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Abstract—In this work, we derive closed-form expression
for the Gallager’s random coding error exponent for a MIMO
multiple-scattering channel. The number of scattering stages is
arbitrary but finite, white noise is present at the destination.

I. INTRODUCTION

Random matrix products arise in multi-antenna channels
modeling since earliest works on the topic, rigorously rep-
resenting progressive scattering phenomena [1], and later on
modeling concatenated transmit systems helped by multiple-
antenna equipped relays [2], [3, and references therein] at high
Signal to Noise Ratio (SNR). Relying on very recent results
from random matrix theory and polynomial ensembles [4], in
this work we move a step toward a full characterization of
wireless systems whose channel matrix is suitably modeled by
a product of several random matrices of finite size1. Focusing
on a communication impaired by uncorrelated Rayleigh fading,
we assume that only the destination is provided with statistical
channel state information (CSI), leaving the more involved
case of neither transmitter nor receiver aware of CSI for
future investigation. We analyze for this channel the trade-off
between system performance and required coding length at
a prescribed rate below the channel capacity, i.e. we provide
expression for the Gallager’s lower bound to the error exponent
of a MIMO system whose channel matrix is the product
of an arbitrary number, say M , of independent rectangular
matrices with standard Gaussian i.i.d. entries. The analysis
straightforwardly generalizes to the case of independent ma-
trices with zero-mean i.i.d. Gaussian entries, but with possibly
different variances across the matrix factors. This models both
a Rayleigh-faded, multiple-scattering channel with uncorre-
lated scatterers and possibly different scattering power, as well
as a multi-hop MIMO relay channel with Uniform Power
Allocation (UPA) at each relay stage, non-noisy relays and
noisy received signal. Error exponent evaluation for MIMO
systems in presence of receiver CSI has been carried out
first2 in the seminal paper [7], for Rayleigh fading channels
with arbitrary (separable) spatial correlation at either link end.
Rayleigh-product channels have been later investigated in [8]
for the dual-hop case. To the best of the author knowledge,
this is the first investigation assuming an arbitrary number of
scattering stages.

1Indeed, the only closed-form result on mutual information of multiple-
antenna systems with progressive scattering in the finite-dimensional case
appears outside wireless information theoretic literature, in [5].

2In [6], where first the problem was set down, there is no final analytical
expression for the error exponent.

We stress that, without CSI at either link end, the unique
available result is for MIMO Rayleigh channels, and is derived
in [9].

II. SYSTEM MODEL

Let us consider a channel represented by a random nr×nt

matrix H, having the following expression

H =
M−1∏

i=0

Hi .

where Hi is a (nr+νi−1)×(nr+νi) random matrix with i.i.d.
Gaussian entries and ν0 = 0. The matrix H models a M -stages
multiple-scattering channel, affected by Rayleigh fading, with
uniform power allocation (UPA) at the source and AWGN at
the receiver

Assuming a coding length nc for the transmitted signal and
collecting the output of nb successive channel uses, where nb

is the block-length of the fading process, the output signal can
be expressed as

Y = HX+N , (1)

with Y nr×nc matrix-valued output, X nt×nc matrix-valued
output and N AWGN matrix of size nr × nc.

III. INFORMATION-THEORETIC ANALYSIS

Error exponent relates the achievable error probability of a
coding strategy with the required coding length. While the rig-
orous definition of error exponent accounts for the exploitation
of the optimal (in term of achievable error probability) code,
i.e.

E(R) = lim sup
N→∞

− ln
P opt
e (R,N)

N
,

with R the rate and N the coding length corresponding to the
optimal error probability, due to the difficulty in evaluating
it even for scalar channels, we resort to classical Gallager’s
lower bound for random coding, which leads to the evaluation
of

ER(p(X), R, nc) = max
0≤ρ≤1

{
max
r≥0

E0(p(X), ρ, r, nc)− ρR

}
, (2)

with

E0(p(X), ρ, r, nc) = − 1

nc
ln E , (3)



E denoting the following matrix integral
∫

H
p(H)

∫

Y

(∫

X
p(X)p(Y|X,H)

1
1+ρ er[TrXX†−nbP]dX

)1+ρ

dYdH (4)

Notice that (3) relies on the assumption that CSI is made
available at the receiver, henceforth p(Y|X,H) is exploited
in the calculus. Notice further that the optimal input w.r.t. the
error exponent is the one which maximizes ER(p(X), R, nc),
but for sake of simplicity we adopt hereinafter, as usual in the
literature, the average power constrained capacity-achieving (in
ergodic sense) distribution for X, i.e. we resort to UPA.

Under the abovementioned assumptions, we can state the
following

Theorem 3.1: The random coding bound on the error prob-
ability for ML deconding over a block-fading channel can be
written as [7, Eq. (9)]

Pe ≤ α exp{−nbnc}ER(p(X), R, nc) , (5)

with ER defined in (2) and where E0 from (3) can be written
as

E0(p(X), ρ, r, nc) = ntγ(1+ρ)−nr ln(1+ρ)− 1

nc
ln |Z| , (6)

with γ = P/nt, P being the overall transmit power, and

Zi,j =

∫ +∞

0
λj−1GM,0

0,M

(
−
νM , . . . , ν2, ν1 + i− 1 |λ

)
ξ(λ)dλ

and ξ(λ) an algebraic function of λ, a marginal unordered
singular value of H, whose joint distribution is characterized
in [4].

Proof. See extended version.
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