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Rend. Sem. Mat. Univ. Politec. Torino
Vol. 70, 1 (2012), 85 – 92
Forty years of Analysis in Turin
A conference in honour of Angelo Negro

E. Serra∗

ON A CONJECTURE OF DE GIORGI CONCERNING
NONLINEARWAVE EQUATIONS

Abstract. We discuss a conjecture by De Giorgi, which states that global weak solutions to
the Cauchy problem associated to certain nonlinear wave equations can be obtained as limits
of minimizers of suitable convex functionals. There is no restriction on the growth of the
nonlinearity, and the method is easily extended to more general equations.

Dedicated to Angelo Negro on the occasion of his 70th birthday.

1. The conjecture

In this talk I will report on a joint work with Paolo Tilli, discussing a conjecture of
Ennio De Giorgi related to some classes of nonlinear wave equations.
We consider minimization/evolution problems in space time, R×Rn, n≥ 0; the accent
on minimization or evolution depends on the point of view, and as we will see this is at
the core of the problem.

In a paper published in the Duke Mathematical Journal, [1], De Giorgi stated
the following conjecture.

CONJECTURE 1. Let p ∈ N be an even number. For ε > 0, let vε(t,x) denote
the minimizer of the convex functional

Fε(v) =
∫ ∞

0

∫
Rn
e−t/ε

{
|v′′(t,x)|2+

1
ε2
|∇v(t,x)|2+

1
ε2
|v(t,x)|p

}
dxdt

subject to the boundary conditions

v(0,x) = α(x), v′(0,x) = β(x), x ∈ Rn,

where α,β ∈C∞0 (Rn) are given functions. Then, for almost every (t,x) ∈ R+×Rn, the
limit

w(t,x) = lim
ε↓0

vε(t,x)

exists and the function w(t,x) solves in R+×Rn the nonlinear wave equation

(1) w′′ −Δw+
p
2
wp−1 = 0

with initial conditions

(2) w(0,x) = α(x), w′(0,x) = β(x), x ∈ Rn.

∗Author partially supported by the PRIN2009 grant “Critical Point Theory and Perturbative Methods
for Nonlinear Differential Equations”
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86 E. Serra

REMARK 1. Existence and uniqueness of a minimizer for the functional Fε are
straightforward. Basically one can consider the largest space of L1loc(R×Rn) functions
where Fε is finite and minimize among functions that satisfy the boundary condition (in
a suitable sense). Coercivity and strict convexity easily provide existence and unique-
ness of a minimizer vε.

The above conjecture casts a completely new bridge between hard evolution
problems and more easily tractable convex minimization problems. Indeed, if proven
true, it provides a method to approximate nonlinear (defocusing) wave equations by
convex minimization problems. The variational approach is by genuine minimization,
and not by Critical Point Theory, where one would have to use functionals that behave
rather badly from the point of view of existence results. Notice also that the nonlinear-
ity exponent p can be arbitrarily large.

We also point out that the approach is new (in spirit) even for the linear wave
equation w′′ −Δw= 0 or for the linear Klein–Gordon equation w′′ −Δw+w= 0.

A further point of interest is the possibility to extend the method to other classes
of evolution equations.

A proof of this conjecture has to face a series of difficulties. Among others, we
list the following ones.

• The functionals involve first order spatial derivatives, but second order time
derivatives.

• The weight e−t/ε in each single functional (ε fixed) decays very rapidly as t→∞.

• For fixed t2 > t1, the weight ratio e−t1/ε/e−t2/ε diverges as ε→ 0.

• The time–scale depends on ε, making it difficult to compare two minimizers vε1
and vε2 .

• As ε→ 0, e−t/ε concentrates close to t = 0, and rescaled functionals Γ-converge
to a constant functional, thereby exhibiting a strong loss of information.

The following is our main result.

THEOREM 1 ([2]). For every real p≥ 2 and for initial data α,β in H1∩Lp, the
conjecture is true, up to subsequences.

REMARK 2. Passing to subsequences is not necessary if the Cauchy problem
(1)–(2) has uniqueness. However uniqueness for this problem is not known for large p.

REMARK 3. The solution of the Cauchy problem (1)–(2) obtained in the above
theorem is of energy class, i.e. the function

E(t) :=
∫
Rn

(
|w′(t,x)|2+ |∇w(t,x)|2+ |w(t,x)|p

)
dx

satisfies the energy inequality E(t)≤ E(0).
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We recall that conservation of energy for the Cauchy problem (1)–(2) is not
known for large p.

2. The main ideas of the proof

We now sketch some of the main ideas involved in the proof. It is clear that, in order to
pass to the limit in the Euler–Lagrange equation associated to the functionals Fε, some
estimates are needed. The type of estimates that we obtain, and that are sufficient to
complete the limit procedure, can be summarized in the following list.

• A localized L2 estimate for ∇vε, with values in L2(Rn):
∫ t+T

t

∫
Rn

|∇vε(s,x)|2 dxds≤CT, t ≥ 0, T ≥ ε.

• A localized Lp estimate for vε, with values in Lp(Rn):
∫ t+T

t

∫
Rn

|vε(s,x)|p dxds≤CT, t ≥ 0, T ≥ ε.

• A global L∞ estimate for v′ε, with values in L2(Rn):
∫
Rn

|v′ε(t,x)|2 dx≤C, t ≥ 0.

These estimates provide convergence (up to subsequences) to some w(t,x), with

w ∈ L∞(R+;Lp), ∇w ∈ L∞(R+;L2), w′ ∈ L∞(R+;L2),

for which the energy function

E(t) :=
∫
Rn

(
|w′|2+ |∇w|2+ |w|p

)
dx

is finite for a.e. t > 0.
Moreover, w solves (in weak sense) the wave equation

w′′ −Δw+
p
2
|w|p−2w= 0,

as one sees by passing to the limit in the Euler–Lagrange equation of vε. In this context,
it is interesting to note that the weight e−t/ε can be absorbed inside the test function
during the limit process.

Indeed, let η∈C∞0 (R+×Rn) be a test function. Since vε is the global minimizer
for Fε, it satisfies the Euler–Lagrange equation that, written in weak form, is

∫ ∞

0

∫
Rn
e−t/ε

(
ε2v′′εη′′+∇vε∇η+

p
2
|vε|p−2vεη

)
dxdt = 0.
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Integrating once by parts in time yields
∫ ∞

0

∫
Rn

(
−ε2v′ε

(
e−t/εη′′)′+ e−t/ε(∇vε∇η+

p
2
|vε|p−2vεη)

)
dxdt = 0.

Now choosing η= et/εϕ, with ϕ ∈C∞0 (R+×Rn), the preceding identity reads
∫ ∞

0

∫
Rn

(
−v′ε(ε2ϕ′′+2εϕ′+ϕ)′+∇vε∇ϕ+

p
2
|vε|p−2vεϕ

)
dxdt = 0

As ε→ 0, from vε → w (weakly in H1, strongly in Lp−1, . . . ) we obtain
∫ ∞

0

∫
Rn

(
−w′ϕ′+∇w∇ϕ+

p
2
|w|p−2wϕ

)
dxdt = 0 ∀ϕ ∈C∞0 (R+×Rn),

namely the weak form of the wave equation

w′′ −Δw+
p
2
|w|p−2w= 0.

REMARK 4. Also the two initial conditions

vε(0,x) = α(x) and v′ε(0,x) = β(x)

pass to the limit as ε→ 0. For the former, the L∞(R+;L2) bound on v′ε is enough. For
the latter, we need estimates on v′′ε , uniform in ε. These are obtained in L∞, with values
in the dual of H1 ∩ Lp, by a careful choice of test functions in the Euler–Lagrange
equation for vε.

We now sketch the main argument to obtain the a priori estimates that allowed
us to carry out the preceding limit procedure. First of all it is convenient to get rid of
the parameter ε in the weight: setting

uε(t,x) = vε(εt,x),

we see that vε minimizes Fε if and only if uε minimizes

Jε(u) =
∫ ∞

0

∫
Rn
e−t
(
|u′′|2+ ε2|∇u|2+ ε2|u|p

)
dxdt

with boundary contidions {
u(0,x) = α

u′(0,x) = εβ

Precisely, Jε(uε) = εFε(vε).
Now a crucial role is played by the function

E(t) =
∫
Rn

|u′ε|2 dx−2
∫
Rn
u′εu′′ε dx+ et

∫ ∞

t
e−sL(s)ds
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where L is
L(s) =

∫
Rn

|u′′ε (s,x)|2+ ε2|∇uε(s,x)|2+ ε2|uε(s,x)|p dx.

The function E : R+ → R is a sort of energy, and indeed it is strongly related
to the energy E of the wave equation. Its properties are summarized int he following
result.

THEOREM 2 (Energy lemma). Let uε be the minimizer for Jε and let

E(t) =
∫
Rn

|u′ε|2 dx−2
∫
Rn
u′εu′′ε dx+ et

∫ ∞

t
e−sL(s)ds.

Then E is positive and decreasing; precisely

E ′ =−4
∫
Rn

|u′′ε |2 dx in the sense of distributions

and
0≤

1
ε2
E(t)≤ E(0)+O(ε),

where
E(0) :=

∫
Rn

(
β2+ |∇α|2+ |α|p

)
dx.

The proof of this result could be obtained, formally, by multiplying by u′ε the
Euler–Lagrange equation, but the integral

∫
Rn

|uε|p−2uεu′ε dx

is (a priori) meaningless for large p.
Instead, we make use of inner variations: we build competitors for uε of the

form
Uδ(t,x) = uε(t+δη(t),x), η ∈C∞0 (R+),

and compute
d
dδ
Jε(Uδ) at δ= 0. This is essentially the procedure that is used to derive

the Du Bois–Reymond equation in the Calculus of Variations.
The other tools to complete the argument are the following.

• A level estimate:
Jε(uε)≤ Jε(α+ εtβ)≤Cε2.

• An energy estimate:

E(0) = ε2E(0)+O(ε3)≤Cε2.

• A consequence of the Energy lemma:
∫
Rn

|u′ε(t)|2dx+ et
∫ ∞

t

∫ ∞

s
e−τL(τ)dτds≤ E(t)≤ E(0)≤Cε2.
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Setting
H(t) =

∫ ∞

t
e−τL(τ)dτ,

the last inequality can be written more concisely

(3)
∫
Rn

|u′ε(t)|2dx+ et
∫ ∞

t
H(s)ds≤Cε2.

From this we first derive a pointwise estimate onH. SinceH is decreasing by definition,

H(t+1)≤
∫ t+1

t
H(s)ds≤

∫ ∞

t
H(s)ds

Multiplying by et+1 and using (3) yields

et+1H(t+1)≤ eet
∫ ∞

t
H(s)ds≤Cε2,

that is,
etH(t)≤Cε2 ∀t ≥ 1.

But if t ∈ [0,1],
etH(t)≤ eH(t)≤ eH(0) = eJε(uε)≤Cε2,

so that
etH(t)≤Cε2 ∀t ≥ 0.

We are now in a position to conclude. Due to the preceding discussion we can proceed
by estimating

Cε2 ≥ etH(t) = et
∫ ∞

t
e−sL(s)ds≥ et

∫ t+1

t
e−sL(s)ds

≥ ete−t−1
∫ t+1

t
L(s)ds= e−1

∫ t+1

t

∫
Rn

|u′′ε |2+ ε2|∇uε|2+ ε2|uε|p dxds

≥ e−1ε2
∫ t+1

t

∫
Rn

|∇uε|2+ |uε|p dxds.

Dividing by ε2 we obtain
∫ t+1

t

∫
Rn

|∇uε|2dxds≤C ∀t ≥ 0,

∫ t+1

t

∫
Rn

|uε|pdxds≤C ∀t ≥ 0

and, directly from (3),
∫
Rn

|u′ε(t)|2 dx≤Cε2 ∀t ≥ 0.
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When we scale back to vε by uε(s,x) = vε(εs,x) and we change variables these esti-
mates take the form

1
ε

∫ εt+ε

εt

∫
Rn

|∇vε|2dxds≤C ∀t ≥ 0,

1
ε

∫ εt+ε

εt

∫
Rn

|vε|pdxds≤C ∀t ≥ 0

and
ε2

∫
Rn

|v′ε(t)|2 dx≤Cε2 ∀t ≥ 0.

Since t is arbitrary, we can rename εt by t and obtain
∫ t+ε

t

∫
Rn

|∇vε|2dxds≤Cε ∀t ≥ 0,

∫ t+ε

t

∫
Rn

|vε|pdxds≤Cε ∀t ≥ 0,

∫
Rn

|v′ε(t)|2 dx≤C ∀t ≥ 0.

The last one is the global L2 estimate on v′ε. As for the remaining two, given T ≥ ε, the
interval [t, t+T ] can be covered by O(T/ε) adjacent subintervals of length ε. On each
of these intervals we use the above estimates and we add the results, arriving at

∫ t+T

t

∫
Rn

|∇vε|2 dxds≤CεO(T/ε)≤CT, t ≥ 0, T ≥ ε

∫ t+T

t

∫
Rn

|vε|p dxds≤CεO(T/ε)≤CT, t ≥ 0, T ≥ ε,

which are the localized estimates we were looking for.

3. Some open problems

Here is a very short list of open problems that arise from the preceding discussion.

• Proving the conjecture without passing to subsequences. This is related, as we
said, to the presence of uniqueness for the Cauchy problem (1)–(2), when p is
large. If there is uniqueness, we know that there is no need for subsequences. If,
on the contrary, there is no uniqueness, the situation could be even more interest-
ing. Indeed, if one could prove the conjecture without passing to subsequences,
then one would have a way to select a privileged solution to the Cauchy problem
that could be referred to, for example, as the “Variational Solution”.
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• Other equations. Just to make an example, what about

w′′ −
2
q
div
(
|∇w|q−2∇w

)
+
p
2
|w|p−2w= 0,

the wave equation for the q-Laplacian with defocusing nonlinearity?
This would correspond to the functional

∫ ∞

0

∫
Rn
e−t/ε

(
ε2|v′′|2+ |∇v|q+ |v|p

)
dxdt.

As far as we know, even the existence of global weak solutions (to the Cauchy
problem) for large q is unknown. Does the method of De Giorgi work to solve
this problem?

• The abstract form of De Giorgi’s Conjecture. Consider any convex functional of
the Calculus of Variations,

F(u) =
∫
Ω
f (x,u,∇u, . . .)dx

Let vε(t,x) be the minimizer of
∫ ∞

0
e−t/ε

(∫
Ω
ε2|v′′ε (t,x)|2 dx+F(vε(t, ·))

)
dt

with given boundary conditions vε(0, ·) and v′ε(0, ·)
As ε→ 0, does vε converge to some w, which solves the Cauchy Problem for the
equation

w′′+∇F(w) = 0 ?
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