30] is used to compress the translation matrix:

Ds,t = U
−d
s D̃s,tV

d
t (20)

For each directiond, only one pair of matricesUd
s and

V
d
t need be computed and stored; althoughN l

D matrices
D̃s,t need be computed and stored, their size is smaller
than the size ofDs,t, yielding huge memory savings and
MVP time reduction. A similar acceleration technique,
based on QR decomposition, is employed in [23].

From (1) to (4), it is evident that WNESA approximation
time and storage requirements, as wells as MVP time, are
related to the maximum number of non-empty directions at
each level; therefore, it is expected that the algorithm is more
efficient for elongated structures such as cylinders, ogives, or
missile-like geometries [25]. Conversely, it can be verified that
a spherical geometry represents the worst case scenario, asthe
number of non-empty directions is maximum. However, the
number of non-empty directions does not affect the asymptotic
complexity of the algorithm, as analyzed in Sec. II-E and
Sec. III-B.

Finally, we briefly address the issue of scalability in par-
allel environments. Parallelization of the matrix compression
(setup phase) is quite straightforward, both in shared memory
environments (e.g., OpenMP [35]) and distributed memory en-
vironments (e.g., MPI [36]): levels are processed sequentially,
and each task is assigned a different group (low frequency
regime) or direction (high frequency regime). Parallelization
of the MVP is less trivial though, especially in distributed
memory environments, and presents challenges very similar
to MLFMA.

E. Matrix-Vector Product and Complexity Analysis

In order to discuss the complexity analysis of the algorithm,
we first report in Algorithm 2 in Appendix a pseudocode of
the algorithm to compute MVPy = ZI . The parameters
in Algorithm 2 and following are defined in Table II. The
complexity of the low frequency regime is proven to beO(N)
[28], [29]; without loss of generality, in the following we only
focus on the high frequency regime interactions.
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Z
l
s,t =

low frequency
︷ ︸︸ ︷

U
L
s B

(L,L−1)
s . . .

interface
︷ ︸︸ ︷

B
(lin+1,lin),d

−lin

s

high frequency
︷ ︸︸ ︷

. . .B(l+1,l),(−dl+1,−dl)
s D

l
s,tC

(l,l+1),(dl,dl+1)
t . . .

C
(lin,lin+1),dlin

t
︸ ︷︷ ︸

interface

. . .C
(L−1,L)
t V

L
t

︸ ︷︷ ︸

low frequency

(19)

TABLE II
PARAMETER NOTATION IN THE MVP AND FOLLOWING

sl Non-empty source groups at level l
tl Non-empty observation groupt at level l
Ii Subvector ofI restricted to basis functions in groupi

V
l,dl

i Radiation matrix for groupi at level l in directiondl

B
l,dl

i Transfer matrix for groupi at level l in direction dl

ζ
l,dl

i Temporary vector in MVP in the radiation process
of group i at level l in directiondl

Dl
i,j Translation matrix between groupsi and j at levell

ξ
l,dl

i Temporary vector in MVP in the translation process
of group i at level l in directiondl

U
l,dl

i Receiving matrix for groupi at level l in direction dl

C
l,dl

i
Transfer matrix for groupi at level l in direction dl

y
l,dl

i Temporary vector in MVP in the receiving process
receiving of groupi at level l in direction dl

y Result of the MVPy = ZI
ch(i) Direction number where directioni contained in

its child group direction
Ni Number of basis functions in groupi
Mi Number of non-empty groups at levell
Q Number of equivalent sources

For a generic 3D case, if a surface integral equation problem
is formulated, it is well known that the number of unknowns
scales asN = O(S2

max), whereSmax is the maximum electri-
cal size of the object, i.e. the size of the object normalizedwith
respect to wavelength. Before studying the complexity of the
algorithm, we recall the scaling of three important quantities:

• at level l, the number of nonempty groups scales as
O
(
(Smax/Dl)

2 );
• at level l, the maximum number of directions isO(D2

l )
(see Sec. II-A);

• at level l, in each directiond the number of equivalent
sourcesQ is constant (see Sec. II-A).

With the above in mind, and assuming that the average number
of unknownsK per group at leaf level is constant (i.e., it does
not depend on theSmax) it is easy to verify that the cost of
the radiation process (lines 3 to 20 in Algorithm 2) at levell
can be bounded by:

O

(

(Smax/DL)
2 D2

LKQ

)

= O (N) l = L

(21a)

O

(

(Smax/Dl)
2
D2

l Q
2

)

= O (N) l = 1 . . . (L− 1)

(21b)

Noting that the number of levels grows asL = O (logSmax),
the overall cost of the radiation process in MVP is
O
(
S2
max logSmax

)
= O (N logN). By reciprocity, it is easy

to verify that the cost of receiving process (lines 29 to 48) is
the same as the cost of radiation process.

For what concerns storage requirements, it is clear that
radiation patternsVt have a linear cost both for fill-in time
and memory (see eq. (21a)). On the other hand, exploiting
symmetry as detailed in [28], only8N l

d transfer matrices need
be computed and stored at levell, and memory for transfer
matrices can be bounded as:

O
(
8D2

lQ
2
)
= O

((
Smax

2l+1

)2

Q2

)

(22)

It is then easy to compute the partial sum
L∑

l=1

(
Smax

2l+1

)2

=

O (N), to prove that memory for transfer matrices has linear
complexity.

Finally, we focus on the translation process: as discussed in
Sec. II-A, the far interaction list at levell includes groups at a
distance smaller than(2Dl)

2, where2Dl is parent group size
at level(l−1). Then, starting from the admissibility condition
of eq. (5), a few manipulations allow to derive an upper bound
for the cardinality of the far interaction list at levell for surface
problems as

N l
FIL = 60

(
Dl

λ

)2

+ 28

(
Dl

λ

)

+ 3 = O
(
D2

l

)
(23)

Then, for a number of non-empty groups growing as
O
(

(Smax/Dl)
2
)

, the cost of the translation process at level
l is

O
(

(Smax/Dl)
2
D2

l Q
2
)

= O (N) (24)

Summing overL = O (logN) levels, the total cost of the
translation process isO (N logN).

III. N UMERICAL RESULTS AND DISCUSSIONS

In this section different test cases are presented to show
the effectiveness of the proposed solver. We first discuss
some parameters which are fixed for all simulations: the
Octree clustering is always stopped when the average number
of basis functions at the finest level is∼ 50. We indicate
average mesh edge length byh, and wavelength byλ. In all
numerical experiments, a flexible-GMRES iterative solution is
sought, with a maximum number of iterations for the inner
solver equal to 10. All simulations have been carried out
single threaded on a 64-bits Dell Precision T7400 workstation,
Intel Xeon CPU E5440 @ 2.88GHz, 96GB of RAM; double
precision computation is always used.
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Fig. 4. The approximation error of WNESA for Green’s function matrix
G(rs,rt), wherers and rt are 500 random distributed points in groupss
and t satisfying the far coupling admission condition, the groupsize is 1λ,
2 λ, 4 λ, and 8λ.

Fig. 5. The approximation error of WNESA for EFIE impedance matrix for
two group with group size 1λ, and with 636 and 527 RWG basis functions
respectively, are from a cylinder (diameter 1λ, height 8 λ) with 13168
unknowns. The reference is a standard MoM with a very accurate quadrature
rule, with 61 gaussian points.

A. Accuracy

In order to validate the accuracy of the proposed WNESA,
we first test the accuracy of WNESA approximation on
the scalar Green’s function; 500 source pointsrs and 500
observation pointsrt are randomly distributed in two cubes
satisfying the high frequency admissibility condition described
in Sec. II-A. For each pair(rs, rt), we evaluate the scalar
Green’s functionG (rs, rt) = e−jk0|rs−rt|/ |rs − rt|, an-
alytically and approximated with eq. (13). We define the
approximation error of WNESA as|G−GWNESA|2 / |G|2,
whereG and GWNESA are two column vectors collecting the
scalar Green’s function between all pairs of source/observation
points, evaluated unapproximated and with WNESA, respec-
tively; |x|2 indicates theℓ2 norm of vectorx. Fig. 4 shows
plots of the approximation error when group size varies from
one to 8λ: it is found that, once the numberQ of equivalent

Fig. 6. Validation: RCS of a 16λ sphere, inset is the surface current, the
direction of the direction of incident plane wave is (θ = 0◦, φ = 0◦).

sources is fixed, accuracy increases with group size, differently
from existing rank based methods [1]–[7], [13], [14].

Next, we test theℓ2 norm when approximating the EFIE
impedance matrix. Without loss of generality, we chose two
groups containing 636 and 527 RWG basis functions, re-
spectively, and with size 1λ, extracted from the Octree
clustering of a cylinder with diameter1λ and height8λ,
discretized with 13168 unknowns. As a reference result we
use a standard (unapproximated) MoM with a very accurate
quadrature rule, with 61 Gaussian points on triangles. Fig.5
shows the approximation error as a function of the number of
equivalent sourcesQ: a number of equivalent sourcesQ = 50
yields the accuracy labeled as “Standard MoM, rule = (3,7)” in
figure, which represents a “goal” accuracy, i.e. the accuracy
achievable by a standard MoM with quadrature rule with 7
Gaussian points on the internal integral and 3 Gaussian points
on the external integral (a typical accuracy of MoM codes).
In all the following numerical experiments the number of
equivalent sources is fixed asQ = 50.

Finally, we validate the accuracy by simulating the RCS of
a sphere with diameter 16λ, under a plane wave illumination
from the direction (θ = 0◦, ϕ = 0◦); the surface of the
sphere is discretized with 275463 unknowns. Here we use the
combined field integral equation (CFIE), a four-level WNESA
(two levels of low frequency algorithm and two levels of
the directional algorithm) is employed to compress the CFIE
impedance matrix directly; excellent agreement is found with
respect to Mie series as shown in Fig. 6.

B. Computational Complexity

In order to numerically assess the computational cost of
WNESA analyzed in Sec. II-E, we test a series of spheres with
diameters equal to 8, 16, 32, and 64λ. We fix the discretization
as h/λ = 0.15, which yields a number of unknowns equal
to 17808, 71232, 284928, and 1139712, respectively. Four-
, four-, five-, and five-level WNESA is employed, with two
levels of low frequency algorithm in all cases. It should be
noted here that the corresponding number of Octree levels is



8

Fig. 7. Complexity scaling of WNESA for a series of spheres with diameters
equal to 8, 16, 32, and 64λ; mesh discretization is fixed ash/λ = 0.15,
corresponding to a number of unknowns equal to 17808, 71232,284928, and
1139712.
(*): Least Upper Bound (LUB) for MVP, obtained by employing all possible
directions at each level (not only directions in which at least a non-empty
group is present); actual MVP time is always smaller than LUB.

Fig. 8. Wideband performance: complexity as a function of electrical size
with constant number of unknowns. Time and memory requirement for a
series of spheres with electrical size 2R/λ 0.625, 1.25, 2.5, 5, 10, and 20,
R is the radius; the number of unknowns is kept constant toN=366672, and
h/λ varies accordingly as indicated. The graph shows that transition from
low to high frequency regimes starts at (R/λ = 1.25; a detailed description
of this behavior is reported in sec. III-B.

4, 5, 6, and 7: however, the admissibility condition of the
high frequency algorithm yields a smaller number of levels of
WNESA (top levels of the Octree have an empty far interaction
list). As a worst case scenario, we force the code to consider
all possible directionsd (not only directions including non-
empty groups): this yields an upper bound to the actual cost.
Fig. 7 summarizes the scaling: it is found that MVP costs
O(N logN), while setup time and storage requirements have a
smaller cost, as explained above. It can be noticed that memory
and factorization time for the two spheres with diameter 8λ
and 16λ is almost constant (the same happens for spheres with
diameter 32λ and 64λ): this is due to the fact that symmetry
considerations allow to build and store the required operators
(transfer/translation) for a single group at each WNESA level

(see Sec. II-D). Consequently, if the number of WNESA
levels is constant, this cost remains constant too, as proven
in fig. 7; the small increase in cost is a linear term due to
the cost of radiation/receiving patterns at leaf level. On the
other hand, the cost of MVP grows asO(N logN), due to
the fact that each translator/transfer matrix is multiplied a
number of times corresponding to the number of non-empty
groups at the considered level. Finally we also show the actual
MVP time, i.e. MVP time when only translators in non-empty
directions are considered: although it seems to scale “worse”
thanO(N logN), its upper bound is the MVP time when all
possible directions are taken into account, which has proven
O(N logN) complexity. This proves that MVP time has a cost
bounded byO(N logN).

We next test the wideband performance of WNESA; the
scaling curves as a function of electrical size, for constant
number of unknowns, are shown in Fig. 8. We test CPU
time and memory requirements for a series of spheres with
electrical size equal to 0.625, 1.25, 2.5, 5, 10, and 20λ,
and number of unknowns fixed toN=366672, corresponding
to h/λ equal to 3.125e-3, 6.25e-3, 0.0125, 0.025, 0.05, and
0.1, respectively. It is worth stressing here that, becausethe
number of unknownsN is kept constant, the number of
Octree levels is constant too. Similarly, we also keep the
number of equivalent sourcesQ constant. The first region,
up to R/λ ≤ 1.25, has constant CPU time and memory
requirements for increasing electrical size; this corresponds
to the low frequency regime, where only one direction is
necessary to achieve the required precision [28]. Beyond this
low frequency regime, CPU time and memory requirements
increase because of the increasing number of directionsN l

d

required to achieve the required precision; this confirms that
the number of directions depends only on electrical group
size, and not on the number of unknownsN . This can be
explained by considerations similar to classical MLFMA [37]:
high frequency asymptotic scaling assumes constant sampling
of the surface (normalized w.r.t. wavelength), with a constant
in front of O(N logN) depending on a)meshing size and
b)minimum group size. Nevertheless, Fig. 8 exemplifies how
the algorithm adaptively transitions from low frequency to
high frequency problems, with negligible time and memory
increase (about a factor 3 in the case considered here).

C. Multiscale Benchmarking

In this section, we simulate a series ofKoch snowflakes1,
a planar prefractal geometry where the number of different
scales can be controlled by the iterationlevel of the fractal
generator. We first analyze a 4-level snowflake at the frequency
of 3 GHz; the dimensions of the snowflake in x and y
directions are 1.0m and 1.15m, respectively, corresponding to
10 and 11.5λ. It has been meshed with 3633 unknowns, with
h/λ ranging from 9.9e-2 to 5.3e-1, and illuminated by a plane
wave impinging from normal direction (θi = 0◦, φi = 0◦).
Fig. 9 shows the surface current simulated by a two-level
WNESA and full MoM: the error in theℓ2 norm is 0.008.

1http://en.wikipedia.org/wiki/Kochsnowflake
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TABLE III
MEMORY AND TIME CONSUMPTION FOR THE SERIES OF SNOWFLAKES WITHFRACTAL LEVEL VARYING FROM 4 TO 8 (THE EDGE OF THE GENERATING

TRIANGLE IS 1M ); FREQUENCY VARIES FROM1GHZ TO 16GHZ, WITH CORRESPONDING ELECTRICAL SIZES EQUAL TO3.8, 7.7, 15.4, 30.8,AND 61.6λ.
HERE WE FIX THE MESH SIZEh AS 0.12λ, WITH A CORRESPONDING NUMBER OF UNKNOWNS EQUAL TO3102, 14340, 62415, 274791,AND 1083372,

RESPECTIVELY.

Frequency Fractal number of number of low/high Near/Far Far field approxi- Iteration MVP
(GHz) level unknowns frequency levels field Memory mation time[mm: ss] number time[ss]

1 4 3102 2/0 23/33 [MB] 00: 06 5 0.04
2 5 14340 2/2 56/198 [MB] 00: 23 4 0.8
4 6 62415 2/2 0.4/0.5 [GB] 02: 03 4 4
8 7 274791 2/3 2.7/1.7 [GB] 7: 54 5 17
16 8 1083372 2/3 16.5/5.6 [GB] 24: 02 5 66

TABLE IV
MEMORY AND TIME CONSUMPTION FOR THE SERIES OF SNOWFLAKES WITHlevel = 8, WITH 1083372UNKNOWNS, AT 1, 2, 4, 8,AND 16 GHZ; THE

CORRESPONDING ELECTRICAL SIZES ARE3.8, 7.7, 15.4, 30.8,AND 61.6λ, RESPECTIVELY.

Frequency number of low/high Near/Far field Far field approxi- Iteration MVP
(GHz) frequency levels Memory[GB] mation time[mm: ss] number time[ss]

1 7/0 30.5/5.0 17: 00 11 12
2 5/2 30.5/5.2 17: 27 11 12
4 4/2 16.5/5.4 22: 10 27 35
8 2/3 16.5/5.5 22: 48 6 38
16 2/3 16.5/5.6 24: 02 5 66

(a) (b)

Fig. 9. Surface current (dBA/m) of the snowflake withlevel = 4; the number
of unknowns is 3633, the direction of the incident plane waveis (θ = 0◦, φ =
0◦), the ℓ2 norm of the current simulated with WNESA with respect to full
MoM is 0.008, (a) Full MoM (b) Two-level WNESA.

(a) f = 8GHz (b) f = 16GHz

Fig. 10. Surface current (dBA/m) of the snowflake withlevel = 7 and level
level = 8, at the frequencies of 8 and 16 GHz (the number of unknowns
is 274791 and 1083372, respectively, with corresponding electrical sizes of
30.8λ and 61.6λ). The direction of the incident plane wave is (θ = 0◦, φ =
0◦).

We then run a series of tests by increasing the number of
iterations of the pre-fractal generator together with the number
of unknowns; we consider a series of snowflakes with fractal
level ranging from 4 to 8 (the generating triangle has edge

equal to 1m), at the same time increasing the frequency from
1GHz to 16GHz. The corresponding electrical sizes are 3.8,
7.7, 15.4, 30.8, and 61.6λ. Average mesh size is fixed as
h = 0.12λ, yielding a number of unknowns equal to 3102,
14340, 62415, 274791, and 1083372, respectively. We stress
the fact that the same algorithm is employed at all frequencies;
the solver automatically selects the Octree levels correspond-
ing to low and high frequency regimes (at low frequencies,
WNESA simply degenerates to the algorithm described in
[28]). The surface current density on the snowflakes at 8 and
16 GHz is shown in Fig. 10. To stabilize the ill-conditioning
and accelerate convergence of the iterative solver, we pre-
condition the system with MR-ILU [27], [38] preconditioner.
Memory and time consumptions are summarized in Table III,
which shows that our multiscale wideband algorithm keeps its
effectiveness for high frequencies and increasing geometrical
complexity.

We finally investigate the wideband performance of
WNESA, by testing the 8-level snowflake at 1, 2, 4, 8, and 16
GHz, respectively, corresponding to growing electrical sizes
3.8, 7.7, 15.4, 30.8, and 61.6λ. The system is preconditioned
with MR-ILU [27], [38], and with the application of MR as
detailed in [39] at the lowest frequencies (1-2 GHz), where
low frequency (dense mesh) behavior is dominant. Simulation
statistics are summarized in Table IV.

D. Validation by Modeling a Real Aircraft

In order to demonstrate the capability of WNESA to model
high definition multiscale structures, a morphed P180 air-
craft2, shown in Fig. 11(a), has been analyzed. The aircraft
is 12.1m long, and its wingspan is 13.8m, corresponding
to, respectively, 27.6 and 31.5λ at the analysis frequency
of 686 MHz. All internal details, such as passenger seats,
antenna array and the instruments board are considered in the

2http://www.piaggioaero.com/#/en/products/p180-avanti-ii/overview
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(a)

(b)

(c)

Fig. 11. Simulation of a 32λ long morphed P180 aircraft model, discretized
with 1,086,083 unknowns, the incident direction of the plane wave is along the
+ŷ direction of the aircraft (a) mesh model, the green part is the instruments
board in the nose, and the blue part is the body (b) details of the cockpit and
nose, with instruments board (c) details of the surface current (dBA/m) of the
cockpit and nose.

model. The aircraft is illuminated by a plane wave impinging
along+ŷ directions as in Fig. 11 (a), with the electric field
polarized alongẑ. The model employs 1086083 unknowns,
with discretizationh/λ ranging from 2.3e-3 to 8.0e-2; a five-
level WNESA (two levels at low frequency and three levels
of the directional algorithm) is used to compress the EFIE
impedance matrix, and the MR-ILU [27], [38] preconditioner,
is employed. Factorization time and memory required are
1.8 hour and 9.1 GB; a flexible GMRES iterative solution
is employed, with 10 inner iterations, with convergence to a
residual of 1e-3 reached in 100 iterations. The MVP time is
28 seconds, and overall solution time of the matrix equation
amounts to 7.8 hours. Fig. 11 (b) and (c) shows the mesh
model and surface current in [dBA/m] of the details of the

Fig. 12. Surface current (dBA/m) of the 80λ satellite model with 1,096,225
unknowns, the left-down corner is the details of its body. The incident
direction of the plane wave is from the bottom of the satellite.

instruments board in the nose, respectively.

E. Validation by Modeling a Complex Satellite

Finally, we simulate a large and realistic model of the
satellite object shown in Fig. 12. The largest dimension of
the satellite is 20 meters, corresponding to 80λ at 1.2 GHz.
Many details installed on the model have been considered
in the model, yielding a high-fidelity model discretized with
1096225 unknowns, andh/λ ranges from 3.5e-3 to 1.9e-1.
The satellite is illuminated by a plane wave impinging from
the bottom, with the electric field polarized alonĝθ. A six-
level WNESA (two levels at low frequency and four levels
of the directional algorithm) is used to compress the EFIE
impedance matrix, and the MR-ILU [27], [38] preconditioner,
is employed. Far field approximation time and memory are
32 mins and 10.6 GB; a flexible GMRES iterative solution
is employed, with 10 inner iterations, with convergence to a
residual of 1e-3 reached in 76 iterations. The MVP time is 119
seconds, and overall solution time of the matrix equation for
the satellite is 25.1 hours. Finally, Fig. 12 shows the current
density on the surface of the satellite.

IV. CONCLUSION

In this work, we propose a wideband kernel-independent
fast solver based on a nested equivalent source approximation
(WNESA). The wideband nested approximation from child
level to parent level is defined with an inverse-source process
on the equivalent and testing surfaces. In order to obtain a
fixed rank approximation method, we define different testing
surfaces for coupling in low and high frequency regions. In the
high frequency regime, the far coupling space is partitioned
into directions spanning an angleO (λ/Dl). An O (N logN)
asymptotic complexity for both CPU time and memory re-
quirements is derived and numerically proven. Besides, the
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wideband solver presents excellent properties for the analysis
of large and multiscale structures; numerical simulationsof
high-fidelity realistic problems prove the validity of the pro-
posed WNESA.

APPENDIX

Algorithm 1 WNESA Low Rank Approximation
1: Initialize an Octree and directions
2: for l = L : 1 : −1 do
3: for e = 1 : N l

d do
4: if l = L then
5: V

L,de

← radiation matrices with eq. (8)
6: U

L,de

← receiving matrices with eq. (10)
7: else
8: C

l,de

← transfer matrices with eq. (14)
9: B

l,de

← transfer matrices with eq. (15)
10: end if
11: end for
12: D

l ← translation matrices with eq. (11) and (16)
13: end for
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