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Adaptive Digital Equalization in Optical Coherent
Receivers with Stokes-Space Update Algorithm

Monica Visintin, Member, |EEE, Gabriella BoscoSenior Member, |EEE, Pierluigi Poggiolini,Member, 1EEE,
Fabrizio ForghieriMember, IEEE

Abstract—In this paper we describe a novel update algorithm avoiding the need of the tricky and complex feed-back loops
for the filter coefficients of the adaptive digital equalizer in \which are instead required when using the LMS update
coherent receivers, which is based on error signals evaluated in algorithms.

Stokes space and is insensitive to both phase-noise and frequgnc . . .
offset. We also introduce an optimized decision rule in the Stokes ~ R€cently, the potential advantages given by processing the

space, which takes into account the exact statistics of noise andreceived signal samples using a representation in the Stoke
yields a performance improvement with respect to the minimum space have been highlightd by several groups [3]-[7]. In [8]

distance decision criterion. We compare the performance of [9] we proposed and demonstrated an alternative method for
the new algorithm to the standard constant-modulus algorithm the updates of the butterfly equalizer taps, based on an error

(CMA) for polarization-multiplexed (PM) 16QAM modulation, . - - -
achieving similar performance in the absence of phase noise, with signal evaluated in Stokes space. This method shares with

comparable complexity. Differently from CMA, the proposed CMA the advantage of being insensitive to phase noise. In
Stokes-space algorithm (SSA) allows to remove the phase offsetaddition, differently from the other techniques, it autdicelly

between polarizations, thus enabling the use of a joint carrier- guarantees that the constellations on the two polarization
p_hase estimation algorithm on bot_h polarizations, which in turns are aligned in phase, thus allowing to apply carrier phase
yields a nearly doubled phase noise tolerance. noise compensation by averaging the phase estimation over
Index Terms—Coherent communications, Modulation, Fiber the two polarizations, yielding a higher robustness to ghas
optics links and subsystems. noise. Preliminary results were reported in [8], [9]. Insthi
paper, we describe in detail the technique, comparing iheo t
|. INTRODUCTION CMA algorithm in terms of both performance and complexity.

In optical systems based on coherent detection, linedgction Il reports the system model and notation that will be
system impairments can be efficiently compensated for Used throughout the paper. In Section Il the Stokes space
the digital domain through digital signal processing (DSRlgorithm (SSA) is detailed, whilst, to enable a complexity
algorithms. Typically, a scalar FIR filter removes the bulkomparison, Section IV reports the equations used in the
of the fiber chromatic dispersion (CD) accumulated throughPdate rule when either the CMA or LMS criterion is used.
propagation. Then an adaptive butterfly equalizer recovepgction V is devoted to the description of the decision rule
the polarization of the transmitted signal and compensatésed in the Stokes space. Finally, in Section VI simulation
for polarization effects (such as polarization dependess | results are shown, comparing the performance of receivers
and polarization mode dispersion), bandwidth limitatiamsi based on SSA and CMA when a polarization multiplexed (PM)
residual CD. Several methods have been proposed to updkfePoints quadrature-amplitude modulation (L6QAM) isdyse
the adaptive equalizer taps, the most popular being bad¥h in terms of back-to-back sensitivity and tolerancettage
on the least-mean-square (LMS) and constant-modulus al@i¢ise. Robustness to PDL is also investigated. Conclusions
rithms (CMA) [1]. the pros and cons of the proposed system are finally drawn in

The advent of coherent detection has enabled the useSgtction VII.
multi-level modulation formats in optical transmission],[2
significantly increasing spectral efficiency. However, Hig Il. SYSTEM MODEL
order modulation formats are more sensitive to laser phas
noise effects, thus particular attention has to be paid éo t
design of proper carrier phase estimation (CPE) algorith
An important advantage of CMA over LMS stems from th
fact that it is insensitive to phase noise: this fact allows t ©°
butterfly equalizer and the CPE block to operate indepehgent Ey(t)=k-Pr > snaq(t—nT)

n=-—oo

eI'he transmitter (Tx) generates a polarization-multiptexe
M) signal, where the complex envelope of theand g
golarized electric fields can be written as:
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a SRA contract. being Pr the total average power of the dual polarization
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Fig. 3. Representation in the Stokes space of the ideal mittesl PM-
16QAM constellation points foPr = 5.

yi(n) Eq. hy, wyy(n) yo(n)
xgn) = [zi(n),zi(n —1)...2;(n — N + 1)}T
T
, o yi" = i), yi(n = 1)...yi(n = N + 1)
Fig. 2. Structure of the butterfly equalizer with inputg(n) andy;(n) and T
outputsz,(n) andyo(n). hg;;) — h;@(l), hx@@) . hSJQ(N)
1T
By = B3 (1), 15 (2) .. G (N) ©)

T the symbol intervals , ands; , the complex constellation
symbols (normalized sugh as the minimum distance is equal hg(fi) = h‘?(l),hé@(?) o hgf;g)(N)
to 1). The symbol rate iR, = 1/7T. As an example, for -
QPSK, k = 1/2 and sy , i, have real and imaginary parts h(") = h(")( 1), hm (2 )...h(")(N)
belonging to the sef+0.5}, whilst for 16QAM, k = 2/5 and
sk, 5ky have real and imaginary parts belonging to the sethere a” is the transpose of vectoa. x;(n) and y;(n)
{£1.5,40.5}. are the complex signal samples at the input of the butterfly
The PM signal propagates over an optical transmissi@gualizer, whilsth? (k), b (k), h$%) (k) and hSY (k), with
system, composed of several fiber spans with optical amplifidc = 1,..., NV, are the impulse responses of 4 FIR filters of
tion, and is then detected by a standard coherent receivgr (e butterfly equalizer at time, having N taps each. We wil
[10]. The signals (see Fig. B 1(t), zr.o(t) yr.1(t) yro(t) assume in the following that the tap weights are updated once
at the output of the photodiodes, which in an ideal case woudg@r symbol interval, specifically whenis an integer multiple
correspond to the real and imaginary componentg,at) and of Ns.
E,(t) in (1), respectively, are sampled by an analog-to-digital
converter (ADC) at a sampling frequendy, - R,, whereN; is I1l. THE STOKES-SPACE ALGORITHM(SSA)
the number of samples per symbol. Two sequences of complexhe signalsz,(n) andy,(n) at the output of the butterfly
numbers are obtained:r(n) and yr(n), corresponding to equalizer can be represented in the Stokes space as:
the sampled versions the signalg(t) = zr ;(t) + jzr,o(t) Syo(n) = s )
andyr(t) = yr.1(t) + jyrq(t), respectively. The complex e(n) - |20 (n)] Lyo(n)\_
signal samples then go through a digital signal processin Sze(n) = 2?3{%(”)3/2(")} = |2o(n)] 2o ()| cos (¢a)
(DSP) chain [1], composed of: a bulk CD compensation stage! Sse(n) = 23{zo(n)ys (n)} = |zo(n)] |zo(n)] sin (¢d)(4)

1T

an adaptive butterfly equalizer; a carrier frequency and;@ha\lNhere 2o(n) = |ro(n)ei®, yo(n) = |yo(n)|ei®s and
compensation stage. = ¢, — ¢y. The couple of complex values,(n) and
The complex signal samples at the output of the butterf ( ) thus correspond to the real valued vecr(n) —
equalizer (see Fig.2) can be written as: [S1e(n), S2e(n), See(n)]. Note that the Stokes representation
() 1.(n) ) 1.(n) removes the information on the individual phase of each
To(n) =x;" - hgp) +y; - hyy polarizations, leaving only the information on the diffiere
yo(n) = x{™ - h{W 4y (2) tial phaseg,. For this reason, different constellation points

may be characterized by the same vector in Stokes space,
wherea - b indicates the scalar product between vectoend thus the number of points in Stokes space is lower (ap-
b, and: proximately by a factor of 4 for QAM modulation) than



the number of constellation points. As an example, the i#herea* is the complex conjugate af and:
symbols of the PM-QPSK modulation with total pow@r are o, a b7 [zo(n)
mapped into 4 points with Stokes representatifing, 0] Pr, [C’ ] = {b* _CJ { ° ] 9)
[0,-1,0]Pr,[0,0,1]Pr, [0,0,—1]Pr. The representation in 2
Stokes space of PM-16QAM constellation is shown in Fig.®eing
the 16x16=256 points of the constellation are mapped into 60 . 5
points in the Stokes space. @ = 4[S1e(n) - Sf(n)] X
Since the Stokes representation is independent of the ab- b= 4[(S2¢(n) = 52(n)) + j(Sse(n) — S3(n))]  (10)
solute phase in the two polarizations, the adaptation of theyhiia|ly during the training phase, known data are trans-
equalizer tap weights based on a function of the Stokfied, and the exact values of the Stokes representation of
parameters makes the equalizer |ns_en5|t|ye to any format transmitted symbol§(n) is used in place o’S(n) in
phase noise or frequency offset, which will be removed Qe \ndating algorithm given in eqns. (7) and (8): during the
a cascaded, independently designed, block. tracking phase, the transmitted symbols are not known and
By substituting (2) into (4) and omitting, for sake Ofyecisions are made in the Stokes space to olfigin), and
simplicity, the dependency on, we get: the algorithm is applied as described above.
The overall block diagram of the adaptive equalizer, inelud

Yo(n)

Sie = |xi - haa|® + |yi - hay|? + 2R{(%i - heo)(yi - hay)*}— ing the updating rule of Eq. (7), is reported in Fig. 4, while
— [lyi - By [* + [xi - hye|® + 2R{(x: - hya) (i - hyy) "} itrr:e':igen&_)eratlon of coefficients; and C; of Eg. (9) is shown
Sae = 2R{( - hs) (i - Bya) )+ 2R{ (i - B (i) 1+ 9>
28{(yi - hs i hye)” 25{(yi - ha, i hyy)”
" C\{(y v) i By )*}+ C\{(y 20 yy)*} IV. COMPARISON WITHCMA AND LMS EQUALIZER
Sze = 23{(xi - haa) (%i - hye) "} + 29{(xs - haa) (yi - hyy)" UPDATING RULES
+23{(yi - hay)(Xi - hya) "} + 23{(yi - hay)(yi - hyy)"}

(5) In the case of CMA algorithm [1], two objective functions
are iteratively minimized by the adaptive equalizer:

The error function to be minimized by the equalizer is B 9 1as 1202

the difference between the equalized valfigin) and the fomax(hin)) = (|x"(n)|2 B |T(n)‘2 )2

transmitted valueS(n), which may be either known (in an femay(h(n)) = (lyo(n)|” = [5(n)]7) (11)

initial training phase), or estimated through the decisiole where|i(n)| and|g(n)| are the values of the modulus of the

is describ_ed in Sect V (when operating in decision-directgg ;\\n transmitted symbols during the training phase, waere
mode during the tracking phase): in the tracking phase they are estimated by compaliggn)
F(h™) = F(b(, h&Z)a hg(ﬁc)7 hz(;;)) _ and|y,(n)| with thresholds. Since,(n) only depends Olhla?x
. ) andh,,, andy,(n) only depends o, andh,,, the updating
= [1Se(n) = SA(")H A rules for the filters is again that described in eqn. (7), bet t
= (S1e(n) — 81(n))? + (Sac(n) — $2(n))>+  gradients are
a4 2
+ (Sze(n) — S3(n)) (6) Voo feran(b™) = Croara - ( ( )
The equalizer taps are updated at each symbol intervafdr.e. v LY — O \*
n integer multiple ofN,), with the following updating rule, h,(;;)fCMA’y( )=Croma- (yi )
) (")

derived from the gradient algorithm [11]:

Vi foraa(h™) =Cyona- 12)

htD) — ) _ oy F(h(Y N\
we we — B h;:ﬂ ) vh(n)fCMAy(h(n)) =Cocma - (Xf )>
byt = hiy) — uV, o f(h™) R S
o ( oy ( which is similar to eq. (8), but the coefficient$; ¢4 and
h{i*) = h) - #V oo f(B ™) Cy.cna are obtained as
h?(JZJrl) - hl(/Z) _ thbf;)f(h(n)) @) |:Cl,CMA] _ {a 0} {xo(n)} (13)
C. 0 b] (%
wherey is a small positive real number (updating coefficient). 2OMA Yo(n)
It can be shown (see Appendix VIII-A) that the gradients in
Eq.(7) can be evaluated as: a=2(|z,(n)]> = |2(n)[?)
b=2(lyo(n)]* — |9(n)|? 14
Ty FBO) = - () (Io(m)I? = L)) (14)
) * Comparing Egs. (13) and (9), it is evident that the complex-
thj)f(h( )=Cs- (yi ) ity of the evaluation of the coefficients; and C, is higher
* for the SSA than for CMA. However, most of the real-time
\vap f(h(")) =, - (y(")) . o .
n{Y 1 i computational complexity is due to the operations perfarme
)y — v (™ in the block diagram shown in Fig. 4, which is common to
vh(’l)f(h ) =G (Xl > ®) CMA and SSA, yielding to a similar overall complexity for



xl(n)

ym

y,(n)

Fig. 4. Block diagram of the adaptive equalizer, includihg wupdating rule: for exampléz,g;“)(a) = h;fc)(:s) — puCrz}(n — 2). The generation of
coefficientsC; and Cs is shown in Fig. 5.

the two algorithms. We do not report here a more detaildscomes equal th,,, so thatz,(n) = y,(n), and only one

complexity analysis, leaving it to further investigatipsince of the two polarizations is output by the equalizer. Alsa th

it will be strongly dependent on the actual implementation. outputs of the CMA equalizers can be in general written as
To(n) = z(n — L)% and y,(n) = y(n — L,)e?% ™),
with L, and L, integer positive numbers accounting for

77§ i = delays, which could be in general different. If, # L,, a
! @L \‘ cm  further block is needed to temporally align(n) andy,(n).
T o N 1in, . .
R T~ "= Moreover, the two equalizers working separately on the two
V| oo ‘ polarizations could converge to two constellations having
B D B =D T different phase rotation with respect to the original orszs,
|| parameters [ ooy P& 'g‘ that two separate phase synchronizers are needed to remove
! o @ ' the phase offset8,(n) andd,(n).
3 in »é}cam) In the case of LMS (Least Mean Squares) algorithm [1] the
1 ool TR I I objective function to be minimized is
WL £
y{m (n) ~ ~
— : Frars(m™) = |zo(n) = &(n)* + [yo(n) — §(n)|*  (15)
Fig. 5. Generation of coefficients; and C; for the Stokes equalizer. where z(n) and g(n) are the known transmitted symbols in

the training phase, and estimated symbols in the tracking
The CMA algorithm has the advantage of being insensitiyghase; the estimation is performed either by comparis(@.)
to phase shifts (due to phase noise or frequency offset), ifahdy,(n)) with thresholds or applying a maximum-likelihood
suffers from degeneracy problems since it is possible th@iL) estimation algorithm, as in the common 16QAM detec-
during the tracking phask,, becomes equal th,, andh,, tor. The equalizer updating rule is again that of eqgn. (7}, bu



the gradients are andS ), such that

Vo frars(W™) = Cy pars -

( E )* Se(n) - Sw) = 23:5@(1@)51‘,@(71) =
Vhw frars(W™) = Co pars - (yz(n)) ~
(")
(

= [ISe()[[IS k) | cos(Ox)) (20)

(16) However, the minimum distance criterion is optimum only
)\ * if vector D(n) = S.(n) — S(n) is a zero-mean Gaussian
(X' ) random vector, and this is not the case in Stokes space,
since the channel additive Gaussian noise is non-linearly

processed in the evaluation of the Stokes parametets(af)

and y,(n). In the case of a simple AWGN channel, if
Ci.ous a 0] [zo(n) the transmitted symbol is associated With' the Stokes .\{ector
{ ] = {0 b} {yo(n)} an s = [S1,(k)s S2,(k) S3,(, then the conditional probability
density function (pdf) of the Stokes vect8r= [S;, S, S3]
associated with the noisy received symbol is [12]:

Vi frars(h®

)Y =Ch.ous -
Vi fons

)
)
)
) =C2,Lums -

which is again similar to eq. (8), but the coefficieits 1 rrs
andCs 1y g are

Co,Lms

1 IS 1y I+
- 202

@ = 2(@o(n) - &(n)) Tsisu (SI8w) = {5giaz®
b=2(yo(n) — (n)) (18) 7l ”HU -
VISwITS
The LMS equalizer compares the output of the equalizén) 1o ( o2 COS(a(k)/2)>
directly toZ(n), andz(n) is correct only if the phase noise is
not too strong. Otherwise, a system which employs the LMS (21)

equalizer needs a phase sypthonizer inside the loop Wh{,qhereg(k) is the angle between the two vect@sand S ;).
updates the equalizer coefficients. If the system correclly eq. (21),1,(z) is the modified Bessel function of the first
converges, then the LMS equalizer produces, the outpkiad and order zero, whereag is the noise variance that can
Zo(n) = z(n — Ly)e?® (™ and y,(n) = y(n — Ly)ejey(n), be evaluated on the conventional scattering diagrams fdr ea
where L, = L, and 6,(n) = 6,(n) = 0. It is still Polarization. Then the decided Stokes vector, accordirtheo

possible, however, that the degeneracy problem occurs, m?axmum likelihood criterion, is

To(n) = yo(n). S(n) = maxi ~' fs|s,, (Se(n)[Sw)) =
The Stokes equalizer described in Sect. IIl is insensitive_ ., —1 [_Hifi@“ +1og I (\/”S<k>|‘2“se<”>“ COS(Q(M/Z))}

to phase noise and frequency offset as the CMA equalizer, 7 7
but generates:, (n) = x(n — L;)el% (™ andy,(n) = y(n — (22)
L,)e’% ™ where L, = L, and0,(n) = 60,(n) = 6(n);  The simplification in eq. (22) is obtained by removing the
since the phase offsets are forced to be equal, only one phage exp[—|1Se(n)]|/(202)]/(167|Sc(n)]|o?), common to all
synchronizer is needed which estimatés) from the two the values ofk, and taking the logarithm of the remaining
inputs z,(n) and y,(n), with a signal to carrier noise which part of the conditional pdf. Moreover, it is possible to use t
is twice that available with the CMA system. The degeneragyllowing asymptotic approximation
problem can occur also in this case.

log Iy (z) ~ x (23)

so that the decision rule can be simplified as follows:
V. DECISION RULE IN THE STOKES SPACE

A N Sk S.
During the tracking phase, a decisid(n) has to be S(n)~ max ~' ['s(k)l + VISwl ISl <9<’€>)]

2 2
made in the Stokes space on the transmitted symbol Stokes 20 ? 2
vector S(n), based on the equalized Stokes vec&(n) P 2 /TSe TS cos Oy
corresponding to the signal samples(n) andy,(n) at the =min | ISaw = 2/ 18w 1Se(m)ll cos { == ] -
output of the equalizer. In the case of PM-16QA ;) must (24)

be chosen among th&/, = 60 points shown in Fig. 3.
The minimum distance rule, applied in common detecto
is the following:

rdNote the similarity between the minimum distance decision
rule in egn. (19) and the approximate optimum detection rule
in egn. (24).

S(n) = min ~" ||Sc(n) — S(k,)Hz =
’f o ) VI. PERFORMANCE ANALYSIS
=min " [[[Su[I* = 208k lISe (Il cos(O))] The performance of the proposed equalizer was assessed
(19) in a single-channel PM-16QAM system at 32 GBaud, with
raised-cosine spectrum with roll-off 0.1. In order to tese t
with k =1,..., M;. ||A|| = /A3 + A2 + A3 is the norm of equalizer performance in the presence of both inter-symbol
vectorA, andf;, is the angle between the two vect®s(n) interference and a misalignment between the polarizations



(which could be particularly critical for an update rule per
formed in the Stokes space), a residual dispersion (i.e. 1 10
compensated for by the CD equalizer) equal to 250 ps/r
and a differential group-delay (DGD) of one symbol wer
imposed. No phase noise was included in this first set
simulations. The BER values were estimated through Mont
Carlo simulation (oveR'® symbols) for several combinations
of DGD axis and state of polarization (SOP) at the input of tt
Rx, for a total of 896 cases, uniformly distributed in Stoke
space. The results are shown in Fig. 6 in terms of BER \
OSNR (measured over a reference bandwidth equal to 0.1 r

BER

10 1 -m-cmMA
for both the Stokes-space and CMA update rules, wWitk: 31 = SSA — new metric

+0 SSA — minimum distance metric

taps. The reported curves show the average performance. Co
— Theoretical limit

all cases, the range of variation of BER values around tl B
average performance for all the considered values of S¢ 10 16 17 18 19 20 21
and DGD axis is always in the rangel0%. In both cases, OSNR over 0.1 nm [dB]

the equalizer taps were initialized using a known trainieg s
quence, and then svyitched to deCiSion_direCte,d operaﬁqn aFig. 6. BER vs. OSNR curve for buttery equalizer based on SSAGMA
10,000 symbols. A different value pfwas used in the training update rules. The ideal theoretical curve is also shown afezence.
and tracking phases and both were optimized at each OSNR
value. Differently from [8], in which a fixed-threshold deimn
criterion was used in the final QAM detector, the results ghov

in Fig. 6 have been obtained using a maximum-likelihoc 10
decision criterion (for both the SSA and CMA cases). Fc
the SSA either the minimum distance criterion or the ne
metric described in Section V has been used when making
decision in the Stokes space. For high values of OSNR, t
two metrics give similar result, whilst for low values of OBN
(i.e. BER values higher tham0~2), the minimum distance
metric fails in correctly estimating the transmitted syrnstend
consequently the performance of the equalizer is signifigan
degraded. Comparing the performance of CMA and SSA wi 1
the new metrics, no significant difference can be seen ingig.
with both of them being very close to the theoretical limis$
than 0.5-dB penalty). 10 05 1 15 >

One advantage of the SSA over CMA is its higher cor Training sequence length (number of symbols) _ ; -4
vergence speed, i.e. it requires a shorter training seguenc
in order to achieve a stable performancg. In I.:Ig' £ thF? . 7. BER vs. length of the training sequence (in number afitsyls) for
convergence speed of the two update algorithms is compa[)g%i1 SSA and CMA algorithm at OSNR=18 dB.
at the same OSNR (18 dB). Results are shown in terms of
BER as a function of the training sequence length (in number
of symbols). The BER values shown in the figure have be€ASE) noise and, as a result, more tolerant to phase noise. As
derived as an average over all values obtained for differeamt example, Fig. 8 shows the OSNR penalty (at a reference
polarization states at the input of the receiver, for a tofal BER of 2-10~2) with respect to the ideal performance without
128 measures for each point. As an example, with SSA 3,0pBase noise as a function of the combined linewidth of
symbols are sufficient to get a BER value Df 10-2, while the Tx laser and local Rx oscillator (LO). The 1-dB penalty
with CMA a number of training symbols as high as 13,000 ighase noise tolerance is 15 MHz with SSA and 9 MHz with
required. CMA.

The performance of the equalizer was tested also in theFinally, we also investigated the tolerance of the equedize
presence of phase noise. In both cases, a radius-diredied polarization-related effect like PDL, which in prink&p
Viterbi&Viterbi algorithm was inserted after the butterflycould be of harm to an equalizer based on an update rule
equalizer for carrier phase estimation [13]. In princigleere in the Stokes space. We assumed to have a lumped PDL
should be no performance difference. However, since tleéement before the insertion of ASE noise. While PDL on the
Stokes-space update guarantees that the two polarizatitans signal is perfectly compensated by the butterfly equalefer
equalization are perfectly aligned to each other in phasécfw equalization its effect is transferred to the noise comptme
is not true when CMA is used), the phase error estimate cand its impact on performance depends on the PDL axis. We
be obtained as the average of both polarizations, thus makthus tested the performance by changing the amount of axerag
the algorithm more robust to amplifier spontaneous emissi®DL and the direction of the PDL axis (considering a total of
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Fig. 8. OSNR penalty (at a reference BER equatt0~2) vs. the combined
laser linewidth.
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Fig. 9. OSNR penalty (at a reference BER equaltol0~2) vs. average
PDL.

500 PDL axes, uniformly distributed on the Poireaphere).
The results are shown in Fig. 9 in terms of OSNR penalty

butterfly equalizer. Moreover, it has the advantage of not
being affected by the differential delay and differentialape
problems typical of CMA: this fact enables the use of a CPE
algorithm based on a phase error obtained as the average of
both polarizations, which makes the algorithm more toleran
to phase noise. We also introduced a novel metric for taking a
decision on the transmitted symbol in Stokes space, which
turned out to significantly improve the performance with
respect to the conventional minimum distance criteriorthwi

a similar computational complexity. Finally, we tested the
performance of the SSA in the presence of polarizationadla
effects like PMD and PDL, showing no increased sensitivity
with respect to CMA.

VIIlI. A PPENDIX
A. Evaluation of the gradients of the objective function

Assuming that is a column vector withV complex known
elementsa; and h is a column vector withN complex
variablese, = ey, + jeri, With £ = 1,..., N, the following
real function can be defined:

N
fi(h) = R{a’h} = R{a* - h} = R {Za;ek} =
k=1

(X N
=5 {Zaiek + ZakeZ}
k=1 k=1

wherea' is the transpose and complex conjugateaofThe
derivative of f; (h) with respect tee,,,. and with respect te,,;
is:

(25)

(at a reference BER equal t- 10~2) with respect to the with respect to the column vectar is

case without any PDL, as a function of the average PDL (in
dB). Average, maximum and minimum values are shown in

the figure. Interestingly, the SSA does not show any inceasgimilarly, the gradient of

sensitivity to PDL with respect to CMA.

VIl. CONCLUSIONS

In this paper we have shown a detailed analytical derivation
of the equations used for performing the adaptive update
the butterfly equalizer in a coherent receiver, based on
error signal evaluated in Stokes space. We showed that the
newly proposed SSA has a negligible increase in complexity
with respect to commonly used CMA and LMS algorithms.

With respect to LMS, it has the advantage of not requirindpe gradient is

a feedback loop between the phase synchronizer and the

0 1
den Ji(h) = 5 {ay, +an} = R{an},
0 1
Be. fi(h) = Z {an, —a}} = 3an} (26)
Then the derivative with respect tg, is defined as
0 0 0
Efl(h) = 6emf1(h) +jaem‘f1(h) =
=R{a,} + jS{an} = an 27)
and the gradient of
fi(h) = R{a'h}
Vhfi(h) =a (28)
f2(h) = 3{a'h}
is
Vn/fz2(h) = ja (29)
g% a consequence, for the function
f3(h) = |a'h? = (R{a'h})” + (S{aTh})” =
= fi(h) + f3(h) (30)
Vnfs(h) =2 [a'h] a. (31)



Sincea’h is just a complex number, the above expression can
also be written as
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Combining (33)-(36), we obtain the final expression of the
four gradients, shown in (37) below, and used in (8).

Vi, f(h) = 4 [(Sie(n) — Si(n))z,(n)

+ (S2e(n) = S2(n))yo(n) + j(Sse(n) — Ss(n))yo(n)] x:
Vi, f(h) =4 [=(S1c(n) = S1(n))yo(n)

+ (S2e(n) = S2(n))ao(n) — j(Sze(n) — S3(n))zo(n)] ys
Vi, f(h) = 4 [(S1e(n) = S1(n))zo(n)

+ (Sae(n) = 92(n))yo(n) + (Sse(n) — Ss(n))yo(n)] y:
Vi, f(h) = 4 [=(S1e(n) — S1(n))yo(n)

+ (S2e(n) = Sa(n))ao(n) — j(Sze(n) — S3(n))ao(n)] xi
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