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Adaptive Digital Equalization in Optical Coherent
Receivers with Stokes-Space Update Algorithm

Monica Visintin, Member, IEEE, Gabriella Bosco,Senior Member, IEEE, Pierluigi Poggiolini,Member, IEEE,
Fabrizio Forghieri,Member, IEEE

Abstract—In this paper we describe a novel update algorithm
for the filter coefficients of the adaptive digital equalizer in
coherent receivers, which is based on error signals evaluated in
Stokes space and is insensitive to both phase-noise and frequency-
offset. We also introduce an optimized decision rule in the Stokes
space, which takes into account the exact statistics of noise and
yields a performance improvement with respect to the minimum
distance decision criterion. We compare the performance of
the new algorithm to the standard constant-modulus algorithm
(CMA) for polarization-multiplexed (PM) 16QAM modulation,
achieving similar performance in the absence of phase noise, with
comparable complexity. Differently from CMA, the proposed
Stokes-space algorithm (SSA) allows to remove the phase offset
between polarizations, thus enabling the use of a joint carrier-
phase estimation algorithm on both polarizations, which in turns
yields a nearly doubled phase noise tolerance.

Index Terms—Coherent communications, Modulation, Fiber
optics links and subsystems.

I. I NTRODUCTION

In optical systems based on coherent detection, linear
system impairments can be efficiently compensated for in
the digital domain through digital signal processing (DSP)
algorithms. Typically, a scalar FIR filter removes the bulk
of the fiber chromatic dispersion (CD) accumulated through
propagation. Then an adaptive butterfly equalizer recovers
the polarization of the transmitted signal and compensates
for polarization effects (such as polarization dependent loss
and polarization mode dispersion), bandwidth limitationsand
residual CD. Several methods have been proposed to update
the adaptive equalizer taps, the most popular being based
on the least-mean-square (LMS) and constant-modulus algo-
rithms (CMA) [1].

The advent of coherent detection has enabled the use of
multi-level modulation formats in optical transmission [2],
significantly increasing spectral efficiency. However, high-
order modulation formats are more sensitive to laser phase
noise effects, thus particular attention has to be paid to the
design of proper carrier phase estimation (CPE) algorithms.
An important advantage of CMA over LMS stems from the
fact that it is insensitive to phase noise: this fact allows the
butterfly equalizer and the CPE block to operate independently,
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avoiding the need of the tricky and complex feed-back loops
which are instead required when using the LMS update
algorithms.

Recently, the potential advantages given by processing the
received signal samples using a representation in the Stokes
space have been highlightd by several groups [3]-[7]. In [8],
[9] we proposed and demonstrated an alternative method for
the updates of the butterfly equalizer taps, based on an error
signal evaluated in Stokes space. This method shares with
CMA the advantage of being insensitive to phase noise. In
addition, differently from the other techniques, it automatically
guarantees that the constellations on the two polarizations
are aligned in phase, thus allowing to apply carrier phase
noise compensation by averaging the phase estimation over
the two polarizations, yielding a higher robustness to phase
noise. Preliminary results were reported in [8], [9]. In this
paper, we describe in detail the technique, comparing it to the
CMA algorithm in terms of both performance and complexity.
Section II reports the system model and notation that will be
used throughout the paper. In Section III the Stokes space
algorithm (SSA) is detailed, whilst, to enable a complexity
comparison, Section IV reports the equations used in the
update rule when either the CMA or LMS criterion is used.
Section V is devoted to the description of the decision rule
used in the Stokes space. Finally, in Section VI simulation
results are shown, comparing the performance of receivers
based on SSA and CMA when a polarization multiplexed (PM)
16-points quadrature-amplitude modulation (16QAM) is used,
both in terms of back-to-back sensitivity and tolerance to phase
noise. Robustness to PDL is also investigated. Conclusionson
the pros and cons of the proposed system are finally drawn in
Section VII.

II. SYSTEM MODEL

The transmitter (Tx) generates a polarization-multiplexed
(PM) signal, where the complex envelope of thex̂ and ŷ
polarized electric fields can be written as:

Ex(t) =
√

k · PT

∞
∑

n=−∞

sn,xq(t− nT )

Ey(t) =
√

k · PT

∞
∑

n=−∞

sn,yq(t− nT ) (1)

being PT the total average power of the dual polarization
signal,k a normalization constant which depends on the mod-
ulation format,q(t) the transmitted pulse with unitary energy,
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Fig. 1. Structure of the receiver.

Fig. 2. Structure of the butterfly equalizer with inputsxi(n) andyi(n) and
outputsxo(n) andyo(n).

T the symbol interval,sk,x andsk,y the complex constellation
symbols (normalized such as the minimum distance is equal
to 1). The symbol rate isRs = 1/T . As an example, for
QPSK,k = 1/2 and sk,x, sk,y have real and imaginary parts
belonging to the set{±0.5}, whilst for 16QAM,k = 2/5 and
sk,x, sk,y have real and imaginary parts belonging to the set
{±1.5,±0.5}.

The PM signal propagates over an optical transmission
system, composed of several fiber spans with optical amplifica-
tion, and is then detected by a standard coherent receiver (Rx)
[10]. The signals (see Fig. 1)xR,I(t), xR,Q(t) yR,I(t) yR,Q(t)
at the output of the photodiodes, which in an ideal case would
correspond to the real and imaginary components ofEx(t) and
Ey(t) in (1), respectively, are sampled by an analog-to-digital
converter (ADC) at a sampling frequencyNs ·Rs, whereNs is
the number of samples per symbol. Two sequences of complex
numbers are obtained:xR(n) and yR(n), corresponding to
the sampled versions the signalsxR(t) = xR,I(t) + jxR,Q(t)
and yR(t) = yR,I(t) + jyR,Q(t), respectively. The complex
signal samples then go through a digital signal processing
(DSP) chain [1], composed of: a bulk CD compensation stage;
an adaptive butterfly equalizer; a carrier frequency and phase
compensation stage.

The complex signal samples at the output of the butterfly
equalizer (see Fig.2) can be written as:

xo(n) = x
(n)
i · h(n)

xx + y
(n)
i · h(n)

xy

yo(n) = x
(n)
i · h(n)

yx + y
(n)
i · h(n)

yy (2)

wherea ·b indicates the scalar product between vectorsa and
b, and:

Fig. 3. Representation in the Stokes space of the ideal transmitted PM-
16QAM constellation points forPT = 5.

x
(n)
i =

[

xi(n), xi(n− 1) . . . xi(n−N + 1)
]T

y
(n)
i =

[

yi(n), yi(n− 1) . . . yi(n−N + 1)
]T

h(n)
xx =

[

h
(n)
xx (1), h

(n)
xx (2) . . . h

(n)
xx (N)

]T

h(n)
xy =

[

h
(n)
xy (1), h

(n)
xy (2) . . . h

(n)
xy (N)

]T

(3)

h(n)
yx =

[

h
(n)
yx (1), h

(n)
yx (2) . . . h

(n)
yx (N)

]T

h(n)
yy =

[

h
(n)
yy (1), h

(n)
yy (2) . . . h

(n)
yy (N)

]T

where aT is the transpose of vectora. xi(n) and yi(n)
are the complex signal samples at the input of the butterfly
equalizer, whilsth(n)

xx (k), h
(n)
yx (k), h

(n)
xy (k) and h

(n)
yy (k), with

k = 1, . . . , N , are the impulse responses of 4 FIR filters of
the butterfly equalizer at timen, havingN taps each. We will
assume in the following that the tap weights are updated once
per symbol interval, specifically whenn is an integer multiple
of Ns.

III. T HE STOKES-SPACE ALGORITHM (SSA)

The signalsxo(n) and yo(n) at the output of the butterfly
equalizer can be represented in the Stokes space as:






S1e(n) = |xo(n)|
2 − |yo(n)|

2

S2e(n) = 2ℜ{xo(n)y
∗
o(n)} = |xo(n)| |xo(n)| cos (φd)

S3e(n) = 2ℑ{xo(n)y
∗
o(n)} = |xo(n)| |xo(n)| sin (φd)

(4)
where xo(n) = |xo(n)|e

jφx , yo(n) = |yo(n)|e
jφy and

φd = φx − φy. The couple of complex valuesxo(n) and
yo(n) thus correspond to the real valued vectorSe(n) =
[S1e(n), S2e(n), S2e(n)]. Note that the Stokes representation
removes the information on the individual phase of each
polarizations, leaving only the information on the differen-
tial phaseφd. For this reason, different constellation points
may be characterized by the same vector in Stokes space,
thus the number of points in Stokes space is lower (ap-
proximately by a factor of 4 for QAM modulation) than
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the number of constellation points. As an example, the 16
symbols of the PM-QPSK modulation with total powerPT are
mapped into 4 points with Stokes representations[0, 1, 0]PT ,
[0,−1, 0]PT ,[0, 0, 1]PT , [0, 0,−1]PT . The representation in
Stokes space of PM-16QAM constellation is shown in Fig.3:
the 16x16=256 points of the constellation are mapped into 60
points in the Stokes space.

Since the Stokes representation is independent of the ab-
solute phase in the two polarizations, the adaptation of the
equalizer tap weights based on a function of the Stokes
parameters makes the equalizer insensitive to any form of
phase noise or frequency offset, which will be removed by
a cascaded, independently designed, block.

By substituting (2) into (4) and omitting, for sake of
simplicity, the dependency onn, we get:

S1e = |xi · hxx|2 + |yi · hxy|2 + 2ℜ{(xi · hxx)(yi · hxy)
∗}−

−
[

|yi · hyy|2 + |xi · hyx|2 + 2ℜ{(xi · hyx)(yi · hyy)
∗}
]

S2e = 2ℜ{(xi · hxx)(xi · hyx)
∗}+ 2ℜ{(xi · hxx)(yihyy)

∗}+
+ 2ℜ{(yi · hxy)(xi · hyx)

∗}+ 2ℜ{(yi · hxy)(yi · hyy)
∗}

S3e = 2ℑ{(xi · hxx)(xi · hyx)
∗}+ 2ℑ{(xi · hxx)(yi · hyy)

∗}+
+ 2ℑ{(yi · hxy)(xi · hyx)

∗}+ 2ℑ{(yi · hxy)(yi · hyy)
∗}

(5)

The error function to be minimized by the equalizer is
the difference between the equalized valueSe(n) and the
transmitted valuêS(n), which may be either known (in an
initial training phase), or estimated through the decisionrule
is described in Sect V (when operating in decision-directed
mode during the tracking phase):

f(h(n)) = f(h(n)
xx ,h(n)

xy ,h(n)
yx ,h(n)

yy ) =

= ‖Se(n)− Ŝ(n)‖2

= (S1e(n)− Ŝ1(n))
2 + (S2e(n)− Ŝ2(n))

2+

+ (S3e(n)− Ŝ3(n))
2 (6)

The equalizer taps are updated at each symbol interval (i.e.for
n integer multiple ofNs), with the following updating rule,
derived from the gradient algorithm [11]:

h(n+1)
xx = h(n)

xx − µ∇
h

(n)
xx

f(h(n))

h(n+1)
xy = h(n)

xy − µ∇
h

(n)
xy

f(h(n))

h(n+1)
yx = h(n)

yx − µ∇
h

(n)
yx

f(h(n))

h(n+1)
yy = h(n)

yy − µ∇
h

(n)
yy

f(h(n)) (7)

whereµ is a small positive real number (updating coefficient).
It can be shown (see Appendix VIII-A) that the gradients in
Eq.(7) can be evaluated as:

∇
h

(n)
xx

f(h(n)) = C1 ·
(

x
(n)
i

)∗

∇
h

(n)
yy

f(h(n)) = C2 ·
(

y
(n)
i

)∗

∇
h

(n)
xy

f(h(n)) = C1 ·
(

y
(n)
i

)∗

∇
h

(n)
yx

f(h(n)) = C2 ·
(

x
(n)
i

)∗

(8)

wherea∗ is the complex conjugate ofa and:
[

C1

C2

]

=

[

a b
b∗ −a

] [

xo(n)
yo(n)

]

(9)

being

a = 4[S1e(n)− Ŝ1(n)]

b = 4[(S2e(n)− Ŝ2(n)) + j(S3e(n)− Ŝ3(n))] (10)

Initially, during the training phase, known data are trans-
mitted, and the exact values of the Stokes representation of
the transmitted symbolsS(n) is used in place of̂S(n) in
the updating algorithm given in eqns. (7) and (8); during the
tracking phase, the transmitted symbols are not known and
decisions are made in the Stokes space to obtainŜ(n), and
the algorithm is applied as described above.

The overall block diagram of the adaptive equalizer, includ-
ing the updating rule of Eq. (7), is reported in Fig. 4, while
the generation of coefficientsC1 andC2 of Eq. (9) is shown
in Fig. 5.

IV. COMPARISON WITH CMA AND LMS EQUALIZER

UPDATING RULES

In the case of CMA algorithm [1], two objective functions
are iteratively minimized by the adaptive equalizer:

fCMA,x(h(n)) = (|xo(n)|
2 − |x̂(n)|2)2

fCMA,y(h(n)) = (|yo(n)|
2 − |ŷ(n)|2)2 (11)

where|x̂(n)| and |ŷ(n)| are the values of the modulus of the
known transmitted symbols during the training phase, whereas
in the tracking phase they are estimated by comparing|xo(n)
and|yo(n)| with thresholds. Sincexo(n) only depends onhxx

andhxy, andyo(n) only depends onhyy andhyx, the updating
rules for the filters is again that described in eqn. (7), but the
gradients are

∇
h

(n)
xx

fCMA,x(h
(n)) = C1,CMA ·

(

x
(n)
i

)∗

∇
h

(n)
yy

fCMA,y(h
(n)) = C2,CMA ·

(

y
(n)
i

)∗

∇
h

(n)
xy

fCMA,x(h
(n)) = C1,CMA ·

(

y
(n)
i

)∗

(12)

∇
h

(n)
yx

fCMA,y(h
(n)) = C2,CMA ·

(

x
(n)
i

)∗

which is similar to eq. (8), but the coefficientsC1,CMA and
C2,CMA are obtained as

[

C1,CMA

C2,CMA

]

=

[

a 0
0 b

] [

xo(n)
yo(n)

]

(13)

a = 2
(

|xo(n)|
2 − |x̂(n)|2

)

b = 2
(

|yo(n)|
2 − |ŷ(n)|2

)

(14)

Comparing Eqs. (13) and (9), it is evident that the complex-
ity of the evaluation of the coefficientsC1 andC2 is higher
for the SSA than for CMA. However, most of the real-time
computational complexity is due to the operations performed
in the block diagram shown in Fig. 4, which is common to
CMA and SSA, yielding to a similar overall complexity for
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the two algorithms. We do not report here a more detailed
complexity analysis, leaving it to further investigations, since
it will be strongly dependent on the actual implementation.
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Ŝ (n)
2
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The CMA algorithm has the advantage of being insensitive
to phase shifts (due to phase noise or frequency offset), but
suffers from degeneracy problems since it is possible that
during the tracking phasehxx becomes equal tohyx andhyy

becomes equal tohxy, so thatxo(n) = yo(n), and only one
of the two polarizations is output by the equalizer. Also, the
outputs of the CMA equalizers can be in general written as
xo(n) = x(n − Lx)e

jθx(n) and yo(n) = y(n − Ly)e
jθy(n),

with Lx and Ly integer positive numbers accounting for
delays, which could be in general different. IfLx 6= Ly, a
further block is needed to temporally alignxo(n) andyo(n).
Moreover, the two equalizers working separately on the two
polarizations could converge to two constellations havinga
different phase rotation with respect to the original ones,so
that two separate phase synchronizers are needed to remove
the phase offsetsθx(n) andθy(n).

In the case of LMS (Least Mean Squares) algorithm [1] the
objective function to be minimized is

fLMS(h
(n)) = |xo(n)− x̂(n)|2 + |yo(n)− ŷ(n)|2 (15)

where x̂(n) and ŷ(n) are the known transmitted symbols in
the training phase, and estimated symbols in the tracking
phase; the estimation is performed either by comparingxo(n)
(andyo(n)) with thresholds or applying a maximum-likelihood
(ML) estimation algorithm, as in the common 16QAM detec-
tor. The equalizer updating rule is again that of eqn. (7), but
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the gradients are

∇
h

(n)
xx

fLMS(h
(n)) = C1,LMS ·

(

x
(n)
i

)∗

∇
h

(n)
yy

fLMS(h
(n)) = C2,LMS ·

(

y
(n)
i

)∗

∇
h

(n)
xy

fLMS(h
(n)) = C1,LMS ·

(

y
(n)
i

)∗

(16)

∇
h

(n)
yx

fLMS(h
(n)) = C2,LMS ·

(

x
(n)
i

)∗

which is again similar to eq. (8), but the coefficientsC1,LMS

andC2,LMS are
[

C1,LMS

C2,LMS

]

=

[

a 0
0 b

] [

xo(n)
yo(n)

]

(17)

a = 2 (xo(n)− x̂(n))

b = 2 (yo(n)− ŷ(n)) (18)

The LMS equalizer compares the output of the equalizerxo(n)
directly to x̂(n), andx̂(n) is correct only if the phase noise is
not too strong. Otherwise, a system which employs the LMS
equalizer needs a phase synchronizer inside the loop which
updates the equalizer coefficients. If the system correctly
converges, then the LMS equalizer produces, the outputs
xo(n) = x(n − Lx)e

jθx(n) and yo(n) = y(n − Ly)e
jθy(n),

where Lx = Ly and θx(n) = θy(n) = 0. It is still
possible, however, that the degeneracy problem occurs, i.e.
xo(n) = yo(n).

The Stokes equalizer described in Sect. III is insensitive
to phase noise and frequency offset as the CMA equalizer,
but generatesxo(n) = x(n − Lx)e

jθx(n) andyo(n) = y(n −
Ly)e

jθy(n), whereLx = Ly and θx(n) = θy(n) = θ(n);
since the phase offsets are forced to be equal, only one phase
synchronizer is needed which estimatesθ(n) from the two
inputsxo(n) and yo(n), with a signal to carrier noise which
is twice that available with the CMA system. The degeneracy
problem can occur also in this case.

V. DECISION RULE IN THESTOKES SPACE

During the tracking phase, a decision̂S(n) has to be
made in the Stokes space on the transmitted symbol Stokes
vector S(n), based on the equalized Stokes vectorSe(n)
corresponding to the signal samplesxo(n) and yo(n) at the
output of the equalizer. In the case of PM-16QAM,Ŝ(n) must
be chosen among theMs = 60 points shown in Fig. 3.

The minimum distance rule, applied in common detectors,
is the following:

Ŝ(n) = min
k

−1
∥

∥Se(n)− S(k)

∥

∥

2
=

= min
k

−1
[

‖S(k)‖
2 − 2‖S(k)‖‖Se(n)‖ cos(θ(k))

]

(19)

with k = 1, . . . ,Ms. ‖A‖ =
√

A2
1 +A2

2 +A2
3 is the norm of

vectorA, andθ(k) is the angle between the two vectorsSe(n)

andS(k), such that

Se(n) · S(k) =

3
∑

i=1

Si,(k)Si,e(n) =

= ‖Se(n)‖‖S(k)‖ cos(θ(k)) (20)

However, the minimum distance criterion is optimum only
if vector D(n) = Se(n) − S(n) is a zero-mean Gaussian
random vector, and this is not the case in Stokes space,
since the channel additive Gaussian noise is non-linearly
processed in the evaluation of the Stokes parameters ofxo(n)
and yo(n). In the case of a simple AWGN channel, if
the transmitted symbol is associated with the Stokes vector
S(k) = [S1,(k), S2,(k), S3,(k)], then the conditional probability
density function (pdf) of the Stokes vectorS = [S1, S2, S3]
associated with the noisy received symbol is [12]:

fS|S(k)
(S|S(k)) =

1

16π‖S‖σ2
e−

‖S(k)‖+‖S‖

2σ2 ·

· I0

(

√

‖S(k)‖ ‖S‖

σ2
cos(θ(k)/2)

)

(21)

whereθ(k) is the angle between the two vectorsS andS(k).
In eq. (21),I0(x) is the modified Bessel function of the first
kind and order zero, whereasσ2 is the noise variance that can
be evaluated on the conventional scattering diagrams for each
polarization. Then the decided Stokes vector, according tothe
maximum likelihood criterion, is

Ŝ(n) = maxk
−1 fS|S(k)

(Se(n)|S(k)) =

= maxk
−1
[

− ‖S(k)‖

2σ2 + log I0

(
√

‖S(k)‖ ‖Se(n)‖

σ2 cos(θ(k)/2)
)]

(22)
The simplification in eq. (22) is obtained by removing the

term exp[−‖Se(n)‖/(2σ
2)]/(16π‖Se(n)‖σ

2), common to all
the values ofk, and taking the logarithm of the remaining
part of the conditional pdf. Moreover, it is possible to use the
following asymptotic approximation

log I0 (x) ≃ x (23)

so that the decision rule can be simplified as follows:

Ŝ(n) ≃ max
k

−1

[

−‖S(k)‖
2σ2

+

√

‖S(k)‖ ‖Se(n)‖
σ2

cos

(

θ(k)

2

)

]

= min
k

−1

[

‖S(k)‖ − 2
√

‖S(k)‖ ‖Se(n)‖ cos

(

θ(k)

2

)]

.

(24)

Note the similarity between the minimum distance decision
rule in eqn. (19) and the approximate optimum detection rule
in eqn. (24).

VI. PERFORMANCE ANALYSIS

The performance of the proposed equalizer was assessed
in a single-channel PM-16QAM system at 32 GBaud, with
raised-cosine spectrum with roll-off 0.1. In order to test the
equalizer performance in the presence of both inter-symbol
interference and a misalignment between the polarizations
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(which could be particularly critical for an update rule per-
formed in the Stokes space), a residual dispersion (i.e. not
compensated for by the CD equalizer) equal to 250 ps/nm
and a differential group-delay (DGD) of one symbol were
imposed. No phase noise was included in this first set of
simulations. The BER values were estimated through Monte-
Carlo simulation (over216 symbols) for several combinations
of DGD axis and state of polarization (SOP) at the input of the
Rx, for a total of 896 cases, uniformly distributed in Stokes
space. The results are shown in Fig. 6 in terms of BER vs.
OSNR (measured over a reference bandwidth equal to 0.1 nm)
for both the Stokes-space and CMA update rules, withN = 31
taps. The reported curves show the average performance. For
all cases, the range of variation of BER values around the
average performance for all the considered values of SOP
and DGD axis is always in the range±10%. In both cases,
the equalizer taps were initialized using a known training se-
quence, and then switched to decision-directed operation after
10,000 symbols. A different value ofµ was used in the training
and tracking phases and both were optimized at each OSNR
value. Differently from [8], in which a fixed-threshold decision
criterion was used in the final QAM detector, the results shown
in Fig. 6 have been obtained using a maximum-likelihood
decision criterion (for both the SSA and CMA cases). For
the SSA either the minimum distance criterion or the new
metric described in Section V has been used when making a
decision in the Stokes space. For high values of OSNR, the
two metrics give similar result, whilst for low values of OSNR
(i.e. BER values higher than10−2), the minimum distance
metric fails in correctly estimating the transmitted symbols and
consequently the performance of the equalizer is significantly
degraded. Comparing the performance of CMA and SSA with
the new metrics, no significant difference can be seen in Fig.6,
with both of them being very close to the theoretical limit (less
than 0.5-dB penalty).

One advantage of the SSA over CMA is its higher con-
vergence speed, i.e. it requires a shorter training sequence
in order to achieve a stable performance. In Fig. 7, the
convergence speed of the two update algorithms is compared
at the same OSNR (18 dB). Results are shown in terms of
BER as a function of the training sequence length (in number
of symbols). The BER values shown in the figure have been
derived as an average over all values obtained for different
polarization states at the input of the receiver, for a totalof
128 measures for each point. As an example, with SSA 3,000
symbols are sufficient to get a BER value of2 · 10−2, while
with CMA a number of training symbols as high as 13,000 is
required.

The performance of the equalizer was tested also in the
presence of phase noise. In both cases, a radius-directed
Viterbi&Viterbi algorithm was inserted after the butterfly
equalizer for carrier phase estimation [13]. In principle,there
should be no performance difference. However, since the
Stokes-space update guarantees that the two polarizationsafter
equalization are perfectly aligned to each other in phase (which
is not true when CMA is used), the phase error estimate can
be obtained as the average of both polarizations, thus making
the algorithm more robust to amplifier spontaneous emission
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Fig. 6. BER vs. OSNR curve for buttery equalizer based on SSA and CMA
update rules. The ideal theoretical curve is also shown as a reference.
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Fig. 7. BER vs. length of the training sequence (in number of symbols) for
both SSA and CMA algorithm at OSNR=18 dB.

(ASE) noise and, as a result, more tolerant to phase noise. As
an example, Fig. 8 shows the OSNR penalty (at a reference
BER of 2·10−2) with respect to the ideal performance without
phase noise as a function of the combined linewidth∆ν of
the Tx laser and local Rx oscillator (LO). The 1-dB penalty
phase noise tolerance is 15 MHz with SSA and 9 MHz with
CMA.

Finally, we also investigated the tolerance of the equalizers
to a polarization-related effect like PDL, which in principle
could be of harm to an equalizer based on an update rule
in the Stokes space. We assumed to have a lumped PDL
element before the insertion of ASE noise. While PDL on the
signal is perfectly compensated by the butterfly equalizer,after
equalization its effect is transferred to the noise components
and its impact on performance depends on the PDL axis. We
thus tested the performance by changing the amount of average
PDL and the direction of the PDL axis (considering a total of
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500 PDL axes, uniformly distributed on the Poincaré sphere).
The results are shown in Fig. 9 in terms of OSNR penalty
(at a reference BER equal to2 · 10−2) with respect to the
case without any PDL, as a function of the average PDL (in
dB). Average, maximum and minimum values are shown in
the figure. Interestingly, the SSA does not show any increased
sensitivity to PDL with respect to CMA.

VII. C ONCLUSIONS

In this paper we have shown a detailed analytical derivation
of the equations used for performing the adaptive update of
the butterfly equalizer in a coherent receiver, based on an
error signal evaluated in Stokes space. We showed that the
newly proposed SSA has a negligible increase in complexity
with respect to commonly used CMA and LMS algorithms.
With respect to LMS, it has the advantage of not requiring
a feedback loop between the phase synchronizer and the

butterfly equalizer. Moreover, it has the advantage of not
being affected by the differential delay and differential phase
problems typical of CMA: this fact enables the use of a CPE
algorithm based on a phase error obtained as the average of
both polarizations, which makes the algorithm more tolerant
to phase noise. We also introduced a novel metric for taking a
decision on the transmitted symbol in Stokes space, which
turned out to significantly improve the performance with
respect to the conventional minimum distance criterion, with
a similar computational complexity. Finally, we tested the
performance of the SSA in the presence of polarization-related
effects like PMD and PDL, showing no increased sensitivity
with respect to CMA.

VIII. A PPENDIX

A. Evaluation of the gradients of the objective function

Assuming thata is a column vector withN complex known
elementsak and h is a column vector withN complex
variablesek = ekr + jeki, with k = 1, . . . , N , the following
real function can be defined:

f1(h) = ℜ{a†h} = ℜ{a∗ · h} = ℜ

{

N
∑

k=1

a∗kek

}

=

=
1

2

{

N
∑

k=1

a∗kek +

N
∑

k=1

ake
∗
k

}

(25)

wherea† is the transpose and complex conjugate ofa. The
derivative off1(h) with respect toenr and with respect toeni
is:

∂

∂enr
f1(h) =

1

2
{a∗n + an} = ℜ{an},

∂

∂eni
f1(h) =

1

2j
{an − a∗n} = ℑ{an} (26)

Then the derivative with respect toen is defined as

∂

∂en
f1(h) =

∂

∂enr
f1(h) + j

∂

∂eni
f1(h) =

= ℜ{an}+ jℑ{an} = an (27)

and the gradient of

f1(h) = ℜ{a†h}

with respect to the column vectorh is

∇hf1(h) = a (28)

Similarly, the gradient of

f2(h) = ℑ{a†h}

is
∇hf2(h) = ja (29)

As a consequence, for the function

f3(h) = |a†h|2 =
(

ℜ{a†h}
)2

+
(

ℑ{a†h}
)2

=

= f2
1 (h) + f2

2 (h) (30)

the gradient is
∇hf3(h) = 2

[

a†h
]

a. (31)
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Sincea†h is just a complex number, the above expression can
also be written as

∇hf3(h) = 2a
[

a†h
]

= 2
[

aa†
]

h

whereaa† is a complexN ×N hermitian matrix.
The objective functionf(h(n)) in eqn. (6) is

f(h(n)) = f(hxx(n),hxy(n),hyx(n),hyy(n)) =

= (S1e(n)− Ŝ1(n))
2 + (S2e(n)− Ŝ2(n))

2+

+ (S3e(n)− Ŝ3(n))
2 (32)

and

∇hpq
f(h) = 2(S1e(n)− Ŝ1(n))∇hpq

S1e(n)

+ 2(S2e(n)− Ŝ2(n))∇hpq
S2e(n)+

+ 2(S3e(n)− Ŝ3(n))∇hpq
S3e(n) (33)

where p and q can be both eitherx or y. Then we are
left with the task of evaluating the gradient with respect
to hxx,hyy,hxy,hyx of each of the Stokes parameters
S1e(n), S2e(n), S3e(n).

In particular, applying the rules (28), (29) and (31), we have

∇hxx
S1e(n) = 2(x†

ihxx)xi + 2(y†
ihxy)xi = 2xo(n)xi

∇hyy
S1e(n) = −2(y†

ihyy)yi − 2(x†
ihyx)yi = −2yo(n)yi

∇hxy
S1e(n) = 2(y†

ihxy)yi + 2(x†
ihxx)yi = 2xo(n)yi

∇hyx
S1e(n) = −2(x†

ihyx)xi − 2(y†
ihyy)xi = −2yo(n)xi

(34)

∇hxx
S2e(n) = 2(x†

ihyx)xi + 2(y†
ihyy)xi = 2yo(n)xi

∇hyy
S2e(n) = 2(x†

ihxx)yi + 2(y†
ihxy)yi = 2xo(n)yi

∇hxy
S2e(n) = 2(x†

ihyx)yi + 2(y†
ihyy)yi = 2yo(n)yi

∇hyx
S2e(n) = 2(x†

ihxx)xi + 2(y†
ihxy)xi = 2xo(n)xi

(35)

∇hxx
S3e(n) = 2j(x†

ihyx)xi + 2j(y†
ihyy)xi = 2jyo(n)xi

∇hyy
S3e(n) = −2j(x†

ihxx)yi − 2j(y†
ihxy)yi = −2jxo(n)yi

∇hxy
S3e(n) = 2j(x†

ihyx)yi + 2j(y†
ihyy)yi = 2jyo(n)yi

∇hyx
S3e(n) = −2j(x†

ihxx)xi − 2j(y†
ihxy)xi = −2jxo(n)xi

(36)

Combining (33)-(36), we obtain the final expression of the
four gradients, shown in (37) below, and used in (8).

∇hxxf(h) = 4
[

(S1e(n)− Ŝ1(n))xo(n)

+ (S2e(n)− Ŝ2(n))yo(n) + j(S3e(n)− Ŝ3(n))yo(n)
]

xi

∇hyyf(h) = 4
[

−(S1e(n)− Ŝ1(n))yo(n)

+ (S2e(n)− Ŝ2(n))xo(n)− j(S3e(n)− Ŝ3(n))xo(n)
]

yi

∇hxyf(h) = 4
[

(S1e(n)− Ŝ1(n))xo(n)

+ (S2e(n)− Ŝ2(n))yo(n) + j(S3e(n)− Ŝ3(n))yo(n)
]

yi

∇hyxf(h) = 4
[

−(S1e(n)− Ŝ1(n))yo(n)

+ (S2e(n)− Ŝ2(n))xo(n)− j(S3e(n)− Ŝ3(n))xo(n)
]

xi

(37)
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