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Abstract

Pattern set mining entails discovering groups of frequent itemsets that rep-

resent potentially relevant knowledge. Global constraints are commonly en-

forced to focus the analysis on most interesting pattern sets. However, these

constraints evaluate and select each pattern set individually based on its

itemset characteristics.

This paper extends traditional global constraints by proposing a novel

constraint, called schema-based constraint, tailored to relational data. When

coping with relational data itemsets consist of sets of items belonging to

distinct data attributes, which constitute the itemset schema. The schema-

based constraint allows us to effectively combine all the itemsets that are

semantically correlated with each other into a unique pattern set, while fil-

tering out those pattern sets covering a mixture of different data facets or
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giving a partial view of a single facet. Specifically, it selects all the pattern

sets that are (i) composed only of frequent itemsets with the same schema

and (ii) characterized by maximal size among those corresponding to that

schema. Since existing approaches are unable to select one representative

pattern set per schema in a single extraction, we propose a new Apriori-

based algorithm to efficiently mine pattern sets satisfying the schema-based

constraint. The experimental results achieved on both real and synthetic

datasets demonstrate the efficiency and effectiveness of our approach.

Keywords: Pattern set Mining, Itemset Mining, Data Mining

1. Introduction

Frequent itemsets represent recurrent correlations among data items [1],

which are usually selected by considering their local interestingness in the

analyzed data [2, 3]. However, since itemset mining from real-life data com-

monly entails discovering a large number of itemsets that are fairly corre-

lated with each other, the manual inspection of the mining result could be

a challenging task. To overcome this issue, pattern set mining with global

constraints aims at discovering worthwhile groups of itemsets [4]. Instead

of evaluating and selecting itemsets individually, pattern sets (i.e., sets of

itemsets) are generated and evaluated as a whole to analyze the correlations

among data from a high-level viewpoint.

Relational data is characterized by a fixed schema, which consists of a

set of attributes representing peculiar data features. Itemsets mined from

relational data are sets of items belonging to distinct data attributes. Hence,

they are characterized by a schema too. Frequent itemsets with the same
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schema are, to a certain extent, semantically correlated with each other be-

cause they are recurrent instances of the same data facet. Hence, the itemset

schema can be considered to be particularly suitable for clustering recur-

rent co-occurrences among data items related to the same facet into pattern

sets. Furthermore, instead of generating all the pattern sets complying with

a given schema, for each schema only the largest pattern set should be con-

sidered, because all the others are partial representations of the same data

facet. However, to evaluate pattern set interestingness existing algorithms

just evaluate one pattern set at a time. Therefore, they cannot extract for

each schema only the best representative pattern set unless generating all

the pattern sets first and then postprune the uninteresting ones.

This paper addresses the problem of pattern set mining with global con-

straints from relational data. To generate only the groups of itemsets con-

taining all the pertinent information related to a given facet, we propose a

new global constraint, namely the schema-based constraint, tailored to rela-

tional data. The schema-based constraint selects all the pattern sets that are

(i) composed only of frequent itemsets with the same schema and (ii) char-

acterized by maximal size among those corresponding to that schema. To

provide a condensed and potentially useful representation of different data

facets we select at most one pattern set per schema, i.e., the pattern set that

consists of all and only the frequent itemsets with that schema.

To improve the manageability of the mined pattern sets two parallel

strategies are commonly adopted [4]: (i) enforcing a maximum number of

itemsets per pattern set, or (ii) enforcing a minimum percentage of data that

must be covered by each mined pattern set. The former constraint, called
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cardinality constraint, can be exploited to discard very large and thus un-

manageable pattern sets. The latter constraint, named coverage constraint,

prevents the extraction of pattern sets representing a small and thus not

significant portion of data. Note that our goal is to characterize data using

recurrent patterns, rather than pinpointing abnormal (rare) patterns. To effi-

ciently perform pattern set mining with schema-based constraint, we present

a new Apriori-based algorithm [5], namely COstrained PAttern Set mining

algorithm (COPAS), which adopts a level-wise approach to discovering item-

sets and pattern sets at the same time. The COPAS algorithm pushes the

newly proposed schema-based constraint, in conjunction with one of the two

traditional constraints (cardinality or coverage, based on users needs), deep

into the mining process. In such a way, the pattern sets of interest can be

extracted in a single extraction without the need for postprocessing. The

result can be directly explored by domain experts for advanced analyses or

further processed by using ad hoc strategies.

The paper is organized as follows. Section 2 presents a motivating exam-

ple. Section 3 compares our work with previous approaches. Section 4 states

the mining problem addressed by the paper. Section 5 presents the COPAS

algorithm, while Section 6 describes the experiments performed. Finally,

Section 7 draws conclusions and discusses future work.

2. Motivating example

A company would like to plan advertising campaigns targeted to cus-

tomers located in Italy according to their most peculiar features. To person-

alize advertisements the company clusters customers into segments, which
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Table 1: Example relational dataset

Rid City Gender Y ear Job

1 Turin F 1980 Teacher
2 Turin M 1945 Lawyer
3 Turin M 1945 Lawyer
4 Milan F 1957 Teacher
5 Rome M 1976 Clerk
6 Milan F 1978 Teacher

Table 2: Pattern sets satisfying the schema-based and the minimum coverage constraints
mined from the dataset in Table 1 (minsup=30%, mincov=60%)

Pattern set Itemsets (support) Coverage

PCity
{(City,Turin)} (50%)

83.3%
{(City,Milan)} (33.3%)

PGender
{(Gender,M)} (50%)

100%
{(Gender,F)} (50%)

PJob
{(Job,Teacher)} (50%)

83.3%
{(Job,Lawyer)} (33.3%)

PCity,Gender
{(City,Turin), (Gender,M)} (33.3%)

66.6%
{(City,Milan), (Gender,F)} (33.3%)

PCity,Job
{(City,Turin), (Job,Lawyer)} (33.3%)

66.6%
{(City,Milan), (Job,Teacher)} (33.3%)

PGender,Job
{(Gender,F), (Job,Teacher)} (50%)

83.3%
{(Gender,M), (Job,Lawyer)} (33.3%)

consist of subsets of customers having similar features. However, deciding the

features (or the feature combinations) according to which customers should

be clustered is a non-trivial task in large databases.

Table 1 collects some relevant information about the customers under

analysis. Each row corresponds to a different customer and it reports the

values of a subset of attributes, in particular the city of provenance, gender,

year of birth, and job. To achieve their goal, company analysts mine from
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the input data itemsets like {(City,Turin), (Gender,M)}, where each item-

set is characterized by a given schema (e.g., {City,Gender}). To guarantee

itemset relevance, the mined itemsets must hold for at least 30% of the cus-

tomers, i.e., their frequency of occurrence (support) in the source dataset

must be equal to or above a given threshold minsup=30%. Then, itemsets

with the same schema are analyzed together because they represent the same

data facet. For the sake of simplicity, let us consider the itemsets related to

pairs of attributes. Since analysts do not know a priori what are the most

significant schemata to consider, they have to (i) generate all the itemsets

satisfying minsup, (ii) cluster the mined itemsets into pattern sets accord-

ing to their schema, and (iii) rank the pattern sets by decreasing coverage

(i.e., the percentage of customers in the dataset for which any itemset in

the pattern set holds) and discard those not satisfying a minimum coverage

threshold (e.g., mincov=60%). At Step (ii) the aforesaid procedure gener-

ates 24 pattern sets, because all the possible combinations of the four data

attributes are considered. However, only half of them satisfy the coverage

constraint and thus they are considered for planning advertising campaigns.

Our approach allows analysts to efficiently extract the subset of pattern

sets of interest without generating all the possible itemsets and itemset com-

binations. Table 2 reports the subset of mined pattern sets. Among the

pattern sets related to pairs of attributes, the pattern set with highest cov-

erage is {Gender, Job} (83.3%). Each itemset in the pattern represents a

combination of customer gender and job, which targets a specific subset of

customers. For example, according to customer gender and job, analysts

could figure out different advertising policies for female teachers and male
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lawyers. Together, the previously mentioned segments cover 83% of the cus-

tomers thus represent potential targets of advertising campaigns.

3. Related works

Pattern set mining entails discovering groups of itemsets that satisfy a

set of global constraints. Instead of selecting patterns based upon their in-

dividual merits, global constraints evaluate each pattern set as a whole [6].

Pattern set mining approaches focus on (i) selecting the pattern set that

maximizes a certain global quality measure [6, 7, 8, 9, 10, 11, 12, 13, 14] or

(ii) discovering all the pattern sets that satisfy a given constraint [4, 15, 16].

Examples of problems related to Task (i) are (a) database tiling [8], which

concerns the extraction of the pattern set that covers all the dataset trans-

actions, (b) data compression based on the Minimum Description Length

(MDL) principle [12], and (c) pattern set selection by means of constraint

programming techniques [9]. Unlike [6, 7, 8, 9, 10, 11, 12, 13, 14], this work

addresses the more general Task (ii), i.e., it selects not only the best pattern

set but a set of potentially interesting pattern sets.

In [4] the authors formally introduce many different global constraints.

Rather than performing pattern set mining as a postprocessing step that fol-

lows the traditional itemset mining task [1], in [15, 16] the authors formulate

the global constraints directly on the entire itemset space and then accom-

plish the pattern set mining task using constraint programming techniques.

An overview of the constraints used in pattern set mining is given in [4]. For

all the previously proposed constraints the selection of a pattern set depends

only on the characteristics of its itemsets. Hence, a pattern set cannot be

7



selected based upon the comparison with other candidate pattern sets. Un-

like [4, 15, 16], this paper proposes a new constraint whereby pattern sets are

selected not only based upon their own characteristics but also based upon

those of other pattern sets. Specifically, the newly proposed schema-based

constraint groups itemsets according to their schema and selects, among all

the possible pattern sets characterized by the same schema, those having

maximal size. In other words, for each schema it selects the pattern set (if

any) that contains all and only the frequent itemsets with that schema. Since

a comparison between pattern sets with the same schema is unfeasible in a

single extraction, the mining framework presented in [15] is unsuitable for effi-

ciently addressing pattern set mining problem with schema-based constraint.

To avoid generating a large number of pattern sets and then postprune them,

we present a new Apriori-based algorithm that pushes the newly proposed

schema-based constraint deep into the pattern set mining process.

A large research body has been devoted to mining frequent queries from

relational databases [17, 18, 19]. Even though a pattern set with a given

schema can be selected by means of group-by query, analysts must (i) know

all the attribute combinations in advance and (ii) execute a separate group-by

query for each schema, which also enforces support, coverage or cardinality

constraints. Since the number of asked queries grows exponentially with the

number of attributes, the aforementioned approach is not applicable to large

real data.

Parallel research efforts have been devoted to analyzing correlations among

data attributes. For example, the authors in [20] introduce the concept of

functional dependence. Dependencies are implications among pairs of at-
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tribute sets. They indicate that for each dataset record the values assumed

by the right-hand side attributes depend on those assumed by the left-hand

side ones. Similarly, approximate dependences [21] extend the concept of at-

tribute dependences to the case in which the implications do not hold for all

the dataset records. More recently, the authors in [22] focus on discovering

sets of low-entropy attributes, i.e., attribute sets for which the corresponding

entropy calculated on the projected data is low. Unlike all the aforemen-

tioned approaches, this paper focuses on discovering groups of correlations

between data items and not between attributes. Even though the concept

of low-entropy attribute set implies the existence of recurrent data instances

with the same schema, the focus of [22] significantly differs from the one of

this work, because we specifically address the problem of pattern set mining

under constraints.

The issue of selecting individual itemsets according to their characteris-

tics has already been addressed in [23, 24]. In [23] the authors first formulate

the problem of individual itemset mining with constraints. In this context,

constraints are conjunctions of boolean predicates which enforce the presence

or the absence of a given item combination. Similarly, in [24] an attempt to

constrain itemset mining according to the itemset schema in the presence of

taxonomies has also been made. Unlike [23, 24] this work focuses on extract-

ing groups of itemsets satisfying global constraints rather than individual

itemsets according to their local interestingness. Therefore, the study of the

impact of advanced itemset quality measures is out of scope of this work.
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4. Pattern set mining with schema-based constraint

This section is organized as follows. First, preliminaries about relational

data and itemset mining are given. Secondly, the pattern set mining prob-

lem with traditional constraints (i.e., coverage and cardinality constraints)

is formulated. Lastly, the integration of schema information into the pattern

set mining process is discussed and the problem addressed by the paper is

formally stated.

Preliminaries. In the context of relational data, a dataset R is a set of

records and it is characterized by a schema ∆={δ1, . . ., δn}, which consists

of a set of attributes δj ∈ ∆. Each record r, with identifier rid, is a set

of items. Item ij is a pair (δj,vj), where δj is an attribute that describes a

given data feature, and vk represents the associated information and belongs

to the corresponding attribute domain dom(δj). For the sake of simplicity,

hereafter we will not consider datasets that contain null values.

Continuous attribute values are discretized by a preprocessing step. Dis-

cretization [25] is commonly applied to real data prior to frequent itemset

mining, because continuous values are unlikely to occur frequently in the

analyzed data. Although some attempts to mine itemsets and association

rules from continuous data have already been made (e.g., [26]), these tasks

are out of the scope of our work. On all the analyzed datasets we discretized

continuous attributes by using entropy-based discretization [25].

A k-itemset I in R is a set of k items [1] with distinct attributes, i.e.,

I={(δ1,v1), . . ., (δk,vk)} such that δj 6= δq ∀ (δj,vj), (δq,vq) ∈ I. In the

following we will denote as sch(I) the schema of itemset I, i.e., the set of

attributes appearing in I. Itemset I is said to cover a given record r ∈ R
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iff I ⊆ r. The ridset of itemset I, denoted as ridset(I), is the set of rids

corresponding to the records covered by I in R. The support of I in R is

the percentage of records in R that are covered by I. If I’s support exceeds

a given threshold minsup, then I is said to be frequent in R.

For example, I ={(City,Turin), (Gender,M)} is a 2-itemset in the rela-

tional dataset in Table 2. Its schema is sch(I)={City, Gender}. The support

of I in Table 2 is 2
6
, because it covers records with rids 2 and 3, respectively.

In this work we specifically address the extraction of frequent itemsets,

which are commonly used to characterize large datasets [25]. The comple-

mentary issue of discovering abnormal and thus rare patterns [27] is out of

the scope of this work and it will be addressed as future work.

Pattern set mining set with traditional constraints. Pattern set min-

ing from a relational dataset R entails discovering subsets of patterns from

R [4].

Definition 1 (Pattern set). Let I be the set of all itemsets in a relational

dataset R. P ⊆ I is a pattern set in R.

Hereafter we will denote by P the set of all the possible pattern sets in

a relational dataset R, i.e., P=2I . Since this work focuses on discovering

interesting sets of itemsets, the individual patterns occurring in a pattern set

will be denoted as itemsets throughout the paper.

Pattern sets are characterized by different quality measures [4]. Hereafter

we will consider two traditional quality measures, namely the set cardinality

and coverage, which deemed as particularly suitable for making the pattern

sets manageable by domain experts for manual inspection [4]. Their formal

definitions are given below.
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Definition 2 (Pattern set cardinality and coverage). Let Pi ∈ P be

an arbitrary pattern set. The definitions follow.

(i) The cardinality of Pi, denoted as card(Pi), is the number of itemsets

in Pi, i.e, card(Pi) = |Pi|.

(ii) The coverage of Pi, denoted as cov(Pi), is the percentage of records in

R covered by any itemset in Pi, i.e.,

cov(Pi) =
|{r ∈ R| ∃ I ∈ Pi s.t. I ⊆ r}|

|R|
=

|
⋃

I∈Pi
ridset(I)|

|R|
(1)

Let us consider again the example pattern sets reported in Table 2. Pat-

tern set PCity,Gender has cardinality equal to 2 and coverage equal to 66.6%.

It contains itemsets {(City,Turin), (Gender,M)} and {(City,Milan), (Gen-

der,F)}, which cover the records with rids {2, 3} and {4, 6}, respectively.

Hence, the coverage of the pattern set is 66%.

The cardinality measure evaluates pattern set handiness. Groups composed

of few itemsets (i.e., low-cardinality pattern sets) are typically more eas-

ily manageable by domain experts for manual result inspection than high-

cardinality ones. The coverage measure indicates how groups are representa-

tive of the analyzed data. For instance, pattern sets that cover many records

(i.e., high-coverage pattern sets) characterize larger amounts of data than

low-coverage sets. Since the goal of this work is to characterize recurrent

patterns rather than pinpointing abnormal or unexpected behavior, high-

coverage sets are, in general, deemed as more actionable than low-coverage

ones for advanced analyses.

Minimum coverage and maximum cardinality constraints are global con-

straints that are commonly enforced to pick out the most relevant pattern
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sets [4]. They select the pattern sets that represent a large enough portion

of the analyzed data (i.e., cov(Pi) ≥ mincov) and that have manageable size

(i.e., card(Pi) ≤ maxcard), respectively.

Integrating schema information into the pattern set mining pro-

cess. This paper investigates the use of the pattern set schema to select po-

tentially interesting pattern sets. According to the itemset schema, pattern

sets can be classified as follows: (i) pattern sets containing all the itemsets

with a given schema, (ii) pattern sets containing a subset of the itemsets with

a given schema, or (iii) pattern sets containing a mixture of itemsets with

different schema. Frequent itemsets with the same schema are, to a certain

extent, semantically correlated with each other because they are recurrent

instances of the same data facet. Hence, we are interested in discarding those

pattern sets that contain a mixture of different schemata (type (iii)) because

they are not targeted to any specific data facet. On the other hand, to have

a global view on a given facet we would like to combine in a single pattern

set all the itemsets with the corresponding schema. Therefore, we would like

to extract only the itemsets of type (i). To achieve our goal, we introduce a

new global constraint, called schema-based constraint.

Pattern set mining with schema-based constraint selects, among the pat-

tern sets that contain only itemsets with the same schema, at most one

representative pattern set per schema. A more formal definition follows.

Definition 3 (Schema-based constraint). Letminsup be a minimum sup-

port threshold and let If be the set of frequent itemsets in a relational dataset

R according to minsup. An arbitrary pattern set Pi ∈ P satisfies the schema-

based constraint if and only if:
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(i) Pi contains only frequent itemsets in If with the same schema, i.e.,

∀ Ij, Iq ∈ Pi, sch(Ij)=sch(Iq)

(iii) Pi contains all the frequent itemsets in If with the same schema, i.e.,

∀ Ij, Iq ∈ If such that sch(Ij) = sch(Iq) then Ij, Iq ∈ Pi.

Given a pattern set Pi satisfying the schema-based constraint, with conve-

nient abuse of notation we will denote by pattern set schema sch(Pi) the

schema of any itemset in Pi throughout the paper.

The pattern set mining problem with schema-based constraint is a new

and challenging task, because it cannot be neither reformulated as a combina-

tion of the previously proposed global constraints nor efficiently tackled with

state-of-the-art pattern set mining frameworks (e.g., [15]). A more detailed

comparison with the state-of-the-art is given in Section 3.

To generate interesting and manageable pattern sets, we focus on com-

bining the schema-based constraint with traditional pattern set mining con-

straints.

Problem statement.

Let R be a relational dataset, minsup a minimum support threshold, and

C a traditional global constraint, either the minimum coverage or the max-

imum cardinality constraint. The pattern set mining problem with schema-

based constraint entails the extraction from R of all the pattern sets that

are composed of frequent itemsets and that satisfy (i) the schema-based con-

straint and (ii) one global constraint C (of user’s choice between cardinality

and coverage).

Table 2 reports the pattern sets mined from the dataset in Table 1 by

enforcing the schema-based and minimum coverage constraints.
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While tackling the pattern set mining problem with schema-based con-

straint from relational data, both minimum coverage and maximum cardi-

nality constraints satisfy the anti-monotonicity property.

Property 1. (Anti-monotonicity property of the minimum coverage and max-

imum cardinality constraints): Let Pi, Pj ∈ P be two arbitrary pattern sets

that satisfy the schema-based constraint. Let ≺ be a generality relation such

that Pi ≺ Pj iff sch(Pi) ⊆ sch(Pj). Let mincov be a minimum coverage

threshold and maxcard a maximum cardinality threshold. The following prop-

erties hold:

(i) The minimum coverage constraint cov(P ) ≥ mincov is anti-monotone

w.r.t. ≺, i.e., if cov(Pi) < mincov then cov(Pj) < mincov.

(ii) The maximum cardinality constraint card(P ) ≤ maxcard is anti-

monotone w.r.t. ≺, i.e., if card(Pi) > maxcard then card(Pj) >

maxcard, if minsup=0 is enforced.

Proof 1 (Proof of Property (i)). Let Pi, Pj ∈ P be two arbitrary pattern

sets satisfying the schema-based constraint such that Pi ≺ Pj. We would like

to prove that cov(Pj) ≤ cov(Pi). Since Pi ≺ Pj, then sch(Pi) ⊆ sch(Pj).

Furthermore, due to the schema-based constraint, ∀ Ii ∈ Pi sch(Ii) = sch(Pi),

and ∀ Ij ∈ Pj sch(Ij) = sch(Pj). Since sch(Pi) ⊆ sch(Pj) it follows that

sch(Ii) ⊆ sch(Ij). Without any loss of generality, let us consider sch(Pi) =

{δ1, . . . , δk} and sch(Pj) = {δ1, . . . , δk, δk+1}, δq ∈ ∆ 1 ≤ q ≤ k + 1. Given

an arbitrary itemset Ij ∈ Pj, let Ii ⊂ Ij be the itemset generalization of

Ij obtained by removing item (δk+1, vk+1), vk+1 ∈ dom(δk+1), from Ij. Due

to the anti-monotonicity property of the support measure [5], ridset(Ij) ⊆
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ridset(Ii). Given that sch(Ii) = sch(Pi) and Ii is frequent because Ii (Ij ⊆

Ii) is frequent too, then Ii ∈ Pi. Thus, it follows that
⋃

Ij∈Pj
ridset(Ij) ⊆

⋃
Ii∈Pi

ridset(Ii). Therefore, by Definition 2, the inequality cov(Pj) ≤ cov(Pi)

holds.

Proof 2 (Proof of Property (ii)). Let Pi, Pj ∈ P be two arbitrary pat-

tern sets satisfying the schema-based constraint such that Pi ≺ Pj. We

would like to prove that card(Pj) ≥ card(Pi). Since Pi ≺ Pj, then sch(Pi) ⊆

sch(Pj). Moreover, due to the schema-based constraint, ∀ Ii ∈ Pi sch(Ii)=sch(Pi),

and ∀ Ij ∈ Pj sch(Ij) = sch(Pj). Since sch(Pi) ⊆ sch(Pj) it follows that

sch(Ii) ⊆ sch(Ij). Without any loss of generality, let us consider sch(Pi) =

{δ1, . . . , δk} and sch(Pj) = {δ1, . . . , δk, δk+1}, δq ∈ ∆ 1 ≤ q ≤ k+1. Given an

arbitrary itemset Ii ∈ Pi, let Ij={Ij1, . . . ,Ijm} be the set of itemsets inR such

that ∀ Ijp ∈ Ij, sch(Ijp)=sch(Pj) and Ii ⊂ Ijp, i.e., Ijp is an itemset special-

ization of Ii with schema sch(Pj). Each itemset Ijp ∈ Ij is obtained by adding

a different item with attribute δk+1 to Ii, i.e., Ijp = Ii ∪ {(δk+1, vk+1p)},

vk+1p ∈ dom(δk+1). For the sake of readability, the rest of the proof is divided

into two steps.

1. Since, by construction, the null value is not allowed for δk+1, then Ij 6=

∅. Furthermore, since sch(Ijp) = sch(Pj) and minsup = 0, then it

follows that all itemsets Ijp ∈ Ij are contained in Pj.

2. Let Ii1, Ii2 ∈ Pi, Ii1 6= Ii2 be two arbitrary itemsets. Let Ij1 and Ij2

be the set of itemset specializations of Ii1 and Ii2, respectively. Since

Ii1 6= Ii2 then ∀ Ij1p ∈ Ij1, ∀ Ij2q ∈ Ij2, Ij1p 6= Ij2q .

Thanks to (1), Ij1 and Ij2 defined as in (2) are both contained in Pj. There-

fore, combining (1) with (2), it follows that card(Pj) ≥ card(Pi).
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As discussed in the following section, the aforesaid properties allow us to push

the schema-based constraint in conjunction with one traditional constraint

(either cardinality or coverage) deep into the mining process.

5. The COPAS algorithm

Algorithm 1 The COPAS algorithm
Input: relational dataset R, minimum support threshold minsup, global constraint C

Output: pattern sets satisfying the schema-based and global constraint C

1: k = 1
2: FIk=generate-all-frequent-1-itemsets(minsup)
3: SPk=itemset-grouping(FIk) /* Generate the candidate pattern sets composed of 1-itemsets satisfying

the schema-based constraint */
4: for each candidate pattern set P ∈ SPk do

5: compute-pattern-set-measures(P ) /* Compute the quality measures for the candidate pattern set
P */

6: end for

7: SPk = apply-global-constraint(SPk, C) /* Remove the pattern sets not satisfying the global constraint
C */

8: while SPk 6= ∅ do

9: k = k + 1
10: ŜPk = generate-candidate-pattern-sets-and-itemsets(SP k−1) /* Generate the candidate pattern

sets that satisfy the schema-based constraint along with their candidate itemsets */

11: for each candidate pattern set P ∈ ŜPk do

12: compute-itemset-support(P ) /* Compute support for candidate itemsets in pattern set P */
13: end for

14: SPk = apply-support-constraint(ŜPk,minsup) /* Remove the infrequent itemsets from the can-
didate pattern sets */

15: for each candidate pattern set P ∈ SPk do

16: compute-pattern-set-measures(P ) /* Compute measures for candidate pattern set P */
17: end for

18: SPk = apply-global-constraint(SPk, C) /* Remove the pattern sets not satisfying the global
constraint C */

19: end while

20: return ∪kSPk

COPAS is an Apriori-based [5] algorithm which tackles the pattern set

mining problem stated in Section 4. To accomplish the mining task efficiently,

it generates itemsets of increasing length, along with their corresponding

pattern sets, in a level-wise manner. At an arbitrary k-th step, the candidate

k-itemsets and their corresponding pattern sets are generated first. Then,

the infrequent itemsets and candidate pattern sets that do not satisfy the
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constraints are pruned. Thanks to the anti-monotonicity property of the

coverage and cardinality constraints (see Property 1), only the itemsets and

pattern sets that were selected at the k-th iteration are used at the (k+1)-th

iteration to generate the itemsets and their corresponding pattern sets.

Algorithm 1 reports the COPAS pseudo-code. Firstly, the frequent 1-

itemsets are selected and partitioned into pattern sets with schema of length

1 (lines 1-7). Then, the pattern sets that do not satisfy the global constraints

are discarded. Next, an iterative procedure is triggered. An arbitrary k-th

iteration (k ≥ 2) entails the following steps:

(i) Candidate itemset and pattern set generation. The procedure generates

the k-itemsets and their corresponding pattern sets at the same time (line 10).

Any pattern set that satisfies the schema-based constraint must contain only

itemsets with the same schema. Hence, to generate a candidate pattern set

that contains k-itemsets and satisfies the schema-based constraint COPAS

joins pairs of pattern sets containing (k − 1)-itemsets. Such pattern sets are

generated at the (k− 1)-th iteration and collected into set SP (k−1) (line 18).

More specifically, for each pattern set Pi ∈ SP (k−1) the schema attributes

are sorted in lexicographical order. Furthermore, the items contained in each

itemset Ii ∈ Pi are sorted in the same way. Two pattern sets Pi, Pj ∈ SP (k−1)

are joined if they share the first (k − 2) schema attributes. The resulting

pattern set Pt has schema sch(Pi) ∪ sch(Pj) and it contains the itemsets

generated by joining the itemsets in Pi and Pj . Similar to Apriori [5], for each

pair of itemsets Ii, Ij ∈ Pi sharing the first (k − 2) items, the corresponding

itemset It=Ii ∪ Ij ∈ Pt is generated.

(ii) Itemset and pattern set evaluation and selection. The support of each
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candidate k-itemset is computed by performing a dataset scan and the in-

frequent itemsets are discarded (lines 11-14). Furthermore, the pattern sets

satisfying the global constraint C, i.e., the coverage or the cardinality con-

straint, are selected (lines 15-18). Since distinct itemsets with the same

schema cannot cover the same record, the coverage of a pattern set can be

straightforwardly computed by summing the support values of its itemsets.

The iterative procedure stops when no further candidate pattern set is

generated, i.e., when SPk becomes empty (line 8). The mining result contains

all the pattern sets satisfying the constraints as well as their corresponding

frequent itemsets.

As an example, let us consider the dataset in Table 1 and the patterns in

Table 2 mined by enforcing minsup=33% and mincov=50%. COPAS first

generates pattern sets PCity, PGender, PY ear, and PJob. PY ear is discarded,

along with the corresponding itemset {(Y ear, 1945)}, because it does not

satisfy the mincov constraint. The remaining sets are added to the output

set and they are used to generate candidate sets PCity,Gender, PCity,Job and

PGender,Job. For each pair of joined pattern sets, their corresponding itemsets

are joined. For example, pattern set PCity,Gender contains 4 candidate item-

sets generated by joining the itemsets in PCity and PGender. Among them,

only {(City,Turin),(Gender,M)} and {(City,Milan),(Gender,F)} are frequent

and, thus, they are included in PCity,Gender. Pattern sets PCity,Gender, PCity,Job,

and PGender,Job are selected because they satisfy the mincov constraint. Fi-

nally, at the third iteration, PCity,Gender and PCity,Job are joined because

they share the first schema attribute (i.e., City) and the corresponding pat-

tern set PCity,Gender,Job is generated. At the same time, frequent 3-itemsets
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Table 3: Characteristics of the UCI datasets analyzed

Dataset Number of Number of Estimated
records attributes density

Adult 30,162 15 6.58
Letter-rec. 20,000 17 1.55
Mushroom 8,124 23 6.88
Pendigits 10,992 17 1.48
Poker 1,025,010 11 2.89
Shuttle 58,000 10 3.34
Vehicle 894 19 2.31
Voting 435 17 2.11

Waveform 5,000 22 1.54

{(City,Turin),(Gender,M),(Job,Lawyer)} and {(City,Milan),(Gender,F),(Job,Teacher)}

are generated and included in PCity,Gender,Job.

6. Experiments

We performed an extensive set of experiments on real and synthetic

datasets to analyze

1. The usefulness of the proposed approach in a real application context

(Section 6.2).

2. The selectivity of the newly proposed schema-based constraint, in asso-

ciation with coverage and cardinality constraints and not (Section 6.3).

3. The execution time the COPAS algorithm compared to those of existing

approaches (Section 6.5), and

4. The scalability of the newly proposed COPAS algorithm with the num-

ber of dataset records and attributes (Section 6.6).

The experiments related to Tasks (1) and (2) were run on a subset of

representative UCI relational datasets [28], whereas the algorithm scalability
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was evaluated on synthetic data. Table 3 summarizes the main UCI dataset

characteristics, where we considered the density measure described in [29]1.

The experiments were performed on a 2.8-GHz Intel Pentium IV PC with

2 GBytes of main memory, running Ubuntu 10.04. COPAS was developed

in C and its executable code is available at [30].

6.1. State-of-the-art competitors

To the best of our knowledge, state-of-the-art pattern set mining algo-

rithms (e.g., [4, 15]) are unable to extract only the pattern sets satisfying the

schema-based constraint in a single extraction, because they do not allow us

to select at most one pattern set per schema. Hence, in general, the pattern

sets mined by the COPAS algorithm are not directly comparable with those

generated by the other algorithms unless applying a postprocessing step.

To compare the performance of the COPAS algorithm with that of state-

of-the-art algorithms we integrated the existing algorithms in a two-step pro-

cess: (i) candidate pattern set and itemset generation using traditional al-

gorithms and (ii) pattern set pruning driven by constraints. Step (i) entails

extracting a superset of the pattern sets mined by COPAS by using tradi-

tional algorithms, while step (ii) discards the pattern sets not satisfying the

schema-based constraint.

We considered two complementary strategies. The first one, namely

POST-FPMINE, performs FP-growth-like itemset mining [31] followed by

pattern set generation and postpruning. The second one, namely POST-

CPMINE, performs pattern set mining using an established constraint programming-

1The dataset density is defined as the average local support of the FP-Tree nodes [29]
in the FP-tree data structure representing the entire dataset (i.e., setting minsup to 0).
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based approach [15], and then it filters out the pattern sets not satisfy-

ing the schema-based constraint. Since the COPAS algorithm relies on an

Apriori-based itemset mining algorithm, testing the POST-FPMINE strategy

is deemed as interesting to evaluate the effectiveness of pushing the schema-

based constraint deep into the mining process. Note that, although Apriori

is known to be less scalable than FP-Growth on dense datasets [31], it allows

us to prevent the extraction of some uninteresting pattern sets thanks to the

anti-monotonicity property of the coverage/cardinality constraints (see Sec-

tion 4). On the other hand, the POST-CPMINE strategy relies, to the best

of our knowledge, on the most recent and efficient state-of-the-art pattern

set mining algorithm [15]. Hence, comparing the performance of the COPAS

algorithm with that of POST-CPMINE allows us to evaluate the efficiency of

the proposed approach against the state-of-the-art. Even though the inter-

mediate results of the POST-FPMINE and POST-CPMINE strategies are

different, their outputs correspond to those of the COPAS algorithm. A

more detailed description of the POST-FPMINE and POST-CPMINE min-

ing strategies is given below.

POST-FPMINE. The POST-FPMINE algorithm consists of three separate

steps:

(i) Frequent itemset extraction. All frequent itemsets are extracted from

the input dataset using the established FP-growth algorithm [31].

(ii) Candidate pattern set computation. Frequent itemsets are partitioned

in pattern sets based on their schema by enforcing the schema-based

constraint and the measures (i.e., cardinality and coverage) character-

izing each pattern set are computed.
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(iii) Pattern set selection. The global pattern set constraint (either the

cardinality or the coverage constraint) is applied and the pattern sets

not satisfying the enforced constraint are discarded.

POST-CPMINE. The POST-CPMINE algorithm consists of three sepa-

rate steps:

(i) Extraction of pattern sets composed of frequent itemsets. All the pattern

sets that are exclusively composed of frequent itemsets are extracted by

using the publicly available implementation of the approach proposed

in [15].

(ii) Schema-based constraint enforcement. The subset of pattern sets that

satisfy the schema-based constraint are selected (i.e., for each schema

the pattern set that contains all of the frequent itemsets with that

schema is selected).

(iii) Cardinality/Coverage constraint enforcement. The subset of pattern

sets satisfying also the cardinality/coverage constraint are selected.

As discussed in Section 6.5, the main drawback of the POST-FPMINE

and POST-CPMINE strategies is that they unnecessarily generate a large

number of itemsets and pattern sets at Step (1) and (2), which are then

pruned at Step (3). Note that, when dealing with complex datasets, the

intermediate results may not fit in main memory.

6.2. Result validation

We evaluated the usability of the proposed approach for planning mar-

keting campaigns based on the analysis of real census data. To perform our
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analyses, we considered the UCI benchmark dataset Adult [28], which con-

sists of demographic data about 30,162 American persons. For each person

the dataset also contains the information about the annual compensation

(less than or above 50K USD).

To plan personalized advertising campaigns, marketing officers are com-

monly interested in analyzing customer data to segment customers according

to their most peculiar demographic and economic features. However, identi-

fying the most appropriate customer segments is a challenging task, because

analysts should first analyze many different data facets (e.g., age, gender,

city of provenance, compensation) at the same time, and then, for each com-

bination of data facets, they have to evaluate the correlation between the

corresponding values.

For example, officers may wonder what is the most appropriate subset

of features to perform customer segmentation. To answer this question they

should analyze all the possible data segmentations (i.e., 215=32,768 attribute

combinations on Adult). Next, for each segmentation they have to figure out

what are the most appropriate advertising rules to apply. For example, to

advertise luxury products based on customer age and compensation they may

wonder what are the customer age groups that are strongly correlated with

a compensation above 50K USD.

For each combination of customer facets the COPAS algorithm generates

at most one pattern set, where each pattern set contains all the corresponding

customer segments.

Table 4 reports the pattern sets mined from Adult by enforcing a mini-

mum coverage equal to 95%. For example, pattern set PGender,Income segments
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Table 4: Adult: pattern sets mined enforcing mincov = 95% and minsup = 1%
Pattern set Cardinality Coverage
PIncome 2 100

PGender,Income 4 100
PWorkclass,Income 12 100.0

PAge,Income 12 98.4
PCapital−gain,Income 4 97.3
PCapital−loss,Income 3 96.8
PEducation,Income 17 95.2

PEducation−num,Income 12 98.5
PMarital−status,Income 9 99.3
POccupation,Income 18 96.0

PHours−per−week,Income 10 100
PRace,Income 5 97.5

PRelationship,Income 9 99.0
PAge,Gender,Income 22 97.6

PEducation,Education−num,Income 17 95.2
PEducation−num,Gender,Income 19 95.9
PGender,Capital−gain,Income 5 95.2
PGender,Capital−loss,Income 4 95.7

PMarital−status,capital−loss,Income 9 95.1
PMarital−status,Gender,Income 12 95.8

PRace,Gender,Income 7 95.4
PRelationship,Gender,Income 13 98.0

PWorkclass,Capital−loss,Income 12 95.7
PWorkclass,Gender,Income 16 96.6

PGender,Hours−per−week,Income 14 96.6
. . . . . . . . .
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customers according to gender (male or female) and compensation (≤50K,

>50K). It consists of four frequent itemsets, each one representing a differ-

ent customer segment (e.g., males who earn more than 50K USD). Since

customer age, gender, and yearly income are commonly used to profile cus-

tomer preferences, the domain expert suggests us to consider the following

combinations of data facets: (i) gender and income, and (ii) gender, income,

and age. Table 5 reports the itemsets related to pattern sets PGender,Income

and PAge,Gender,Income. Note that only the itemsets that hold for 1% of the

customers are considered because planning ad-hoc campaigns targeted to

small segments is not worthy.

Let us consider first the itemsets belonging to pattern set PGender,Income.

Each itemset represents a disjoint segment covering at least 3.7% of the orig-

inal customers. From the extracted patterns it appears that (i) the majority

of the customers is male and not wealthy (compensation ≤ 50 USD). (ii)

most of the wealthy customers (compensation ≥ 50 USD) is male (21.2%

male vs. 3.7% female). Therefore, targeting promotions of luxury goods to

males appears to be convenient. However, regardless of the customer gen-

der, non-luxury goods have a broader target than luxury ones (a campaign

targeted to non-wealthy customers reaches 75% of the customers).

To deepen the analysis officers may further segment customers accord-

ing to their age group by exploiting the information provided by pattern

set PAge,Gender,Income, which is a specialization of PGender,Income. The latter

pattern set contains 22 frequent itemsets, which represent different and po-

tentially interesting customer segments. A manual inspection of the pattern

set allows marketing officers to plan finer promotions without the need for
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Table 5: Adult: content of the pattern sets PGender,Income and PAge,Gender,Income mined
enforcing mincov = 95% and minsup = 1%

Pattern set Coverage Itemsets support

PGender,Income 100%

{(Gender,Female), (Income,>50K)} 3.7%
{(Gender,Female), (Income,≤50K)} 28.7%
{(Gender,Male), (Income,>50K)} 21.2%
{(Gender,Male), (Income,≤50K)} 46.4%

PAge,Gender,Income 97.6%

{(Age,< 21.5), (Gender,Female), (Income≤50K)} 4.1 %
{(Age, < 21.5 ), (Gender, Male ), (Income ≤50K )} 4.6 %

{(Age, [21.5-23.5) ), (Gender, Female ), (Income ≤50K )} 2.1 %
{(Age, [21.5-23.5) ), (Gender, Male ), (Income ≤50K )} 2.8 %
{(Age, [23.5-27.5) ), (Gender, Female ), (Income ≤50K )} 3.5 %
{(Age, [23.5-27.5) ), (Gender, Male ), (Income ≤50K )} 6.0 %
{(Age, [27.5-29.5) ), (Gender, Female ), (Income ≤50K )} 1.5 %
{(Age, [27.5-29.5) ), (Gender, Male ), (Income ≤50K )} 2.9 %
{(Age, [29.5-35.5) ), (Gender, Female ), (Income ≤50K )} 4.2 %
{(Age, [29.5-35.5) ), (Gender, Male ), (Income ≤50K )} 8.4 %
{(Age, [35.5-43.5) ), (Gender, Female ), (Income ≤50K )} 5.0 %
{(Age, [35.5-43.5) ), (Gender, Male ), (Income ≤50K )} 8.7 %
{(Age, [43.5-61.5) ), (Gender, Female ), (Income ≤50K )} 6.8 %
{(Age, [43.5-61.5) ), (Gender, Male ), (Income ≤50K )} 10.6 %
{(Age, ≥61.5 ), (Gender, Female ), (Income ≤50K )} 1.6 %
{(Age, ≥61.5 ), (Gender, Male ), (Income ≤50K )} 2.3 %

{(Age, [29.5-35.5) ), (Gender, Male ), (Income >50K )} 3.2 %
{(Age, [35.5-43.5) ), (Gender, Female ), (Income >50K )} 1.2 %
{(Age, [35.5-43.5) ), (Gender, Male ), (Income >50K )} 5.9 %
{(Age, [43.5-61.5) ), (Gender, Female ), (Income >50K )} 1.3 %
{(Age, [43.5-61.5) ), (Gender, Male ), (Income >50K )} 9.8 %

{(Age, ≥61.5 ), (Gender, Male ), (Income >50K )} 1.1 %
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Table 6: Effect of the schema-based constraint
Dataset minsup(%) Number of Number of Avg. number of Avg. coverage (%)

pattern sets freq. itemsets freq. itemsets per
per pat. set pat. set

Adult

0 32,767 1.00E+08 3052 100
0.05 32,767 9.00E+06 275 67.30
0.1 32,767 4.00E+06 122 58.06
1 27,689 3.00E+05 12 28.79

Letter-rec.

0 131,071 1.00E+09 7629 100
0.025 131,071 4.00E+07 305 14.77
0.035 131,071 2.00E+07 153 10.41
1 2,794 1.00E+04 5 8.98

Mushroom

0 8,388,607 1.32E+09 157 100
1 4,350,279 9.13E+07 21 41.17
1.5 3,370,551 4.80E+07 14 37.27
2 2,525,235 2.40E+07 10 32.85

Pendigits

0 131,071 1.10E+09 8392 100
0.1 116,488 5.10E+06 44 7.26
0.5 87,199 1.90E+06 22 7.07
1 5,798 2.00E+04 4 5.27

Poker

0 2,048 4.00E+08 200317 100
0.5 171 9.00E+03 51 98.30
0.75 111 6.00E+03 53 92.36
1 76 2.70E+03 36 69.92

Shuttle

0 1,023 2.00E+07 19550 100
0.01 963 1.00E+06 1038 59.38
0.015 951 9.00E+05 946 53.26
1 200 2.00E+03 12 28.36

Vehicle

0 524,287 1.70E+08 324 100
0.5 524,287 2.60E+07 50 55.21
1 524,287 9.90E+06 19 36.76
1.5 524,287 5.10E+06 10 26.87

Voting

0 131,071 2.20E+07 168 100
0.5 131,071 6.60E+06 50 72.58
1 131,071 2.80E+06 21 56.98
1.5 131,071 1.80E+06 14 49.28

Waveform

0 4,194,303 1.80E+09 429 100
0.1 2,753,763 1.00E+08 36 7.62
0.3 900,948 1.00E+07 11 6.58
1 167,819 8.00E+05 5 6.18
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querying customer data many and many times. Based on the context of

analysis and the itemset support values in the customer dataset, officers

could allocate economic and structural resources for advertising purposes.

For example, advertisements appearing in social events that are most likely

to be attended by wealthy people should be targeted to (i) middle age men

(support value count: 5.9%+9.8%=15.7%), (ii) young men (3.2%), and (iii)

middle age women (2.5%), and (iv) elderly men (1.1%) according to the age

distribution in the customer base. On the other hand, elderly wealthy women

do not frequently occur in the source data. Hence, it may be not convenient

to allocate resources to a relatively small target.

6.3. Effect of the schema-based constraint

Table 6 reports the number of pattern sets mined from the selected UCI

datasets by enforcing the schema-based constraint (and neither coverage

nor cardinality constraint) as well as the number of corresponding frequent

itemsets extracted by enforcing four different minimum support threshold

(minsup) values. To set the minsup values we considered (i) a standard

value (1%) common to all datasets, (iii) no threshold value (i.e.,minsup=0),

to mine the pattern sets including all the possible itemsets, and (ii) two

different values per dataset, which depend on the analyzed data distribution.

The maximum number of pattern sets that can be generated from a source

dataset is equal to the power set of the number of its frequent itemsets.

However, as shown in Table 6, the number of pattern sets mined by enforcing

the schema-based constraint is orders of magnitude lower. As discussed in

Sections 6.4.1 and 6.4.2, the COPAS algorithm allows us to further reduce

the number of mined pattern sets by enforcing the minimum coverage or
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the maximum cardinality constraints in association with the schema-based

constraint.

6.4. Manageability of the mining results

Result manageability is crucial for data mining applications. The result

of the COPAS algorithm consists of a set of pattern sets, which experts may

want to manually explore to support decision making. Hence, producing

manageable pattern sets is crucial for effectively supporting domain experts

during manual result inspection.

The COPAS algorithm generates (at most) one pattern set per schema.

Each pattern sets combines all the frequent itemsets characterized by the

given schema. In Table 6 we reported the average number of itemsets per

pattern set achieved on the UCI datasets. This measure is an indicator of

the level of manageability of the mined pattern sets. For example, to per-

form customer segmentation the average number of itemsets per pattern set

indicates the number of distinct segments that analysts should consider once

they decide to focus on a specific combination of data facets (see Section 6.2).

The achieved results demonstrate that for most benchmark datasets the

mined pattern sets are manageable and thus actionable for performing tar-

geted analyses (e.g., for segmenting customer and planning targeted promo-

tions). For example, when minsup = 1%, the number of average itemsets

per group ranges from 5 to 36 itemsets. Hence, each group is, on the average,

easily manageable.

To further enhance the manageability of the mining result two comple-

mentary strategies have been integrated into the COPAS algorithm: (i) En-

forcing a minimum coverage constraint, to prune the pattern sets that do
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not cover a significant number of data records (e.g., the facets that represent

only a small portion of customers). (ii) Enforcing a maximum cardinality

constraint, to prune the pattern sets containing a too large number of item-

sets (e.g., the schemata consisting of very large number of segments). Both

strategies allow us to prevent the generation of less interesting or potentially

unmanageable pattern sets. The effect of these constraints on the character-

istics of the mining result is thoroughly discussed in the following sections.

6.4.1. Effect of the minimum coverage constraint

In this section we analyze the impact of the schema-based constraint in

association with the minimum coverage constraint (mincov).

We run several experiments on the UCI datasets by varying mincov be-

tween 0 and 100% while enforcing the standard minimum support thresh-

old (i.e., minsup=1%). Table 7 summarizes the results achieved on a UCI

datasets by setting three different mincov thresholds (i.e., 50%, 70%, 90%)

and minsup = 1% (i.e., the standard minsup value). To gain insights into

the achieved results in Figures 1(a), 1(c), and 1(e) we plotted the number

of patterns sets by varying the minimum coverage threshold (mincov) value

and in Figures 1(b), 1(d), and 1(f) we plotted the percentage of pattern sets

pruned with respect to the total number of pattern sets that would be gener-

ated without enforcing the minimum coverage constraint. Due to the lack of

space, Figures 1(a)-(f) refer to a subset of three representative datasets char-

acterized by different data distributions, i.e., Letter-rec. (sparse dataset),

Shuttle (fairly dense), and Adult (dense). Similar trends were achieved on

the other datasets.

As expected, enforcing the coverage constraint in conjunction with the
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Table 7: COPAS. UCI datasets: number of pattern sets and itemsets mined by enforcing
different coverage constraint values and minsup=1%
Dataset mincov Pattern sets and itemsets Percentage of pattern sets and

(%) satisfying mincov itemsets pruned by mincov

#pat. sets #itemsets avg. avg. pruned pruned
#itemsets coverage pat. sets (%) itemsets (%)

per (%) per
pat. set pat. set

Adult 50 6,223 1.18E+05 19 68.4 77.5 63.4
70 2,549 4.26E+04 17 81.5 90.8 86.8
90 399 4.42E+03 11 93.9 98.6 98.6

Letter-rec. 50 139 4.08E+03 29 74.9 95 69.8
70 95 2.72E+03 29 80.1 96.6 79.8
90 17 1.96E+02 12 98.3 99.4 98.5

Mushroom 50 1,421,841 4.52E+07 32 71.6 67.3 50.5
70 734,509 2.44E+07 33 82.4 83.1 73.3
90 157,389 4.47E+06 28 94.0 96.4 95.1

Pendigits 50 155 4.85E+03 31 77.3 97.3 80.5
70 104 3.20E+03 31 84.2 98.2 87.2
90 24 4.25E+02 18 97.5 99.6 98.3

Poker 50 76 2.70E+03 36 98.3 0 0
70 76 2.70E+03 36 98.3 0 0
90 76 2.70E+03 36 98.3 0 0

Shuttle 50 42 9.16E+02 22 71.5 79 62.9
70 21 4.35E+02 21 84.8 89.5 82.4
90 9 1.49E+02 17 94.0 95.5 94.0

Vehicle 50 118,194 3.21E+06 27 64.2 77.5 67.4
70 32,245 8.73E+05 27 79.3 93.8 91.1
90 3,329 6.80E+04 20 93.7 99.4 99.3

Voting 50 83,674 1.83E+06 22 66.1 36.2 33.6
70 28,871 6.34E+05 22 79.7 78 76.9
90 3,199 4.97E+04 16 93.3 97.6 98.2

Waveform 50 3,731 1.17E+05 31 74.8 97.8 84.8
70 2,095 6.48E+04 31 87.5 98.8 91.5
90 939 2.24E+04 24 97.5 99.4 97.1
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Table 8: POST-FPMINE. UCI datasets: number of pattern sets and itemsets mined
in the stages of POST-FPMINE by enforcing different coverage constraint values and
minsup=1%

Dataset mincov Output of Steps (i)-(ii) of POST-FPMINE Output of POST-FPMINE
(%) Pattern sets and itemsets Pattern sets and itemsets

satisfying schema-based satisfying schema-based and mincov

#pat. sets #itemsets avg. avg. #pat. sets #itemsets avg. avg.
#itemsets coverage #itemsets coverage

per (%) per per (%) per
pat. set pat. set pat. set pat. set

Adult 50 27,689 3.00E+05 12 28.8 6,223 1.18E+05 19 68.4
70 27,689 3.00E+05 12 28.8 2,549 4.26E+04 17 81.5
90 27,689 3.00E+05 12 28.8 399 4.42E+03 11 93.9

Letter-rec. 50 2,794 1.00E+04 5 9.0 139 4.08E+03 29 74.9
70 2,794 1.00E+04 5 9.0 95 2.72E+03 29 80.1
90 2,794 1.00E+04 5 9.0 17 1.96E+02 12 98.3

Mushroom 50 4,350,279 9.13E+07 21 41.2 1,421,841 4.52E+07 32 71.6
70 4,350,279 9.13E+07 21 41.2 734,509 2.44E+07 33 82.4
90 4,350,279 9.13E+07 21 41.2 157,389 4.47E+06 28 94.0

Pendigits 50 5,798 2.00E+04 4 7.1 155 4.85E+03 31 77.3
70 5,798 2.00E+04 4 7.1 104 3.20E+03 31 84.2
90 5,798 2.00E+04 4 7.1 24 4.25E+02 18 97.5

Poker 50 76 2.70E+03 36 98.3 76 2.70E+03 36 98.3
70 76 2.70E+03 36 98.3 76 2.70E+03 36 98.3
90 76 2.70E+03 36 98.3 76 2.70E+03 36 98.3

Shuttle 50 200 2.00E+03 12 28.4 42 9.16E+02 22 71.5
70 200 2.00E+03 12 28.4 21 4.35E+02 21 84.8
90 200 2.00E+03 12 28.4 9 1.49E+02 17 94.0

Vehicle 50 524,287 9.90E+06 19 36.8 118,194 3.21E+06 27 64.2
70 524,287 9.90E+06 19 36.8 32,245 8.73E+05 27 79.3
90 524,287 9.90E+06 19 36.8 3,329 6.80E+04 20 93.7

Voting 50 131,071 2.80E+06 21 57.0 83,674 1.83E+06 22 66.1
70 131,071 2.80E+06 21 57.0 28,871 6.34E+05 22 79.7
90 131,071 2.80E+06 21 57.0 3,199 4.97E+04 16 93.3

Waveform 50 167,819 8.00E+05 5 7.6 3,731 1.17E+05 31 74.8
70 167,819 8.00E+05 5 7.6 2,095 6.48E+04 31 87.5
90 167,819 8.00E+05 5 7.6 939 2.24E+04 24 97.5
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Figure 1: Effect of the minimum coverage constraint
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schema-based constraint yields a further reduction in the number of pattern

sets mined. The selectivity of the mincov threshold strictly depends on the

analyzed data distribution. Specifically, the selectivity of the constraint is

higher when coping with sparser datasets (e.g., Letter), whereas its pruning

rate becomes less significant when dealing with denser datasets (e.g., Adult).

In sparse (resp. dense) datasets, most itemsets have relatively low (resp.

high) support values. Consequently, the coverage of a pattern set, i.e., the

count of the number of records covered by any of its itemsets, is usually low

(resp. high).

Independently of the analyzed data distribution, the coverage constraint

becomes more selective while increasing the minsup value, because pattern

sets are more likely to contain a fewer number of itemsets and thus their cov-

erage value on average decreases. More specifically, when coping with sparse

datasets many itemsets do not satisfy the support threshold. Consequently,

the pattern set coverage is on average low and the coverage constraint be-

comes selective even while setting low support thresholds. For example, more

than 50% of the pattern sets mined from Letter-rec. are pruned by enforc-

ing mincov=20% (see Figure 1(b)). On the other hand, when coping with

relatively dense datasets (e.g., Adult) the selectivity of the coverage con-

straint becomes significant while enforcing relatively high minimum coverage

thresholds (see Figure 1(f)).

Table 7 summarizes the results achieved on all the considered UCI datasets

by setting three differentmincov thresholds (i.e., 50%, 70%, 90%) andminsup =

1% (i.e., the standard minsup value). The reported results confirm the results

obtained on the three representative datasets.
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We also analyzed the coverage of the pattern sets generated by the other

competitors, i.e., the POST-FPMINE and POST-CPMINE strategies, as in-

termediate steps. POST-CPMINE never succeeded in generating the candi-

date pattern sets (see Section 6.1) on all the analyzed datasets due to the com-

binatorial growth of the number of possibile combinations. POST-FPMINE

terminated but it generated a huge amount of (unnecessary) itemsets and

pattern sets as intermediate steps. Table 8 (Colums (3)-(6)) reports some

statistics on the characteristics of the pattern sets and itemsets generated

by POST-FPMINE at the intermediate steps (i) and (ii) (see Section 6.1).

Specifically, we analyzed the average coverage per pattern set (Column (6))

and we compared it with those achieved by the COPAS algorithm and re-

ported in Column (6) of Table 7.

The average coverage of the pattern sets generated by POST-FPMINE

as intermediate step is rather low (e.g., 9% for Letter-recognition), because

the coverage constraint is not pushed into the mining process. Hence, many

potentially uninteresting pattern sets are unnecessarily generated. Further-

more, the number of itemsets and patterns sets generated by POST-FPMINE

as intermediate steps is on average at least one order of magnitude higher

than the cardinality of the corresponding output sets (i.e., the number of se-

lected itemsets and pattern sets). Hence, the efficiency of the mining process

is fairly low. As discussed in Section 6.5, the need for memory-consuming

intermediate steps heavily affects the performance of the POST-FPMINE

and POST-CPMINE strategies.
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Table 9: COPAS. UCI datasets: number of pattern sets and itemsets mined by enforcing
different cardinality constraint values and minsup=0

Dataset maxcard Pattern sets and itemsets Percentage of pattern sets and
satisfying maxcard itemsets pruned by maxcard

#pat. sets #itemsets avg. pruned pruned
#itemsets pat. sets (%) itemsets (%)
per pat. Set

Adult 20 65 7.28E+02 11 99.8 99.9
30 93 1.47E+03 16 99.7 99.9
100 331 1.75E+04 53 99.0 99.9

Letter-rec. 20 16 2.57E+02 16 99.9 99.9
30 17 2.83E+02 17 99.9 99.9
100 19 4.48E+02 24 99.9 99.9

Mushroom 20 5,353 8.50E+04 16 99.9 99.9
30 23,403 5.60E+05 24 99.7 99.9
100 619,529 4.34E+07 70 92.6 96.7

Pendigits 20 17 1.76E+02 10 99.9 99.9
30 17 1.76E+02 10 99.9 99.9
100 90 5.69E+03 63 99.9 99.9

Poker 20 21 2.56E+02 12 72.4 99.9
30 21 2.56E+02 12 72.4 99.9
100 61 2.40E+03 39 19.7 99.9

Shuttle 20 1 8.00E+00 8 99.9 99.9
30 1 8.00E+00 8 99.9 99.9
100 6 3.52E+02 59 99.4 99.9

Vehicle 20 331 4.58E+03 14 99.9 99.9
30 818 1.72E+04 21 99.8 99.9
100 14,756 1.06E+06 72 97.2 99.4

Voting 20 413 5.83E+03 14 99.7 99.9
30 998 2.00E+04 20 99.2 99.9
100 19,446 1.39E+06 72 85.2 93.8

Waveform 20 259 3.42E+03 13 99.9 99.9
30 583 1.23E+04 21 99.9 99.9
100 1,875 1.05E+05 56 99.9 99.9
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Table 10: POST-FPMINE. UCI datasets: number of pattern sets and itemsets mined
in the stages of POST-FPMINE by enforcing different cardinality constraint values and
minsup=0

Dataset maxcard Output of Steps (i)-(ii) of POST-FPMINE Output of POST-FPMINE
Pattern sets and itemsets Pattern sets and itemsets

satisfying maxcard satisfying maxcard

#pat. sets #itemsets avg. #pat. sets #itemsets avg.
#itemsets #itemsets

per per
pat. set pat. set

Adult 20 32,767 1.00E+08 3052 65 7.28E+02 11
30 32,767 1.00E+08 3052 93 1.47E+03 16
100 32,767 1.00E+08 3052 331 1.75E+04 53

Letter-rec. 20 DNF DNF DNF DNF DNF DNF
30 DNF DNF DNF DNF DNF DNF
100 DNF DNF DNF DNF DNF DNF

Mushroom 20 DNF DNF DNF DNF DNF DNF
30 DNF DNF DNF DNF DNF DNF
100 DNF DNF DNF DNF DNF DNF

Pendigits 20 131,071 1.10E+09 8392 17 1.76E+02 10
30 131,071 1.10E+09 8392 17 1.76E+02 10
100 131,071 1.10E+09 8392 90 5.69E+03 63

Poker 20 2,048 4.00E+08 200317 21 2.56E+02 12
30 2,048 4.00E+08 200317 21 2.56E+02 12
100 2,048 4.00E+08 200317 61 2.40E+03 39

Shuttle 20 1,023 2.00E+07 19550 1 8.00E+00 8
30 1,023 2.00E+07 19550 1 8.00E+00 8
100 1,023 2.00E+07 19550 6 3.52E+02 59

Vehicle 20 524,287 1.70E+08 324 331 4.58E+03 14
30 524,287 1.70E+08 324 818 1.72E+04 21
100 524,287 1.70E+08 324 14,756 1.06E+06 72

Voting 20 131,071 2.20E+07 168 413 5.83E+03 14
30 131,071 2.20E+07 168 998 2.00E+04 20
100 131,071 2.20E+07 168 19,446 1.39E+06 72

Waveform 20 DNF DNF DNF DNF DNF DNF
30 DNF DNF DNF DNF DNF DNF
100 DNF DNF DNF DNF DNF DNF
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Figure 2: Effect of the maximum cardinality threshold
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6.4.2. Effect of the maximum cardinality constraint

This section analyzes the selectivity of the schema-based constraint in

association with the maximum cardinality constraint (maxcard).

We performed several experiments on the UCI datasets by varyingmaxcard

between 1 and 103 while enforcing no minimum support threshold (i.e.,

minsup=0). Table 9 summarizes the results achieved on a UCI datasets by

setting three different maxcard thresholds (i.e., 20, 30, 100). Furthermore,

Figure 2 plots the number of pattern sets mined from the three representa-

tive UCI datasets and the percentage of pruned pattern sets with respect to

the total number of frequent pattern sets that would be generated without

enforcing the maximum cardinality constraint. Due to the lack of space, in

Figure 2 we plotted only the results achieved on three representative datasets

with different data distributions, i.e., Letter-rec. (sparse dataset), Shuttle

(fairly dense), and Adult (dense). Similar trends were achieved on the other

datasets.

For all the analyzed datasets, enforcing the cardinality constraint beyond

the schema-based constraint yields a further significant reduction in the num-

ber of pattern sets mined (i.e., at least 88% reduction). The selectivity of

the cardinality constraint on the number of mined pattern sets is typically

higher on datasets with relatively large attribute domains, because their cor-

responding pattern sets are more likely to contain many itemsets with the

same schema. For example, Adult is characterized by relatively small at-

tribute domains (i.e., from 2 to 16 values), whereas Letter-rec. has large

attribute domains (i.e., from 16 to 26 values). By comparing the pruning

rates achieved on Letter-rec. and Adult (see Figures 2(b) and 2(f)), it turns
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out that on Letter-rec. the number of pruned sets remains relatively stable

for a relatively large constraint value range, whereas on Adult it decreases

roughly linearly. Even though the average attribute domain size of Shuttle is

significantly larger than those of Adult (111.6 against 8.1), a relatively small

number of itemsets actually occur in Shuttle. Hence, the selectivity of the

cardinality constraint is lower than expected.

Table 10 (Colums (3)-(5)) reports some statistics on the results of the in-

termediate steps performed by the POST-FPMINE strategy (see Section 6.1).

Specifically, Column (5) reports the average cardinality per pattern set for all

datasets. We compared this result with those achieved by the COPAS algo-

rithm (see Column (5) of Table 7). Since POST-CPMINE never terminated

on the analyzed datasets, the corresponding columns were omitted. Note

that since we set minsup=0 all the selected pattern sets are characterized by

coverage equal to 100%.

Even if the outputs of POST-FPMINE and COPAS algorithms are the

same, the intermediate steps of POST-FPMINE generated a huge amount of

unnecessary itemsets and pattern sets. Specifically, the number of itemsets

and pattern set mined by POST-FPMINE as intermediate steps are always

at least two orders of magnitude higher than those achieved by the COPAS

algorithm. As discussed in Section 6.5, this significantly affects the efficiency

of the mining process. For example, on three datasets the POST-FPMINE

algorithms was not able to extract the patterns sets and itemsets satisfy-

ing both the schema-based and the cardinality/coverage constraint (DNF is

reported for those datasets).
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Table 11: UCI datasets: execution time of COPAS and POST-FPMINE by enforcing
different cardinality constraint values and minsup=0

Dataset maxcard Execution time (s)
COPAS POST-FPMINE

Adult 20 0.1 50.0
30 0.1 619.6
100 0.4 617.6

Letter-rec. 20 0.1 DNF
30 0.1 DNF
100 0.1 DNF

Mushroom 20 1.9 DNF
30 10.3 DNF
100 679.3 DNF

Poker 20 4.3 1479.6
30 4.3 1490.8
100 7.1 1444.4

Pendigits 20 0.1 100.0
30 0.0 5034.3
100 0.3 5110.8

Shuttle 20 0.1 50.0
30 0.1 80.6
100 0.1 76.8

Vehicle 20 0.1 100.0
30 0.2 726.9
100 6.8 715.5

Voting 20 0.0 50.0
30 0.2 84.1
100 7.9 90.8

Waveform 20 0.1 DNF
30 0.3 DNF
100 1.2 DNF
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Table 12: UCI datasets: execution time of COPAS and POST-FPMINE by enforcing
different coverage constraint values and minsup=1%

Dataset mincov Execution time (s)
(%) COPAS POST-FPMINE

Adult 50 3.0 1.4
70 1.4 1.2
90 0.3 1.2

Letter-rec. 50 0.3 0.2
70 0.2 0.2
90 0.1 0.2

Mushroom 50 1039.5 503.2
70 589.2 449.9
90 80.5 406.5

Pendigits 50 0.2 0.2
70 0.2 0.2
90 0.1 0.2

Poker 50 7.9 10.0
70 7.7 9.9
90 7.7 10.1

Shuttle 50 0.2 0.1
70 0.1 0.1
90 0.1 0.2

Vehicle 50 18.7 45.6
70 5.1 40.8
90 0.5 37.8

Voting 50 10.3 13.7
70 3.6 11.2
90 0.3 9.8

Waveform 50 1.6 2.8
70 1.0 2.6
90 0.5 2.6
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6.5. Execution time

The goal of this section is twofold. First, it analyzes the execution time

spent by the COPAS algorithm on datasets with different characteristics.

Secondly, it compares the execution time spent by the COPAS algorithm

with those spent by the two competitors described in Section 6.1.

Tables 11-12 summarize the execution times of the COPAS algorithm

and the POST-FPMINE strategy achieved on the UCI datasets by enforcing

the maximum cardinality constraint and the minimum coverage constraint,

respectively. Similar experiments were performed using POST-CPMINE,

which never succeeded in extracting all the candidate pattern sets in a rea-

sonable time, i.e., we killed the process after 8 hours. POST-CPMINE did

not terminate the extraction process in a reasonable time because in its first

step (see Section 6.1) it generates all the combinations of frequent itemsets of

arbitrary size. Hence, the number of pattern sets mined by POST-CPMINE

at the intermediate Step (i) is equal to 2# of frequent itemsets. In all the per-

formed expertiments, this number ranges from 2(10
3) to 2(10

9). Therefore, the

task is practically unfeasible in a reasonable amount of time.

The algorithm execution times are inversely correlated with the number of

generated pattern sets. The COPAS algorithm appears to be orders of mag-

nitude faster than POST-FPMINE while enforcing the maximum cardinality

constraint (see Table 11). Moreover, on three UCI datasets POST-FPMINE

does not terminate because of the large amount of (potentially uninterest-

ing) itemsets and pattern sets mined during the first step, which requires too

much disk space and main memory.

While enforcing both the minimum coverage and the minimum support
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constraints the execution times of the COPAS and POST-FPMINE algo-

rithms are comparable if mincov is lower than 90% (i.e., when relative few

patten sets are pruned), while COPAS is faster than POST-FPMINE when

mincov is set to 90% (see Table 12).

6.6. COPAS scalability

We analyzed the scalability of the COPAS algorithm on synthetic data

generated by using the generator available at [30]. To perform our analyses

we tested synthetic data with different cardinality (i.e., number of records)

and dimensionality (i.e., number of attributes). Figures 3-4 summarize the

achieved results.

Similar to Apriori [5], COPAS scales linearly with the number of records

(see Figure 3). For example, when coping with 10-attribute datasets and

by enforcing mincov=50% and minsup=0.01%, COPAS takes 34s, 66s, and

397s with 105, 106, and 107 records, respectively. Similarly, by enforcing

maxcard=100 and minsup=0 COPAS takes 0.8s, 8s, and 90s with 105, 106,

and 107 records.

Because of the non-linear increase in the number of generated combi-

nations, COPAS scales more than linearly with the number of attributes

when enforcing either the coverage constraint (see Figure 4(a)) or a relatively

high cardinality constraint value (e.g., maxcard=100) (see Figure 4(b)).

In contrast, when enforcing rather low cardinality constraint values (e.g.,

maxcard=10) COPAS appears to scale approximately linearly. In fact, in

the latter case most of the candidate sets are discarded early thus the COPAS

execution time is mainly due to I/O operations.
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Figure 3: COPAS scalability with the number of records (number of attributes=10)

7. Conclusions and future work

This paper addresses the pattern set mining problem with global con-

straints [4]. It presents a new constraint, called schema-based constraints,

tailored to relational data. The schema-based constraint exploits the itemset

schema to combine all the itemsets that are semantically correlated with each

other into a unique pattern set while filtering out the pattern sets covering

a mixture of different data facets or giving a partial view of a single data

facet. The newly proposed constraint can be efficiently and effectively com-

bined with already existing global constraints. An Apriori-based algorithm

to efficiently mine pattern sets under global constraints is also proposed. The

experiments demonstrate the selectivity of the proposed constraint as well as

the algorithm efficiency and scalability.

As future work, we plan to (i) study the problem of pattern set min-

ing from data equipped with taxonomies by extending existing generalized

itemset mining strategies (e.g., [32, 33]), (ii) exploit pattern sets satisfying
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Figure 4: COPAS scalability with the number of attributes (number of records=107)

the schema-based constraint to improve the performance of existing itemset-

based or associative classifiers (e.g., [34, 35]), (iii) address pattern set mining

from quantitative data [26], and (iv) discover interesting groups of infrequent

itemsets [27].
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