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Abstract: The GN-model has been proposed as an approximate but 
sufficiently accurate tool for predicting uncompensated optical coherent 
transmission system performance, in realistic scenarios. For this specific 
use, the GN-model has enjoyed substantial validation, both simulative and 
experimental. Recently, however, it has been pointed out that its 
predictions, when used to obtain a detailed picture of non-linear 
interference (NLI) noise accumulation along a link, may be affected by a 
substantial NLI overestimation error, especially in the first spans of the link. 
In this paper we analyze in detail the GN-model errors. We discuss recently 
proposed formulas for correcting such errors and show that they neglect 
several contributions to NLI, so that they may substantially underestimate 
NLI in specific situations, especially over low-dispersion fibers. We derive 
a complete set of formulas accounting for all single, cross, and multi-
channel effects, This set constitutes what we have called the enhanced GN-
model (EGN-model). We extensively validate the EGN model by 
comparison with accurate simulations in several different system scenarios. 
The overall EGN model accuracy is found to be very good when assessing 
detailed span-by-span NLI accumulation and excellent when estimating 
realistic system maximum reach. The computational complexity vs. 
accuracy trade-offs of the various versions of the GN and EGN models are 
extensively discussed. 

©2014 Optical Society of America 

OCIS codes: (060.1660) Coherent communications; (060.4370) Nonlinear optics, fibers. 
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1. Introduction 

Building on results from several similar prior modeling efforts [1–5], the GN-model of non-
linear fiber propagation has recently been proposed [6–14]. A more extensive bibliography 
and a comprehensive model description are provided in [11,14]. 

Since the start, the GN-model main purpose has declaredly been that of providing a 
simple but sufficiently accurate tool for the prediction of the main system performance 
indicators in uncompensated l0nks that make use of coherent detection. Typical such 
indicators are maximum reach and optimum launch power. For this specific use, the GN-
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model has obtained substantial validation, both simulative [6,7,14–16] and experimental [16–
21], by various independent groups. 

Recently, however, it has been pointed out that when the GN-model is used to look at the 
detailed span-by-span characterization of non-linear interference (NLI) accumulation along a 
link, its predictions may be affected by a substantial error [22–25]. In particular in [22], the 
first peer-reviewed published paper on the subject (simultaneously with [23]), we presented 
for the first time a detailed picture of the predicted and actual NLI noise variance 
accumulated along realistic links based on polarization-multiplexed (PM) QPSK and PM-
16QAM. We showed that the GN-model overestimates the variance of NLI, most notably in 
the first spans of the link, where this error may amount to several dB’s, depending on system 
parameters and modulation format. The error then abates considerably along the link, but it 
does not vanish. We showed this error to be related to one of the GN-model main 
approximations: the ‘signal Gaussianity’ assumption, which consists in assuming that the 
transmitted signal, due to uncompensated dispersion, approximately behaves as Gaussian 
noise. Especially in the first spans of the link, this approximation is not accurate and 
generates substantial error. 

Independently of [22], another paper [24] later focused on the issue of the GN-model 
accuracy. Remarkably [24], succeeded in analytically removing the signal Gaussianity 
assumption. A ‘correction term’ to the GN-model, limited to XPM (cross-phase modulation), 
was found. The results of [24] constitute major progress, also because it was shown that 
removing the signal Gaussianity assumption does not lead to unmanageably complex 
calculations, as we previously believed. 

In this paper we adopt a similar approach to that indicated in [24] and in Sect. 3 we 
provide for the first time the GN-model ‘correction terms’ for single-channel non linearity 
(that is, self-channel interference or SCI), which was not addressed in [24]. In Sect. 4 we 
provide the formulas for the NLI noise due to XCI (cross-channel interference) and show 
them to contain more contributions than accounted for in the XPM formulas of [24]. In Sect. 
5 we discuss the impact of MCI (multi-channel interference), which was neglected in [24], 
and show it to contribute substantially to NLI in certain specific scenarios, namely with low-
dispersion fibers such as TrueWave RS or LS. We provide the formulas needed to account for 
MCI as well. Overall, we supply a complete set of equations that fully correct the GN-model 
for the effect of signal non-Gaussianity. We call this overall set of equations the enhanced 
GN-model (EGN-model). We carefully compare the EGN-model predictions with accurate 
simulations of span-by-span NLI accumulation and find the EGN-model accuracy to be very 
good. We also find that the XPM formulas proposed in [24] may in certain cases substantially 
underestimate NLI, especially with low-dispersion fibers. This circumstance is extensively 
discussed in both Sect. 4 and 5. 

In Sect. 6 we apply the EGN-model to various realistic system scenarios involving PM-
QPSK and PM-16QAM. Specifically, we concentrate on a comparison of the estimate of 
system maximum reach obtained using either the GN-model or the EGN-model, vs. accurate 
simulation results. Our bottom-line findings are that, when used for predicting realistic PM-
QAM systems maximum reach at 32 GBaud, the GN-model error is always conservative, i.e., 
it underestimates the maximum reach, by typically 0.3-0.6 dB, and up to 0.8 dB over ultra-
low dispersion fibers such as Corning LS. The EGN-model provides much better accuracy, 
completely removing the underestimation incurred by the GN-model. The error range across 
all considered fibers and channel spacing values is reduced to less than 0.2 dB. Such error 
range is so low that it becomes difficult to attribute it to either residual model inaccuracy or 
Monte-Carlo simulation uncertainty. 

The resulting complexity of the EGN-model is however rather large and in Sect. 7 we 
discuss the issue of computational effort for realistic system performance prediction, 
providing a set of guidelines and recommendations. We point out that the very simple 
‘incoherent’ GN-model [6,7,14] possibly represents an attractive compromise between 
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accuracy and complexity, providing rather precise maximum reach predictions in many 
practical scenarios with small computational effort. We also point out that, for the purpose of 
system performance studies, an analytical closed-form GN-model correction formula, based 
on an approximation of the EGN-model, has been proposed in [26]. This approximation adds 
little complexity to that of the GN-model and substantially improves its accuracy. However, if 
ultra-accurate system performance prediction is critical or when a span-by-span detailed 
picture of NLI is of interest, then the full EGN-model presented here must be used. 

In Sect. 7B we discuss the presence and relevance of phase noise within NLI, an aspect 
that was addressed in [24,25]. Our results indicate that, in the context of realistic systems, 
phase noise appears to have small or negligible impact on system performance prediction. In 
other words, the assumption of NLI noise being Gaussian and additive appears to be adequate 
for system performance predictions in most practical system scenarios. In Sect. 7C we briefly 
address the issue of modeling results vs. experimental evidence. Comments and conclusion 
follow. 

In the following, for simplicity we call ‘GN-model’ the coherent-NLI-accumulation GN-
model described in [14] as Eq. (1). We call ‘incoherent GN-model’ the simplified GN-model 
version that assumes incoherent NLI accumulation, described in [14] as Eq. (9). 

2. The EGN-model 

When removing the assumption that the signal launched into the link statistically behaves as 
Gaussian noise, the power spectral density (PSD) of NLI turns out to be expressed by two 
terms: 

 ( ) ( ) ( )EGN GN
NLI NLI

corr
NLIG f G f G f= +  (1) 

The first term, ( )GN
NLIG f , is the GN-model. The other, ( )corr

NLIG f , can be thought of as a 

correction term which takes the effect of signal non-Gaussianity into account. In the 
following, we call the overall resulting corrected model ( )EGN

NLIG f  as the ‘enhanced GN-

model’, or EGN-model. 
In this section we orderly present the EGN-model formulas according to the type of NLI 

that they address, namely SCI, XCI and MCI. In other words, we will break down ( )EGN
NLIG f  

as: 

 ( ) ( ) ( ) ( )EGN EGN EGN
SCI XCI M

EGN
N CILI G f G f GG ff + +=  (2) 

Note that each one of the right-hand side terms possesses both a GN-model part and a 
correction part, in agreement with Eq. (1). For instance: ( ) ( ) ( )GN corr

SCI SCI SCIG f G f G f= + , and 

similarly for ( )EGN
XCIG f  and ( )EGN

MCIG f . We will point out which is which in their defining 

formulas. 
The reason for resorting in Eq. (2) to this subdivision of NLI contributions is that it more 

naturally relates to the GN-model than the traditional taxonomy. Before proceeding, we recall 
the definition of the three NLI types, for the readers’ convenience. An equivalent but more 
formal set of definitions, based on the actual spectral position of the WDM signal components 
beating together, can be found in [11], Sect. VI. The NLI impinging on the channel-under-test 
(CUT) of a WDM comb is the sum of three types of NLI contributions: 

• Self-channel interference (SCI): it is NLI caused by the CUT on itself. 

• Cross-channel interference (XCI): it is NLI affecting the CUT caused by the beating of 
the CUT with any single interfering (INT) channel. 
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• Multiple-channel interference (MCI): it is NLI affecting the CUT, caused by the beating 
of the CUT with two INT channels simultaneously, or the beating of three INT 
channels simultaneously. 

In the following, we assume a multi-span link, with lumped amplification and all identical 
spans. We assume dual polarization throughout. We also assume that channels have 
rectangular spectra with same bandwidth, equal to the symbol rate sR . These limiting 

assumptions could be removed but they are kept here to avoid excessive complexity in the 
resulting formulas. Specifically, note that if the transmitted channel spectra are not 
rectangular, the integer parameter p introduced in [27], Appendix E, can be non-zero and 
more GN-model correction terms are generated. We do not address this case in this paper. 

The main symbols used in this paper are defined in the following, with units that make the 
subsequent formulas self-consistent: 

• z : the longitudinal spatial coordinate, along the link [km] 

• α : optical field fiber loss [1/km], such that the optical field attenuates as ze α− ; note 

that the optical power attenuates as 2 ze α−  

• 2β : dispersion coefficient [ps2/km] 

• γ : fiber non-linearity coefficient [1/(W km)] 

• sL : span length [km] 

• ( )2
eff 1 2sLL e α α−= − : span effective length [km] 

• sN : total number of spans in a link 

• sR : symbol rate of an individual channel [TBaud] 

• sT : duration of a symbol, equal to 1
sR−  [ps] 

• ( )
CUT

s t , ( )
INT

s t : the pulses used by either the CUT or the INT channels, respectively 

• ( )
CUT

s f , ( )
INT

s f : Fourier transforms of the above, assumed rectangular with 

bandwidth sR  and flat-top value equal to 1/ sR , centered at f  = 0 for the CUT and 

at f  = cf  for an INT channel. Note that for these signals we use the same symbol 

both in frequency-domain and in time-domain. They can be distinguished based on 
the argument which is either a time t  or a frequency f . 

• cf : the center frequency of an INT channel, such that the CUT and INT channel do not 

overlap [THz] 

• xa , ya , xb , yb : random variables (RVs), representing the generic symbols transmitted in 

either the CUT (‘ a ’ RVs), or the INT channels (‘ b ’ RVs), respectively, on either 
polarization (subscripts x  and y ) 

According to the above definitions, the CUT overall transmitted signal can be written as: 

 ( ) ( )
CUCUT T, ,ˆ ˆ( ) x n y n s

n

S t a x a y s t nT= + −  (3) 

and similarly for the INT channel, with ‘ b ’ RV’s in the formula. The average transmitted 
power in the CUT and INT channels are given by: 
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 { } { }CUT INT

2 22 2
E , Ex y x yP a a P b b= =+ +  (4) 

3. Self-channel interference (SCI) 

The NLI produced by a CUT onto itself is SCI. Its contribution can be rather substantial. In a 
densely packed, full C-band system, operating at 32 GBaud, it approximately ranges between 
20% and 40% of the total NLI power perturbing the CUT, over a wide range of fiber 
parameters and link lengths. 

In [24] SCI was not dealt with and all calculations/simulations assumed that SCI was 
removed. In theory, removing SCI may be possible using electronic non-linear-compensation 
(NLC). While NLC is a fervid field of investigation, so far it is unclear whether NLC can be 
effectively implemented in DSP. At present, there are no commercial products incorporating 
it. Therefore, it seems quite necessary to include SCI as well, in dealing with a GN-model 
upgrade. 

To derive the SCI formulas we used an approach similar to [24], suitably taking into 
account the effect of the non-Gaussianity of the signal. The derivation is shown in [27], 
Appendix A. The NLI power spectral density (PSD) emerging at a generic frequency f  

within the CUT, due to the interference of a single channel onto itself, in dual polarization, is 
given by: 

 [ ]
SCI

EGN 3
SCI 1 2 3( ) ( ) ( ) ( )a aG f P f f fκ κ κ= + Φ + Ψ  (5) 

where: 

 
{ }
{ }

{ }
{ }

{ }
{ }

4

22

6 4

2 23 2
2 , 9 12a a

a

a

a a

a a

Ε
Φ −

Ε

Ε Ε
= Ψ = − +

Ε Ε
 (6) 

 ( )
CUT CUT CUT

/ 2 / 2
2 2 2 23

1 1 2 1 2 1 2 1 2

/2 /2

16
( ) ( ) ( ) ( ) , ,

27

s s

s s

R R

s

R R

f R df df s f s f s f f f f f fκ μ
+ +

− −

= + −  (7) 

 ( ) ( )
CUT CUT CUT CUT CUT

CUT CUT

/2 / 2 / 2
2

2 1 2 2

/ 2 /2 /2

2

1 2 2 1 2 1 2 1 2 1 2

/ 2 / 2 / 2
2

1 2 2

/2 /2 /2

2

1 2

80
( )

81

( ) ( ) ( ) ( ) ( ) , , , ,

16

81

( ) (

s s s

s s s

s s s

s s s

R R R

s

R R R

R R R

s

R R R

f R df df df

s f s f s f s f f f s f f f f f f f f f

R df df df

s f f f s f

κ

μ μ

+ + +

− − −

∗ ∗ ∗

+ + +

− − −

′=

′ ′ ′+ − + −

′+

+ −

  

  

( ) ( )
CUT CUT CUT1 2 1 2 2 2 1 2 1 2 2 2) ( ) ( ) ( ) , , , ,s f s f f f s f f f f f f f f fμ μ∗ ∗ ∗′ ′ ′ ′+ − + −

(8) 

 

( ) ( )

CUT CUT

CUT CUT CUT CUT

/ 2 / 2 /2 /2

3 1 2 1 2 1 2

/2 /2 / 2 / 2

1 2 1 2 1 2 1 2 1 2

16
( ) ( ) ( )

81

( ) ( ) ( ) ( ) , , , ,

s s s s

s s s s

R R R R

s

R R R R

f R df df df df s f s f

s f f f s f s f s f f f f f f f f f

κ

μ μ

+ + + +

− − − −

∗ ∗ ∗ ∗

′ ′=

′ ′ ′ ′ ′ ′+ − + −

   
(9) 

where ( )1 2, ,f f fμ  is a ‘link function’ which weighs the generation of NLI and depends only 

on the link parameters, but not on the characteristics of the launched signal. 
Under the assumptions made in this paper of lumped amplification and identical spans, the 

factor μ  can be written as: 

 ( ) ( ) ( )1 2 1 2 1 2, , , , , ,f f f f f f f f fμ ζ ν= ⋅  (10) 
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where: 

 ( )
2

2 1 22 4 ( )( )

1 2 2
2 1 2

1
, ,

2 4 ( )( )

s sL j f f f f Le e
f f f

j f f f f

α π β

ζ γ
α π β

− − −−=
− − −

 (11) 

 ( ) ( )
( )

2
2 1 2

2
2 1 2 2 ( )( )( 1)

1 2 2
2 1 2

sin 2 ( )( )
, ,

sin 2 ( )( )
s s

s s j f f f f N L

s

f f f f N L
f f f e

f f f f L
β π

β π
ν

β π
− − −

− −
=

− −
 (12) 

The ( )1 2, ,f f fζ  factor physically represents the efficiency of non-degenerate four-wave 

mixing (FWM) occurring among three spectral components of the signal placed at 
frequencies 1f , 2f , ( )3 1 2f f f f= + − , producing a beat disturbance at frequency f . The 

factor ν  relates to the coherent interference of the NLI field contributions produced in 
different spans, when they are summed up at the receiver location. For more details on these 
factors, see [10,14] and the appendices of this paper. 

If distributed amplification or non-identical spans are present in the link, the EGN 
formulas shown in this paper are still valid, provided that the link function μ  is suitably 

modified. These generalizations will not be dealt with in this paper. However, for the 
interested readers [10], Eq. (100) provides ( )1 2, ,f f fμ  for arbitrarily different lumped-

amplification spans, whereas [10], p. 16, Eq. (I.2), further generalizes it to arbitrarily different 
distributed-amplification spans. In both cases, ( )1 2, ,f f fμ  is the expression contained within 

absolute value squared. To use it here, the absolute value squared must be removed. 
The term related to 

1
( )fκ  in Eq. (5) accounts for the GN-model component, that is: 

SCI

GN 3
SCI 1( ) ( )G f P fκ= . The other two terms are corrections that take signal non-Gaussianity 

into account, that is: [ ]
SCI

corr 3
SCI 2 3( ) ( ) ( )a aG f P f fκ κ= Φ + Ψ  . Note the need to include both a 

4th and a 6th-order moment of the transmitted symbol sequence, the latter appearing in the 
coefficient aΨ . The values of aΦ  and aΨ  depend only on the chosen format. In Table 1 we 

report them for the most common QAM constellations. It shows that more complex formats 
have smaller values of aΦ  and aΨ . As a result, they have a smaller correction ( )corr

SCIG f  vs. 

the GN-model component ( )GN
SCIG f . This is also the case with XCI and MCI (Sects. 4 and 5). 

Table 1. Values of aΦ  and aΨ  

Format 
aΦ  aΨ  

BPSK −1 4 
QPSK −1 4 

16QAM −17/25 52/25 
64 QAM −13/21 1161/646 
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Fig. 1. Plot of normalized Self-Channel Interference (SCI), 
SCI

η , vs. number of spans in the 

link, assuming a single PM-QPSK channel over (from top to bottom) SMF, NZDSF and LS, 
with span length 100 km. Red dashed line: simulation. Blue solid line: GN-model. Green solid 
line: EGN-model (Eq. (5)). 

In Figs. 1(a)–1(c) we show the result of the SCI calculation vs. simulations. Details about 
the simulation technique can be found in [14], where similar simulations were carried out. 
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The simulated data length amounted to 300,000 symbols, a number that was used for all NLI 
span-by-span accumulation plots in this paper. We looked at the SCI normalized average 
power 

SCI
η  defined as follows: 

 ( )
SCI CUT

/2
3 EGN

SCI

/ 2

s

s

R

R

P G f dfη −

−

=   (13) 

This parameter collects the total SCI noise spectrally located over the CUT, normalized 
through 

CUT

3P−  so that 
SCI

η  itself does not depend on launch power. The simulated system data 

are as follows: 

• single channel PM-QPSK at sR  = 32 GBaud 

• raised-cosine power spectrum with roll-off parameter 0.05 

• SMF with D  = 16.7 [ps/(nm km)], γ  = 1.3 [1/(W km)], dBα  = 0.22 [dB/km] 

• NZDSF with D  = 3.8 [ps/(nm km)], γ  = 1.5 [1/(W km)], dBα  = 0.22 [dB/km] 

• LS fiber with D  = −1.8 [ps/(nm km)], γ  = 2.2 [1/(W km)], dBα  = 0.22 [dB/km] 

• span length sL  = 100 [km] 

Note that we chose not to use ideally rectangular spectra, to avoid possible numerical 
problems due to the truncation of excessively long, slowly decaying signal pulses. The 
selected roll-off value is very small and non-linearity generation can be expected not to differ 
significantly from that of an ideal rectangular spectrum. We chose PM-QPSK as modulation 
format to maximize the correction ( )corr

SCIG f  vs. the GN-model term ( )GN
SCIG f , according to 

Table 1. The same format was used, for the same reason, for the investigation of XCI and 
MCI span-by-span accumulation, shown in Sects. 4 and 5. 

The plots in Fig. 1 show that Eq. (5) has good accuracy, as soon as there is some 
substantial accumulated dispersion. The gap between analytical and simulative results in the 
first few spans is currently being investigated. Beyond the first few spans, the agreement is 
excellent for SMF and NZDSF and still rather good for the challenging, very low-dispersion 
LS fiber. The overall accuracy improvement over the GN-model is very substantial. 

Note also that the difference between either simulation or the EGN-model, vs. the GN-
model (blue line) tends to close up for large number of spans. At 50 spans the residual gap is 
1.1 dB for SMF. It is however more significant for the lower-dispersion fibers: 2.1 dB for 
NZDSF and 2.8 dB for LS. 

4. Cross-channel interference (XCI) 

A key aspect of XCI is that the individual contributions of each single INT channel in the 
WDM comb simply add up. As a result, one can concentrate on analytically finding the XCI 
due to a single INT channel. Then, the total XCI is the sum of the formally identical, albeit 
quantitatively different, contributions of each of the INT channels present in the WDM comb. 
In other words, the total PSD of XCI on the CUT is the sum of the PSDs generated due to 
each INT. 

A. The XPM approximation [24] to XCI 

We started out from the formula provided in [24] in summation form, which the authors 
define as ‘XPM’. We re-wrote it in integral dual-polarization form and in such a way as to 
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make it represent the NLI power spectral density (PSD) emerging at a generic frequency f  

within the CUT. It is: 

 [ ]
CUT INTXPM

2
11 12( ) ( ) ( )bG f P P f fκ κ= + Φ  (14) 

where: 

 
{ }
{ }

4

22
2b

b

b

Ε
Φ −

Ε
=  (15) 

 

( )
CUT INT INT

/ 2 /2
3

11 1 2

/2 /2

2 2 2 2

1 2 1 2 1 2

32
( )

27

( ) ( ) ( ) , ,

s c s

s c s

R f R

s

R f R

f R df df

s f s f s f f f f f f

κ

μ

+ +

− −

=

+ −

 
 (16) 

 

( ) ( )

CUT

INT INT INT INT

/2 / 2 / 2
22

12 1 2 2 1

/ 2 / 2 / 2

2 2 1 2 1 2 1 2 1 2

80
( ) ( )

81

( ) ( ) ( ) ( ) , , , ,

s c s c s

s c s c s

R f R f R

s

R f R f R

f R df df df s f

s f s f s f f f s f f f f f f f f f

κ

μ μ

+ + +

− − −

∗ ∗ ∗

′=

′ ′ ′+ − + −

  
(17) 

As argued in [24], the 11( )fκ term corresponds to a GN-model-like contribution, that is, it 

assumes signal Gaussianity. Instead, 12 ( )fκ represents a correction that takes into account the 

non-Gaussianity of the transmitted signal. As said, these formulas account for a single INT 
channel. Considering a WDM system, the same calculations shown above must be repeated 
for each INT channel and the results summed together. 

Note that in [24] XPM is not proposed as a partial contribution to NLI, but as an overall 
NLI estimator, accurate enough to represent the whole non-linearity affecting the CUT 
(excluding SCI). In the next subsection we will discuss this claim. 

B. The overall XCI 

Equation (14), derived from [24], neglects various XCI contributions arising when the INT 
channel is directly adjacent to the CUT. To provide a graphical intuitive description of what is 
left out, in Fig. 2 we show a plot of the domains in the [ ]1 2,f f  plane where integration takes 

place for the 11( )fκ  and 12 ( )fκ  contributions. In the following paragraph we comment on 

why it is possible to discuss the integration domain of 12 ( )fκ  on the plane [ ]1 2,f f , despite 

the fact that 12 ( )fκ  involves integration over three variables: 1 2 2, ,f f f ′ . 

As pointed out in [11], each point of the [ ]1 2,f f  plane represents a triple of frequencies, 

namely ( )1 2 3, , ,f f f  that produce a ‘FWM’ beat at frequency f . They obey the fixed relation 

3 1 2f f f f= + − . The ‘elementary’ NLI contributions, that are then integrated in the EGN 

formulas to provide the total NLI, arise each from two triples: ( )1 2 3, ,f f f  and 

( )1 2 3, , ,f f f′ ′ ′ both producing a FWM contribution at the same frequency 

( ) ( )1 2 3 1 2 3f f f f f f f′ ′ ′= + − = + − . There are other constraints that relate the pairs of triples, 

which depend on the statistical features of the signal. For more details, see the appendices of 
this paper and of [27]. It turns out that all different NLI contributions can be fully categorized 
just based on properly dividing the [ ]1 2,f f  plane into integration regions where the 

( )1 2 3, ,f f f  triples are located. This is because, if the subdivision is done correctly, the 
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( )1 2 3, ,f f f′ ′ ′  triples that interact with each ( )1 2 3, ,f f f  triple, for a specific type of NLI, are 

bound to originate from the same region of the [ ]1 2,f f′ ′  plane as that of the [ ]1 2,f f  plane 

where ( )1 2 3, ,f f f  originates. In other words, discussing the integration regions in [ ]1 2,f f  is 

enough, because for each region in the [ ]1 2,f f  plane the relevant region in the [ ]1 2,f f′ ′  plane 

is the same, in a one-to-one correspondence. 
The example of Fig. 2 considers XCI due to a single INT channel adjacent to the CUT, 

placed at higher frequency than the CUT, and assumes 0f = . The XPM formulas reported in 

[24], and hence Eq. (14), take into account the two X1 domains only. They neglect X2, X3 
and X4. The complete XCI formulas that take all regions X1-X4 into account, are: 

 

[ ]
[ ]
[ ]

[ ]

CUT INT

CUT INT

CUT INT

INT

EGN 2
XCI 11 12

2
21 22

2
31 32

3
41 42 43

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

b

a

a

b b

G f P P f f

P P f f

P P f f

P f f f

κ κ

κ κ

κ κ

κ κ κ

= + Φ +

+ Φ +

+ Φ +

+ Φ + Ψ

 (18) 

where: 

 
{ }
{ }

{ }
{ }

{ }
{ }

{ }
{ }

4 4

2 22 2

6 4

2 23 2
2 , 2 , 9 12a b b

a b

a b

b b

b b

Ε Ε
Φ − Φ −

Ε Ε

Ε Ε
= = Ψ = − +

Ε Ε
 (19) 

The functions ( )mn fκ  are shown in Appendix A. Their derivation can be found in [27], 

Appendix C. The index m  refers to the domain number according to Fig. 2. The GN-model 

part of XCI, GN
XCI ( )G f , stems from the 1( )m fκ  functions, with 1 4m =  . All other functions 

generate the correction part corr
XCI ( )G f . Similar to the SCI formula, when the correction 

contributions are addressed, both 4th order ( aΦ  and bΦ ) and 6th order ( bΨ ) moments of the 

transmitted symbol sequences must be considered, whereas in the XPM approximation only 
4th order moments are involved. 

Note the important circumstance that the XCI domains X2-X4 are non-empty as long as 
the INT channel adjacent to the CUT is not too far from the CUT, depending on the value of 
both f  and cf . All three regions X2-X4 completely disappear when 2c sf R≥ , for any 

value of f  in the CUT band. This is automatically accounted for in Eq. (18), which can 

hence be considered a generalized complete formula for XCI, valid for channels adjacent to 
the CUT but also for non-adjacent channels, placed at any frequency distance from the CUT. 

Even though the extra XCI X2-X4 regions appear only for the two channels adjacent to 
the CUT, they may contribute substantially to the overall NLI variance, depending on link 
and system parameters, so that disregarding them may lead to non-negligible error. This is 
due to the fact that these regions are relatively close to the origin of the [ ]1 2,f f , where the μ  

integrand factors are maximum (see [11] for more details). 
We investigated this matter by looking at the XCI normalized variance 

XCI
η  defined as 

follows: 

 ( )
XCI

/ 2
3 EGN

ch XCI

/ 2

s

s

R

R

P G f dfη −

−

=   (20) 
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Fig. 2. Integration regions to obtain the power spectrum of XCI, 
GN

XCI
( )G f , at 0f =  (i.e., at 

the center of CUT), due to a single adjacent INT channel, assuming that its center frequency is 
slightly higher than the symbol rate. The XPM approximation [24] of Eq. (14) considers the 
X1 regions only. The full XCI formula of Eq. (18) accounts for all X1-X4 regions. 

with ( )
XCI

G f  given by Eq. (18). This parameter collects the total XCI noise spectrally 

located over the CUT, normalized so that 
XCI

η  itself does not depend on launch power. Note 

that for simplicity we assume here: 

 
INT CUTchP P P= =  (21) 

We calculated 
XCI

η  for the same system addressed in Sect. 3 for SCI. The only difference 

is that now the system has 3 channels, with the CUT as the center channel. The channel 
spacing is 33.6fΔ = GHz. For the same system we also calculated 

XPM
η , defined as: 

 ( )
XPM

/ 2
3

ch XPM

/2

s

s

R

R

P G f dfη −

−

=   (22) 

with ( )
XPM

G f  given by Eq. (14). 

Finally, still for the same system, we simulatively estimated the overall non-linearity, with 
single-channel effects removed. We did this because we wanted to see whether either XPM, 
or XCI, could be considered good approximations to the overall NLI produced in the link, 
once SCI is taken out. To remove SCI from the simulation results, we simulated both the 
CUT alone and the CUT with the two INT channels. Then we subtracted the former 
simulation result from the latter at the field level, thus ideally freeing the CUT completely 
from single-channel effects while leaving in all other non-linearity (XCI and MCI). 

Figure 3(a) shows the XPM approximation 
XPM

η  of [24] provided by Eq. (22) as a 

magenta solid line. The green solid line represents 
XCI

η  given by the EGN-model Eq. (20). 

The red dashed curve represents the simulation result accounting for all NLI except SCI. All 
curves are represented as a function of the number of spans, up to 50. 
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Fig. 3. Plot of normalized non-linearity coefficient η  vs. number of spans in the link, 

assuming three PM-QPSK channels over (from top to bottom) SMF, NZDSF and LS, with 
span length 100 km. The CUT is the center channel. The spacing is 1.05 times the symbol rate. 
Red dashed line: simulation, with single-channel non-linearity (SCI) removed. Blue solid line: 

GN-model without SCI. Magenta solid line: the XPM approximation 
XPM

η  of [24] (Eq. (22) of 

this paper). Green solid line: 
XCI

η  estimated through the EGN-model (Eq. (20)). 
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This may seem a large number of spans but the reach of the simulated system, assuming 
SMF, conventional EDFA amplification with realistic noise figure (5-6 dB) and a realistic 
FEC BER threshold of about 210− , is indeed on the order of 50 spans. The figure shows that 
in this specific scenario the XPM approximation 

XPM
η  of [24] underestimates the simulated 

NLI by about 1.4 dB. XCI 
XCI

η  reduces such error to less than 0.4 dB throughout the plot. 

The GN-model starts out with a large 5-dB overestimation error, which gradually tapers down 
to about 1.3 dB at 50 spans. 

In Fig. 3(b), we show a similar plot, this time for NZDSF. Above 5 spans, 
XPM

η  of Eq. 

(22) underestimates NLI by about 2 dB whereas the GN-model overestimates it by about the 
same amount. These gaps are substantially wider than in the SMF case. Interestingly, a 0.8 dB 
gap is now also present between the simulation results and 

XCI
η . This suggests that some NLI 

contributions are missing, i.e., the XCI component is not sufficiently representative of the 
overall NLI (excluding SCI). 

A similar situation is also seen in Fig. 3(c), for the very low-dispersion scenario of LS 
fiber, with the interesting aspect that both XPM and XCI show a substantial underestimation 
error (1.7 and 1.3 dB, respectively) for a large number of spans. The GN-model clearly does 
not cope well with ultra-low dispersion fibers, showing a wide overestimation error of about 
3.2 dB across all spans. 

In conclusion, Figs. 3(a)–3(c) show that the XCI component of NLI may be sufficiently 
representative of all NLI (excluding SCI) only over high-dispersion fibers. On low-dispersion 
fibers part of NLI is clearly missing. In these specific examples, XPM is not representative of 
all of NLI and not even of XCI alone. 

These results compellingly suggest that a complete model for NLI must include MCI as 
well. We introduce it in the next section. As a last remark, we point out that for larger values 
of the channel spacing cf , a smaller gap can be expected between simulations and XPM, 

especially over SMF. Also, for 2c sf R≥  XPM and XCI would coincide due to the vanishing 

of the X2-X4 regions. 

5. Multi-channel interference (MCI) 

MCI can be thought of as typically being weaker than either SCI or XCI, because it arises on 
regions of the [ ]1 2,f f  plane where the link function μ  has a smaller magnitude than over the 

regions generating XCI and SCI. To provide an intuitive pictorial description of this 
circumstance, we show in Fig. 4 the integration regions arising in the plane [ ]1 2,f f  when 

calculating the overall NLI PSD at the center of the CUT, i.e., 
NLI

(0)G , for a three-channel 

example similar to the test PM-QPSK system of the previous section. The center region is 
SCI, the blue regions are XCI and the pink/red ones are MCI. Each point in these regions 
contributes to NLI, but it is weighed through the factors μ  appearing in the integrals. These 

factors peak at the origin and along the [ ]1 2,f f  plane axes. The larger the fiber dispersion is, 

the faster the decay of the μ  factors away from such maxima. However, when dispersion is 

relatively low, such as with TrueWave RS or LS fibers, the decay of μ is much slower and 

MCI is not negligible, as the results of the previous section suggest. 
Note also that when 

NLI
( )G f  is evaluated at a frequency f  which is different than 0, the 

overall picture changes quite significantly. In particular, for / 2sf R≈ ±  (values that 

correspond to the cut-off edges for a filter matched to a pulse ( )
CUT

s f  with rectangular 

spectrum) some of the MCI integration regions come close to where the μ ’s are at their 
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maxima. This case is exemplified in Fig. 5, which depicts the integration regions 
for / 2sf R= . The lower M0 and especially the lower M1 region are next to the μ ’s 

maxima, whose location has shifted away from the [ ]1 2,f f  axes and now occurs at the red 

dashed axes. In this situation, MCI may therefore contribute substantially. 
The MCI formulas for the red regions of Fig. 4 and Fig. 5 are: 

 
CUT INT,1 INT,-1 INT,1 INT,-1

EGN 2
MCI M0 M1,1 M1,2( ) ( ) ( ) ( )bG f P P P f P P f fκ κ κ = + + Φ   (23) 

where: 
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  
(26) 

The subscripts ‘INT,-1’ and ‘INT,1’ refer to the INT channel spectrally located, respectively, 
to the left (lower frequency) and to the right (higher frequency) of the CUT. 

Interestingly, in the pink region M0, NLI is produced entirely according to the GN-model, 
through M0κ . No correction term for signal non-Gaussian distribution is present there. In the 

red region M1, the induced MCI has instead a similar structure as XCI in the blue region X1. 
In particular, both a GN-model-like term M1,1κ  and a correction term M1,2κ  are present. 

For the same system set-ups addressed in Sect. 4B we calculated 
MCI

η , defined as: 

 
MCI

/ 2
3 EGN

ch MCI

/2

( )
s

s

R

R

P G f dfη −

−

=   (27) 

with EGN
MCI ( )G f  given by Eq. (23). We then summed together the XCI and MCI contributions. 

We call the result ‘XMCI’ for brevity: 

 
XMCI XCI MCI

η η η= +  (28) 

where 
XCI

η  is given by Eq. (20). The quantity 
XMCI

η  is the green solid line in Figs. 6(a)–6(c). 

All curves except the green solid one are the same as in Figs. 3(a)–3(c). Comparing the two 
sets of figures, we see that the gap that existed between XCI and simulations has now 
completely disappeared. The gap was therefore due to the missing MCI contributions. The 
accuracy of the EGN-model in estimating 

XMCI
η  is remarkable, for both SMF and NZDSF. A 

small error shows up for LS in the first few spans, which completely disappears along the 
link. 
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Fig. 4. Integration regions in the [ ]

1 2
,f f  plane needed to obtain the power spectrum of NLI 

for f  = 0, due to two adjacent INT channels with spacing slightly higher than the symbol 

rate. The full XCI formula of Eq. (20) accounts for all X1-X4 regions. The XPM 
approximation [24] (Eq. (22) here) considers the X1 regions only. SCI is the center region S. 
MCI is the red/pink regions. The M0 region has only the GN-model term, the red M1 ones 
have both the GN-model term and non-Gaussianity correction terms. 
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Fig. 5. Integration regions in the [ ]
1 2
,f f  plane needed to obtain the power spectrum of NLI 

for / 2sf R= , due to two adjacent INT channels with spacing slightly higher than the 

symbol rate. Notice that all regions change shape vs. Figure 4. Also, the maximum FWM 

efficiency now falls on the translated red-dashed axes, which do not coincide with the [ ]
1 2
,f f  

axes. The lower M0 and M1 MCI regions are now close to such maxima. 
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Fig. 6. Plot of normalized non-linearity coefficient η  vs. number of spans in the link, 

assuming three PM-QPSK channels over (from top to bottom) SMF, NZDSF and LS, with 
span length 100 km. The CUT is the center channel. The spacing is 1.05 times the symbol rate. 
Red dashed line: simulation, with single-channel non-linearity (SCI) removed. Blue solid line: 

GN-model without SCI. Magenta solid line: the XPM approximation 
XPM

η  of [24] (Eq. (22) of 

this paper). Green solid line: 
XMCI

η  (i.e., XCI + MCI) estimated through the EGN-model (Eq. 

(28)). 
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These results all assume just three channels. An interesting issue is whether the general 
picture shown in Figs. 6(a)–6(c) changes when going to a higher number of channels. One 
might wonder whether the extent and/or hierarchy of the gaps vs. simulation may change 
among curves, or whether the EGN-model might lose accuracy. This issue is dealt with in the 
next subsection, which also generalizes the MCI formulas to any number of WDM channels. 

A. MCI for any number of WDM channels 

When more than three channels are present in the comb, the picture of the MCI integration 
regions becomes more complex. In Fig. 7 we show an example of a nine-channel quasi-
Nyquist WDM system, assuming f  = 0 for simplicity. The plot contains all possible types of 

MCI regions, together with those generated by SCI and XCI. Even going to a higher channel 
number than nine, no new region types are generated. 

f3 =f1+ f2

f1

f2

S
(SCI)

MCI M1
MCI M2
MCI M3

MCI M0

XCI X2
XCI X3
XCI X4

XCI X1

 

Fig. 7. Integration regions in the [ ]
1 2
,f f  plane needed to obtain the power spectrum of NLI 

for f  = 0, for a nine-channel WDM system with four left and four right INT channels 

adjacent to the CUT, with spacing slightly higher than the symbol rate. SCI is the center 
region. XCI and MCI regions are color-coded (see legend). The white-filled regions (all of 
type M0) have only the GN-model term, all others have both the GN-model term and one or 
more non-Gaussianity correction terms. Note that XPM amounts to the X1 regions only. 

We generalized the MCI formulas to any number of channels, i.e., all four different MCI 
region types of Fig. 7 were addressed (see Appendix B). Such equations, together with the 
ones for SCI and XCI, make the overall EGN-model capable of dealing with any number of 
channels, for any type of NLI. Note that the MCI domains M1 and M2 are non-empty as long 
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as the INT channel adjacent to the CUT is not too far from the CUT. Both regions M1 and 
M2 disappear when 2c sf R≥ , for any value of f  in the CUT band. This is automatically 

accounted for in the equations of Appendix B. 
Using these general formulas, in Figs. 8(a)–8(c) we draw the same plot as Figs. 6(a)–6(c), 

except now nine WDM channels are present: the CUT and four adjacent INT channels on 
each side of the CUT. A comparison of the figures shows that, interestingly, the general 
picture is unchanged. The excellent accuracy of the EGN-model in estimating 

XMCI
η  is 

confirmed (green solid line) vs. simulations (red dashed), at this higher channel count too, for 
all fibers. The gap between simulations and the GN-model either slightly grows (for SMF) or 
is somewhat reduced. The gap between the XPM approximation and simulation decreases 
slightly for SMF but grows for NZDSF and quite substantially over LS (going from 1.3 to 3.1 
dB). 

6. Estimating system performance 

From the results of the previous sections, a rather compelling set of indications on the various 
addressed models emerges: 

1. the EGN-model is very accurate in predicting XCI and MCI and quite accurate in 
predicting SCI too; 

2. the XCI contributions of the X2-X4 regions and the MCI contributions to NLI may be 
important and cannot, in general, be neglected; 

3. neither the GN-model, nor the XPM approximation to the EGN-model (SCI excluded) 
are accurate NLI estimators in any of the specific 3 or 9-channel examples addressed 
above. 

In this section, we shift focus from the characterization of NLI accumulation along the 
link to system analysis. In fact, the main declared goal of the GN-model has always been that 
of providing a practical tool for realistic system performance prediction. Here, we present a 
comparison of the accuracy of the GN-model and of the EGN-model in predicting maximum 
system reach. 

The systems that we tested are identical to those described in [14], Sect. V. Specifically, 
they are 15-channel WDM PM-QPSK, and PM-16QAM systems, running at 32 GBaud. The 
simulation technique is also similar to that of [14]. The simulated data length was 130,000 
symbols. The target BERs were 31.7 10−⋅ and 32 10−⋅  respectively, found by assuming a 210−  
FEC threshold, decreased by 2 dB of realistic OSNR system margin. We considered the 
following channel spacings: 33.6, 35, 40, 45 and 50 GHz. The spectrum was root-raised-
cosine with roll-off 0.05. EDFA amplification was assumed, with 5 dB noise figure. Single-
channel non-linear effects were not removed from the simulation. The considered fibers were: 
SMF, NZDSF and LS, with same parameters as listed in Sect. 3, with the exception of the 
SMF loss that was dBα  = 0.2 [dB/km] rather than 0.22. In addition, we also considered PSCF 

with the following parameters: D  = 20.1 [ps/(nm km)], γ  = 0.8 [1/(W km)], dBα  = 0.17 

[dB/km]. For more details on the simulation set-up and techniques, see [14], Sect. V. 
Figure 9 shows a plot of maximum system reach vs. channel spacing. Squares are 

simulation results. The dashed line is the GN-model and the solid line is the EGN-model. 
Note that lines are just visual aids. The actually calculated data points are the filled circles. 
The GN-model underestimates the maximum reach by 0.3-0.6 dB over PSCF, SMF and 
NZDSF, in agreement with [14,16]. The error goes up to 0.8 dB in the case of the very low 
dispersion and high non-linearity LS fiber. 
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Fig. 8. Plot of normalized non-linearity coefficient η  vs. number of spans in the link, 

assuming nine PM-QPSK channels over (from top to bottom) SMF, NZDSF and LS, with span 
length 100 km. The CUT is the center channel. The spacing is 1.05 times the symbol rate. Red 
dashed line: simulation, with single-channel non-linearity (SCI) removed. Blue solid line: GN-

model without SCI. Magenta solid line: the XPM approximation 
XPM

η  of [24] (Eq. (22)). 

Green solid line: 
XMCI

η  (i.e., XCI + MCI) estimated through the EGN-model (Eq. (28)). 
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These errors are in line with the typical amount of NLI overestimation by the GN-model 
that emerges from the previous sections, when taking into account that its impact on 
maximum reach error is downscaled by a factor 1/3, dB over dB [11,14]. 

With all fibers and spacings, the EGN-model provides very good accuracy, completely 
removing the underestimation error incurred by the GN-model. The error is less than 0.2 dB 
across all system configurations. At this error level, it is difficult to attribute it to either model 
inaccuracy or Monte-Carlo uncertainty. 
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Fig. 9. Plot of maximum system reach for 15-channel PM-QPSK and PM-16QAM systems at 
32 GBaud, vs. channel spacing, over four different fiber types: PSCF, SMF, NZDSF and LS. 
The span length is 120 km for PM-QPSK and 85 km for PM-16QAM. Small filled circles: 
analytical predictions. Square hollow markers: simulations. Lines were added to connect 
analytical points as a visual aid. Dashed line: GN-model. Solid line: EGN-model. 

We would like to point out that a slight difference, on the order of small fractions of a dB, 
is visible between some of the system results shown in [14], and the ones reported here in Fig. 
9. They are due to two circumstances. First, in [14] the local-white-noise approximation was 
used in the calculation of NLI using the GN-model. Such approximation consists of assuming 
that the NLI spectrum is essentially flat over the bandwidth of the channel under test. Here, 
the non-flatness of the NLI spectrum was fully taken into account when plotting all the 
figures in this paper. Specifically regarding Fig. 9, the difference between taking and not 
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taking the non-flat NLI spectrum into account causes an upshift of the analytical curves 
ranging between 0.05 dB for fΔ  = 33.6 GHz and 0.15 dB for fΔ  = 50 GHz. As a result, the 

GN-model prediction here is different from [14] by this much. 
A second difference with [14] is that the simulations there, for the sake of full realism, 

were run with ASE noise added in-line along the link. Here, we want to carefully validate a 
model that neglects the interaction of in-line ASE noise with non-linearity, so we added all 
ASE noise at the end of the link. The effect is that all simulative PM-QPSK results are pulled 
up here by about 0.15 dB on average. The effect on PM-16QAM is almost negligible (less 
than 0.05 dB), because PM-16QAM requires a much higher OSNR at the receiver and hence 
much less ASE noise is present along the link than for PM-QPSK. 

We feel that neither of these small differences with respect to [14] changes the essence of 
the results shown either here or in [14]. 

7. Discussion 

In this section we discuss various issues related to the GN and EGN-models: accuracy vs. 
computational effort, non-linear phase noise and the comparison of model results with 
experiments. 

A. Accuracy vs. computational effort 

The GN-model overestimates NLI. The amount of overestimation is large in the first spans 
(several dB’s) but it abates along the link. When looked at for a number of spans that is close 
to the maximum reach, the error on NLI power estimation is typically 1 to 2 dB, depending 
on fiber type, modulation format and span length, for realistic systems. Larger errors can be 
found by pushing the system parameters to extremes, such as single-polarization, lossless 
fiber (or ideal distributed amplification) or very short spans. 

The GN-model errors in NLI power estimation in turn lead to about 0.3-0.6 dB of error on 
the prediction of the maximum reach or of the optimum launch power, for typical realistic 
systems. This error may or may not be acceptable, depending on applications, but is 
guaranteed to be conservative (i.e., reach is underestimated) for PM-QAM systems. When 
such error is not acceptable, the EGN-model can be used, which is capable of providing very 
accurate estimates of NLI variance at any number of spans along the link, potentially for any 
format and system set of parameters. 

The results of Fig. 9 contain both simulations and analytical calculations. The simulations 
required a large CPU effort, due to our will to impose very strict accuracy constraints. Please 
see [14] for a description of simulation accuracy settings. As a whole, the simulated points 
populating Fig. 9 required several months of equivalent single-core CPU (PC-type) time. This 
should not surprise, since accurately finding maximum reach by simulation requires 
demodulating the signal at multiple spans and also scanning numerous launch powers at small 
steps. For each launch power, an entirely new simulation must be run. Some optimizations are 
possible but the overall burden is massive. 

The EGN-model calculations needed to generate the corresponding data points, thanks to 
various optimizations, were trimmed down to about 15 days of total single-core CPU time. 
One key factor contributing to reducing the computational effort of the EGN-model is the fact 
that, even when three or more nested integrals are present in any of the NLI contributions, the 
actual complexity is always equivalent to a double integral. This aspect is explained in 
Appendix C. Another important speed-up circumstance vs. simulations is that the model 
calculations do not need to be run at different launch powers. Once the normalized coefficient 

NLIη  has been estimated, NLI can be extrapolated to any power by simply scaling it 

analytically by 3
chP . One circumstance acting against model calculations efficiency is however 

that if very high accuracy is needed, the NLI white-noise approximation used for instance in 
[14] must be avoided. This entails evaluating the NLI PSD (essentially NLIη ) at many 
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frequencies inside the CUT bandwidth (32 GHz in our case) and then averaging them. We 
used a step of 1 GHz, which we found sufficient. 

Despite forgoing the white-noise approximation, the EGN-model CPU gain vs. Monte-
Carlo simulations was still quantifiable as a factor of 10-20. It should however be mentioned 
that we were conservative as to setting the integration parameters for accuracy. Also, we think 
the efficiency of our code could be improved upon. As a result, we feel that it should be 
possible to push the previously mentioned speed-up factor to at least 20-40. This factor is 
significant. It is however not significant enough to make the EGN-model a real-time tool for 
quick system optimization. We should also point out that not even the GN-model can be 
considered a real-time tool, as the speed-up of the GN-model vs. the EGN-model is only 
about another factor of 5-10, insufficient for real-time use. 

The fastest GN-related model available is the incoherent GN-model, whose accuracy was 
shown to typically appear to be even better than the GN-model [14]. This is somewhat 
surprising, since the incoherent GN-model is derived from the GN-model by making one 
further approximation, namely that the NLI produced in each span sums up incoherently (that 
is, in power) at the receiver [6,7,11,14]. However, as explained in [14], it benefits from an 
error cancellation circumstance. This means that, while the GN-model produces a guaranteed 
lower bound to the maximum reach, the incoherent GN-model can be either pessimistic or 
optimistic. On the other hand, its speed of computation is 10-20 times faster than the GN-
model, and another order of magnitude can be gained if the white noise assumption is used. In 
essence, the incoherent GN-model is so far the fastest tool, and essentially a real-time tool, for 
system performance assessment. On the other hand, caution must be used and its limitations 
must be fully understood to use it properly. Its margin of error can potentially be substantial, 
although so far, in the context of many validation campaigns using realistic system 
parameters [6,7,14], it has been consistently found to be rather accurate. It should also be 
mentioned that a number of closed-form or quasi-closed form analytical solutions have also 
been worked out for both the GN-model and the incoherent GN-model [11,14,28–30], which 
clearly reduce complexity to almost negligible levels, at the cost of some potential loss of 
accuracy. 

The best of all options would arguably be that of finding a tool with a similar complexity 
as the incoherent GN-model, whose accuracy would however not rest on an error 
cancellation, but on firm theoretical ground. A first promising attempt towards this direction, 
based on an analytical closed-form approximation to the EGN-model, is reported in [26]. 

Overall, an array of analytical tools are already available for the system designer, with 
different degrees of complexity and accuracy that can be tailored to specific needs. Trade-offs 
between accuracy and complexity can already be addressed with numerous options at hand. 

B. Non-linear phase noise 

As mentioned in the introduction, one of the assumptions used by the GN-model, as well as 
by most prior non-linearity models, is that of NLI being approximately Gaussian and additive, 
so that its system impact can be assessed simply by summing its variance to that of ASE 
noise. This assumption was challenged in [24] and [25]. The claim of [24] is that a very 
substantial part of the XCI contribution to NLI is in fact phase noise and hence non-additive. 
In addition, such phase noise appears to have a very long correlation time, on the order of tens 
or even hundreds of symbols. 

The presence of a non-linear noise component with very long correlation time had first 
been pointed out in [31], there too attributed to ‘cross-phase modulation’. The correlation 
results in [24] actually agree well with those found earlier in [31]. Both papers, however, 
concentrate on a single-polarization, lossless fiber scenario to assess the strength of the long-
correlated phase-noise component of NLI. In that idealized context, the phase noise 
component may indeed turn out to be very large. 
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Clearly, the assumption of NLI being Gaussian and additive is an approximation. The key 
problem is whether such approximation is good enough for the purpose it was made. Such 
purpose was to make it possible to assess system performance by simply adding the ASE 
noise and the NLI variance at the denominator of a ‘non-linear’ effective optical signal-to-
noise-ratio. In our opinion, the results presented in Fig. 9, where the maximum system reach 
was predicted with a very high level of accuracy using the EGN-model together with the 
additive-Gaussian NLI approximation, represent strong evidence that such approximation is 
quite adequate for dealing with practical system scenarios, when maximum system 
performance is investigated. In a separate forthcoming paper, we report on a specific in-depth 
investigation of the extent and features of non-linear phase-noise in practical links and on its 
impact on performance prediction. 

C. Modeling vs. actual systems and networks 

As shown, the EGN-model provides much better accuracy than the GN-model in predicting 
the span-by-span accumulation of NLI noise. The differences between the GN and EGN-
model are due to the removal of the signal Gaussian distribution assumption. However, the 
reason why this removal impacts significantly the accumulation of NLI is not straightforward. 

In uncompensated systems the signal does get substantially spread out due to dispersion 
and rather quickly takes on an approximately Gaussian distribution. Nonetheless, a residual 
dependence among the random variables appearing in the Fourier transform of each single 
channel (the nν ’s in Appendix A of [27]) survives the dispersive effect, eventually causing a 

reduction in the amount of NLI produced in the link even at large span count, as shown for 
instance in the NLI accumulation plots in this paper. 

This effect shows up mathematically under various implied assumptions. One 
foundational assumption is that propagation is modeled through the Manakov equation. 
Another key assumption is that the channels travel together from input to output. A third one, 
is that ASE noise does not significantly impact non-linearity generation. 

All three of these assumptions can be challenged, to various extents, depending on system 
environment and link parameters. For instance, already in current networks, and increasingly 
so in future ones, the WDM channels are routed in arbitrary ways along the links so that a 
given channel may change its neighbor interfering channels more than once along its path. 
This may weaken the high-coherence picture that is essential in producing the significant 
deviation of the EGN-model vs. the GN-model. Further research should be devoted to 
investigating the quantitative impact of this and other similar circumstances. In certain cases, 
the built-in conservative nature of the GN-model might turn out to constitute a safe margin 
towards possible random performance variability. 

Regarding ASE noise, the effect of NLI produced by co-propagating ASE noise on system 
performance is small as long as the required OSNR at the receiver is relatively large. The 
trend towards using ever more complex FECs allowing operation at very low OSNRs 
suggests that this effect may become substantially more significant than the 0.15 dB assessed 
here for PM-QPSK (see Sect. 6). Both the GN and the EGN-model can be extended to 
analytically take it into account. This topic is however considered outside of the scope of this 
paper and left for future investigation. 

These remarks recommend caution in the use of models when relating such models to the 
physical world. More in-depth comparison of model predictions and actual experimental 
results would in fact be desirable, to make sure that the many assumptions of all models pan 
out positively in the physical world. 

8. Comments and conclusion 

In this paper we have provided the full set of formulas needed for a self-consistent complete 
EGN-model, derived using an extension of the procedure proposed in [24] to remove the 
signal Gaussianity assumption. 
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In detail, we have derived for the first time single-channel non-linearity formulas, which 
had not been addressed in [24]. We have also shown that the ‘XPM’ formulas proposed in 
[24] as an estimator for cross and multi-channel NLI (that is, of all NLI except single-
channel) can substantially underestimate non-linear noise in certain scenarios, especially in 
systems with low-dispersion fibers, where additional NLI terms may be significant. We have 
provided the complete set of formulas describing all possible cross- and multi-channel 
interactions, and carefully validated them vs. simulations. 

The EGN-model presented here exhibits the best predictive power so far, among the 
various approximate GN-related models available. This is not only true at a span count 
nearing maximum reach, but throughout the link. It shows no evident bias versus non-
linearity over or underestimation. It can be used reliably at even ultra-low dispersion, such as 
over LS fibers. It can also potentially be used to study pre-compensation techniques and 
mixed fiber environments. Its effectiveness in these latter contexts will be investigated in a 
specifically devoted forthcoming paper. 

Looking at the final EGN-model formulas, it is evident that the price to pay for its 
increased accuracy is increased complexity. In certain cases, the potential speed up vs. 
standard split-step simulations can be as low as just a factor of 20. A key objective for 
research in the near future is therefore that of trying to drastically reduce such complexity, 
perhaps by deriving from the EGN model suitable GN-model correction terms which permit 
to combine improved accuracy with reasonable complexity. A first result towards this goal is 
reported in [26]. 

Appendix A: Complete XCI formulas 

Here are the detailed expressions of the ( )mn fκ  contributions for XCI appearing in Eq. (18). 

The formulas for ( )11 fκ  and ( )12 fκ  were already shown in Sect. 4. The others are as 

follows: 
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Appendix B: Complete MCI formulas 

Figure 7 shows all the integration regions for a 9-channel system. The MCI regions are 
marked from M0 to M3. Increasing the number of channels does not create any new type of 
regions so, for this purpose, Fig. 7 can be considered an adequate generalization. The white-
filled regions correspond to regions whose contribution is simply the GN-model; the other 
regions (M1-M3) have both a GN-model contribution and a correction term. Since all regions 
have the GN-model contribution, we can generalize and say that MCI as a whole can be 
written as: 

 EGN GN corr

MCI MCI MCI
( ) ( )G f G f G= +  (36) 

where GN

MCI
( )G f is the MCI PSD according to the GN-model (present in M0-M4), and corr

MCI
G  is 

the correction found in the M1-M3 regions. 
If all channels are assumed to have the same transmitted power, that is, 

 ( ) ( )CUT INT, ch ch ch1 2, , 1,1, , 1 2
i

P P P i N N= = = − − − −   (37) 

where chN  (assumed odd) is the total number of channels and all INT channels are sitting 

symmetrically about CUT, then the MCI correction can be written as, 

 ( )corr

MCI M1,2 M2,2 M3,2

3
ch ( ) ( ) ( )bG P f f fκ κ κ= Φ + +  (38) 

where: 
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The derivation of this result is similar to that of XCI. For details, see [27] Appendix C. 

Appendix C: Analytical complexity of the EGN model terms 

As shown in Eq. (1), the EGN-model consist of a GN-model term ( )GN
NLIG f  and a ‘correction 

term’ ( )corr
NLIG f . All the contributions making up the GN-model term consist of double 

integrals over 1 2,f f . The contributions of the EGN-model correction term ( )corr
NLIG f  are 

instead expressed as either triple or quadruple integrals. This seems to suggest that the 
numerical integration of the ( )corr

NLIG f contributions may be quite challenging. 

In reality, the ( )corr
NLIG f  contributions can be shown to always require only a double 

integral to be evaluated. For instance, one of the correction terms for SCI which has a triple 
integral is Eq. (8): 
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(42) 

The term preceded by 80/81 in the equation above, which we will call 21( )fκ , can be re-

written as: 
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(43) 

In other words, the second and third integral are the same integral, except for a complex 
conjugation, so that only one integration is needed to obtain both. 

For the term preceded by 16/81, which we will call 22 ( )fκ , we replace the integration 

variable 1f  with 3 1 2f f f f= + − , that is 1 3 2f f f f= − + . Then: 
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Again, the second and third integrals are the same integral, except for a complex 
conjugation, so that only one integration is actually needed to obtain both. 

One of the correction terms for SCI (Eq. (9)) has a quadruple integral: 
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Here, it turns out that the first two integrals together are the complex conjugate of the 
third and fourth, so that a double integration only is needed to assess the whole contribution. 

Similar manipulations can be used to show that all other EGN-model contributions, 
including XCI and MCI, have an inherent complexity that is just that of a double-integral. 

This property is clearly important and we exploited it in the numerical evaluation software 
that we used. It is also possible that more analytical manipulation can be carried out to further 
reduce the integration complexity. For instance in [11] a hyperbolic variable substitution 
proved quite effective for the GN-model. However, we have not yet carried out a similar 
investigation for the EGN model and leave this topic for possible future research. 
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